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Abstract

High throughput serving of large language models (LLMs)
requires batching sufficiently many requests at a time. How-
ever, existing systems struggle because the key-value cache
(KV cache) memory for each request is huge and grows
and shrinks dynamically. When managed inefficiently, this
memory can be significantly wasted by fragmentation and
redundant duplication, limiting the batch size. To address
this problem, we propose PagedAttention, an attention al-
gorithm inspired by the classical virtual memory and pag-
ing techniques in operating systems. On top of it, we build
vLLM, an LLM serving system that achieves (1) near-zero
waste in KV cache memory and (2) flexible sharing of KV
cache within and across requests to further reduce mem-
ory usage. Our evaluations show that vLLM improves the
throughput of popular LLMs by 2-4x with the same level
of latency compared to the state-of-the-art systems, such
as FasterTransformer and Orca. The improvement is more
pronounced with longer sequences, larger models, and more
complex decoding algorithms. vLLM’s source code is publicly
available at https://github.com/vlim-project/vlim.

1 Introduction

The emergence of large language models (LLMs) like GPT [5,
37] and PaLM [9] have enabled new applications such as pro-
gramming assistants [6, 18] and universal chatbots [19, 35]
that are starting to profoundly impact our work and daily
routines. Many cloud companies [34, 44] are racing to pro-
vide these applications as hosted services. However, running
these applications is very expensive, requiring a large num-
ber of hardware accelerators such as GPUs. According to
recent estimates, processing an LLM request can be 10X more
expensive than a traditional keyword query [43]. Given these
high costs, increasing the throughput—and hence reducing

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SOSP °23, October 23-26, 2023, Koblenz, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0229-7/23/10.
https://doi.org/10.1145/3600006.3613165

S Sys S ——
KV >
Parameters Cache sz
(26GB, 65%) | (>30%) )
Others
Q
NVIDIA A100 40GB

sz SSs

Figure 1. Left: Memory layout when serving an LLM with
13B parameters on NVIDIA A100. The parameters (gray)
persist in GPU memory throughout serving. The memory
for the KV cache (red) is (de)allocated per serving request.
A small amount of memory (yellow) is used ephemerally
for activation. Right: vLLM smooths out the rapid growth
curve of KV cache memory seen in existing systems [31, 60],
leading to a notable boost in serving throughput.

the cost per request—of LLM serving systems is becoming
more important.

At the core of LLMs lies an autoregressive Transformer
model [53]. This model generates words (tokens), one at a
time, based on the input (prompt) and the previous sequence
of the output’s tokens it has generated so far. For each re-
quest, this expensive process is repeated until the model out-
puts a termination token. This sequential generation process
makes the workload memory-bound, underutilizing the com-
putation power of GPUs and limiting the serving throughput.

Improving the throughput is possible by batching multi-
ple requests together. However, to process many requests
in a batch, the memory space for each request should be
efficiently managed. For example, Fig. 1 (left) illustrates the
memory distribution for a 13B-parameter LLM on an NVIDIA
A100 GPU with 40GB RAM. Approximately 65% of the mem-
ory is allocated for the model weights, which remain static
during serving. Close to 30% of the memory is used to store
the dynamic states of the requests. For Transformers, these
states consist of the key and value tensors associated with the
attention mechanism, commonly referred to as KV cache [41],
which represent the context from earlier tokens to gener-
ate new output tokens in sequence. The remaining small
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Figure 2. Average percentage of memory wastes in different
LLM serving systems during the experiment in §6.2.

percentage of memory is used for other data, including ac-
tivations — the ephemeral tensors created when evaluating
the LLM. Since the model weights are constant and the ac-
tivations only occupy a small fraction of the GPU memory,
the way the KV cache is managed is critical in determining
the maximum batch size. When managed inefficiently, the
KV cache memory can significantly limit the batch size and
consequently the throughput of the LLM, as illustrated in
Fig. 1 (right).

In this paper, we observe that existing LLM serving sys-
tems [31, 60] fall short of managing the KV cache memory
efficiently. This is mainly because they store the KV cache of
arequest in contiguous memory space, as most deep learning
frameworks [33, 39] require tensors to be stored in contigu-
ous memory. However, unlike the tensors in the traditional
deep learning workloads, the KV cache has unique charac-
teristics: it dynamically grows and shrinks over time as the
model generates new tokens, and its lifetime and length are
not known a priori. These characteristics make the existing
systems’ approach significantly inefficient in two ways:

First, the existing systems [31, 60] suffer from internal and
external memory fragmentation. To store the KV cache of
a request in contiguous space, they pre-allocate a contigu-
ous chunk of memory with the request’s maximum length
(e.g., 2048 tokens). This can result in severe internal frag-
mentation, since the request’s actual length can be much
shorter than its maximum length (e.g., Fig. 11). Moreover,
even if the actual length is known a priori, the pre-allocation
is still inefficient: As the entire chunk is reserved during the
request’s lifetime, other shorter requests cannot utilize any
part of the chunk that is currently unused. Besides, external
memory fragmentation can also be significant, since the pre-
allocated size can be different for each request. Indeed, our
profiling results in Fig. 2 show that only 20.4% - 38.2% of the
KV cache memory is used to store the actual token states in
the existing systems.

Second, the existing systems cannot exploit the opportu-
nities for memory sharing. LLM services often use advanced

decoding algorithms, such as parallel sampling and beam
search, that generate multiple outputs per request. In these
scenarios, the request consists of multiple sequences that can
partially share their KV cache. However, memory sharing is
not possible in the existing systems because the KV cache of
the sequences is stored in separate contiguous spaces.

To address the above limitations, we propose PagedAt-
tention, an attention algorithm inspired by the operating
system’s (OS) solution to memory fragmentation and shar-
ing: virtual memory with paging. PagedAttention divides the
request’s KV cache into blocks, each of which can contain
the attention keys and values of a fixed number of tokens. In
PagedAttention, the blocks for the KV cache are not neces-
sarily stored in contiguous space. Therefore, we can manage
the KV cache in a more flexible way as in OS’s virtual mem-
ory: one can think of blocks as pages, tokens as bytes, and
requests as processes. This design alleviates internal frag-
mentation by using relatively small blocks and allocating
them on demand. Moreover, it eliminates external fragmen-
tation as all blocks have the same size. Finally, it enables
memory sharing at the granularity of a block, across the
different sequences associated with the same request or even
across the different requests.

