

SHARK2: A Large Vocabulary Shorthand Writing System

for Pen-based Computers

Per-Ola Kristensson §♦
♦ Department of Computer and Information Science
Linköpings universitet, 581 83, Linköping, Sweden

perkr@ida.liu.se

Shumin Zhai §
§ IBM Almaden Research Center

650 Harry Road, San Jose, CA, USA
zhai@almaden.ibm.com

ABSTRACT
Zhai and Kristensson (2003) presented a method of speed-
writing for pen-based computing which utilizes gesturing
on a stylus keyboard for familiar words and tapping for
others. In SHARK2, we eliminated the necessity to alternate
between the two modes of writing, allowing any word in a
large vocabulary (e.g. 10,000-20,000 words) to be entered
as a shorthand gesture. This new paradigm supports a
gradual and seamless transition from visually guided
tracing to recall-based gesturing. Based on the use
characteristics and human performance observations, we
designed and implemented the architecture, algorithms and
interfaces of a high-capacity multi-channel pen-gesture
recognition system. The system’s key components and
performance are also reported.

Categories and Subject Descriptors: H.5.2 [User
Interfaces]: Input Devices and Strategies, Interaction
Styles; I.5.2 [Design Methodology]: Classifier Design and
Evaluation, Feature Evaluation and Selection

Additional Keywords and Phrases: Text input, shorthand,
stenography, shorthand recognition, gesture recognition

INTRODUCTION
Since the advent of pen-based computers, researchers have
sought intuitive and efficient ways to input text on com-
puters using a digital pen (see [14, 28] for two recent re-
views). Two approaches have gained broad deployment in
pen-based computing products – handwriting recognition
systems and the stylus keyboard (SK). Taking advantage of
the user’s years of prior experience, handwriting
recognition systems allow users to enter text either as
cursive script or as individual letters. Decades of research
and development effort have been invested in handwriting
recognition technology [20, 24], resulting in increasingly
practical commercial systems such as Graffiti for Palm OS,

Jot for Pocket PC, and the handwriting recognition built
into the Microsoft Windows Tablet PCs. However,
handwriting recognition is limited by the speed of
“longhand” writing which is about 15 wpm [5] as well as
problems with recognition accuracy [7]. Gesture based text
entry methods such as the Unistroke alphabet [9], Graffiti,
Cirrin [16], Quikwriting [18] and Edgewrite [25] can be
more efficient or more robust than natural alphabets but
still require character level articulation.

The SK, also known as a graphical, soft, or on-screen
keyboard, is a “virtual” keyboard drawn on the computer
screen and tapped serially with a stylus. Much effort has
been made to increase statistical movement efficiency in
the SK (e.g. [8]). Two recent efforts in this regard are the
OPTI [15] and ATOMIK keyboards [26], designed with
heuristics and computer algorithms respectively. However
an SK can be tedious to use and requires constant visual
attention since every key tap must be exactly within the key
boundaries.

Combining handwriting with SK, Zhai and Kristensson
[27] developed a method that allows the user to draw
patterns as a basic mode of entering common words (see
Figure 1). Each pattern of a word is formed by the
trajectory through all of the letters of the word on the SK,
from the first to the last in order. We call such a pattern a
sokgraph, since it is essentially a form of shorthand defined
on a keyboard as a graph. An input system that uses the
sokgraph approach was dubbed SHARK - SHorthand Aided
Rapid Keyboarding [27]. The original SHARK system uses
dual modes of text entry. For an unfamiliar word, the user
taps it as usual on a SK. For a familiar word, the user writes
the gesture, and the system uses a matching algorithm to
find the closest sokgraph. Due to the use of a lexicon,
sokgraph recognition incorporates error tolerance afforded
by the regularities in natural words composition. The
feasibility of using and recognizing a small set of
sokgraphs has been shown in [27]. Although artificial, the
users could learn about 15 sokgraphs per hour of practice.
(See [27, 28] for the related prior arts to SHARK).

While promising, substantial challenges have to be
overcome to make SHARK a practical writing tool. This

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA.
Copyright © 2004 ACM 1-58113-957-8/04/0010. . . $5.00.

43Volume 6, Issue 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1029632.1029640&domain=pdf&date_stamp=2004-10-24

paper presents our innovations in designing the use
behavior, architecture, algorithms, user interfaces and key
implementation components of a complex interaction
system to make SHARK a practical text writing approach
for pen-based computing. We call the new system
SHARK2, since the capacity of the system in terms of
recognizable sokgraphs has to rise by a power of two from
the original prototypical system [27] in order to be
practical.

Figure 1. A user has written the word “system”
in SHARK2 on a 57K lexicon. As is evident in the
figure, the system can handle gestures that are
far away from the ideal sokgraph (marked in
bold), both in terms of overall shape and
location proximity. Shown is the ATOMIK layout.
Sokgraphs can be defined on any layout, such
as QWERTY.

CHALLENGES AND BEHAVIORAL DESIGN

The Problem
One of the design goals of the original SHARK method was
to use the SK as a bridge for learning which assists the user
to move from the tedious tapping mode to the more
efficient gesturing mode. This is similar in spirit to the way
a self revealing “marking menu” supports novice to expert
transition for menu selections [11]. However, the distinct
two modes of input is a significant impediment to a
seamless migration from tapping to gesturing. Although
tapping a word and gesturing its sokgraph constitute the
same movement trajectory pattern, the discrete tapping
motion and the continuous gesturing movements are
different in many ways. Visually and cognitively, discrete
tapping does not explicitly reveal the geometric pattern of
the corresponding sokgraph to the user. The user’s
realization and memorization of the sokgraph is hence slow
and covert. Kinematically, the actions of tapping
individual letters of a word are distinctly different from
producing the total gesture of a sokgraph of the word. The
two are likely to require different “motor programs” or
“motor schemas” [22], which also hinders the amount of
learning and memory transfer from tapping to gesturing.

