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Fig. 1: Our root-DNS dual-visualization that provides both high and low-level overviews and interactions of the IP and query spaces.
IP packet traffic is visualized on the left, revealing hidden patterns, IP distributions, and a real TCP-SYN flood. A two-dimensional
query-space generated using deep learning portrays a spatial distribution of received queries and counts. The right image portrays
the spatial distribution of queries as they change over time, revealing the diminished number of received queries due to a DDOS.

Abstract— The analysis of vast amounts of network data for monitoring and safeguarding a core pillar of the internet, the root DNS, is
an enormous challenge. Understanding the distribution of the queries received by the root DNS, and how those queries change over
time, in an intuitive manner is sought. Traditional query analysis is performed packet by packet, lacking global, temporal, and visual
coherence, obscuring latent trends and clusters. Our approach leverages the pattern recognition and computational power of deep
learning with 2D and 3D rendering techniques for quick and easy interpretation and interaction with vast amount of root DNS network
traffic. Working with real-world DNS experts, our visualization reveals several surprising latent clusters of queries, potentially malicious
and benign, discovers previously unknown characteristics of a real-world root DNS DDOS attack, and uncovers unforeseen changes in
the distribution of queries received over time. These discoveries will provide DNS analysts with a deeper understanding of the nature of

the DNS traffic under their charge, which will help them safeguard the root DNS against future attack.

Index Terms—Visualization, cyber security, deep learning, big data, dns, 3d, graphics

1 INTRODUCTION

There are two schools of thought on how to deal with cyber-attacks,
automatic detection methods, and human-driven investigation. Au-
tomatic detection methods work by modeling normal and abnormal
behavior, through prior knowledge of the behavior of malware and
since by definition a cyber-attack is abnormal. However, humans and
the machines are also capable of abnormal behavior, causing these
automatic detection algorithms to throw many false alarms. In addition,
these models take months to create, are created using attack data that
occurred on average at least six months prior, and generally only detect
the presence of old cyber-attacks, and are therefore unprepared for
ever changing and newer attacks. In addition, these methods generally
only report the presence of an attack, but give no details on specifics.
In contrast, and in part in response to automated mechanisms, many
cyber-security analysts prefer manual investigation and analysis of at-
tacks. There is an overall mistrust of automated systems by those who
perform cybersecurity analysis [35]. Generally, analysts tools consist
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of listing packets and related information, whereby data is inspected
line by line. In contrast, many tools often only provide very high-level
abstractions of the data, typically in the form of histograms, where
the histogram consists of the number of received packets.Few tools fill
the gap between very high and low-level analysis, as well as provide
distinct informative views of the underlying data.

One major target of cyber-attacks is the Domain Name System
(DNS) infrastructure, responsible for converting human-understandable
URL queries into machine-understandable IP-addresses.The ubiquity
and central importance of DNS make it a tempting target for attack and
exploitation. If these domain name systems go down, it would create
unprecedented chaos and instability on the internet as IP addresses
change, caches expire, and queries remain unresolved. Finding, charac-
terizing, understanding, and the mitigation of these attacks on DNS is
of utmost importance.

One core aspect of maintaining and defending the DNS is providing
DNS analysts with a method of monitoring the queries received. Those
DNS analysts that are able to easily comprehend the variety and scope
of the queries that pass through their system will be better able to char-
acterize attacks, anomalies, and normal behavior. The challenge is the
sheer amount of root DNS traffic which ranges from 100 to 300 GB
per server, per DNS letter, per day. The primary systems in use today
typically focus on packet counts and origination (source IPs). Modern
packet analyzers generally present every aspect of every packet in tabu-
lar lists, with query information buried deep in expandable subsections
in those lists, or as a single column among many. These techniques,
while providing unparalleled detail, do not leverage our innate ability
to process spatially organized data to find patterns and anomalies. In
addition, they have little emphasis on the aspect of DNS that makes it
so important, the queries themselves. By presenting DNS queries and
IP-activity in a spatially and temporally coherent manner, with cross-



visualization interactivity, enabling high and low-level investigation,
DNS analysts will be able to more effectively process and organize
that data. In this paper, we present our visualization which has been
designed to take the vast amounts of root DNS queries, organize them
in a spatially comprehensible manner, and facilitate easy investigation
to not only answer existing questions, but to help DNS analysts discover
new questions. We validate our presented approach on data from one
of these 13 root DNS providers, namely the D-Root.

In summary, this paper makes the following contributions to immer-
sive analytics and visualization for network security:

* We have designed a dual-interactive-visualization system for DNS
query and IP data which leverages 3D graphics techniques to
convey that data in a novel representation.

