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ABSTRACT
The ability to create geotagged photos enables people to share their
personal experiences as tourists at specific locations and times. As-
suming that the collection of each photographer’s geotagged pho-
tos is a sequence of visited locations, photo-sharing sites are im-
portant sources for gathering the location histories of tourists. By
following their location sequences, we can find representative and
diverse travel routes that link key landmarks. In this paper, we pro-
pose a travel route recommendation method that makes use of the
photographers’ histories as held by Flickr. Recommendations are
performed by our photographer behavior model, which estimates
the probability of a photographer visiting a landmark. We incorpo-
rate user preference and present location information into the prob-
abilistic behavior model by combining topic models and Markov
models. We demonstrate the effectiveness of the proposed method
using a real-life dataset holding information from 71,718 photogra-
phers taken in the United States in terms of the prediction accuracy
of travel behavior.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; H.5 [Information
Interface and Presentation]: General

General Terms
Algorithms, Experimentation

Keywords
Geolocation, Geo-referenced photographs, Travel route recommen-
dation, Photographer behavior model

1. INTRODUCTION
Due to the proliferation of small digital cameras and mobile

phone cameras, there has been great interest in online photo shar-
ing services such as Flickr [1] and Google Picasa [2]. These ser-
vices allow users to upload photographs and attach informative tags
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to them, and they have succeeded in collecting large-scale-sets of
tagged photographs from huge numbers of users. Geotags indicate
where the photographs were taken, and are automatically captured
by the aforementioned photo devices or location-aware devices, or
alternatively are specified by the user. Geotags are powerful meta-
data for introducing spatial information into Web applications; re-
cent research efforts have shown the potential of geotags by devel-
oping various geotag-associated applications such as georeferenced
image search [7, 8], automatic image geolocation [9, 10, 11], and
georeferenced content browsing [15, 16, 17, 18, 19].
This paper focuses on describing a travel route recommendation

method that utilizes geotagged images in photo sharing services.
By sorting the photographs by their timestamps for each user, the
geotagged photographs yield personal travel route histories. The
value of these travel route histories in geotagged photographs can
be emphasized in terms of their quality and quantity. The pho-
tographed geolocations are good recommendations in terms of find-
ing attractive locations because the action of uploading a photo-
graph can be regarded as a positive vote that the location is worth
visiting. Moreover, according to our research, at least 40,000,000
geotagged photographs uploaded by over 400,000 users are avail-
able on Flickr. This tremendous volume of travel data is a rich
source of travel routes that can match various user preferences.
The major research problem addressed in this paper is generat-

ing recommended travel routes from a given geotag collection. This
consists of two sub-issues; one is learning the model of travel routes
from the geotag dataset, and the other is generating recommended
routes from the model. The desired properties of recommended
travel routes are not only that they be easily accessible, but also that
they suit the users’ interest. We then propose a method that trains a
probabilistic photographer behavior model; it takes account of both
the user’s current location and user’s personal interest. We then
formalize the sub-issue of recommended route generation. Given
past and/or future itineraries and the amount of spare time to spend
on future travel, our method outputs a set of customized landmark
sequences that match the user’s preference, and the user’s present
location and spare time. We present an effective algorithm for find-
ing recommended travel routes based on the photographer behavior
models.
We also implement an online application that helps the user to

plan a new trip. Figure 1 shows the current user interface of the
application. Given a location history including the current location
and desired time to spend on future travel, this application suggests
a set of travel routes that might suit the user’s interest. Each tour
plan consists of travel route (a sequence of one or more landmarks)
and the travel time between landmarks. The total time satisfies the
time condition given by the user. The results are ranked by the
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Figure 1: The interface of the route recommender system.
Upon being given a location history including present location,
and free time duration, returns a ranked list of travel plans.
The best route is plotted on the map interface.

likelihood scores assigned by the photographer behavior model (in
the lower part of Figure 1).
Our major contributions in this paper thus include:

• A model for travel route recommendation that takes account
of both the user’s current location and user’s personal inter-
est;

• A method and an application to provide a set of personalized
travel routes that match the user’s current location, user’s in-
terests, and user’s spare time;

• Detailed evaluations of the performance achieved against an
actual large-scale geotag dataset held by Flickr.

This paper is organized as follows: The next section describes
related works. Section 3 defines the data model and our research
problem and presents a method for travel route recommendation.
Section 4 shows the effectiveness of the proposed method using
Flickr data and Section 5 concludes this paper.

2. RELATEDWORK
The important research areas related to our work are geolocation

recommender systems and geotag-based applications. We study the
latest reports that address these areas.