New Use Behavioral Paradigm
What is needed is a mechanism that supports a smooth and
gradual transition from novice to expert behavior without
the distinct mode switch. The solution we have designed is
to use continuous letter tracing, rather than discrete letter
tapping, as the novice “mode”. Tracing is a visually guided,
closed-loop action. To trace a word on the SK the user is

not required to have any prior knowledge of the word’s
sokgraph. However, the trajectory of the trace, explicitly
displayed to the user by transient stylus ink, is the same as
the sokgraph shape. The kinematics of tracing and
gesturing are also the same. This means that each trial of
tracing a word on SK is also a trial of learning its sokgraph.
Over time, the pattern of the sokgraph builds up in the
user’s memory so the production of the trace becomes
partly visually guided and partly memory recall driven. As
the contribution of pattern recall, or open-loop action
increases, the user’s dependence on visual guidance will
decrease. Eventually a user may completely remember the
sokgraph and gesture it based primarily on memory recall,
entering the expert “mode”. Between visual tracing and
memory recall the system is in fact modeless. The only
difference is the degree of visual guidance reliance. A
user’s behavior is always somewhere between the two
extremes but gradually shifts from closed-loop to open-
loop performance with practice. The original tapping to
gesturing binary switching paradigm now changes to a
seamless and continuous transition from tracing to
gesturing.

System Requirements
A challenge raised by this revision of the SHARK paradigm,
however, is the large number of sokgraphs the system has
to recognize and distinguish. To support such a paradigm
change, a recognition-based text writing system has to be
developed with the following necessary or desirable
properties:

1. Every instance of word entry, except adding new words
to the lexicon by tapping, has to be realized by sokgraph
recognition. To the system there is no distinction between
visually guided tracing and recall-based gesturing. The
recognition system has to be able to recognize all words an
individual user may use in regular writing*. The size of the
lexicon should be in the order of 10,000 words.

2. The system has to be extensible to new words a user may
adopt in writing.

3. The system has to be “real time”. The recognition
latency can only be a small fraction of the entire duration of
writing a word.

4. The system should be compatible with the SHARK2
paradigm, supporting gradual transition from visually
guided tracing to recall driven gesturing.

5. The system should give the user the maximum amount of
flexibility and least amount ambiguity.

*Word variations based on the same stem are considered different
words in this context. For example “work”, “worked”, “working”
and “works” are four separate words.

44

THE ARCHITECTURE AND ALGORITHMS OF THE
GESTURE RECOGNITION ENGINE

A Multiple Channel Architecture of Recognition
Three characteristics set the SHARK2 gesture system apart
from other gesture recognition systems. First, the number of
sokgraph gestures each individual user may need is much
greater than the gesture repertoire of an alphanumeric
recognizer such as Graffiti or Jot, or a typical command
gesture recognizer based on a linear machine (e.g. [21]),
often used in HCI research projects (e.g. [17]). Second,
unlike natural (longhand) cursive handwriting recognition,
a fraction of the sokgraph shorthand gestures, particularly
those for short words, can be identical or similar in shape;
therefore shape alone may not provide sufficient
information to recognize the user’s intent. Third, a set of
sokgraphs defined on a keyboard layout constitutes a
symbolic system novel to the user. This is both an
advantage and a disadvantage. It is an advantage because
each sokgraph has a unique ideal prototype, in contrast to
natural hand writing in which even the same letter can be
written in perfectly legitimate but very different styles. It is
also a disadvantage because there is not a natural corpus of
sokgraphs that can be collected, precluding many of the
standard data-driven machine learning approaches to
recognition (see [6] for a comprehensive overview).

Figure 2. A multi-channel architecture for sokgraph
recognition.

In consideration of these requirements we developed a
multi-channel recognition system (see Figure 2). Each
channel does not necessarily have enough discriminative
power, but the collective information from the multiple

channels can separate the sokgraphs sufficiently. The two
core channels are a shape recognizer and a location
recognizer. The former classifies a pen gesture according to
the normalized (scale and translation invariant) shape of the
pen gesture. The latter classifies a pen gesture according to
the absolute location of the gesture on the keyboard.

Both the shape channel and the location channel draw their
recognition templates from a lexicon. The SHARK2
paradigm requires the lexicon to include all (but just
enough) words a particular user needs in regular writing.
This lexicon can be constructed with various methods. It
can be a preloaded standard dictionary, or a list of words
extracted from the user’s previously written documents,
including emails and articles, or words added by the user.
In practice it is a combination of all. We currently use a
base lexicon adapted from [19].

Template Pruning
Due to the massive vocabulary required for the SHARK2
system, an initial pruning component first filters out a large
number of the sokgraph templates from entering later stage
recognition channels. An effective filtering mechanism we
found is based on the start and end positions of the
sokgraph templates, normalized in scale and translation.
We compute the start-to-start and end-to-end distances
between a sokgraph template and the normalized unknown
input gesture. If either of the two distances is greater than a
set threshold, the template will be discarded. This pruning
process was implemented efficiently by only storing the
coordinates of the start and end points of a template pattern
in a linked list. Traversing the list and collecting the
templates that pass this filter is thus an inexpensive
operation, even for large datasets.