* We visualize an order of magnitude more DNS data than previous
systems, providing analysts with high-level situational awareness,
while preserving low-level details and nuance, without the need
for switching between multiple different applications.

* We organize abstract DNS queries in an easy to interpret spatial
layout using a deep learning variational autoencoder, such that co-
located queries are semantically similar. We also leverage volume
rendering to provide analysts with a high-level spatiotemporal
understanding of how the distribution of DNS queries change.

We identify and characterize distinct DNS anomalies and attacks
through an informal empirical evaluation and discussion of dis-
covered trends and clusters with industry experts.

In the following section, we present a review of the challenges,
standard practices, as well as present and characterize new techniques.

2 BACKGROUND

Originating in the days of ARPANET, the DNS can be considered as a
simple list of host names with their mappings of to and from addresses,
maintained in a frequently-updated host table. However, the open
nature of DNS makes it vulnerable to a wide variety of attacks and
abuses.

The constant attack by malicious sources has necessitated the need
for automated intrusion detection systems (IDS).However, many indus-
try operators have observed that modern IDS, although useful, are not
optimal or trustworthy [8], in-part due to the large presence of false
positives and inability to detect the latest threats [35].Often these sys-
tems require a human-in-the-loop to review these detection alerts, and
to contextualize the alerts with additional information [37], often man-
ually with separate visualization tools from the IDS [12]. Therefore,
visualizations that can provide summary and precise representations of
the data is of utmost importance [14]. In the remainder of this section,
we review techniques with visualization as a core-component of the
analytic and investigation process.

2.1 Traditional 2D Network and DNS Visualization

Traditional techniques for visualizing network data include charts (his-
tograms), line-plots (including parallel coordinate views), graphs (in-
cluding node-link diagrams), among others. The challenge is the enor-
mous and always increasing amount of data to portray. Visualizing
all aspects of the data at once is untenable. Tools such as Excel, Net-
Stat [39] and Wireshark [29] (Figure 3), outline every aspect of every
packet. This gives analysts an unprecedented level of detail, but hinders
finding trends, correlations, and anomalies over time [10]. Tradition-
ally, an analyst will write queries to explore their data, leveraging their
background knowledge of the dataset. This process is extremely tedious
and labor intensive, and generally requires a known starting point [9].
Generally, DNS analysts are interested in monitoring the health of their
system, the flows of traffic, patterns, and anomalies.

Histograms are very commonly used for quick analysis of over-
all trends, such as direct comparisons between adjacent periods of
time [2], the count of a particular feature, such as the number and type
of alerts [44], and portray counts of packets [2], query types [43], and

severity [42]. Histograms are arranged in 1D, by stacking elements to si-
multaneously show different properties [2], or with curved and circular
representations [44], and in 3D [27]where the direction and orientation
of the histogram along the z-axis provides additional information.

Similar in function to histograms, line-plots can convey counts over
time [42]. One common implementation is parallel-coordinates, used
to find botnets [19]and anomalies [27]in DNS traffic by plotting packet
attributes along each axis such as IP-address, time, and attribute counts.
Circular representations, such as those used for network intrusion de-
tection [22], can reveal patterns providing what happened, where, and
when. Theme rivers, akin to stacked histograms, have been used to vi-
sualize changes and anomalies in DNS query traffic [33]. One problem
with parallel-coordinate visualizations, including traditional line-plots,
are intentional and unintentional obfuscation (Windshield Attacks) [28].
Similarly, as the number of axes and data-points grow, the data elements
can self-occlude and hide lingering patterns.

Network graphs, representing IPs, AS, domains, machines, queries,
or users, connected via edges (shared traffic, association, or other con-
nections) [35] have been used to visualize communities of hosts in
DNS traffic [16], changes in DNS routing and look-up behaviors [20],
and anomalous behavior in failed DNS queries [18].While network
graphs are useful, previous research [11] found that their effective-
ness decreases dramatically if the graph exceeds approximately twenty
vertices, limiting their effectiveness for fine-level network analysis.

Many new visualizations leverage TreeMaps [31], which color-
code packet counts and anomalies in IP-address bins. Other visu-
alizations correlate geospatial aspects of DNS traffic and overlay
packet counts [24,34]. More creative visualizations, such as glTail
(http://www.fudgie.org/) and Logstalgia [5] use interactive graphics to
render a log file as dynamic 2D simulations.