In this work, we build vLLM, a high-throughput distributed
LLM serving engine on top of PagedAttention that achieves
near-zero waste in KV cache memory. vLLM uses block-level
memory management and preemptive request scheduling
that are co-designed with PagedAttention. vLLM supports
popular LLMs such as GPT [5], OPT [62], and LLaMA [52]
with varying sizes, including the ones exceeding the memory
capacity of a single GPU. Our evaluations on various models
and workloads show that vLLM improves the LLM serving
throughput by 2-4x compared to the state-of-the-art sys-
tems [31, 60], without affecting the model accuracy at all. The
improvements are more pronounced with longer sequences,
larger models, and more complex decoding algorithms (§4.3).
In summary, we make the following contributions:

o We identify the challenges in memory allocation in serving

LLMs and quantify their impact on serving performance.
e We propose PagedAttention, an attention algorithm that

operates on KV cache stored in non-contiguous paged

memory, which is inspired by the virtual memory and
paging in OS.

e We design and implement vLLM, a distributed LLM serving
engine built on top of PagedAttention.

o We evaluate vLLM on various scenarios and demonstrate
that it substantially outperforms the previous state-of-the-

art solutions such as FasterTransformer [31] and Orca [60].

2 Background

In this section, we describe the generation and serving pro-
cedures of typical LLMs and the iteration-level scheduling
used in LLM serving.



2.1 Transformer-Based Large Language Models

The task of language modeling is to model the probability
of a list of tokens (x, ..., x,). Since language has a natural
sequential ordering, it is common to factorize the joint prob-
ability over the whole sequence as the product of conditional
probabilities (a.k.a. autoregressive decomposition [3]):
P(x) =P(x1) - P(xz | x1) - P(xn | X1+ s Xn-1). (1)
Transformers [53] have become the de facto standard ar-
chitecture for modeling the probability above at a large scale.
The most important component of a Transformer-based lan-
guage model is its self-attention layers. For an input hidden
state sequence (xi,...,%,) € R™4_ 4 self-attention layer
first applies linear transformations on each position i to get
the query, key, and value vectors:

qi = Wyxi, ki = Wixi, 0 = Wox;. (2)

Then, the self-attention layer computes the attention score
a;j by multiplying the query vector at one position with all
the key vectors before it and compute the output o; as the
weighted average over the value vectors:

T i
ij = .exp(qi AL ;00 = Z aijv;. ®)

21 exp(q;'—kt/\/a) j=1

Besides the computation in Eq. 4, all other components
in the Transformer model, including the embedding layer,
feed-forward layer, layer normalization [2], residual connec-
tion [22], output logit computation, and the query, key, and
value transformation in Eq. 2, are all applied independently
position-wise in a form of y; = f(x;).

2.2 LLM Service & Autoregressive Generation

Once trained, LLMs are often deployed as a conditional gen-
eration service (e.g., completion API [34] or chatbot [19, 35]).
A request to an LLM service provides a list of input prompt
tokens (x, ..., x,), and the LLM service generates a list of
output tokens (Xp+1, . . ., Xp41) according to Eq. 1. We refer to
the concatenation of the prompt and output lists as sequence.

Due to the decomposition in Eq. 1, the LLM can only sam-
ple and generate new tokens one by one, and the generation
process of each new token depends on all the previous tokens
in that sequence, specifically their key and value vectors. In
this sequential generation process, the key and value vectors
of existing tokens are often cached for generating future
tokens, known as KV cache. Note that the KV cache of one
token depends on all its previous tokens. This means that the
KV cache of the same token appearing at different positions
in a sequence will be different.

Given a request prompt, the generation computation in
the LLM service can be decomposed into two phases:

The prompt phase takes the whole user prompt (x1, . . ., x,)
as input and computes the probability of the first new to-
ken P(xp41 | x1,...,%,). During this process, also gener-
ates the key vectors ky, ..., k, and value vectors vy, ..., 0.
Since prompt tokens xy, . .., x, are all known, the computa-
tion of the prompt phase can be parallelized using matrix-
matrix multiplication operations. Therefore, this phase can
efficiently use the parallelism inherent in GPUs.

The autoregressive generation phase generates the re-
maining new tokens sequentially. At iteration t, the model
takes one token x,.; as input and computes the probability
P(xpie+1 | X1, -« -, Xn4r) with the key vectors ky, . . ., ky4r and
value vectors vy, . . ., U4 Note that the key and value vectors
at positions 1 to n + t — 1 are cached at previous iterations,
only the new key and value vector k4, and v,4; are com-
puted at this iteration. This phase completes either when the
sequence reaches a maximum length (specified by users or
limited by LLMs) or when an end-of-sequence (<eos>) token
is emitted. The computation at different iterations cannot
be parallelized due to the data dependency and often uses
matrix-vector multiplication, which is less efficient. As a re-
sult, this phase severely underutilizes GPU computation and
becomes memory-bound, being responsible for most portion
of the latency of a single request.

2.3 Batching Techniques for LLMs

The compute utilization in serving LLMs can be improved
by batching multiple requests. Because the requests share
the same model weights, the overhead of moving weights is
amortized across the requests in a batch, and can be over-
whelmed by the computational overhead when the batch
size is sufficiently large. However, batching the requests
to an LLM service is non-trivial for two reasons. First, the
requests may arrive at different times. A naive batching strat-
egy would either make earlier requests wait for later ones
or delay the incoming requests until earlier ones finish, lead-
ing to significant queueing delays. Second, the requests may
have vastly different input and output lengths (Fig. 11). A
straightforward batching technique would pad the inputs
and outputs of the requests to equalize their lengths, wasting
GPU computation and memory.

To address this problem, fine-grained batching mecha-
nisms, such as cellular batching [16] and iteration-level sched-
uling [60], have been proposed. Unlike traditional methods
that work at the request level, these techniques operate at
the iteration level. After each iteration, completed requests
are removed from the batch, and new ones are added. There-
fore, a new request can be processed after waiting for a
single iteration, not waiting for the entire batch to complete.
Moreover, with special GPU kernels, these techniques elim-
inate the need to pad the inputs and outputs. By reducing
the queueing delay and the inefficiencies from padding, the
fine-grained batching mechanisms significantly increase the
throughput of LLM serving.
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Figure 3. KV cache memory management in existing systems. Three types of memory wastes — reserved, internal fragmentation,
and external fragmentation — exist that prevent other requests from fitting into the memory. The token in each memory slot
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3 Memory Challenges in LLM Serving

Although fine-grained batching reduces the waste of com-
puting and enables requests to be batched in a more flexible
way, the number of requests that can be batched together is
still constrained by GPU memory capacity, particularly the
space allocated to store the KV cache. In other words, the
serving system’s throughput is memory-bound. Overcom-
ing this memory-bound requires addressing the following
challenges in the memory management:

Large KV cache. The KV Cache size grows quickly with the
number of requests. As an example, for the 13B parameter
OPT model [62], the KV cache of a single token demands 800
KB of space, calculated as 2 (key and value vectors) X 5120
(hidden state size) X 40 (number of layers) X 2 (bytes per
FP16). Since OPT can generate sequences up to 2048 tokens,
the memory required to store the KV cache of one request
can be as much as 1.6 GB. Concurrent GPUs have memory
capacities in the tens of GBs. Even if all available memory
was allocated to KV cache, only a few tens of requests could
be accommodated. Moreover, inefficient memory manage-
ment can further decrease the batch size, as shown in Fig. 2.
Additionally, given the current trends, the GPU’s computa-
tion speed grows faster than the memory capacity [17]. For
example, from NVIDIA A100 to H100, The FLOPS increases
by more than 2x, but the GPU memory stays at 80GB max-
imum. Therefore, we believe the memory will become an
increasingly significant bottleneck.