Shape Channel Recognition
The most basic means of sokgraph classification is based
on the shape information contained in the user’s input
gesture. There are many approaches to on-line shape
similarity measurements. Most relevant to the current work
are those methods used in pen-gesture recognition [13, 17]
or handwriting recognition [24, 20].

Pen-gesture recognition commonly uses trained classifiers
based on the classic linear machine [6] (pp. 36-39). A
particular popular variant thereof often cited in the HCI
literature is the Rubine pen-gesture recognizer [21].

Handwriting recognition systems use a multitude of
techniques and approaches, including neural networks,
hidden Markov models, and model matching [24, 20]. An
early model based approach to cursive script recognition
system by Tappert [23] pioneered the use of so-called
elastic matching in handwriting recognition. While being
outperformed in cursive script recognition by statistical
classifiers nowadays [3], elastic matching retains the
valuable property of not requiring any training at all. Elastic
matching in cursive script recognition measures the spatial
similarity of two patterns by comparing the point-to-point

UI front

Unknown pattern

Template pruning

Location
channel

Language
component

Shape
channel

Channel
Integration
component

N-best list

Sentence
segment

Lexicon of
sokgraphs

Language
model

45Volume 6, Issue 2

correspondences in sequence, allowing certain elasticity if a
nearby point has a shorter spatial distance than the
corresponding point (see Figure 3 left).

Figure 3. Elastic matching of two patterns with a
look-ahead threshold of 2 points (left).
Proportional matching of two patterns (right).

We initially experimented with using elastic matching for
the SHARK2 system, but in early testing we found that
elasticity in the matcher is an undesirable classification
property when the template space is crowded with nearby
competing patterns. We found that we could significantly
reduce the error rate by introducing a linear matcher, which
we call (for reasons that will soon become apparent) a
proportional matcher.

Proportional Shape Matching The proportional shape
matching distance between an unknown pattern u and a
template pattern t is defined as

 ∑
=

−=
N

i
iis tu

N
x

1
2

1 (1)

where N is the total number of sampling points of the
patterns. It is easy to see that the elastic matching algorithm
presented by Tappert [23] with zero look-ahead reduces to
Equation 1. Before applying Equation 1 the patterns are re-
sampled into N equidistant points and normalized in scale
and location.

Normalization is achieved by scaling the largest side of the
bounding box of a pattern to a pre-determined length L :

),max(/ HWLs = (2)

where W and H are the original width and height of the
bounding box. Finally we translate the pattern’s geometric
centroid to the origin in the coordinate system.

The final result of the shape channel is an approximate
scale and translation invariant distance measure of the
similarity between the patterns, based on the average sum
of the equidistant sample points’ spatial distance (see
Figure 3 right).

Location Recognition Channel
The second core channel of sokgraph recognition in our

current architecture examines the absolute location of the
user’s gesture trace on the keyboard. The rationale for
having such a channel is twofold: 1. Location information
provides an increased recognition resolution of sokgraphs;
2. Location is part of the user’s memory of a sokgraph and
therefore will be reproduced during gesture production.

Shape Confusion and Location Information By sokgraph
shape alone some words may be near or in complete
confusion with each other. To gain a quantitative baseline
understanding of sokgraph confusion, here we present a
brief analysis of the confusion pairs of sokgraphs in a 20K
lexicon [19] on an ATOMIK layout. As shown in Table 1,
there are a small fraction of words that have identical
sokgraphs. Considering normalized sokgraph shape only
(independent of scale and location), there are 1117 pairs of
words that have identical sokgraphs (confused pairs), for
example root vs. heel, mend vs. shea, abe vs. ids, can vs.
cam, and ben vs buy. Many of these conflicts are not
natural or complete English words. For example, in a 20K
lexicon, the word at conflict with du; as conflicts with lo,
oz, by, ny and ft; rjr conflicts with sas (See Figure 1 for the
ATOMIK layout).

 QWERTY ATOMIK

Shape 1461 1117

Shape & start key 609 519

Shape & end key 589 522

Shape & both ends 537 493
(284 Roman Numerals)

Table 1. The number of confusion sokgraph pairs in a
20K lexicon, considering shape only, shape and start
key position, shape and end key position, and shape
and both start and end key positions

If we consider shape plus the starting key position, the
number of confusion pairs reduces to 519. If we consider
shape plus ending key position, the number is 522. If we
consider shape plus both the start and ending key positions,
the number of confusion pairs reduces to 493. Examples of
confusion pairs with identical start and ending positions
include refuge vs. refugee, webb vs. web, and traveled vs.
travelled. 284 pairs (58%) of these remaining confusions
pairs are Roman numerals, such as “lxvi” vs. “lxxxvi”,
“xci” vs. “xcii”, and “mmxvii” vs “mmxviii”. Table 1 also
shows the numbers of confusion pairs for the sokgraphs
defined on QWERTY layout. Note that we have only
considered identical conflicts, which give us a baseline
understanding of the percentage and relative contribution
factor of conflict. In conclusion, location cue helps to
reduce sokgraph ambiguity.

Location Memory Since in the SHARK2 paradigm, users
initially use and learn a sokgraph by tracing the letters, the
sokgraph location on the SK plays an important role in the

46

memory of the each individual sokgraph. Even for a
completely memorized sokgraph, the user is likely to
remember its approximate location on the SK together with
its shape, particularly the beginning and ending positions.