2.1 Recommender Systems
There are a number of local Web search systems that can recom-

mend location-specific content to users. The main characteristic of
these systems is that they can personalize their recommendations
to the user. Given opening times and user ratings, Yahoo Travel
enables the user to search for local information about sights to visit
[3]. Horozov et al. proposed a collaborative-filtering-based method
to recommend restaurants [12]. The difference between our work
and theirs is that ours generates recommendations without explicit
user ratings. The information used is a summary of knowledge ac-
quired by photographers; such data includes landmarks, represen-
tative textual descriptions, photographs, routes, and travel times.

Data mining from GPS trajectories gathered by mobile devices
is also related to the recommendation task because its main goal
is to predict where a person may be going. Ashbrook et al. apply
a Markov model to GPS data in an attempt to model traveler be-
havior; their traveler model always recommends the most chosen
locations adjacent to the current location [26]. Krumm et al. also
proposed a method for predicting the driver’s destination based on
multiple drivers’ GPS trajectories [13]. Zheng et al. applied a graph
mining method to a GPS dataset generated by 107 users in order to
extract a region-of-interest and classical travel sequences between
them [14]. Spatio-temporal sequential pattern mining from GPS
trajectories was also performed by Giannotti et al. [24]. The ma-
jor differences between our work and theirs lie in two aspects; one
is that this work is the first to utilize geotagged photos in social
photo-sharing sites for the purpose of route recommendation. Our
method, which is based on large-scale personal databases automati-
cally extracted from photo-sharing sites, dramatically increases the
opportunity for the user to draw upon peoples’ experiences. The
other is that this work shows how to learn the photographer’s per-
sonal interests from geotagged data; travel routes that are not only
popular but also suitable for the user can be recommended.

2.2 Geotag-Associated Web Applications
Various types of Web applications such as image search [7, 8],

content browsing [15, 16, 17, 18, 19], and geographic image an-
notation [11, 10, 9] leverage geotags in order to facilitate and to
enrich photo browsing. Different from these existing applications,
this work presents a new direction in the use of geotagged and time-
stamped photographs, travel route recommendation. It goes beyond
browsing to support human activities in the real world.
Image Search: In the current multimedia information retrieval

research field, geolocation information is taking an important role
in Web image search. Kennedy et al. proposed methods to ex-
tract representative and diverse location-specific photographs from
Flickr based on tag co-occurrence, image similarity, and geoloca-
tion information [7, 8].
Content Browsing: Managing large-scale content collection based

on geographic interface (e.g. Google Maps [4]) is a promising
approach to facilitate georeferenced content browsing. Recent re-
search has introduced methods that arrange landmark tags and geo-
tagged images according to spatial coordinates [15, 16, 17, 18, 19].
One important work isWorld Explorer proposed in [15, 16]; it finds
representative tags attached to location-specific photographs, and
visualizes them on a map interface. Similar work performed by
Crandall et al. allows users to browse all of the world’s photographs
on a single world map [17]. Snavely et al. proposed Photo tourism
to enable full 3D navigation and exploration of a set of images [18,
19]. Their method reconstructs 3D structures of several landmarks
from their related geotagged photos.
Geographic Image Annotation: A central goal is geolocating

one or more Web images that have no original geotags. The key is
to estimate geometric location by analyzing image content. [11]
proposes a data-driven approach to exploit the Flickr geotagged
photo collection. Their approach computes scene similarity be-
tween a target photo and each of the geotagged photos, and at-
taches the geotags of similar photos to the target photo. Different
from the data-driven approach, the model-based approach assumes
a probability (likelihood) model of image features conditioned by
geometric location. Cao et al. proposed a method that uses kernel
canonical correlation and logistic regression to enhance semantic
annotation and geo-location information based on image content
[10]. The method proposed in [9] introduces the photographers’
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Figure 2: Travel route recommendation framework

Table 1: Notation
Symbol Description
U set of users
u user, u ∈ U
lui geolocation of the ith photograph of user u represented

by latitude and longitude coordinates in bi-axial space
tu
i universal time of the ith photograph of user u

vu
i set of annotation tags of the ith photograph of user u

τu number of locations in the history of user u
hu location history of user u, where geolocations

are sorted by their timestamps, hu = 〈lu1 , · · · , luτu〉
K number of routes to be recommended
T uk number of locations in the kth recommended route

travel sequence prior. Combinatorial use of the prior and image
likelihood model offers better performance.
As far as we know, travel itinerary construction proposed in [20]

is the only prior work that uses geotags and time-stamps for ar-
ranging a trip. The popularity of landmarks, stay times and transit
times between landmarks are used to construct representative travel
itineraries linking popular landmarks within a city. The popularity
of each landmark is measured by the number of photos taken. The
main difference between our work and theirs is that ours can recom-
mend personalized travel routes/itineraries based on the interests of
the individual (what kind of landmarks did he/she visit in the past).
Personalization is not performed by [20].