Complex decoding algorithms. LLM services offer a range
of decoding algorithms for users to select from, each with
varying implications for memory management complexity.
For example, when users request multiple random samples
from a single input prompt, a typical use case in program
suggestion [18], the KV cache of the prompt part, which
accounts for 12% of the total KV cache memory in our ex-
periment (§6.3), can be shared to minimize memory usage.
On the other hand, the KV cache during the autoregressive
generation phase should remain unshared due to the dif-
ferent sample results and their dependence on context and
position. The extent of KV cache sharing depends on the
specific decoding algorithm employed. In more sophisticated
algorithms like beam search [49], different request beams
can share larger portions (up to 55% memory saving, see

§6.3) of their KV cache, and the sharing pattern evolves as
the decoding process advances.

Scheduling for unknown input & output lengths. The
requests to an LLM service exhibit variability in their input
and output lengths. This requires the memory management
system to accommodate a wide range of prompt lengths. In
addition, as the output length of a request grows at decoding,
the memory required for its KV cache also expands and may
exhaust available memory for incoming requests or ongoing
generation for existing prompts. The system needs to make
scheduling decisions, such as deleting or swapping out the
KV cache of some requests from GPU memory.

3.1 Memory Management in Existing Systems

Since most operators in current deep learning frameworks
[33, 39] require tensors to be stored in contiguous memory,
previous LLM serving systems [31, 60] also store the KV
cache of one request as a contiguous tensor across the differ-
ent positions. Due to the unpredictable output lengths from
the LLM, they statically allocate a chunk of memory for a
request based on the request’s maximum possible sequence
length, irrespective of the actual input or eventual output
length of the request.

Fig. 3 illustrates two requests: request A with 2048 max-
imum possible sequence length and request B with a max-
imum of 512. The chunk pre-allocation scheme in existing
systems has three primary sources of memory wastes: re-
served slots for future tokens, internal fragmentation due to
over-provisioning for potential maximum sequence lengths,
and external fragmentation from the memory allocator like
the buddy allocator. The external fragmentation will never
be used for generated tokens, which is known before serving
a request. Internal fragmentation also remains unused, but
this is only realized after a request has finished sampling.
They are both pure memory waste. Although the reserved
memory is eventually used, reserving this space for the en-
tire request’s duration, especially when the reserved space
is large, occupies the space that could otherwise be used to
process other requests. We visualize the average percentage
of memory wastes in our experiments in Fig. 2, revealing
that the actual effective memory in previous systems can be
as low as 20.4%.
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Figure 4. vLLM system overview.

Although compaction [54] has been proposed as a poten-
tial solution to fragmentation, performing compaction in a
performance-sensitive LLM serving system is impractical
due to the massive KV cache. Even with compaction, the
pre-allocated chunk space for each request prevents memory
sharing specific to decoding algorithms in existing memory
management systems.

4 Method

In this work, we develop a new attention algorithm, Page-
dAttention, and build an LLM serving engine, vLLM, to tackle
the challenges outlined in §3. The architecture of vLLM is
shown in Fig. 4. vLLM adopts a centralized scheduler to
coordinate the execution of distributed GPU workers. The
KV cache manager effectively manages the KV cache in a
paged fashion, enabled by PagedAttention. Specifically, the
KV cache manager manages the physical KV cache memory
on the GPU workers through the instructions sent by the
centralized scheduler.

Next, We describe the PagedAttention algorithm in §4.1.
With that, we show the design of the KV cache manager in
§4.2 and how it facilitates PagedAttention in §4.3, respec-
tively. Then, we show how this design facilitates effective
memory management for various decoding methods (§4.4)
and handles the variable length input and output sequences
(§4.5). Finally, we show how the system design of vLLM
works in a distributed setting (§4.6).

4.1 PagedAttention

To address the memory challenges in §3, we introduce Page-
dAttention, an attention algorithm inspired by the classic idea
of paging [25] in operating systems. Unlike the traditional
attention algorithms, PagedAttention allows storing continu-
ous keys and values in non-contiguous memory space. Specif-
ically, PagedAttention partitions the KV cache of each se-
quence into KV blocks. Each block contains the key and value
vectors for a fixed number of tokens,! which we denote as KV

n Transformer, each token has a set of key and value vectors across layers
and attention heads within a layer. All the key and value vectors can be
managed together within a single KV block, or the key and value vectors at
different heads and layers can each have a separate block and be managed
in separate block tables. The two designs have no performance difference
and we choose the second one for easy implementation.

Key and value vectors

Block 1| years ago our fathers

Block 2 | brought forth
Query |
vector

Block 0| Four score and seven

Figure 5. Illustration of the PagedAttention algorithm,
where the attention key and values vectors are stored as
non-contiguous blocks in the memory.

block size (B). Denote the key block K; = (k(j-1)B+1, - - -» kjB)
and value block V; = (v(j-1)B+1, - - -, vjB). The attention com-
putation in Eq. 4 can be transformed into the following block-
wise computation:

exp(q; K;/Vd) G
= ST T o= D VAL @

2o exp(g, K,1/Vd) =1
where A;j = (a;,(j—1)B+1; - - -» @i,jB) is the row vector of atten-
tion score on j-th KV block.

During the attention computation, the PagedAttention
kernel identifies and fetches different KV blocks separately.
We show an example of PagedAttention in Fig. 5: The key
and value vectors are spread across three blocks, and the
three blocks are not contiguous on the physical memory. At
each time, the kernel multiplies the query vector g; of the
query token (“forth”) and the key vectors K; in a block (e.g.,
key vectors of “Four score and seven” for block 0) to compute
the attention score A;;, and later multiplies A;; with the value
vectors V; in a block to derive the final attention output o;.

In summary, the PagedAttention algorithm allows the
KV blocks to be stored in non-contiguous physical memory,
which enables more flexible paged memory management in
vLLM.

4.2 KV Cache Manager

ij

The key idea behind vLLM’s memory manager is analogous
to the virtual memory [25] in operating systems. OS parti-
tions memory into fixed-sized pages and maps user programs’
logical pages to physical pages. Contiguous logical pages can
correspond to non-contiguous physical memory pages, al-
lowing user programs to access memory as though it were
contiguous. Moreover, physical memory space needs not to
be fully reserved in advance, enabling the OS to dynamically
allocate physical pages as needed. vLLM uses the ideas be-
hind virtual memory to manage the KV cache in an LLM
service. Enabled by PagedAttention, we organize the KV
cache as fixed-size KV blocks, like pages in virtual memory.