The previously mentioned visualizations generally trade scalability
for fine-level detail, and focus either on high-level summary overviews
for large amounts of data, or detailed views for small amounts of data.
Therefore many analysts use multiple tools to gain a complete picture,
but this creates an unnecessary context switch and overhead. Addition-
ally, many approaches layout their information with a focus on aesthetic
qualities such as maintaining symmetry with uniform glyph positions,
potentially compromising latent global and local data structures [40].
In our visualization, we preserve and show both precise and high-level
representations for vast amounts of DNS data. Previously, the focus
has been on the evolution of source IP packet counts over time, with
little to no emphasis on the messages in the packets. The DNS system
exists to handle queries, so enabling analysts to explore the changing
distributions of queries is of critical importance. Such a visualization
would be infeasible using traditional visualizations due to the arbitrary
and high dimensionality of the queries, in addition to the irregular
behavior of their transmission. Our work portrays a spatiotemporal
distribution of packets and queries over time, revealing patterns and
anomalies difficult to identify through earlier means.

2.2 3D Network Visualization

While 2D visualizations are regarded as easier to create and under-
stand (in terms of time required for comprehension), recent research
has shown there are many benefits to 3D visualizations over 2D for
abstract data visualization [13,30,36], including clearer spatial separa-
tion, reduced over-plotting, and enabling faster construction and deeper
mental models. In addition, many visualizations rely heavily on spa-
tialization, encoding information in the location of data-elements. The
addition of a third dimension makes available more insightful relative
positioning [32].

One of the earliest uses of 3D for cyber-security visualization was
by Stephen Lau [21]. The visualization uses a 3D scatter-plot to reveal
patterns associated with vulnerability scan attacks. To minimize clutter
from 2D parallel coordinate visualizations, many are expanding into the
third dimension [41]. P3D, a 3D parallel coordinate network security vi-
sualization [28] creates multiple 3D planes, each with a set of either IPs,
packet counts, ports, or other information along the x and y-axes, with
lines connecting these planes representing connections or FTP trans-
fers, to detect port scans while preventing the occlusion attacks such
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Fig. 2: Overview of the process from raw pcap files to The Flow-Map IP-Space visualization. Starting from a binary pcap file, we extract and
count the occurrence of each IPv4 IP-Address and type of packet. Next, the IPs are converted from a 4D to a 2D grid representation, with glyphs
scaled and colored based on the number and type of packets. This process repeats for each time slice, with slices stacked along the z-axis. The
result is then visualized using 3D accelerated rendering, which allows for high-level structure and low-level analysis, to help analysts establish a
sense of normalcy (central blue image), identify outliers (green TCP burst), classify and characterize attacks (top right), measure attack impacts

(middle right), and monitor after effects (lower right).

as Port Source Confusion and Windshield Wiper attacks [7]. Another
example is Daedalus-Viz [17], which consists of several circular rings,
corresponding to various monitored organizations, in orbit around a
central sphere representing the complete IPv4 space, with connecting
lines indicating the transfer of packets.

One main drawback of the previous systems is the relatively small
amount of data they can visualize. We expand upon these ideas by com-
bining elements of scatterplots and parallel coordinate visualizations.
Rather than just plotting one element per cell, we interleave multiple
data points within a given spatiotemporal cell using 3D transparency,
enabling more information to be presented, as well as a direct compar-
ison between similar elements. Lastly, plotting many discrete points
temporally increases the overall visual complexity. Instead, we have
clumped together spatially coherent groups of points into mesh surfaces
to minimize the visual clutter, to reveal structural patterns and changes
within the original query point cloud.

3 PROBLEM AND SOLUTION
3.1 The Challenge

As part of our development process, we interviewed DNS analyst
experts from the University of Maryland D-Root. One of the challenges
they face is the scope and enormity of the data they manage. Over
the course of an average day at just one of their 131 global facilities,
they process over 100 GB of traffic, with a peak traffic around 300 GB.
When under attack by a typical DDOS, one server can process roughly
600 GB in one day.

Fig. 3: An example analysis in Wireshark, a widely used pcap analyzer.

Traditional query visualization tools are very limiting and typically
omit the queries and contents of the packets as part of the investigation,
emphasizing packet counts and the distribution in the IP-space. As
stated earlier, most pcap (packet capture) tools present packets line-
by-line. An example of queries presented in a commonly used tool
(Wireshark [29]) is presented in Figure 3. While this level of detail
can be very useful, it limits the ability of an analyst to generalize

and discover trends due to the lack of a global, visual, and temporal
coherence as well as eliciting a sense of information overload.

There have been many root DNS attacks, historically lasting
three [25] and five hours [15]. DDOS attacks outside the realm of
the root-DNS on average last less than twenty hours [23].To ensure we
can cope with the largest of attacks, we visualize 24 hours of traffic in
our case study. However, our visualization is capable of showing larger
durations of time.