3. TRAVEL ROUTE RECOMMENDATION
METHOD

3.1 Formulation and Problem Definition
In this section, we describe the proposed recommendation method.

Our approach is based on the fact that the data uploaded to photo
sharing sites are significant information sources for finding land-
marks and setting travel routes between them. By using these in-
formation sources, we can build photographer behavior models and
apply them to make and recommend a plan to newly-arrived tourists.
This recommendation is performed by understanding and modeling
the processes that underlie a photographer’s decision about what to
do next throughout his/her journey.
Suppose that we have a set of geotagged and time-stamped pho-

tographs {(lui , tu
i , vu

i )}τu

i=1 for each user in user set U . Our nota-
tion is summarized in Table 1. Our research problem can be de-
scribed as follows; given location history hu and the amount of
spare time d to spend on future travel, the task is to recommend a set
of personalized travel routes which are sequences of geolocations

{〈luk
τu+1, · · · , luk

τu+T uk〉}K
k=1 where the estimated time needed to

fully follow a sequence is d.
We note that geolocation lui refers to the location of the ith photo

of user u, but it can also mark the geolocation of the photographed
object. We also assume that the intervals between images are cor-
rect; the original image timestamps are not assumed to be correct
because the camera’s clock may not be set correctly.
The general approach of our travel route recommendation frame-

work is illustrated in Figure 2. First, given a large collection of
geotagged photos, we automatically find the landmarks that were
photographed often. These landmarks are interesting in terms of
route planning since they are assumed to represent a positive vote
by previous visitors. Found landmarks are thus appropriate candi-
dates for recommendation.
Second, we model the behavior of the photographer to estimate

the probability that the photographer will visit a landmark. Our
model is based on two assumptions;

1. the geolocation that the tourist will move to next largely de-
pends on the current and recently visited locations.

2. the choice of what to do next is also determined by the trav-
eler’s interests.

For example, a traveler currently in Times Square is more likely
to visit the Statue of Liberty than the Golden Gate Bridge in San
Francisco because the Statue of Liberty is much closer. A traveler
who is interested in art is likely to visit the Metropolitan Museum
of Art while a traveler who is interested in sports is likely to visit
Yankee Stadium.
Finally, we use the probabilistic photographer behavior model

built in the previous step to recommend a set of landmark sequences.
We recommend the route that is most likely to suit the user. The
following subsection details each step.

3.2 Step 1: Photo Clustering by Mean-shift
Procedure

Given a collection of photos that contain their geolocations, rep-
resented by latitude and longitude, we automatically extract often-
photographed landmarks in the city because we want to recommend
popular landmarks. We define a landmark as a uniquely represented
specific location within the city; such as a sightseeing spot, a store,
a building, a bridge, an outlet, and so on. Examples in the New
York area include Union Square, Statue of Liberty, and Madison
Square Garden.
The previous work by Crandall et al. [17] provides several tech-

niques for the analysis of geotagged photo collections. They showed
that the mean-shift procedure was very effective for landmark ex-
traction from spatial data such as the information we consider here.
Mean-shift is a non-parametric feature-space analysis technique
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that uses kernel density estimation and has been successfully ap-
plied to a wide range of vision and image processing applications.
The issue tackled here can be regarded as the problem of cluster-
ing points in a two-dimensional feature space, latitude and longi-
tude. The benefit of this approach is that it requires only the scale
of observation, unlike most clustering methods that require choos-
ing some number of clusters or making underlying distributional
assumptions. Thus we use mean-shift clustering to mine often-
photographed landmarks.
The method automatically estimates the modes of underlying un-

observable probability distributions from a collection of observed
geotagged photographs. The mode of each cluster indicates a land-
mark with high photo density. For given location l, the mean shift
vector is defined as follows,

mw,g(l) =

∑
u

∑
i lui g

(‖ (l − lui ) /w‖2)∑
u

∑
i g (‖ (l − lui ) /w‖2) − l, (1)

where g is the weight of each data point corresponding to some cho-
sen kernel function, and w is a bandwidth parameter. We adopted
a Gaussian distribution function as the kernel function. The mean-
shift procedure computes a sequence starting from some initial lo-
cation l(1) where

l(c+1) = l(c) + mw,g(l(c)), (2)

which converges to a location that corresponds to a local maximum
of the underlying distribution as the mean-shift vector approaches
zero. A single landmark thus can be regarded as a virtual location
characterized by a group of several geolocations.
Once we have extracted a set of landmarks, each location history,

which is a sequence of geolocations, is transformed based on the
results as follows:

1. Convert each geolocation in a location history into one of
the landmarks found by the mean-shift procedure. We use
notation lui to indicate the landmark captured by the ith photo
of user u as well as the geolocation in the remainder of this
paper.