A request’s KV cache is represented as a series of logical
KV blocks, filled from left to right as new tokens and their KV
cache are generated. The last KV block’s unfilled positions
are reserved for future generations. On GPU workers, a block
engine allocates a contiguous chunk of GPU DRAM and
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Figure 6. Block table translation in vLLM.

divides it into physical KV blocks (this is also done on CPU
RAM for swapping; see §4.5). The KV block manager also
maintains block tables—the mapping between logical and
physical KV blocks of each request. Each block table entry
records the corresponding physical blocks of a logical block
and the number of filled positions. Separating logical and
physical KV blocks allows vLLM to dynamically grow the
KV cache memory without reserving it for all positions in
advance, which eliminates most memory waste in existing
systems, as in Fig. 2.

4.3 Decoding with PagedAttention and vLLM

Next, we walk through an example, as in Fig. 6, to demon-
strate how vLLM executes PagedAttention and manages the
memory during the decoding process of a single input se-
quence: (I) As in OS’s virtual memory, vLLM does not require
reserving the memory for the maximum possible generated
sequence length initially. Instead, it reserves only the nec-
essary KV blocks to accommodate the KV cache generated
during prompt computation. In this case, The prompt has 7
tokens, so vVLLM maps the first 2 logical KV blocks (0 and
1) to 2 physical KV blocks (7 and 1, respectively). In the
prefill step, vVLLM generates the KV cache of the prompts
and the first output token with a conventional self-attention
algorithm (e.g., [13]). vVLLM then stores the KV cache of the
first 4 tokens in logical block 0 and the following 3 tokens
in logical block 1. The remaining slot is reserved for the
subsequent autoregressive generation phase. (2) In the first
autoregressive decoding step, vLLM generates the new token
with the PagedAttention algorithm on physical blocks 7 and
1. Since one slot remains available in the last logical block,
the newly generated KV cache is stored there, and the block
table’s #filled record is updated. (3) At the second decoding
step, as the last logical block is full, vLLM stores the newly
generated KV cache in a new logical block; vLLM allocates a
new physical block (physical block 3) for it and stores this
mapping in the block table.

Globally, for each decoding iteration, vLLM first selects
a set of candidate sequences for batching (more in §4.5),
and allocates the physical blocks for the newly required
logical blocks. Then, vLLM concatenates all the input tokens
of the current iteration (i.e., all tokens for prompt phase
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Figure 7. Storing the KV cache of two requests at the same
time in vLLM.

requests and the latest tokens for generation phase requests)
as one sequence and feeds it into the LLM. During LLM’s
computation, vVLLM uses the PagedAttention kernel to access
the previous KV cache stored in the form of logical KV blocks
and saves the newly generated KV cache into the physical
KV blocks. Storing multiple tokens within a KV block (block
size > 1) enables the PagedAttention kernel to process the
KV cache across more positions in parallel, thus increasing
the hardware utilization and reducing latency. However, a
larger block size also increases memory fragmentation. We
study the effect of block size in §7.2.

Again, vLLM dynamically assigns new physical blocks to
logical blocks as more tokens and their KV cache are gener-
ated. As all the blocks are filled from left to right and a new
physical block is only allocated when all previous blocks
are full, vLLM limits all the memory wastes for a request
within one block, so it can effectively utilize all the memory,
as shown in Fig. 2. This allows more requests to fit into mem-
ory for batching—hence improving the throughput. Once a
request finishes its generation, its KV blocks can be freed to
store the KV cache of other requests. In Fig. 7, we show an
example of vLLM managing the memory for two sequences.
The logical blocks of the two sequences are mapped to differ-
ent physical blocks within the space reserved by the block
engine in GPU workers. The neighboring logical blocks of
both sequences do not need to be contiguous in physical GPU
memory and the space of physical blocks can be effectively
utilized by both sequences.

4.4 Application to Other Decoding Scenarios

§4.3 shows how PagedAttention and vLLM handle basic de-
coding algorithms, such as greedy decoding and sampling,
that take one user prompt as input and generate a single out-
put sequence. In many successful LLM applications [18, 34],
an LLM service must offer more complex decoding scenarios
that exhibit complex accessing patterns and more opportuni-
ties for memory sharing. We show the general applicability
of vLLM on them in this section.

Parallel sampling. In LLM-based program assistants [6, 18],
an LLM generates multiple sampled outputs for a single in-
put prompt; users can choose a favorite output from various
candidates. So far we have implicitly assumed that a request
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Figure 8. Parallel sampling example.

generates a single sequence. In the remainder of this paper,
we assume the more general case in which a request gener-
ates multiple sequences. In parallel sampling, one request
includes multiple samples sharing the same input prompt,
allowing the KV cache of the prompt to be shared as well. Via
its PagedAttention and paged memory management, vLLM
can realize this sharing easily and save memory.

Fig. 8 shows an example of parallel decoding for two out-
puts. Since both outputs share the same prompt, we only
reserve space for one copy of the prompt’s state at the prompt
phase; the logical blocks for the prompts of both sequences
are mapped to the same physical blocks: the logical block 0
and 1 of both sequences are mapped to physical blocks 7 and
1, respectively. Since a single physical block can be mapped
to multiple logical blocks, we introduce a reference count for
each physical block. In this case, the reference counts for
physical blocks 7 and 1 are both 2. At the generation phase,
the two outputs sample different output tokens and need
separate storage for KV cache. vLLM implements a copy-on-
write mechanism at the block granularity for the physical
blocks that need modification by multiple sequences, similar
to the copy-on-write technique in OS virtual memory (e.g.,
when forking a process). Specifically, in Fig. 8, when sample
A1 needs to write to its last logical block (logical block 1),
vLLM recognizes that the reference count of the correspond-
ing physical block (physical block 1) is greater than 1; it
allocates a new physical block (physical block 3), instructs
the block engine to copy the information from physical block
1, and decreases the reference count to 1. Next, when sample
A2 writes to physical block 1, the reference count is already
reduced to 1; thus A2 directly writes its newly generated KV
cache to physical block 1.

In summary, vVLLM enables the sharing of most of the
space used to store the prompts’ KV cache across multiple
output samples, with the exception of the final logical block,
which is managed by a copy-on-write mechanism. By sharing
physical blocks across multiple samples, memory usage can
be greatly reduced, especially for long input prompts.

Beam search. In LLM tasks like machine translation [59],
the users expect the top-k most appropriate translations out-
put by the LLM. Beam search [49] is widely used to decode
the most probable output sequence from an LLM, as it miti-
gates the computational complexity of fully traversing the
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Figure 9. Beam search example.
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sample space. The algorithm relies on the beam width pa-
rameter k, which determines the number of top candidates
retained at every step. During decoding, beam search ex-
pands each candidate sequence in the beam by considering
all possible tokens, computes their respective probabilities us-
ing the LLM, and retains the top-k most probable sequences
out of k - |V| candidates, where |V| is the vocabulary size.