Location Channel Algorithms Therefore we use a location
algorithm that computes the distance of the unknown input
trace u to the template (ideal) trace t of word w on the SK
(now both u and t are absolute). t is defined by the lines
connecting the centers of the letters that constitute w . Both
t and u are re-sampled to a fixed number N of
equidistant points. The location channel distance is defined
as:

 ∑
=

=
N

i
L iix

1

)()(δα (3)

where N is the number of points in the patterns. δ is
defined as:

⎪⎩

⎪
⎨
⎧

−

=∧=
=

otherwise,
0),(0),(,0

)(
2ii tu

utDtuD
iδ (4)

where ui is the i th point of u. D is in turn defined as:

 ()∑
=

−=
N

i
i rqpdqpD

1

0,),(max),((5)

where d is

 ()
22221 ,,,min),(Niiii qpqpqpqpd −−−= K (6)

where N denotes the number of sampling points in the
patterns. r is the radius of an alphabetical key. This means
that we form an invisible “tunnel” of one key width that
contains all letter keys in w . A perfect distance score of
zero is given when the entire gesture input trace u is within
this tunnel of t . Otherwise, the sum of the spatial point-to-
point distances is used. In other words, Equations (3-6) give
special weight to traces that are contained within the tunnel
of radius r whose path is formed by serially connecting all
the individual keys used in a word. This was based on the
observation from actual use that when all letters in a word
is traced (“tunneling”), one would expect the word to be
recognized no matter what the shape of the trace is.

),1(),(Nii ∈α are weights for different point-to-point

distances (1)(
1

=∑
=

N

i
iα). The shape of)(iα can be set in

various ways. For example it could be dynamically trained
through a large amount of data when available. It can also
be prescriptively set. Currently we use a function that gives
the lowest weight to the middle point, and the rest of the
points’ weights increase linearly towards the two ends. This
is because when producing a gesture it is easier for the user

to pay visual attention to the beginning and ending points
than the rest of the locations.

Channel Integration
The shape and location channels output distance scores
between an unknown gesture and templates drawn from the
lexicon. These distances in the two channels are not on a
common scale and cannot be directly compared. The issue
of multiple classifier integration of distances or scores is
not new in pattern classification. Several methods are
proposed using such methods as voting or distance to rank
conversion [6]. Bouchaffra et al. [4] present a method of
deriving probabilities from handwriting recognizer scores
based on training. Lacking training data, we devised our
own method to convert channel distances to a common
integration scale.

As is common in engineering, a reasonable assumption is
that the distance from an input gesture to the template of
the intended word (in either channel) follows a Gaussian
distribution. In other words, if an input gesture has distance
x to a template y , the probability of y being the targeted
word can be calculated using the Gaussian probability
density function:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−=
2

2
1exp

2
1)(

σ
µ

πσ
xxp (7)

where 0=µ and σ can usually be obtained through
training from large amount of data. σ reflects how
sensitive a channel is. For example if σ equals to one key
radius, those templates whose distance to the input gesture
are greater than one key width (σ2) have practically zero
probability of being the intended sokgraph. In our current
system we prescriptively use σ as a parameter to adjust the
weight of the contribution of each channel. The greater σ
is, the more flat the)(xp distribution will be, and hence
the less discriminatory the channel is when it is integrated
with the other channel (hence less weight). As a pruning
measure all candidates (templates) with σ2>x are
discarded without further processing. Among the remaining
candidates Ww ∈ , the marginalized probability of a word
w with distance x being the user intended target word is:

∑
∈

=′

Wi

ip
xpwp

)(
)()((8)

Finally we integrate the probabilities from the two channels
using Bayes’ rule and obtain a confidence score for the
word:

∑

∩∈

′′

′′
=

LS WWi
LS

LS

ipip
wpwp

wc
)()(

)()(
)((9)

47Volume 6, Issue 2

where)(wpS′ and)(wpL′ are the probability scores from the
shape and location channel respectively; SW and LW are the
sets of the remaining candidates that passed the σ2
threshold pruning stage in the shape and location channel
respectively. The result of the integration process is a
ranked list of the templates ordered by confidence.

Dynamic Channel Weighting by Gesturing Speed
The shape and location channels extract different types of
information from the user’s input gesture. As discussed
earlier, the user could base the production of a sokgraph
gesture on either visual guidance from the SK or recall
from memory, depending on the degree of familiarity with
the particular sokgraph. Visual guidance results in greater
location dependency than memory recall. If the user
visually traces a sokgraph letter by letter on the keyboard,
the location channel should yield a high score for the traced
word. On the other hand, if the user produces a gesture
primarily based on fast open-loop memory sokgraph recall,
the location channel is likely to yield a poor score since the
user could only aim approximately at the initial landing
position on the keyboard and the rest of production would
be more focused on the shape with little reference to the
absolute location of each of the letter keys.

This analysis suggests a dynamic weighting scheme of the
two channels; namely, adjusting the relative weight of the
two channels according to the speed of the input gesture
production. In general, open-loop recall movements are
faster than closed-loop feedback-based movements. The
gesture completion time should therefore be informative on
how strongly the location channel should participate in the
final selection of the target word.