2. Cluster successive geolocations in a location history; which
represent that a photographer took two or more photos suc-
cessively at the same landmark without visiting other land-
marks.

3. If 2 is performed, time value of a set of successive geoloca-
tions is updated as the median of the photographer’s arrival
and leaving times at the cluster.

The result of Step 1 is thus a set of landmarks and a set of location
histories.

3.3 Step 2: Photographer Behavior Model
We want to estimate the probability that user u at landmark lt−1

at time t−1 visits lt at time t, P (lt|lt−1, h
u), which represents the

photographer behavior. In our model, we assume that the landmark
to be visited next depends on the present location and the traveler’s
interests. This dependence on location and interest can be treated
by using Markov and topic models, respectively. We model the
photographer behavior by combining Markov and topic models in
a probabilistic framework.

3.3.1 Markov model
Markov models are widely used as probabilistic models that can

handle sequential information. For simplicity, we use a first-order
Markov model but Markov models of any order can be employed in

a similar way. In the first-order Markov model, the next landmark
depends on the previous landmark as follows,

P (lt|lt−1, lt−2, · · · , l1) = P (lt|lt−1). (3)

Probability P (lt|lt−1) can be calculated by using maximum likeli-
hood estimation as follows,

P (lt|lt−1) =
N(lt−1, lt)

N(lt−1)
, (4)

where N(lt−1, lt) is the number of times lt is visited after to lt−1

in the data set, and N(lt−1) is the number of times lt−1 is visited.

3.3.2 Topic model
A topic model is a hierarchical probabilistic model, in which

a user is modeled as a mixture of topics, and a topic is modeled
as a probability distribution over landmarks. Topic models have
been successfully used in a wide variety of applications such as
information retrieval and language modeling [22, 21] as well as
modeling user interests [5, 6]. We assume that there are Z topics,
and take Z to be a set of topics. In topic modeling, the probability
that a user with location history hu visits location lt is calculated
by the following equation under the assumption of the conditional
independence of hu and lt given latent topic z ∈ Z,

P (lt|hu) =
∑

z∈Z
P (z|hu)P (lt|z), (5)

where P (z|hu) represents the interest of the user, which is the
probability that user u is interested in topic z, and P (lt|z) rep-
resents trends in a topic, which is the probability that landmark lt
is chosen from topic z.
Several topic analysis techniques such as latent semantic analy-

sis (LSA), probabilistic latent semantic analysis (PLSA) [21], and
latent dirichlet allocation (LDA) [22] have been developed in the
area of natural language processing. We adopt PLSA as the topic
model in order to estimate the topics of each sequence.
We use the EM algorithm to infer topic proportions P (z|hu) for

z ∈ Z and u ∈ U , and landmark probabilities P (l|z) for l ∈ L
and z ∈ Z. Here, L represents a set of locations. In the E-step, we
estimate the posterior probabilities for the latent topics as follows,

P (z|lt, hu) =
P (z|hu)P (lt|z)∑

z′∈Z P (z′|hu)P (lt|z′)
. (6)

In the M-step, we update the parameters so as to maximize the
likelihood as follows,

P (z|hu) ∝
∑

l∈L
N(l, hu)P (z|l, hu), (7)

P (l|z) ∝
∑

u∈U
N(l, hu)P (z|l, hu), (8)

where N(l, hu) is the number of times landmark l occurs in his-
tory hu, and U is the set of users. By iterating E- and M-steps
until convergence, we can obtain a topic model that maximizes the
likelihood of the given data.