Unlike parallel decoding, beam search facilities sharing
not only the initial prompt blocks but also other blocks across
different candidates, and the sharing patterns dynamically
change as the decoding process advances, similar to the pro-
cess tree in the OS created by compound forks. Fig. 9 shows
how vLLM manages the KV blocks for a beam search ex-
ample with k = 4. Prior to the iteration illustrated as the
dotted line, each candidate sequence has used 4 full logi-
cal blocks. All beam candidates share the first block 0 (i.e.,
prompt). Candidate 3 digresses from others from the second
block. Candidates 0-2 share the first 3 blocks and diverge at
the fourth block. At subsequent iterations, the top-4 prob-
able candidates all originate from candidates 1 and 2. As
the original candidates 0 and 3 are no longer among the
top candidates, their logical blocks are freed, and the refer-
ence counts of corresponding physical blocks are reduced.
vLLM frees all physical blocks whose reference counts reach
0 (blocks 2, 4, 5, 8). Then, vLLM allocates new physical blocks
(blocks 9-12) to store the new KV cache from the new can-
didates. Now, all candidates share blocks 0, 1, 3; candidates
0 and 1 share block 6, and candidates 2 and 3 further share
block 7.

Previous LLM serving systems require frequent memory
copies of the KV cache across the beam candidates. For exam-
ple, in the case shown in Fig. 9, after the dotted line, candidate
3 would need to copy a large portion of candidate 2’s KV
cache to continue generation. This frequent memory copy
overhead is significantly reduced by vLLM’s physical block
sharing. In vLLM, most blocks of different beam candidates
can be shared. The copy-on-write mechanism is applied only
when the newly generated tokens are within an old shared
block, as in parallel decoding. This involves only copying
one block of data.

Shared prefix. Commonly, the LLM user provides a (long)
description of the task including instructions and example
inputs and outputs, also known as system prompt [36]. The
description is concatenated with the actual task input to form
the prompt of the request. The LLM generates outputs based



Sequence A Sequence B
Prompt Prompt

Translate English to French:

. fisea otterd => floutre de merd
Shared prefix | fpeppermints => imenthe poivr@es
fiplush girafeo => figirafe en pelucheo

Translate English to French:

fisea ottero => floutre de mero
fipeppermintd => imenthe poivr@ed
fiplush girafeo => figirafe en pelucheo

Task input | ficheesed => fil love youd =>

Sequence A
LLM output

Sequence B
LLM output

Task output ‘ fifromaged ‘ ‘ fiJe tiamied ‘

Figure 10. Shared prompt example for machine translation.
The examples are adopted from [5].

on the full prompt. Fig. 10 shows an example. Moreover, the
shared prefix can be further tuned, via prompt engineering,
to improve the accuracy of the downstream tasks [26, 27].

For this type of application, many user prompts share a
prefix, thus the LLM service provider can store the KV cache
of the prefix in advance to reduce the redundant computa-
tion spent on the prefix. In vLLM, this can be conveniently
achieved by reserving a set of physical blocks for a set of
predefined shared prefixes by the LLM service provider, as
how OS handles shared library across processes. A user in-
put prompt with the shared prefix can simply map its logi-
cal blocks to the cached physical blocks (with the last block
marked copy-on-write). The prompt phase computation only
needs to execute on the user’s task input.

Mixed decoding methods. The decoding methods dis-
cussed earlier exhibit diverse memory sharing and access-
ing patterns. Nonetheless, vLLM facilitates the simultane-
ous processing of requests with different decoding prefer-
ences, which existing systems cannot efficiently do. This is
because vLLM conceals the complex memory sharing be-
tween different sequences via a common mapping layer that
translates logical blocks to physical blocks. The LLM and
its execution kernel only see a list of physical block IDs
for each sequence and do not need to handle sharing pat-
terns across sequences. Compared to existing systems, this
approach broadens the batching opportunities for requests
with different sampling requirements, ultimately increasing
the system’s overall throughput.

4.5 Scheduling and Preemption

When the request traffic surpasses the system’s capacity,
vLLM must prioritize a subset of requests. In vLLM, we adopt
the first-come-first-serve (FCFS) scheduling policy for all
requests, ensuring fairness and preventing starvation. When
vLLM needs to preempt requests, it ensures that the earliest
arrived requests are served first and the latest requests are
preempted first.

LLM services face a unique challenge: the input prompts
for an LLM can vary significantly in length, and the resulting
output lengths are not known a priori, contingent on both
the input prompt and the model. As the number of requests
and their outputs grow, vLLM can run out of the GPU’s phys-
ical blocks to store the newly generated KV cache. There
are two classic questions that vLLM needs to answer in this

context: (1) Which blocks should it evict? (2) How to recover
evicted blocks if needed again? Typically, eviction policies
use heuristics to predict which block will be accessed fur-
thest in the future and evict that block. Since in our case we
know that all blocks of a sequence are accessed together, we
implement an all-or-nothing eviction policy, i.e., either evict
all or none of the blocks of a sequence. Furthermore, multi-
ple sequences within one request (e.g., beam candidates in
one beam search request) are gang-scheduled as a sequence
group. The sequences within one sequence group are always
preempted or rescheduled together due to potential memory
sharing across those sequences. To answer the second ques-
tion of how to recover an evicted block, we consider two
techniques:

Swapping. This is the classic technique used by most virtual
memory implementations which copy the evicted pages to a
swap space on the disk. In our case, we copy evicted blocks to
the CPU memory. As shown in Fig. 4, besides the GPU block
allocator, vLLM includes a CPU block allocator to manage
the physical blocks swapped to CPU RAM. When vLLM
exhausts free physical blocks for new tokens, it selects a set
of sequences to evict and transfer their KV cache to the CPU.
Once it preempts a sequence and evicts its blocks, vLLM
stops accepting new requests until all preempted sequences
are completed. Once a request completes, its blocks are freed
from memory, and the blocks of a preempted sequence are
brought back in to continue the processing of that sequence.
Note that with this design, the number of blocks swapped to
the CPU RAM never exceeds the number of total physical
blocks in the GPU RAM, so the swap space on the CPU RAM
is bounded by the GPU memory allocated for the KV cache.

Recomputation. In this case, we simply recompute the KV
cache when the preempted sequences are rescheduled. Note
that recomputation latency can be significantly lower than
the original latency, as the tokens generated at decoding
can be concatenated with the original user prompt as a new
prompt—their KV cache at all positions can be generated in
one prompt phase iteration.

The performances of swapping and recomputation depend
on the bandwidth between CPU RAM and GPU memory and
the computation power of the GPU. We examine the speeds
of swapping and recomputation in §7.3.