However, the time to complete a pen gesture also depends
on the length and complexity of the pen gesture. This issue
can be addressed by understanding human action laws. The
visual feedback based movement (tracing) can be viewed as
a series of either pointing or crossing actions, both can be
modeled using robust quantitative laws [1, 2]. The total
normative writing time for a sokgraph gesture for a word
w in this mode can be modeled using Fitts’ law

 ∑

−

=

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

1

1

1,
2 1log)(

N

k

kk
n W

D
bNawt

(10)

where 1, +kkD is the distance between the k th and 1+k th
letters of word w on the keyboard, W is the key width,
N is the number of letters in the word; a and b are two
constants in Fitts’ law. In the context of SKs, their values
were estimated at 83=a ms, 127=b [29].

Once we have obtained)(wtn for each word and the total
time of the actual sokgraph production, at , we can use
them to modify the probability calculated from the location

channel scores. In equation 7 we can use this
transformation to substitute σ with 1σ as follows:

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

≥

=
otherwise ,

)(
log1

)(if ,

2
1

a

n

na

t
it

wtt

γσ

σ

σ (11)

For example, if at is 50% of)(it n , σ increases with γ100
percent. γ is an empirically adjustable parameter, expected
to be between 1 and 10. In our current system we set

0.2=γ .

Note that this approach is more than simply adjusting the
relative weight between the shape and location channels. It
modifies the location channel probability of each individual
word according to its path on the keyboard.

USING LANGUAGE INFORMATION
We have achieved quite satisfactory performance with the
two core channels of recognition. However there may still
be conflicting words even if both shape and location are
considered, as suggested in Table 1. Most of these can be
resolved by the language context (previous or surrounding
words). It is also possible to give the user greater flexibility
of sokgraph gesturing by taking advantage of language
context. Using language models to improve performance is
common, and in fact a key technology, in both speech and
handwriting recognition.

Language Model and Integration
SHARK2 uses a basic language model by default and can
modify such a model by mining the user’s email or other
documents. We have explored several approaches to utilize
a language model to improve the performance of the
system. We currently use smoothed bigrams as the
language model. A future extension of this model would be
to use the trigram backoff method commonly used in
speech recognition systems [10].

Once we have constructed the language model, we can use
it to re-arrange the N-best list obtained from the classifier.
Recall that the classifier outputs a confidence score)(wc
for a word w in the N-best list. Let pw be the previous
word entered by the user. We compute a language model
score by transforming the bigram probabilities with a
Gaussian function:

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−=

2))|(1(
2
1exp

2
1)(

σ
µ

πσ
pwwP

wl (12)

where)|(pwwP is the probability of w occurring after

pw . σ is a constant weighting the contribution of the
language model. The motivation for using a Gaussian
function is the heavily skewed bigram probability

48

distribution, and the desire to bring classifier confidence
scores and bigram probabilities on an approximate common
scale. By adjusting σ we can also tune the language
context influence to be at the appropriate level.

The integration of the confidence scores and the
transformed bigram probabilities is computed using Bayes’
rule:

∑
∈

=′

Wi

ilic
wlwcwc

)()(
)()()((13)

where W is the set of words contained in the N-best list.

Statistical Text Stream
It is possible to evaluate the probability of the word stream
entered by the user for a sentence segment (i.e. a sequence
of words delimited by punctuation, enter key presses, etc.).
The system may find and give the user the most likely
stream among all possible paths formed by the N-best
outputs for each word from other channels (shape, location,
and bigram modeling). In other words, the system can take
advantage of more global language regularities.

The search for this path can be efficiently performed using
dynamic programming based on the products of the bigram
probabilities. We adapted a version of the well-known
Viterbi algorithm from continuous speech recognition [10]
(pp. 244-251) to achieve this function.

A potential drawback in using global constraints is that the
user may or may not like the fact that words already
committed (displayed) by the system can change as the user
writes new words. This is an effect similar to using T9 in
mobile phones where the current part of a word may change
after each subsequent key press.

Alternatively, we can take a more conservative approach.
Rather than changing the committed stream to the most
likely one, the system can highlight a stream when it
deviates from the most likely path. The user may click on
the highlight and choose other phrases. In other words, this
may serve as a high level “spelling checker”.

FEEDBACK AND OUTPUT INTERFACES
Designing effective feedback and output interfaces is
critical to the overall usability of SHARK2. This section
presents some of the key components of the current
SHARK2 system in this regard.

Managing Visual Attention
Unlike ten finger touch typing on a typewriter keyboard,
SHARK2 (and all pen-based methods) requires visual
attention. Because of this, the user would not be able to
keep his attention on the application the text is written to
and may not notice errors in the text output. It is therefore
important to counter such a limitation.

A simple measure is to pronounce the word output through
a speaker or earphone. We have experimented with such an
option and found it quite effective. The privacy and
disturbance drawbacks of this approach are obvious. The
second option we explored was to overlay the word that
was recognized directly on the SK, at the point of the last
pen up position, i.e. where the user is most likely to be
looking.

The third measure we explored is the use of a “text stream
editor” above the SHARK2 keyboard (see Figure 4). As the
user writes new words, text continuously flows into the
stream editor from the right and out to the left, and also
goes to the application window with focus. Since the text
stream editor is in close vicinity to the keyboard, one does
not have to switch visual attention far away to confirm if
the intended words are written. The user can also use this
text stream editor area to edit text output by various means,
including the “spelling highlight” function mentioned
earlier, and selecting candidate words from an N-best list.