For the purposes of this paper, we explore one recent root DNS
attack. On June 25th 2016, a moderately sized DDOS attacked all
root DNS authorities in a coordinated attack. A report published by
the root DNS authorities on this specific attack can be found here
(http://root-servers.org/news/events-of-20160625.txt). According to the
official report, all DNS root name servers received a high rate of TCP
SYN packets in a SYN flood attack for nearly four hours. The source
addresses appeared to be randomized and uniformly distributed through-
out the IPv4 address space. The observed traffic volume due was up to
approximately 10 million packets per second (approximately 17 GB/s),
per DNS root name server letter. Our goal is to provide analysts with a
sense of normalcy over the course of a day, contextualize attacks when
and if they occur, to aid in subsequent investigation and mitigation
strategies, and help develop a characterization of current and future
attacks for comparison.

Previous network visualizations have visualized up to approximately
350 million packets [3,4,20].In our presented visualization, we visual-
ize, in real-time using 3D accelerated rendering techniques, over 2.4
billion packets, consisting of over 487 million unique queries, spanning
24 hours, from the McLean Virginia D-Root DNS site.

3.2 Approach Overview

There were three design considerations driving our development, to dis-
play an entire day of query traffic from a Root DNS server, show high-
level structures and patterns in an intuitive manner with interactions
enabling finer investigation, and display time as a spatial dimension. In
this paper, we present two complementary visualizations of the activity
in both the IP and query domains. An overview of the IP-space and
query-space construction processes from raw packets to visualization
are presented in Figure 2 and Figure 4.

3.3 Flow-Map IP-Space Visualization

The IP-space visualization uses what we call a Flow-Map, spatially
presenting information regarding packet counts and types over time.
The IP-space consists of 4-octets, resulting in over 4 billion unique
values/indexes. To properly visualize such a space would require a
four-dimensional cube, or a very tightly indexed 1D histogram. The
compromise reached with our DNS experts, to maintain a fine-level of
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distribution of queries is then visualized using 3D accelerated rendering, which allows for high-level temporal structure (top-right) and low-level

query analysis (bottom right).

detail without overwhelming the user, as summarized in Figure 2, is to
reduce the IP space from over 4 billion to 10,000 values, by combining
the first and second octet pairs into a single value. These values are
used to bucket (bin) the IP-addresses of the packets into a 2D IP-space.
Our current scheme does not take into account autonomous domains.
Therefore, some IP addresses that belong to very different autonomous
domains will be sent to the same bucket while IP addresses that belong
to the same corporation could be sent to different buckets. It should be
possible in future, to add an Autonomous Domain layer above it, show-
ing only those IP-bins belonging to a particular autonomous domain, or
by reorganizing the IP-space into an autonomous domain space. Due
to irregular packet arrival times, packets are temporally binned into 5
second chunks. Our discussions with DNS experts revealed that know-
ing the precise IP and arrival time of particular packet was insignificant
and that gaining a general understanding of the distribution of packet
sources is preferable. A novel characteristic of our visualization is that
each bin/cell contains multiple glyphs, seamlessly linked together, sized
based on the number of received packets (within a given time it repre-
sents), and colored transparently based on the type of packet received
(UDP, TCP SYN, etc.). The transparency and sizes of the glyphs can
be adjusted to aid in minimizing occlusion for certain views, revealing
hidden information, and to emphasize different bins with certain counts
of packets. The advantage of this Flow-Map representation is that time
is represented as a spatial component, removing temporal animations
or scrolling through individual time slices, thereby providing a globally
and temporally coherent model for the analyst. Within this constructed
visualization, analysts may freely move and rotate their view to get a
high-level overview of the space, zoom in close for an in-depth analysis,
and change the current transparency and glyph scaling levels using the
keyboard and mouse. Hovering the cursor over any given element
presents additional information, among which are the range of the IP
bin, the number of packets, and the time.

3.4

Three general observations can be made using the Flow-Map repre-
sentation as shown in Figure 2. First, most of the space is empty,
suggesting that most queries fall into relatively few IP-bins. Second,
for most filled bins, the glyphs are relatively small, suggesting that most
of the queries received are singletons (customers send just one or a few
packets). Third, there are a few persistent high-packet count buckets
that send out thousands of queries in just a few seconds. From this
IP-space representation, an analyst can grasp the nature of the changing

IP-Space Observations

volume of traffic.

