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ABSTRACT 
Zhai and Kristensson (2003) presented a method of speed-
writing for pen-based computing which utilizes gesturing 
on a stylus keyboard for familiar words and tapping for 
others. In SHARK2, we eliminated the necessity to alternate 
between the two modes of writing, allowing any word in a 
large vocabulary (e.g. 10,000-20,000 words) to be entered 
as a shorthand gesture. This new paradigm supports a 
gradual and seamless transition from visually guided 
tracing to recall-based gesturing. Based on the use 
characteristics and human performance observations, we 
designed and implemented the architecture, algorithms and 
interfaces of a high-capacity multi-channel pen-gesture 
recognition system. The system’s key components and 
performance are also reported.  

Categories and Subject Descriptors: H.5.2 [User 
Interfaces]: Input Devices and Strategies, Interaction 
Styles; I.5.2 [Design Methodology]: Classifier Design and 
Evaluation, Feature Evaluation and Selection 

Additional Keywords and Phrases: Text input, shorthand, 
stenography, shorthand recognition, gesture recognition  

INTRODUCTION 
Since the advent of pen-based computers, researchers have 
sought intuitive and efficient ways to input text on com-
puters using a digital pen (see [14, 28] for two recent re-
views). Two approaches have gained broad deployment in 
pen-based computing products – handwriting recognition 
systems and the stylus keyboard (SK).  Taking advantage of 
the user’s years of prior experience, handwriting 
recognition systems allow users to enter text either as 
cursive script or as individual letters. Decades of  research  
and development effort have been invested in handwriting 
recognition technology [20, 24], resulting in increasingly 
practical commercial systems such as Graffiti for Palm OS, 

Jot for Pocket PC, and the handwriting recognition built 
into the Microsoft Windows Tablet PCs. However, 
handwriting recognition is limited by the speed of 
“longhand” writing which is about 15 wpm [5] as well as 
problems with recognition accuracy [7]. Gesture based text 
entry methods such as the Unistroke alphabet [9], Graffiti, 
Cirrin [16], Quikwriting [18] and Edgewrite [25] can be 
more efficient or more robust than natural alphabets  but 
still require character level articulation. 

The SK, also known as a graphical, soft, or on-screen 
keyboard, is a “virtual” keyboard drawn on the computer 
screen and tapped serially with a stylus. Much effort has 
been made to increase statistical movement efficiency in 
the SK (e.g. [8]). Two recent efforts in this regard are the 
OPTI [15] and ATOMIK keyboards [26], designed with 
heuristics and computer algorithms respectively. However 
an SK can be tedious to use and requires constant visual 
attention since every key tap must be exactly within the key 
boundaries. 

Combining handwriting with SK, Zhai and Kristensson 
[27] developed a method that allows the user to draw 
patterns as a basic mode of entering common words (see 
Figure 1). Each pattern of a word is formed by the 
trajectory through all of the letters of the word on the SK, 
from the first to the last in order. We call such a pattern a 
sokgraph, since it is essentially a form of shorthand defined 
on a keyboard as a graph. An input system that uses the 
sokgraph approach was dubbed SHARK - SHorthand Aided 
Rapid Keyboarding [27]. The original SHARK system uses 
dual modes of text entry. For an unfamiliar word, the user 
taps it as usual on a SK. For a familiar word, the user writes 
the gesture, and the system uses a matching algorithm to 
find the closest sokgraph.  Due to the use of a lexicon, 
sokgraph recognition incorporates error tolerance afforded 
by the regularities in natural words composition. The 
feasibility of using and recognizing a small set of 
sokgraphs has been shown in [27].  Although artificial, the 
users could learn about 15 sokgraphs per hour of practice.  
(See [27, 28] for the related prior arts to SHARK).  

While promising, substantial challenges have to be 
overcome to make SHARK a practical writing tool. This 
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paper presents our innovations in designing the use 
behavior, architecture, algorithms, user interfaces and key 
implementation components of a complex interaction 
system to make SHARK a practical text writing approach 
for pen-based computing.  We call the new system 
SHARK2, since the capacity of the system in terms of 
recognizable sokgraphs has to rise by a power of two from 
the original prototypical system [27] in order to be 
practical. 

 

Figure 1. A user has written the word “system” 
in SHARK2 on a 57K lexicon. As is evident in the 
figure, the system can handle gestures that are 
far away from the ideal sokgraph (marked in 
bold), both in terms of overall shape and 
location proximity. Shown is the ATOMIK layout. 
Sokgraphs can be defined on any layout, such 
as QWERTY. 