Figure 4. The stream editor showing a fragment of
the sentence “Text editing made easy despite
recognition errors”. Gray words indicate that the
user can press the stylus on them and reveal an
N-best list of other possible candidate words.

Dynamic Visualization of Gesture Recognition
As a general rule of user interface design, a good UI always
projects a clear conceptual model to the user on how the
underlying system works. This is particularly a challenge
for recognition based user interfaces. Users of speech and
handwriting recognition systems are often perplexed by
unexpected results. We made two attempts to expose the
high level logic in sokgraph recognition, particularly as an
option to novice users who are still learning to use the
system.

The first is to communicate which sokgraph was selected
by the system as matching the user’s input gesture. This is
performed in two different ways depending on whether the
shape or location channel contributed the most to the
recognition result. If the location channel had the most
contribution the sokgraph is projected over the
corresponding keys of the word on the keyboard layout,
thereby emphasizing that location was the primary cue to
the input. If the shape channel was the main contributor, the
pattern is projected onto the bounding box of the user’s pen
trace.

49Volume 6, Issue 2

Second, a visualization technique based on animating
patterns or morphing was used to communicate how the
user’s gesture input is different from the ideal gesture. We
observed that merely presenting the ideal sokgraph pattern
does not expose the actual recognition process. Since
SHARK2 matches models (sokgraphs) using spatial
similarity, a natural feedback mechanism is to visualize the
spatial distance between a user’s pen trace and the matched
sokgraph. Using morphing, the system gradually transforms
the user’s gesture to the ideal sokgraph the system
identified by linear interpolation. The segments of a user’s
pen trace that are the most far away from the ideal sokgraph
has the largest and most noticeable motion, hereby
communicating to the user where the major deviations from
the ideal pattern lies (Figure 5). If an unintended word is
recognized, the user can see how it happened. Both the on-
keyboard word and the morphing trace disappear as soon as
the user is no longer interested in the feedback information
and puts down the pen for the next gesture.

Figure 5. Three steps in the morphing feedback
process overlaid on a single bitmap. The outer
trace is the user’s original pen trace. The inner
trace is at the end of the morphing process where
the user’s trace has almost completely morphed
into the ideal sokgraph.

N-best List Output
As shown earlier, there are occasionally words sharing the
same sokgraph (e.g. to and too, refuge and refugee). Most
of these are corrected automatically by the language model,
but one cannot completely exclude ambiguity in a
recognition system. Fortunately, a recognition system
always has multiple candidates for each user input, ranked
by confidence (N-best list). We have designed interfaces in
SHARK2 that give the user access to the next best choices.
The primary interface is a linear menu containing the next
best choices for a particular word. By holding down the
stylus on a particular word, a translucent linear menu pops
up. The user may select another candidate from the list,
finalizing the decision by lifting the stylus. We
implemented a linear menu instead of a pie menu, due to
the fact that the hand tends to obscure half of the pie menu
when the system is used on a touch-sensitive screen. A
second technique is to simply let the user delete the word
by a copy-mark gesture in the stream editor and write a new
sokgraph.

SYSTEM IMPLEMENTATION
We have implemented all parts of the SHARK2 system in

Java (version 1.4.2). Our system has been tested on
Microsoft Windows, including the Tablet PC version, Mac
OS X, and various UNIX flavors running an X server such
as Linux and Solaris. Naturally our system is most useful
on a Tablet PC or in a PDA environment. A subset of the
system (SK and an early version of the sokgraph classifier)
has been ported to the Sharp Zaurus Linux PDA.

SYSTEM EVALUATION
Effective text entry is a non-trivial user interface problem.
The evaluation of novel text entry systems is also complex
due to the many dimensions on which text entry
performance can be measured. These include not only
speed and accuracy, but also the particular user’s learning
experience (see [28] for a review). Comprehensive human
performance and learning evaluations, based on both real
use and laboratory experiments, is beyond the scope of the
current paper which focuses more on technology. Thus, this
section presents only initial indications of SHARK2’s
performance, both as a method and as a system.

In an early experimental study Zhai and Kristensson [27]
demonstrated that users could learn about 15 sokgraphs per
hour of practice, showing that although novel and artificial,
users can learn, remember, recall, and produce sokgraph
gestures. Equally important, users found the system
interesting and fun to use, which is clearly important for a
new writing system to be successful. These conclusions
should still hold with SHARK2.

Text entry speed with a new method is a function of
practice and a matter of skill acquisition. Since the mean
time to move a stylus from one key to another can be
reliably modeled by Fitts’ law, the eventual input speed
with a SK can be confidently predicted based on letter
digraph frequencies and Fitts’ law [29]. Since SHARK2
allows a degree of open-loop performance and uses a more
fluid mode of motor movement, its writing speed can be
potentially faster. Unfortunately there is not a human
movement law that can reliably model sokgraph like
gestures, despite the recent progresses in the study of “laws
of action” as applied to user interfaces [1, 2]. Furthermore,
with SHARK2 the ease of entering text also depends on its
lexicon size. The smaller the lexicon size, the more
flexibility the system offers to the user for writing words
within the lexicon.

Short of a theoretical prediction, we did some informal
trials to estimate how fast a user could eventually write text
with SHARK2 after sufficient amount of practice. One
simple method to simulate the eventual performance is to
let users repeat phrases, so their learning of these specific
words and sentences are saturated. Table 2 shows the
“record” speed of the authors in such a scenario. Note that
these are not typical average speed, but only indications of
what SHARK2 could potentially achieve as limits or
possibilities. The lexicon used in the test, containing 7777
words, was mined from one of the authors’ email, both sent

50

and received over a period of seven years. The numbers
show the potential of the SHARK approach as a speed
writing method, which are much higher than any existing
pen-based method. As a reference, the expert performance
using an optimized stylus keyboard has been theoretically
estimated to about 45 wpm [29].