Within the first few hours of data, we found a small selection of
interesting patterns. First is the anomaly in highlighted in the middle
of Figure 2 which shows an instance of high TCP-based packet activity,
as indicated by the green color. This was a large burst of packets, as
indicated by the large size of the glyphs, and was distinct in that no
TCP activity preceded or followed this period lasting roughly a minute.
In the left Figure 5, we have extracted three IP bins that have regularly
repeating, self-similar, internal patterns of traffic. This subset of data
can be seen near the top-right of the blue Flow-Map in Figure 2. From
our discussion with D-Root experts, this traffic might be from external
monitoring sources, who periodically query the root DNS, resulting
in this regular pattern. After a closer look at the queries from these
IP-bins in the query-visualization, we found that the received queries
were generally of the form *.trafficmanager.net. The top-right
of Figure 2 shows the distribution of IPs used in the TCP-SYN flood
attack (half of the first IP Octet, and the entirety of the other octets,
contrary to the official report indicating the totality of the IPv4 space
was spoofed) , the decreased volume of traffic from lost customers, and
the resulting hard-drive failure as a result. The right of Figure 5 shows
a high inter-bin temporal similarity found across all IP-bins involved
in the TCP-Syn flood. It is possible that all these characteristics could
serve as an attack signature. Thanks to the preservation of the low-level
of detail, which would otherwise be summarized or abstracted away
by other tools, these interesting patterns and anomalies were identified,
driving further investigation.

3.5 Deep Learning Driven Query Space Visualization

Our query-space visualization provides analysts with a deeper under-
standing of the distribution of received queries. We organize the non-
spatial queries into a spatial representation, enabling easy detection of
patterns and structure from the large amount of data using deep learning.
Each query is visualized as a 3D sphere, positioned near similar queries,
and colored to indicate the number of times it was received. Using this
visualization, an analyst can see the high-level distribution and volume
of queries, then drill down to discover the precise queries received and
draw observations, panning and zooming the camera with the keyboard
or mouse, and obtain details for a specific data-element by hovering
over it with the cursor. The goal is to provide high-level information, in
the form of natural and easy to interpret geometric categorical structures
as generated by deep learning and to facilitate low-level investigation
by providing an analyst to get close and personal with the raw query

Fig. 5: Interesting self-similar patterns of intra-IP-bin queries and across-IP-bin traffic (from the TCP-Syn DDOS) over time in D-Root traffic.
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the large reduction in queries during the attack, and an overall decrease in the number of queries over time.

data.

To generate the distribution of queries, we use deep learning to
find patterns within the set of queries, and then project those queries
into a 2D plane. Previous techniques, such as spectral clustering and
PCA were unable to generate adequate representations, less cope with
the huge quantities to be projected, due to the requirement of a full
similarity matrix between all pairs of elements. In addition, the lack
of a ground truth or implicit notion of similarity inhibits the use of
other traditional methods. Therefore, we use deep learning, which is
able to handle the data in chunks, maintain a global conception of the
data-space, and learn its own metric of similarity from the data rather
than have one imposed. Each query string is converted to a vector
of TF-IDF (Term Frequency, Inverse Document Frequency) values,
resulting in a 256-length character feature vector. TF-IDF is commonly
used in natural language processing algorithms for converting text into
a machine-understandable format by converting each word/letter into a
value based on its importance to the local sentence/word relative and
the entire corpus. All query feature vectors are used to train an unsuper-
vised variational autoencoder, which learns to project the queries into a
latent space, with the constraint that it must then accurately recover the
original input feature vector from that projection, resulting in similarly
structured queries as spatially co-located. An example of the queries
projected into a semantic latent space is presented in the lower-left of
Figure 6.

The deep learning network uses four decreasingly sized dense layers,
to capture interesting co-occurrences of features, each using a Rectified
Linear Unit activation function [26] (Relu), defined as max (0, x), except
the last output layer, which uses a Sigmoid, defined as m. This
network structure is embedded into a Variational Autoencoder, which
refines the internal weights. A visual overview of the model is presented
in Figure 4. The model is trained using all queries as a pre-processing
stage before the visualization starts. The libraries TensorFlow [1]
and Keras [6] are used to build, train, and process the deep learning
network.

A coarse labeling of the query-space visualization with examples of
queries within each group are presented in the left of Figure 6. There
is a general trend with alphabetic-based queries appearing on the left,
and numeric-based queries appearing on the right, along with a general
usage of normal characters on the top, and unusual characters on the
bottom. Through our investigation, we have identified several inter-
esting general groups of queries. The most common form of queries
are those primarily composed of random configurations of alphabetical
characters. Other discovered groups include configurations of IP ad-
dresses and numbers, invalid queries which include distinct domains
such as .com and . org, device names with local and home domains,

and more strangely, queries consisting of unusual (non-alphanumeric)
characters (most likely binary and code fragments).