4.6 Distributed Execution

Many LLMs have parameter sizes exceeding the capacity of a
single GPU [5, 9]. Therefore, it is necessary to partition them
across distributed GPUs and execute them in a model parallel
fashion [28, 63]. This calls for a memory manager capable of
handling distributed memory. vLLM is effective in distributed
settings by supporting the widely used Megatron-LM style
tensor model parallelism strategy on Transformers [47]. This
strategy adheres to an SPMD (Single Program Multiple Data)
execution schedule, wherein the linear layers are partitioned



Table 1. Model sizes and server configurations.

Model size 13B 66B 175B
GPUs A100 4xA100 8xA100-80GB
Total GPU memory 40GB 160 GB 640 GB
Parameter size 26 GB 132 GB 346 GB
Memory for KV cache 12GB 21 GB 264 GB
Max. # KV cache slots  15.7K 9.7K 60.1K

to perform block-wise matrix multiplication, and the the
GPUs constantly synchronize intermediate results via an all-
reduce operation. Specifically, the attention operator is split
on the attention head dimension, each SPMD process takes
care of a subset of attention heads in multi-head attention.

We observe that even with model parallel execution, each
model shard still processes the same set of input tokens, thus
requiring the KV Cache for the same positions. Therefore,
vLLM features a single KV cache manager within the cen-
tralized scheduler, as in Fig. 4. Different GPU workers share
the manager, as well as the mapping from logical blocks to
physical blocks. This common mapping allows GPU workers
to execute the model with the physical blocks provided by
the scheduler for each input request. Although each GPU
worker has the same physical block IDs, a worker only stores
a portion of the KV cache for its corresponding attention
heads.

In each step, the scheduler first prepares the message with
input token IDs for each request in the batch, as well as the
block table for each request. Next, the scheduler broadcasts
this control message to the GPU workers. Then, the GPU
workers start to execute the model with the input token IDs.
In the attention layers, the GPU workers read the KV cache
according to the block table in the control message. During
execution, the GPU workers synchronize the intermediate
results with the all-reduce communication primitive without
the coordination of the scheduler, as in [47]. In the end, the
GPU workers send the sampled tokens of this iteration back
to the scheduler. In summary, GPU workers do not need
to synchronize on memory management as they only need
to receive all the memory management information at the
beginning of each decoding iteration along with the step
inputs.

5 Implementation

vLLM is an end-to-end serving system with a FastAPI [15]
frontend and a GPU-based inference engine. The frontend
extends the OpenAl API [34] interface, allowing users to
customize sampling parameters for each request, such as
the maximum sequence length and the beam width k. The
vLLM engine is written in 8.5K lines of Python and 2K lines of
C++/CUDA code. We develop control-related components in-
cluding the scheduler and the block manager in Python while
developing custom CUDA kernels for key operations such as
PagedAttention. For the model executor, we implement pop-
ular LLMs such as GPT [5], OPT [62], and LLaMA [52] using

(a) ShareGPT (b) Alpaca

Figure 11. Input and output length distributions of the (a)
ShareGPT and (b) Alpaca datasets.

PyTorch [39] and Transformers [58]. We use NCCL [32] for
tensor communication across the distributed GPU workers.

5.1 Kernel-level Optimization

Since PagedAttention introduces memory access patterns
that are not efficiently supported by existing systems, we
develop several GPU kernels for optimizing it. (1) Fused re-
shape and block write. In every Transformer layer, the new
KV cache are split into blocks, reshaped to a memory layout
optimized for block read, then saved at positions specified
by the block table. To minimize kernel launch overheads, we
fuse them into a single kernel. (2) Fusing block read and atten-
tion. We adapt the attention kernel in FasterTransformer [31]
to read KV cache according to the block table and perform
attention operations on the fly. To ensure coalesced memory
access, we assign a GPU warp to read each block. More-
over, we add support for variable sequence lengths within a
request batch. (3) Fused block copy. Block copy operations,
issued by the copy-on-write mechanism, may operate on
discontinuous blocks. This can lead to numerous invocations
of small data movements if we use the cudaMemcpyAsync
API. To mitigate the overhead, we implement a kernel that
batches the copy operations for different blocks into a single
kernel launch.

5.2 Supporting Various Decoding Algorithms

vLLM implements various decoding algorithms using three
key methods: fork, append, and free. The fork method
creates a new sequence from an existing one. The append
method appends a new token to the sequence. Finally, the
free method deletes the sequence. For instance, in paral-
lel sampling, vLLM creates multiple output sequences from
the single input sequence using the fork method. It then
adds new tokens to these sequences in every iteration with
append, and deletes sequences that meet a stopping condi-
tion using free. The same strategy is also applied in beam
search and prefix sharing by vLLM. We believe future decod-
ing algorithms can also be supported by combining these
methods.

6 Evaluation

In this section, we evaluate the performance of vLLM under
a variety of workloads.
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Figure 12. Single sequence generation with OPT models on the ShareGPT and Alpaca dataset

SS

(a) ShareGPT

Figure 13. Average number of batched requests when serv-
ing OPT-13B for the ShareGPT (2 reqs/s) and Alpaca (30
reqs/s) traces.

(b) Alpaca

6.1 Experimental Setup

Model and server configurations. We use OPT [62] mod-
els with 13B, 66B, and 175B parameters and LLaMA [52] with
13B parameters for our evaluation. 13B and 66B are popular
sizes for LLMs as shown in an LLM leaderboard [38], while
175B is the size of the famous GPT-3 [5] model. For all of
our experiments, we use A2 instances with NVIDIA A100
GPUs on Google Cloud Platform. The detailed model sizes
and server configurations are shown in Table 1.

Workloads. We synthesize workloads based on ShareGPT [51]
and Alpaca [50] datasets, which contain input and output
texts of real LLM services. The ShareGPT dataset is a collec-
tion of user-shared conversations with ChatGPT [35]. The
Alpaca dataset is an instruction dataset generated by GPT-
3.5 with self-instruct [57]. We tokenize the datasets and use
their input and output lengths to synthesize client requests.
As shown in Fig. 11, the ShareGPT dataset has 8.4 longer
input prompts and 5.8% longer outputs on average than the
Alpaca dataset, with higher variance. Since these datasets do
not include timestamps, we generate request arrival times
using Poisson distribution with different request rates.

Baseline 1: FasterTransformer. FasterTransformer [31] is
a distributed inference engine highly optimized for latency.
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As FasterTransformer does not have its own scheduler, we
implement a custom scheduler with a dynamic batching
mechanism similar to the existing serving systems such as
Triton [30]. Specifically, we set a maximum batch size B as
large as possible for each experiment, according to the GPU
memory capacity. The scheduler takes up to B number of
earliest arrived requests and sends the batch to FasterTrans-
former for processing.