Testing phrase User A User B

The quick brown fox jumps over the lazy dog 69.0 70.3

Ask not what your country can do for you 51.6 60.0

East west north south 74.4 72.9

Up down left right 74.1 85.6

Table 2. Sample “record” speeds (wpm) with SHARK2

Referring to the system design goals outlined in the
introduction of this paper, the following results were
achieved:

1. SHARK2 can indeed handle all instances of word entry as
sokgraph gestures or traces.

2. If a word is not in SHARK2’s lexicon, one can enter it by
tapping. The system is extensible.

3. The system is real time. Due to the pruning techniques
used, SHARK2 can search 20,000 sokgraphs on an 800MHz
PIII IBM Thinkpad in 20 to 40 ms.

4. The system is designed in accordance with the SHARK2
paradigm, supporting gradual transition from visually
guided tracing to recall driven gesturing. The system shifts
its weight between the shape and location channel
automatically according to the user’s gesturing speed.

5. By incorporating a lexicon and a language model, the
system maximizes input flexibility for the user. The system
also has various feedback and output interfaces to allow the
user to understand its mechanism and correct unintended
text.

DISCUSSIONS AND CONCLUSIONS
We have made substantial progress towards making
SHARK a practical writing approach. Zhai and Kristensson
[27] demonstrated the feasibility of the SHARK approach by
developing and experimenting with a small prototype
system with dual modes of tapping and gesturing. In
SHARK2 we revised the original dual mode paradigm to a
modeless and seamless skill transfer paradigm, in which the
users’ actions gradually shift from visually guided tracing
to recall-based gesturing. We addressed the large
vocabulary gesture recognition challenge by designing and
developing a gesture recognition system that uses multiple
channels of information—particularly shape and location to
classify gesture input. In addition we have shown how to
integrate a language model into the shorthand writing
system to further increase recognition accuracy and relax
the precision requirement.

Although we believe every aspect the SHARK2 system can
be further improved, the current system is the first complete
system that makes writing with the sokgraph approach
practical. Due to the novelty of the paradigm, we have
relied on “prescriptive” algorithms based on use behavior
analysis. In the future when a large user base is formed and
training data become available, “data-driven” approaches
such as neural networks can possibly make the system more
adaptive.

It is interesting to compare SHARK2 with traditional pen-
based stenography with respect to speed and overall ease of
use. SHARK2 creates partially scale and translation invariant
sokgraphs in a large vocabulary, similar to the word level
shorthand symbols common in classic pen-based
stenography for the most common words. However, in
classic stenography a large part of the labor in high speed
text writing is in transcribing the symbols to longhand text.
In SHARK2 transcription is achieved automatically.
Leedham and Downton [12] created a computer system to
automatically recognize and transcribe Pitman shorthand
strokes. They note that one key problem, aside from the
general difficulty in recognizing stenographs, was that the
users may write too fast and too inaccurate to contain
enough information for any recognition system. SHARK2
has a clear definition of a sokgraph shape and a
visualization method to inform the user on just how close or
far away the gesture was from the recognized template, thus
advising users not to push the system too far. In classic
stenography the user has to invest large amount of time in
learning even to begin using it. In SHARK2 all words can be
traced on a SK and the results are immediately displayed on
the screen. A novice user only needs to find the letter keys
on the keyboard in order to begin text writing. In this sense
the SK works as a “training wheel” towards a new form of
shorthand (sokgraph). The keyboard is also a mnemonic
device that helps the user remember the sokgraphs.

From an information theory point of view SHARK2 takes
advantage of the information redundancy in a lexicon and a
language model to relax the requirement of precisely
specifying words verbatim. To write a word the user only
has to make enough an effort to express the intention by the
approximate shape and location of the word’s sokgraph.
The error tolerance in the system is inversely proportional
to the size of the lexicon used. As a reference point, five
consecutive letters have 265 or nearly 12 million
permutations. Even 57,000 words, a large vocabulary size
for any individual, is only a small fraction of all letter
permutations in the usual word length. In practice, a
SHARK2 lexicon only has to contain enough words for an
individual. In some sense, SHARK2 is a step towards an
optimal graphical coding scheme for text writing that
interfaces the user’s intention and the computer.

ACKNOWLEDGMENTS
The authors would like to acknowledge Sreeram Balakrishnan, Alan
Cypher, Ronald Fagin, Maria Holmqvist, Thomas Moran, Wayne Niblack,
John Pitrelli, Barton Smith, Jayashree Subrahmonia and Jingtao Wang for

51Volume 6, Issue 2

their contributions to this work. Per-Ola Kristensson was a graduate intern
at IBM Almaden Research Center (1/2003–9/2003, 6/2004-8/2004).

REFERENCES
1. Accot, J. and Zhai, S., Beyond Fitts' law: models for

trajectory-based HCI tasks. Proc. CHI 1997: ACM
Conference on Human Factors in Computing Systems,
1997, ACM, 295-302.

2. Accot, J. and Zhai, S., More than dotting the i's -
foundations for crossing-based interfaces. Proc. CHI
2002: ACM Conference on Human Factors in
Computing Systems, CHI Letters 4(1), 2002, ACM, 73
- 80.