3.5.1

The enormous scale of the DNS data pushes the limits of dimension-
ality projection. Earlier solutions would, in general, independently
project down segments of the overall high-dimensional data, creating
separate local models, resulting in projections that could not be directly
compared due to differences in projection axes, or result in a gradual
change in axes as more data is projected. Both solutions are undesirable
due to the increased cognitive burden of constantly updating one’s un-
derstanding of the local axes and interpretation of the projection. With
deep learning, we are able to remove this effect by training a globally
consistent model, providing analysts with a cohesive and consistent
representation. In addition, provided a set of projected points, display-
ing a time-varying scatter-plot is a challenging problem. A common
solution is to use animation to convey time. However, research has
shown animation incurs higher cognitive loads, can be often difficult
to comprehend, and is generally less effective in communication than
a static visualization [38]. Therefore we opted for a static approach
for visualizing temporal information similar to the IP-space. However,
unlike the IP-space which consists of regular interval IP-addresses,
the queries have arbitrary distances between each other, requiring a
different visualization method. Another solution is to stack individ-
ual 2D scatter-plot time-slices, but for large datasets, this leads to an
overwhelming amount of information, as well as a large amount of
visual clutter. Therefore, we use a volume-rendered marching cubes
approach using CUDA and OpenGL. This view is designed, in contrast
to the earlier blanket temporal 2D view, to provide analysts with a
structural high-level overview of how the query-space changes over
time, naturally revealing temporally repeating, absent, and anomalous
queries. Similar to the IP-space visualization, the camera in the tempo-
ral query-space visualization may be translated, rotated, and zoomed
for closer inspection using the keyboard and mouse. An example of
this temporal query visualization is presented in Figure 6.

Among many observations, one unexpected finding is that as time
continues, the overall number/volume of queries, particularly on the
periphery involving unusual queries, decreases. Starting from the
beginning of the day, many groups of queries have high volume and
variety, in particular, those belonging to the . pk5001z group. However,
as the day continues, this cluster of queries decreases, with a regularly
repeating increase and decrease in volume. Other groups, such as those
consisting of invalid IP-address fragments, start with a high volume of
traffic, but quickly drop-off, as shown in the top-left of Figure 6.

Another emergent observation is the large quantity of temporally
repeating queries, which fade in and out, growing and shrinking in

3D Query Flow Visualization



volume and diversity. A large group of these, consisting of random
character queries, have temporally aligned high and low points, as
shown in the middle of Figure 6. Others, such as the aforementioned
.pk5001z group, along with many groups of unusual character queries,
such as the group of queries of the form *_dns-sd.udp_*, also share
an intermittent and oscillatory emission. The discovery of such patterns
would have been almost impossible without such a visualization. Due
to the oscillatory nature of these queries, it is therefore likely they
originate from an erroneous program.

Lastly, the TCP-Syn flood DDOS, as visually portrayed distinctively
from the norm in the IP-space visualization as a large increase in activity
in TCP-Syn packets, is measured as an absence of queries in the 3D
spatiotemporal visualization, notably as the reduction in traffic before
the large empty gap in the right of Figure 6. Although we see that
some queries are processed, the majority of traffic, particularly on the
periphery, has ceased. The large gap, similar to its portrayal in the IP-
space, corresponds to a hard-ware failure. In the IP-space visualization,
we learned that there was an overall reduction in the number of queries
after the attack. In this view, we can also see that only some of the
traffic has returned, but now we are informed that primarily those
queries consisting of domains are processed, and unexpectedly, those
groups of queries on the periphery are mostly absent.

3.6 Dual IP-Query Visualization Interaction

In contrast to previous cyber-visualizations, which focus primarily on
the counts of packets, we present a visualization capable of providing
analysts with a well-rounded and complete representation of the DNS
data. This involves a dual representation, namely an IP and query space.
In our system, the IP-space view is presented on the left of the screen,
with the query-space shown on the right. Users simply move their
cursor from one view to the other to direct their input focus. Until now
we have focused on the construction, interaction, and discoveries made
with these visualizations independently. In this section we review the
interactions and discoveries made when analyzing the D-Root DNS
data in a dual-representation.