3.3.3 Combining Markov and topic models
We combine Markov and topic models in order to incorporate

both present location and user interests into the photographer be-
havior model. Under the assumption that the history hu and lt−1

are independently conditioned on lt, the following approximation
formula can combine the two models,
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P (lt|lt−1, h
u) =

P (lt|lt−1)

C(lt−1, hu)

P (lt|hu)

P (lt)
, (9)

where P (lt|lt−1) and P (lt|hu) are obtained by Markov and topic
models, respectively, P (lt) is the probability that landmark lt is
visited, andC(lt−1, h

u) is the normalization factor. This technique
is called unigram rescaling, and has been used for language model-
ing [23]. P (lt) is calculated as follows,

P (lt) =
N(lt)

N
, (10)

where N is the number of photographs.

3.4 Step 3: Generating Travel Routes
In the previous step, we described a probabilistic photographer

behavior model that predicts the next location from the user’s present
location and interests. We present below an effective travel route
recommendation method that is based on the behavior model. A
travel route is represented as a sequence of landmarks and the time
intervals between them.
We generate and recommendK travel routes

{〈luk
τu+1, · · · , luk

τu+T uk 〉}K
k=1 that have high probabilities for given

user u,

P (〈luk
τu+1, · · · , luk

τu+T uk 〉|luτu , hu). (11)

The routes selected coincide with the present location and the inter-
est of user u. If we calculate the probabilities for all possible routes
and sort them, we are sure of finding travel routes to recommend.
However, this naive method requires excessive computational time,
and it cannot be used in an interactive recommender system. Our
solution is an effective route-finding method that enables users to
search travel routes online. It is based on the best-first search algo-
rithm.
Algorithm 1 describes how to generate travel routes. The input to

Algorithm 1 consists of the location history hu associated with user
u, the amount of spare time to spend on future travel d, acceptable
range ε, and the number of travel routes K. The function of Algo-
rithm 1 is to generate an array that stores K travel routes, where s
is the sequence of visited locations, ds is the traveling time of s, ps

is the chosen probability of s, slast is the last visited location in s,
and s+l is the updated sequence when location l is visited.
First we insert the present location luτu into priority queueQ (line

4). A priority queue is a data structure. When popping elements
from the queue, the highest-priority one is retrieved first. Our queue
is a special variant of the priority queue where an element’s prior-
ity is probability value ps. We implement this by max heap. We
get the highest-probability route s fromQ and then decide whether
it meets the time conditions specified by the user, lines 6 to 10 in
Algorithm 1. By using the max heap data structure, we can effi-
ciently find the highest probability route. If the travel time of the
current sequence does not satisfy the time conditions, we search for
a new route taken to other landmarks from the current location (last
visited in the current sequence) and generate updated sequences,
lines 11 to 17 in Algorithm 1. The chosen probability and travel-
ing times of updated sequences are newly calculated by our pro-
posed photographer model (line 13) and traveling time estimation
(line 14), respectively. TravelT ime function returns the value of
the traveling time between two locations (line 14). This function
can be implemented using existing conventional local search ser-
vices provided by portal sites and car navigation systems. They
can tell us the expected traveling times between any two spots. In
our approach, however, we use average traveling time between two

Algorithm 1 Generate travel routes
Require: K > 0, d > 0 and ε > 0
1: Set an arrayA← Φ
2: Set k ← 0
3: Set a priority queueQ← Φ
4: Insert luτu intoQ
5: repeat
6: s ← get the highest-probability one fromQ
7: if d− ε ≤ ds ≤ d + ε then
8: Push s into A
9: k ← k + 1
10: end if
11: if ds < d + ε then
12: for l ∈ L do
13: Set ps+l ← ps × P (l|slast, h

u)
14: Set ds+l ← ds + TravelT imeslast,l

15: Insert s+l intoQ
16: end for
17: end if
18: until k = K
19: OutputA

locations as estimated from the location histories. Average travel-
ing time may be reasonable for travel planning because it includes
the average time spent at each location, not just transfer time. This
process is repeated until the number of routes approaches K (line
18). Since probability P (l|slast, h

u) is always less than or equal
to one, ps+l ≤ ps × P (l|slast, h

u). Therefore, the set of K se-
quences found by this best-first search algorithm holds theK high-
est probability sequences from among all sequences that satisfy the
condition.

4. EXPERIMENTS
This section evaluates the performance of the proposed method

by conducting three experiments on a Flickr-sourced geotag dataset.
In the first experiment, we analyze the performance of our method
with different parameter settings. The second experiment evaluates
the one-step prediction accuracy of our probabilistic photographer
behavior model, by comparing it to those of three other probabilis-
tic models. In the third experiment, we analyze the multiple-step
prediction accuracy. Moreover, we show some examples of recom-
mended travel routes on our online application.