Baseline 2: Orca. Orca [60] is a state-of-the-art LLM serving
system optimized for throughput. Since Orca is not publicly
available for use, we implement our own version of Orca. We
assume Orca uses the buddy allocation algorithm to deter-
mine the memory address to store KV cache. We implement
three versions of Orca based on how much it over-reserves
the space for request outputs:

e Orca (Oracle). We assume the system has the knowledge
of the lengths of the outputs that will be actually generated
for the requests. This shows the upper-bound performance
of Orca, which is infeasible to achieve in practice.

e Orca (Pow2). We assume the system over-reserves the
space for outputs by at most 2x. For example, if the true
output length is 25, it reserves 32 positions for outputs.

e Orca (Max). We assume the system always reserves the
space up to the maximum sequence length of the model,
i.e., 2048 tokens.

Key metrics. We focus on serving throughput. Specifically,
using the workloads with different request rates, we mea-
sure normalized latency of the systems, the mean of every
request’s end-to-end latency divided by its output length,
as in Orca [60]. A high-throughput serving system should
retain low normalized latency against high request rates.
For most experiments, we evaluate the systems with 1-hour
traces. As an exception, we use 15-minute traces for the
OPT-175B model due to the cost limit.
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Figure 14. Parallel generation and beam search with OPT-13B on the Alpaca dataset.

6.2 Basic Sampling

We evaluate the performance of vLLM with basic sampling
(one sample per request) on three models and two datasets.
The first row of Fig. 12 shows the results on the ShareGPT
dataset. The curves illustrate that as the request rate in-
creases, the latency initially increases at a gradual pace but
then suddenly explodes. This can be attributed to the fact
that when the request rate surpasses the capacity of the serv-
ing system, the queue length continues to grow infinitely
and so does the latency of the requests.

On the ShareGPT dataset, vLLM can sustain 1.7X-2.7X
higher request rates compared to Orca (Oracle) and 2.7x-8x
compared to Orca (Max), while maintaining similar laten-
cies. This is because vVLLM’s PagedAttention can efficiently
manage the memory usage and thus enable batching more
requests than Orca. For example, as shown in Fig. 13a, for
OPT-13B vLLM processes 2.2X more requests at the same
time than Orca (Oracle) and 4.3X more requests than Orca
(Max). Compared to FasterTransformer, vLLM can sustain up
to 22X higher request rates, as FasterTransformer does not
utilize a fine-grained scheduling mechanism and inefficiently
manages the memory like Orca (Max).

The second row of Fig. 12 and Fig. 13b shows the results
on the Alpaca dataset, which follows a similar trend to the
ShareGPT dataset. One exception is Fig. 12 (f), where vLLM’s
advantage over Orca (Oracle) and Orca (Pow2) is less pro-
nounced. This is because the model and server configuration
for OPT-175B (Table 1) allows for large GPU memory space
available to store KV cache, while the Alpaca dataset has
short sequences. In this setup, Orca (Oracle) and Orca (Pow?2)
can also batch a large number of requests despite the inef-
ficiencies in their memory management. As a result, the
performance of the systems becomes compute-bound rather
than memory-bound.

11

wnl uEE

(a) Parallel sampling (b) Beam search

Figure 15. Average amount of memory saving from sharing
KV blocks, when serving OPT-13B for the Alpaca trace.

6.3 Parallel Sampling and Beam Search

We evaluate the effectiveness of memory sharing in Page-
dAttention with two popular sampling methods: parallel
sampling and beam search. In parallel sampling, all paral-
lel sequences in a request can share the KV cache for the
prompt. As shown in the first row of Fig. 14, with a larger
number of sequences to sample, vVLLM brings more improve-
ment over the Orca baselines. Similarly, the second row of
Fig. 14 shows the results for beam search with different beam
widths. Since beam search allows for more sharing, vLLM
demonstrates even greater performance benefits. The im-
provement of vLLM over Orca (Oracle) on OPT-13B and the
Alpaca dataset goes from 1.3X in basic sampling to 2.3X in
beam search with a width of 6.

Fig. 15 plots the amount of memory saving, computed by
the number of blocks we saved by sharing divided by the
number of total blocks without sharing. We show 6.1% - 9.8%
memory saving on parallel sampling and 37.6% - 55.2% on
beam search. In the same experiments with the ShareGPT
dataset, we saw 16.2% - 30.5% memory saving on parallel
sampling and 44.3% - 66.3% on beam search.

6.4 Shared prefix

We explore the effectiveness of vLLM for the case a prefix
is shared among different input prompts, as illustrated in
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Figure 16. Translation workload where the input prompts
share a common prefix. The prefix includes (a) 1 example
with 80 tokens or (b) 5 examples with 341 tokens.
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Figure 17. Performance on chatbot workload.

Fig. 10. For the model, we use LLaMA-13B [52], which is mul-
tilingual. For the workload, we use the WMT16 [4] English-
to-German translation dataset and synthesize two prefixes
that include an instruction and a few translation examples.
The first prefix includes a single example (i.e., one-shot)
while the other prefix includes 5 examples (i.e., few-shot). As
shown in Fig. 16 (a), vLLM achieves 1.67X higher through-
put than Orca (Oracle) when the one-shot prefix is shared.
Furthermore, when more examples are shared (Fig. 16 (b)),
vLLM achieves 3.58x higher throughput than Orca (Oracle).

6.5 Chatbot

A chatbot [8, 19, 35] is one of the most important applications
of LLMs. To implement a chatbot, we let the model generate
a response by concatenating the chatting history and the
last user query into a prompt. We synthesize the chatting
history and user query using the ShareGPT dataset. Due to
the limited context length of the OPT-13B model, we cut the
prompt to the last 1024 tokens and let the model generate
at most 1024 tokens. We do not store the KV cache between
different conversation rounds as doing this would occupy the
space for other requests between the conversation rounds.
Fig. 17 shows that vLLM can sustain 2x higher request
rates compared to the three Orca baselines. Since the ShareGPT
dataset contains many long conversations, the input prompts
for most requests have 1024 tokens. Due to the buddy allo-
cation algorithm, the Orca baselines reserve the space for
1024 tokens for the request outputs, regardless of how they
predict the output lengths. For this reason, the three Orca
baselines behave similarly. In contrast, vLLM can effectively
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(a) Latency of attention kernels. (b) End-to-end latency with dif-
ferent block sizes.

Figure 18. Ablation experiments.

handle the long prompts, as PagedAttention resolves the
problem of memory fragmentation and reservation.

7 Ablation Studies

In this section, we study various aspects of vLLM and evalu-
ate the design choices we make with ablation experiments.