 
CHALLENGES AND BEHAVIORAL DESIGN 
 
The Problem 
One of the design goals of the original SHARK method was 
to use the SK as a bridge for learning which assists the user 
to move from the tedious tapping mode to the more 
efficient gesturing mode. This is similar in spirit to the way 
a self revealing “marking menu” supports novice to expert 
transition for menu selections [11]. However, the distinct 
two modes of input is a significant impediment to a 
seamless migration from tapping to gesturing. Although 
tapping a word and gesturing its sokgraph constitute the 
same movement trajectory pattern, the discrete tapping 
motion and the continuous gesturing movements are 
different in many ways. Visually and cognitively, discrete 
tapping does not explicitly reveal the geometric pattern of 
the corresponding sokgraph to the user. The user’s 
realization and memorization of the sokgraph is hence slow 
and covert.  Kinematically, the actions of tapping 
individual letters of a word are distinctly different from 
producing the total gesture of a sokgraph of the word. The 
two are likely to require different “motor programs” or 
“motor schemas” [22], which also hinders the amount of 
learning and memory transfer from tapping to gesturing.  

New Use Behavioral Paradigm 
What is needed is a mechanism that supports a smooth and 
gradual transition from novice to expert behavior without 
the distinct mode switch. The solution we have designed is 
to use continuous letter tracing, rather than discrete letter 
tapping, as the novice “mode”. Tracing is a visually guided, 
closed-loop action. To trace a word on the SK the user is 

not required to have any prior knowledge of the word’s 
sokgraph. However, the trajectory of the trace, explicitly 
displayed to the user by transient stylus ink, is the same as 
the sokgraph shape. The kinematics of tracing and 
gesturing are also the same.  This means that each trial of 
tracing a word on SK is also a trial of learning its sokgraph. 
Over time, the pattern of the sokgraph builds up in the 
user’s memory so the production of the trace becomes 
partly visually guided and partly memory recall driven.  As 
the contribution of pattern recall, or open-loop action 
increases, the user’s dependence on visual guidance will 
decrease. Eventually a user may completely remember the 
sokgraph and gesture it based primarily on memory recall, 
entering the expert “mode”.  Between visual tracing and 
memory recall the system is in fact modeless. The only 
difference is the degree of visual guidance reliance. A 
user’s behavior is always somewhere between the two 
extremes but gradually shifts from closed-loop to open-
loop performance with practice.  The original tapping to 
gesturing binary switching paradigm now changes to a 
seamless and continuous transition from tracing to 
gesturing.  

System Requirements 
A challenge raised by this revision of the SHARK paradigm, 
however, is the large number of sokgraphs the system has 
to recognize and distinguish. To support such a paradigm 
change, a recognition-based text writing system has to be 
developed with the following necessary or desirable 
properties: 

1. Every instance of word entry, except adding new words 
to the lexicon by tapping, has to be realized by sokgraph 
recognition. To the system there is no distinction between 
visually guided tracing and recall-based gesturing. The 
recognition system has to be able to recognize all words an 
individual user may use in regular writing*. The size of the 
lexicon should be in the order of 10,000 words. 

2. The system has to be extensible to new words a user may 
adopt in writing.  

3. The system has to be “real time”. The recognition 
latency can only be a small fraction of the entire duration of 
writing a word. 

4. The system should be compatible with the SHARK2 
paradigm, supporting gradual transition from visually 
guided tracing to recall driven gesturing. 

5. The system should give the user the maximum amount of 
flexibility and least amount ambiguity.  

                                                           
*Word variations based on the same stem are considered different 
words in this context. For example “work”, “worked”, “working” 
and “works” are four separate words. 
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THE ARCHITECTURE AND ALGORITHMS OF THE 
GESTURE RECOGNITION ENGINE 
 
A Multiple Channel Architecture of Recognition  
Three characteristics set the SHARK2 gesture system apart 
from other gesture recognition systems. First, the number of 
sokgraph gestures each individual user may need is much 
greater than the gesture repertoire of an alphanumeric 
recognizer such as Graffiti or Jot, or a typical command 
gesture recognizer based on a linear machine (e.g. [21]), 
often used in HCI research projects (e.g. [17]). Second, 
unlike natural (longhand) cursive handwriting recognition, 
a fraction of the sokgraph shorthand gestures, particularly 
those for short words, can be identical or similar in shape; 
therefore shape alone may not provide sufficient 
information to recognize the user’s intent.  Third, a set of 
sokgraphs defined on a keyboard layout constitutes a 
symbolic system novel to the user. This is both an 
advantage and a disadvantage. It is an advantage because 
each sokgraph has a unique ideal prototype, in contrast to 
natural hand writing in which even the same letter can be 
written in perfectly legitimate but very different styles. It is 
also a disadvantage because there is not a natural corpus of 
sokgraphs that can be collected, precluding many of the 
standard data-driven machine learning approaches to 
recognition (see [6] for a comprehensive overview). 

 

Figure 2. A multi-channel architecture for sokgraph 
recognition.   

In consideration of these requirements we developed a 
multi-channel recognition system (see Figure 2). Each 
channel does not necessarily have enough discriminative 
power, but the collective information from the multiple 

channels can separate the sokgraphs sufficiently. The two 
core channels are a shape recognizer and a location 
recognizer. The former classifies a pen gesture according to 
the normalized (scale and translation invariant) shape of the 
pen gesture. The latter classifies a pen gesture according to 
the absolute location of the gesture on the keyboard.     