3. Bellegarda, E.J., Bellegarda, J.R., Nahamoo, D. and
Nathan, K.S. A Fast Statistical Mixture Algorithm for
On-Line Handwriting Recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 16 (2).
1994,1227-1233.

4. Bouchaffra, D., Govindaraju, V. and Srihari, S. A
methodology for mapping scores to probabilities. IEEE
Transactions on Pattern Analysis and Machine
Intellgence, 21 (9). 1999,923-927.

5. Card, S.K., Moran, T.P. and Newell, A. The
Psychology of Human-Computer Interaction.
Lawrence Erlbaum Associates Publishers, Hillsdale,
New Jersey, 1983.

6. Duda, R.O., Hart, P.E. and Stork, D.G. Pattern
Classification. John Wiley & Sons, New York, 2001.

7. Frankish, C., Hull, R. and Morgan, P., Recognition
accuracy and user acceptance of pen interfaces. Proc.
CHI 1995, ACM Conference on Human factors in
Computing systems, 1995, 503-510.

8. Getschow, C.O., Rosen, M.J. and Goodenough-
Trepagnier, C., A systematic approach to design a
minimum distance alphabetical keyboard. Proc.
RESNA (Rehabilitation Engineering Society of North
America) 9th Annual Conference, 1986, 396-398.

9. Goldberg, D. and Richardson, C., Touching-typing with
a stylus. Proc. INTERCHI, ACM Conference on
Human Factors in Computing Systems, 1993, ACM,
80-87.

10. Jurafsky, D. and Martin, J.H. Speech and Language
Processing. Prentice Hall, New Jersey, 2000.

11. Kurtenbach, G., Sellen, A. and Buxton, W. An
empirical evaluation of some articulatory and cognitive
aspects of "marking menus". Human Computer
Interaction, 8 (1). 1993,1-23.

12. Leedham, C.G. and Downton, A.C. Automatic
recognition and transcription of Pitman's handwritten
shorthand: an approach to shortforms. Pattern
Recognition, 20 (3). 1987,341-348.

13. Long, A.C., Landay, J.A. and Rowe, L.A., Implications
for a Gesture Design Tool. Proc. CHI 1999, ACM
Conference on Human factors in Computing systems,
1999, 40-47.

14. MacKenzie, I.S. and Soukoreff, R.W. Text entry for
mobile computing: Models and methods, theory and
practice. Human-Computer Interaction, 17 (1). 2002.

15. MacKenzie, I.S. and Zhang, S.X., The design and
evaluation of a high-performance soft keyboard. Proc.
CHI'99: ACM Conference on Human Factors in
Computing Systems, 1999, 25-31.

16. Mankoff, J. and Abowd, G.D., Cirrin: a word-level
unistroke keyboard for pen input. Proc. ACM
Symposium on User Interface Software and
Technology (UIST), Technical Note, 1998, 213 - 214.

17. Newman, M.W., Jason, J.L., Hong, J.I. and Landay,
J.A. DENIM: An informal web site design tool
inspired by observations of practice. Human-Computer
Interaction, 18 (3). 2003,259-324.

18. Perlin, K., Quikwriting: Continuous Stylus-based Text
Entry. Proc. UIST - ACM Symposium on User
Interface Software and Technology, Technical Note,
1998, 215 - 216.

19. Pitrelli, J.F. and Roy, A. Creating Word-Level
Language Models for Handwriting Recognition.
International Journal on Document Analysis and
Recognition, 5 (2&3). 2003,126-137.

20. Plamondon, R. and Srihari, S.N. On-line and off-line
handwriting recognition: a comprehensive survey.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22 (1). 2000,63-84.

21. Rubine, D., Specifying gestures by example. Proc.
SIGGRAPH 1991: ACM Conference on Computer
Graphics, 1991, 329-337.

22. Schmidt, R.A. Motor control and learning - A
Behavioral Emphasis. Human Kinetics Publishers,
Inc., 1988.

23. Tappert, C.C. Cursive Script Recognition by Elastic
Matching. IBM Journal of Research & Development,
26 (6). 1982,756-771.

24. Tappert, C.C., Suen, C.Y. and Wakahara, T. The State
of the Art in On-Line Handwriting Recognition. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 12 (8). 1990.

25. Wobbrock, J.O., Myers, B.A. and Kembel, J., A High-
Accuracy Stylus Text Entry Method. Proc. UIST -
ACM Symposium on User Interface Software and
Technology, CHI Letters, 2003, 61-70.

26. Zhai, S., Hunter, M. and Smith, B.A. Performance
optimization of virtual keyboards. Human-Computer
Interaction, 17 (2,3). 2002,89-129.

27. Zhai, S. and Kristensson, P.-O., Shorthand Writing on
Stylus Keyboard. Proc. CHI 2003, ACM Conference
on Human Factors in Computing Systems, CHI Letters
5(1), 2003, ACM, 97-104.

28. Zhai, S., Kristensson, P.-O. and Smith, B.A. In Search
of Effective Text Input Interfaces for Off the Desktop
Computing. Interacting with Computers, 16 (3).
2004,to appear.

29. Zhai, S., Sue, A. and Accot, J., Movement model, hits
distribution and learning in virtual Keyboarding. Proc.
CHI 2002: ACM Conference on Human Factors in
Computing Systems, CHI Letters 4(1), 2002, ACM, 17-
24.

52