7.1 Kernel Microbenchmark

The dynamic block mapping in PagedAttention affects the
performance of the GPU operations involving the stored KV
cache, i.e., block read/writes and attention. Compared to the
existing systems, our GPU kernels (§5) involve extra over-
heads of accessing the block table, executing extra branches,
and handling variable sequence lengths. As shown in Fig. 18a,
this leads to 20-26% higher attention kernel latency, com-
pared to the highly-optimized FasterTransformer implemen-
tation. We believe the overhead is small as it only affects
the attention operator but not the other operators in the
model, such as Linear. Despite the overhead, PagedAttention
makes VLLM significantly outperform FasterTransformer in
end-to-end performance (§6).

7.2 Impact of Block Size

The choice of block size can have a substantial impact on the
performance of vLLM. If the block size is too small, vVLLM
may not fully utilize the GPU’s parallelism for reading and
processing KV cache. If the block size is too large, inter-
nal fragmentation increases and the probability of sharing
decreases.

In Fig. 18b, we evaluate the performance of vLLM with dif-
ferent block sizes, using the ShareGPT and Alpaca traces with
basic sampling under fixed request rates. In the ShareGPT
trace, block sizes from 16 to 128 lead to the best performance.
In the Alpaca trace, while the block size 16 and 32 work
well, larger block sizes significantly degrade the performance
since the sequences become shorter than the block sizes. In
practice, we find that the block size 16 is large enough to
efficiently utilize the GPU and small enough to avoid signifi-
cant internal fragmentation in most workloads. Accordingly,
vLLM sets its default block size as 16.
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(a) Microbenchmark (b) End-to-end performance

Figure 19. (a) Overhead of recomputation and swapping for
different block sizes. (b) Performance when serving OPT-13B
with the ShareGPT traces at the same request rate.

7.3 Comparing Recomputation and Swapping

vLLM supports both recomputation and swapping as its re-
covery mechanisms. To understand the tradeoffs between
the two methods, we evaluate their end-to-end performance
and microbenchmark their overheads, as presented in Fig. 19.
Our results reveal that swapping incurs excessive overhead
with small block sizes. This is because small block sizes often
result in numerous small data transfers between CPU and
GPU, which limits the effective PCle bandwidth. In contrast,
the overhead of recomputation remains constant across dif-
ferent block sizes, as recomputation does not utilize the KV
blocks. Thus, recomputation is more efficient when the block
size is small, while swapping is more efficient when the block
size is large, though recomputation overhead is never higher
than 20% of swapping’s latency. For medium block sizes from
16 to 64, the two methods exhibit comparable end-to-end
performance.

8 Discussion

Applying the virtual memory and paging technique to
other GPU workloads. The idea of virtual memory and
paging is effective for managing the KV cache in LLM serving
because the workload requires dynamic memory allocation
(since the output length is not known a priori) and its perfor-
mance is bound by the GPU memory capacity. However, this
does not generally hold for every GPU workload. For exam-
ple, in DNN training, the tensor shapes are typically static,
and thus memory allocation can be optimized ahead of time.
For another example, in serving DNNs that are not LLMs,
an increase in memory efficiency may not result in any per-
formance improvement since the performance is primarily
compute-bound. In such scenarios, introducing the vLLM’s
techniques may rather degrade the performance due to the
extra overhead of memory indirection and non-contiguous
block memory. However, we would be excited to see vLLM’s
techniques being applied to other workloads with similar
properties to LLM serving.

LLM-specific optimizations in applying virtual mem-
ory and paging. vVLLM re-interprets and augments the idea
of virtual memory and paging by leveraging the application-
specific semantics. One example is vVLLM’s all-or-nothing
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swap-out policy, which exploits the fact that processing a
request requires all of its corresponding token states to be
stored in GPU memory. Another example is the recomputa-
tion method to recover the evicted blocks, which is not feasi-
ble in OS. Besides, vLLM mitigates the overhead of memory
indirection in paging by fusing the GPU kernels for memory
access operations with those for other operations such as
attention.

9 Related Work

General model serving systems. Model serving has been
an active area of research in recent years, with numerous
systems proposed to tackle diverse aspects of deep learning
model deployment. Clipper [11], TensorFlow Serving [33],
Nexus [45], InferLine [10], and Clockwork [20] are some
earlier general model serving systems. They study batch-
ing, caching, placement, and scheduling for serving single
or multiple models. More recently, DVABatch [12] intro-
duces multi-entry multi-exit batching. REEF [21] and Shep-
herd [61] propose preemption for serving. AlpaServe [28]
utilizes model parallelism for statistical multiplexing. How-
ever, these general systems fail to take into account the auto-
regressive property and token state of LLM inference, result-
ing in missed opportunities for optimization.

Specialized serving systems for transformers. Due to
the significance of the transformer architecture, numerous
specialized serving systems for it have been developed. These
systems utilize GPU kernel optimizations [1, 29, 31, 56], ad-
vanced batching mechanisms [14, 60], model parallelism [1,
41, 60], and parameter sharing [64] for efficient serving.
Among them, Orca [60] is most relevant to our approach.

Comparison to Orca. The iteration-level scheduling in
Orca [60] and PagedAttention in vLLM are complementary
techniques: While both systems aim to increase the GPU
utilization and hence the throughput of LLM serving, Orca
achieves it by scheduling and interleaving the requests so
that more requests can be processed in parallel, while vLLM
is doing so by increasing memory utilization so that the
working sets of more requests fit into memory. By reducing
memory fragmentation and enabling sharing, vLLM runs
more requests in a batch in parallel and achieves a 2-4x
speedup compared to Orca. Indeed, the fine-grained sched-
uling and interleaving of the requests like in Orca makes
memory management more challenging, making the tech-
niques proposed in vLLM even more crucial.

Memory optimizations. The widening gap between the
compute capability and memory capacity of accelerators has
caused memory to become a bottleneck for both training
and inference. Swapping [23, 42, 55], recomputation [7, 24]
and their combination [40] have been utilized to reduce the
peak memory of training. Notably, FlexGen [46] studies how
to swap weights and token states for LLM inference with



limited GPU memory, but it does not target the online serv-
ing settings. OLLA [48] optimizes the lifetime and location
of tensors to reduce fragmentation, but it does not do fine-
grained block-level management or online serving. FlashAt-
tention [13] applies tiling and kernel optimizations to reduce
the peak memory of attention computation and reduce I/O
costs. This paper introduces a new idea of block-level mem-
ory management in the context of online serving.

10 Conclusion

This paper proposes PagedAttention, a new attention algo-
rithm that allows attention keys and values to be stored
in non-contiguous paged memory, and presents VLLM, a
high-throughput LLM serving system with efficient mem-
ory management enabled by PagedAttention. Inspired by
operating systems, we demonstrate how established tech-
niques, such as virtual memory and copy-on-write, can be
adapted to efficiently manage KV cache and handle various
decoding algorithms in LLM serving. Our experiments show
that vLLM achieves 2-4X throughput improvements over the
state-of-the-art systems.
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