Suppose the analyst desires to know from which IPs and times a
particular query originated. In the query-space visualization, an analyst
can double-click on the particular query, to highlight the correspond-
ing bins and times in the IP-space view. We are not filtering out the
response packets from the D-Root DNS, so most queries will have
at least two IP-space occurrences. To select multiple queries, an an-
alyst holds control+click to brush-select the queries. One selection
of queries, presented in the top-left of Figure 7 originate from a wide
range of IP-bins and time periods. The selected queries are of the
form *.pk5001z, whose occurrence in the query-space visualization
surprised our DNS experts. Initially, they thought these queries were
from one or a few IPs (old hardware), but in the dual interaction, we
see that these packets come a wide range of IP addresses for a long
duration of time. At the bottom-left of Figure 7, the selected group
of queries arrives in three IP-bins, one corresponding to the D-Root,
and the others corresponding to sources, indicating that these queries
are an anomaly due to the small number of sources. Interestingly,
one source is consistent, with the other intermittent. One query was
“211.67.67.217.”, with the remainder of a similar structure. Using our
visualization and interaction methodology, analysts may also to do the
reverse, and select individual IP-Time-Bins and visualize the corre-
sponding queries, or select an entire duration by double-clicking the IP
bin, as shown in the bottom-right of Figure 7, revealing this temporally
oscillating IP-bin (the middle-left from Figure 5 primarily consists of
*.trafficmanager.net queries. The developed visualizations along
with the dynamic interactions enable analysts to visually identify new
behavior, develop hypotheses, and overall gain a deeper understanding
of the network flow.

4 EMPIRICAL VALIDATION

The primary motivation of our visualization is to help analysts under-
stand the distribution of queries they receive, how it changes over time,
identify anomalous behavior, and help them explore new questions.
Throughout our investigation, we found and reviewed several trends

Fig. 7: Two selected regions of queries. The top selection indicates the
queries originate from a wide range of IPs, while the bottom selection
indicates those queries came from very few IPs. Non-included IPs may
be set transparent (bottom) or left un-transparent(top). The bottom-right
image shows the resulting queries included from an entire IP-bin.

and anomalies using our visualization. We present a few insights that
were discovered by three DNS experts, who will be named A, B, and
C. The discoveries made would have been difficult, if not impossible,
to make through traditional analysis tools that lack organizing DNS
information in an intuitive spatial and temporal representation. The
discoveries presented here originate from multiple joint discussions
and sessions with both the authors and DNS experts engaging with the
visualizations.

4.0.1 DNS Expert A

Fig. 8: The region of the query-space consisting of different distribu-
tions of random characters.

DNS expert A stated that they would often monitor the overall health
with a pcap analysis program, and look at a small random selection of
packets to see how those queries looked. As expert A was interacting
with our visualization, he zoomed into a cluster of points and noted
that there was a high volume of lower-case random character queries.
He pointed out it was interesting that our visualization could cluster
such queries which could come from the Chrome internet browser.
Upon further discussion, we learned that when Chrome starts, it tries to
learn the nature of the DNS it sits behind by issuing multiple random
queries, as ISPs tend to wildcard DNS servers to catch all domains
and load advertisements. If the result of the random queries is a valid
response, then Chrome knows something is playing strange with the
DNS. For those who do not sit behind one of these particular ISPs,
these random queries end up at the root to be resolved. While we
cannot attribute all of the random lower-case queries to Chrome, it
is likely responsible for a large majority. In our visualization, there
is a large chunk of the distribution space dedicated solely to sets of
random characters, with small differences between them (typically the
frequency and capitalization of individual letters), as can be seen in
Figure 8.

In addition, DNS expert A was able to learn that many random
character queries contained valid domains. When the root encounters
such queries, it forwards those queries to the authority domain listed
as part of the query. This could lead to a kind of DDOS attack from
re-directed queries. With this new information and our visualization,
it may be possible to establish filters to mitigate the effects of such
queries.



Lastly, DNS expert A noticed a large collection of queries from dif-
ferent routers and modems. Human error or malfunctioning machines
often result in erroneous queries. One example of this unusual behavior
was the presence of a large number of queries of the form *.pk5001z.
This initially struck our DNS experts as very unusual, and after some
investigation on their end, they found that these types of requests are
typically associated with a particular model of modems, namely the
PK5001Z flavor of modem. The presence of these queries at the root
indicates that someone somewhere has a miss-configured or infected
modem sending erroneous queries.In addition, there was an entire dis-
tinct cluster dedicated to queries of the form *.Home, *.Belkin, and
*.local, indicating erroneous configurations of home routers and de-
vices. The presence of router and modem based queries, while known
to our analysts, surprised them by their variety and the age of the orig-
inating hardware. In particular, DNS expert A found a set of queries
belonging to a 20 year old version of OS VXworks. Using our visu-
alization tool, our DNS experts have been informed on the scope of
this problem, and that this traffic can lead to intense bursts when an
outdated system desperately searches for a valid DNS response.