4.1 Flickr Dataset
The datasets used in these experiments were collected by down-

loading photo metadata from Flickr [1] using the site’s public API.
The crawled data consists of 696,394 photographs and their associ-
ated metadata, which were taken by 71,718 unique users. All were
taken in the East Coast and the West Coast of the United States
between January 1st, 2006 and June 31st, 2009.
Details of the data collection procedure are as follows. We first

chose several major cities on each coast; Washington D.C., New
York City, Philadelphia and Boston on the West Coast; Los An-
geles, San Francisco and Las Vegas on the East Coast. For each
city, geotagged photos taken within 20km from it’s center were
crawled. Given geo queries, which consisted of a latitude and a
longitude, the Flickr API returns a collection of geotagged pho-
tos taken in the specified region. This is an efficient way to crawl
the geotagged photos within each region because these major cities
have been reported to be the top metropolises in the United States
by a previous work [17]. We then extracted landmarks in each city
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Table 2: Information about generated travel histories and the
landmarks found by mean-shift procedure. The users (se-
quences) who visited fewer than five landmarks and landmarks
that were captured by fewer than three users were omitted.

Region-scale The num. of The num. of Ave. length
sequences landmarks of sequences

East - 50m 9,267 414 14.02
West - 50m 6,450 316 14.05
East - 10m 11,354 1,419 15.82
West - 10m 7,913 1,119 15.65

Figure 3: Landmark visualization at difference bandwidth pa-
rameters. Each icon on the map represents a landmark. (a)
bandwidth is 50m and (b) bandwidth is 10m.

by applying the mean-shift algorithm (see Section 3.2). In this al-
gorithm, as bandwidth parameter w is decreased, more landmarks
are detected (Figure 3). In order to evaluate the performance of our
method at several different scales, we set two different bandwidth
parameters: w = 0.0005 (50m) and 0.0001 (10m). Finally, for each
region and scale, the geotags (longitude and latitude) sequences of
all users were translated into landmark sequences, i.e. travel routes.
Detailed information for the number of users (sequences) and the
number of landmarks are shown in Table 2. Note that we omitted
the users (sequences) who visited fewer than five landmarks and
landmarks that were captured by fewer than three users.

4.2 Experiment 1: Parameter Influence
One parameter which can influence the performance of our method

is the number of topics introduced in the topic model. Therefore,
we first studied its influence on the performance of our method.
We used the data shown in Table 2 for training and testing of the
model; training data consisted of landmark sequences excluding
the last visited landmarks of all users, and the test data was the last
visited landmarks of all users. Thus, the number of training data
equals the number of sequences (users) in Table 2, and the number
of test data also equals the number of sequences (users) in Table
2. Since the model predicts the next landmark likely to be visited
by the user, we used the precision of predicted landmark as the
performance measure; i.e., we calculated the percentage of correct
predictions over all test examples. According to a previous survey,
the precision measure is by far the most commonly used measure
for evaluating the performance of recommender systems [25]. We
applied the proposed Markov-topic model (photographer behavior
model) to the test data, and changed the number of topics from 5

 0.21
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 0.23

5 6 7 8 9 10 15 20 25 30 35 40 45 50
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The number of topics

Topic
Markov-Topic (PBM)

Figure 4: Precision at different numbers of topics.

to 9 and from 10 to 50 in steps of 5. In addition, the topic model
(PLSA) was tested using the same condition.
The results are shown in Figure 4. In the figure, the X-axis plots

the number of topics and the Y-axis plots the average precision
score in four datasets (for each region and scale). The proposed
model and topic model have similar shapes. When the number of
topics is small, the average precision is low. The average precisions
of both methods are maximized at 9, and after that, it gradually de-
creases with further increases in the number of topics. The result
shows that the performance of our photographer behavior model
depends on the topic model. It suggests that setting appropriate
number of topics, i.e. user’s interests, contributes to yielding better
recommendation performance. The optimal parameters derived in
this experiment were used in subsequent performance comparisons.

4.3 Experiment 2: One-Step Prediction Accu-
racy

In this experiment, we compared the following four probabilistic
models including our photographer behavior model:

Multinomial model: predicts the next landmark based on its pop-
ularity. Popularity can be calculated by using the multino-
mial probability distribution over landmarks P (l). The most
visited landmark within the region, except for the current lo-
cation, is always recommended. This model does not con-
sider either the user’s current location or interests.

Markov model: predicts the next landmark based on the user’s
current location, which is calculated by the Markov model
P (lt|lt−1). The most chosen landmark, given the current
landmark, is always recommended. This model considers
the user’s current location but does not consider the user’s
interest.