4.0.2 DNS Expert B
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Fig. 9: The region of the query-space consisting of different distribu-
tions of IP addresses, fragments, and expressions.

Rarely, people directly enter an IP address into the web-browser to
directly connect to a specific IP-enabled device. However, expert B
noted queries containing IP addresses, which often contain different
mistakes. Our visualization is able to identify and cluster these mistakes.
Previously, IP-based investigations primarily use the source IP in the
packet header, rather than look at IPs in the query itself. Using our
visualization, we can see the distribution of queried IPs and the mistakes
made when querying them. DNS expert B found that the most common
mistake is the usage of an invalid IP-octet (> 255), or an incorrect port
address, often using brackets, dashes, or parenthesis to delineate port.
More elaborate mistakes include entering too few or too many octets,
surrounding the IPv4 address with brackets and other formatting, or
enter two or more [P addresses at once, separated in many different
ways. Other errors include partial URLs followed or preceded by IP
addresses, erroneous bit masks, IP addresses which replace different
numbers with letters (perhaps in an attempt to use [Pv6), strange hybrid
combinations of URLs with IPv6 IPs, generally in the form of http://,
and IPs containing many percent symbols, perhaps in an attempt to
use a regular expression, or as a fragment from a printf statement.
An instance could be programs erroneously copying code or URL
fragments into a browser DNS query packet. As a result, many of these
queries reach the root DNS. In our query-space visualization, there are
a few clusters dedicated to these types of queries, as shown in Figure 9.

In addition, we also often find command and instruction segments
or simple statements, such as a large occurrence of for= statements,
boolean expressions, and variable assignments. For other queries, we
find many instances of queries structured as www. followed by a random
collection hexadecimal and unusual characters. We believe these are
instances of broken applications going through random permutations
of URLs trying to resolve to a valid response.In addition, sending
commands through DNS is a common way to control bot-nets. Learning
of the occurrence and distribution of these queries have reinforced their
belief that the majority of traffic they receive is machine rather than
human generated. Just as with the random characters, knowing the

types of queries containing IP addresses, and knowing that they cannot
be resolved, would allow automatic filtering of such traffic earlier.

4.0.3 DNS Expert C
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Fig. 10: The region of the query-space consisting of unusual characters
and queries.

Expert C noted that there were a large number of queries that contain
unusual characters as shown in Figure 10. These characters are those
that cannot be interpreted by normal ASCII. Therefore, for our parsing
purposes, we relied on the ISO/IEC 8859-1:1998 (also known as Latin-
1) character encoding to properly decode and display the queries. The
very existence of these queries is unusual, as people do not generally
perform queries using such characters. Expert C has theorized that
these queries are data and code binary fragments, likely erroneously
copied from an invalid buffer. Another theory is they consist of ex-
filtrated data exploiting the DNS system (DNS tunneling). Possible
examples of this were the large occurrence of long queries contain-
ing sequences of prodID= and other delineated information. Another
source of these unusual characters could be bad Unicode translation in
software applications. In our IP and temporal query-space visualization,
these particular sets of queries tend to fluctuate depending on the hour
of the day (with many only being issued in the early morning and late
at night as indicated by our temporal query visualization), suggesting
that a machine is likely the initiator. Expert C noted that these observa-
tions would have been very difficult to make without the usage of our
visualization.

5 CONCLUSIONS

The goal of our visualization was to provide a natural and easy to
use interface for working with large amounts of real-world DNS IP
and query data, for providing analysts with a general overview of
the distribution of the packet traffic and queries, while also allowing
them to investigate small temporal events, individual queries, and find
correlations between the IP and query spaces. We have shown that
using deep learning to generate spatial representation of non-spatial
queries is a very effective method of presenting such data. By working
closely with real-world root DNS experts, we have been able to find new
and interesting anomalies, groups, and patterns that were previously
unknown, and have led to further investigation. As the internet of things
is set to grow exponentially, the number of erroneous, malformed, and
junk queries is set to explode, as well as increasing complexity and scale
of future attacks. Having knowledge of the different types of queries
and packet behaviors, what they tend to look like, and how they change
over time, may allow for DNS analysts to start automatically filtering
these packets as the traffic gradually increases, to keep operations
functioning normally. Prior to our visualization, the DNS experts would
often only look at a handful of queries at a time, not fully grasping
the variety and dynamics of the queries flowing through their network.
With this new knowledge and capability, closer inspections of their
vast quantities of DNS data may now be conducted, and a greater
preparedness for the future may now begin with greater confidence.
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