Topic model: predicts the next landmark based on user interest,
which is calculated by the PLSAmodel P (l|hu). This model
considers the user’s interest, but not the user’s current loca-
tion.

Markov-Topic model (proposed photographer behavior model):
predicts the next landmark based on both the user’s current
location and interest, which is calculated by combining the
Markov model and the topic model using the unigram rescal-
ing technique.
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Figure 5: Comparison of precisions. The datasets are (a) the
East coast and the West coast at bandwidth=50 m and (b) the
East coast and the West coast at bandwidth=10 m.

The performance measure, training and the test data used were
the same as in the first experiment. The results are shown in Figure
5. In this figure, the X-axis plots the dataset and the Y-axis plots the
precision score. We tested the statistical significance between the
proposed model and the other baselines using sign test1. To sum
up, for both data sets, the proposed model (Markov-Topic model)
yields better precision thanMultinomial, Topic, andMarkovmodel,
and the differences are significant (two-sided sign test: p < 0.01).
The result shows that the proposed method can appropriately pre-
dict the traveler’s location since it uses both the user’s current loca-
tion and his/her interest.

4.4 Experiment 3: Multiple-Step Prediction
Accuracy

To cover practical scenarios, our method generates and outputs
travel routes depending on given spare time; each of them is a cer-
tain length of landmark sequence (see part 3.4). This experiment
evaluates the appropriateness of the recommended travel routes un-
1In this paper, all of the statistical tests were conducted by using
the R and R libraries at http://www.r-project.org/.

Table 3: Information about travel histories and the landmarks
used in experiment 3. The users (sequences) who visited fewer
than five landmarks and landmarks that were captured by
fewer than three users were omitted.

Region-scale Time period The num. of The num. of
(hours) sequences landmarks

East - 50m 2 9,142 414
3 9,124 414
4 9,115 414
5 9,102 414

West - 50m 2 6,349 316
3 6,346 316
4 6,333 316
5 6,323 316

East - 10m 2 11,139 1,419
3 11,102 1,418
4 11,074 1,418
5 11,049 1,418

West - 10m 2 7,763 1,117
3 7,741 1,117
4 7,723 1,117
5 7,704 1,117

der different spare time conditions. This experiment is based on the
four datasets used in the experiments above. For each dataset, the
test data was created by collecting the last part of each sequence
within the given spare time s. The training dataset consisted of the
set of sequences excluding test data part. To be exact, the number
of training data (the number of test data) used in this experiment
was slightly different from that of previous experiments since only
the sequences whose traveling times exceeded the given spare time,
were used as training data (test data). Detailed information about
sequences and landmarks used in this experiment is shown in Table
3.
We measured the difference between the generated routes and

each test sequence. The edit distance 2 is thus applied as the evalua-
tion metric since it measures the distance between two sequences in
terms of the minimum number of edit operations required to trans-
form one sequence into the other [27]. The allowable edit oper-
ations are insert into a sequence, delete from a sequence, and re-
place one landmark with another. We compared our Markov-topic
model with the other models, multinomial model, topic model, and
Markov model. Figure 6 shows the performance of each model at
four different spare times (2, 3, 4 and 5 hours). The results show
that the proposed method (Markov-Topic model) offers the highest
accuracy (i.e. the lowest edit distance). We also tested the statisti-
cal significance of the difference between the average edit distances
of the proposed and the baselines using the Wilcoxon signed-rank
test. For each region, bandwidth, and spare time condition, the re-
sult of the Wilcoxon signed-rank test is p < 0.05 (two-sided test).
The results show that the proposed is significantly better than other
baselines in terms of route prediction accuracy.

4.5 Example of Route Recommendation
We implemented our proposed method and constructed a route

recommender system that would help the user in planning trips. We
would like to show some examples of recommended travel routes
output by the system, and discuss the effect of user information (i.e.
2Edit distance is also known as Levenshtein distance.
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Figure 6: Average edit distances of recommended travel route at user-specified time periods. The datasets are (a) the East coast
at bandwidth = 50 m, (b) the West coast at bandwidth = 50 m, (c) the East coast at bandwidth = 10 m and (d) the West coast at
bandwidth = 10 m.

travel history including present location and time to spend on future
travel) on personalization.
As shown in Figure 1, our recommender system is implemented

as a map-based system. Given a geographical region on the map in-
terface, the system extracts landmarks where many photographers
took photos within the area specified, and visualizes them on the
map interface. Each icon on the map represents a landmark, and a
travel history and a current location is identified by choosing land-
marks in turn.
Note that representative textual descriptions for each landmark

such as pier35, goldengatebridge and brooklynbridge are automat-
ically extracted from the set of annotation tags. Crandall et al. [17]
showed a simple method for extracting representative tags of each
landmark cluster; we follow their strategy. For each landmark l, the
score of tag v is calculated by;

TagScorel(v) = P (l|v) =
N(v, l)

N(v)
, (12)

where N(v, l) is the number of photos at landmark l that have tag
v, and N(v) is the number of photos that have tag v in the dataset.

Note that we discard any tags that do not occur in at least 5% of the
photos in the landmark cluster because they are a significant source
of noise.

4.5.1 Recommendation based on user’s situation
Figure 7 shows recommendation examples when the user is at

the Library of Congress in Washington D.C. As shown in Figure
7, our recommendation algorithm can provide different plans that
well match the user’s spare time. When the user has only a little
time (user-specified time is 3 hours), the system recommends land-
marks in the center of town such as Lincoln Memorial, the Thomas
Jefferson Memorial and so on. When circumstances allow (user-
specified time is 5 hours), the system arranges a tour of places in the
region (i.e. longer travel routes are likely to be generated). The cur-
rent approach to acquiring local information is to read tour guides,
magazine articles, local portal sites, and other commercial sources.
These media certainly introduce famous travel routes, but they may
require much more time than the user can spare. Our recommender
system can flexibly recommend travel routes that suit the user’s
available time.
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Figure 7: Examples of travel routes at different user-specified time periods. The top ranked plan is plotted on the map interface. The
departure point of the user is the Library of Congress in Washington D.C. User-specified time periods are 3 and 5 hours. Bandwidth
parameter is 10m.

4.5.2 Recommendation based on user’s interest and
situation

We show an example of a travel route generated for a user who is
interested in art, and discuss the impact of user interest on the like-
lihood attribute of the photographer behavior model. In this experi-
ment, five landmarks connected with art, Chelsea, SoHo, DUMBO,
Brooklyn Museum and the Lower East Side in the New York City,
are set as the user’s travel history in order to specify the user’s inter-
est. User’s spare time is 3 hours. User’s current location is Times
Square because it is the largest landmark in our dataset. Figure 8
contrasts the recommended routes output by the Markov model to
those of the proposed method (Markov-Topic model). As shown in
Figure 8, the Markov model recommends typical routes including
famous places such as ground zero, the West Village and Brooklyn
Bridge because it considers only the current location and spare time
(i.e. it does not consider user’s interest). In our experiment, these
recommended landmarks are actually ranked among the top five
major landmarks in NewYork City sorted by the number of visitors.
The proposed method (Markov-Topic model), on the other hand,
recommends routes that include landmarks concerned with art such
as the American Museum of Natural History, the Metropolitan Mu-
seum of Art, and Broadway. Furthermore, they are all relatively
accessible to the user because our proposed is combined with the
Markov model.

5. CONCLUSIONS
This paper introduced a framework for travel route recommen-

dation based on the large-scale sets of geotagged and time-stamped
photographs held by photo sharing sites. We assume that the geo-
tagged photographs represent personal travel route histories and
sort the locations indicated by the photographs according to their
timestamps. To learn from these personal histories, we present
a new technique to construct probabilistic photographer behavior
models that can estimate the probability of a photographer visit-
ing a landmark. Based on insights into photographer behavior, two
models are combined in the photographer behavior model: one is
the topic model, which estimates the user’s own personal prefer-
ence; the other is a Markov model, which can find typical routes of

photographers. We conducted quantitative experiments on a large-
scale dataset to compare our probabilistic photographer behavior
model against three probabilistic models in terms of one-step and
multiple-step prediction accuracy. The results demonstrate the ef-
fectiveness of the proposal in terms of its prediction accuracy. Fi-
nally, we demonstrated that our recommendation method outputs a
set of landmark sequences, or travel routes, that coincide with the
user’s preference (interest), present location, and spare time. Dif-
ferent from previous works, which used this metadata in order to
enhance the user’s experience when photo browsing, this work rep-
resents a new direction in the use of the many geotagged and time-
stamped photos available on the Web; we use them to enhance the
experience of each traveler in the real world.
Our major future work is to utilize the attributes of the social

network of photographers and each photographer’s profile (where
he/she lives). These attributes are characteristic of social media
sites and there is the possibility that these sources will improve the
accuracy with which photographer behavior can be predicted. We
will also attempt to recommend more rich representations of loca-
tion in combination with other image and video content analysis
techniques.
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