Both the shape channel and the location channel draw their 
recognition templates from a lexicon. The SHARK2 
paradigm requires the lexicon to include all (but just 
enough) words a particular user needs in regular writing.  
This lexicon can be constructed with various methods. It 
can be a preloaded standard dictionary, or a list of words 
extracted from the user’s previously written documents, 
including emails and articles, or words added by the user. 
In practice it is a combination of all. We currently use a 
base lexicon adapted from [19]. 

Template Pruning 
Due to the massive vocabulary required for the SHARK2 
system, an initial pruning component first filters out a large 
number of the sokgraph templates from entering later stage 
recognition channels. An effective filtering mechanism we 
found is based on the start and end positions of the 
sokgraph templates, normalized in scale and translation. 
We compute the start-to-start and end-to-end distances 
between a sokgraph template and the normalized unknown 
input gesture. If either of the two distances is greater than a 
set threshold, the template will be discarded.  This pruning 
process was implemented efficiently by only storing the 
coordinates of the start and end points of a template pattern 
in a linked list. Traversing the list and collecting the 
templates that pass this filter is thus an inexpensive 
operation, even for large datasets. 

Shape Channel Recognition 
The most basic means of sokgraph classification is based 
on the shape information contained in the user’s input 
gesture. There are many approaches to on-line shape 
similarity measurements. Most relevant to the current work 
are those methods used in pen-gesture recognition [13, 17] 
or handwriting recognition [24, 20]. 

Pen-gesture recognition commonly uses trained classifiers 
based on the classic linear machine [6] (pp. 36-39). A 
particular popular variant thereof often cited in the HCI 
literature is the Rubine pen-gesture recognizer [21]. 

Handwriting recognition systems use a multitude of 
techniques and approaches, including neural networks, 
hidden Markov models, and model matching [24, 20].  An 
early model based approach to cursive script recognition 
system by Tappert [23] pioneered the use of so-called 
elastic matching in handwriting recognition. While being 
outperformed in cursive script recognition by statistical 
classifiers nowadays [3], elastic matching retains the 
valuable property of not requiring any training at all. Elastic 
matching in cursive script recognition measures the spatial 
similarity of two patterns by comparing the point-to-point 
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correspondences in sequence, allowing certain elasticity if a 
nearby point has a shorter spatial distance than the 
corresponding point (see Figure 3 left). 

 

Figure 3. Elastic matching of two patterns with a 
look-ahead threshold of 2 points (left).     
Proportional matching of two patterns (right). 
 

We initially experimented with using elastic matching for 
the SHARK2 system, but in early testing we found that 
elasticity in the matcher is an undesirable classification 
property when the template space is crowded with nearby 
competing patterns. We found that we could significantly 
reduce the error rate by introducing a linear matcher, which 
we call (for reasons that will soon become apparent) a 
proportional matcher. 

Proportional Shape Matching   The proportional shape 
matching distance between an unknown pattern u  and a 
template pattern t  is defined as 

 ∑
=

−=
N

i
iis tu

N
x

1
2

1  (1) 

where N  is the total number of sampling points of the 
patterns. It is easy to see that the elastic matching algorithm 
presented by Tappert [23] with zero look-ahead reduces to 
Equation 1. Before applying Equation 1 the patterns are re-
sampled into N  equidistant points and normalized in scale 
and location. 

Normalization is achieved by scaling the largest side of the 
bounding box of a pattern to a pre-determined length L : 

 ),max(/ HWLs =  (2) 

where W  and H  are the original width and height of the 
bounding box.  Finally we translate the pattern’s geometric 
centroid to the origin in the coordinate system. 

The final result of the shape channel is an approximate 
scale and translation invariant distance measure of the 
similarity between the patterns, based on the average sum 
of the equidistant sample points’ spatial distance (see 
Figure 3 right). 

Location Recognition Channel 
The second core channel of sokgraph recognition in our 

current architecture examines the absolute location of the 
user’s gesture trace on the keyboard. The rationale for 
having such a channel is twofold: 1. Location information 
provides an increased recognition resolution of sokgraphs; 
2. Location is part of the user’s memory of a sokgraph and 
therefore will be reproduced during gesture production. 

Shape Confusion and Location Information By sokgraph 
shape alone some words may be near or in complete 
confusion with each other. To gain a quantitative baseline 
understanding of sokgraph confusion, here we present a 
brief analysis of the confusion pairs of sokgraphs in a 20K 
lexicon [19] on an ATOMIK layout.  As shown in Table 1, 
there are a small fraction of words that have identical 
sokgraphs. Considering normalized sokgraph shape only 
(independent of scale and location), there are 1117 pairs of 
words that have identical sokgraphs (confused pairs), for 
example root vs. heel, mend vs. shea, abe vs. ids, can vs. 
cam, and ben vs buy. Many of these conflicts are not 
natural or complete English words. For example, in a 20K 
lexicon, the word at conflict with du; as conflicts with lo, 
oz, by, ny and ft; rjr conflicts with sas (See Figure 1 for the 
ATOMIK layout). 

 QWERTY ATOMIK 

Shape 1461 1117 

Shape & start key 609 519 

Shape & end key 589 522 

Shape & both ends 537 493  
(284 Roman Numerals) 

Table 1. The number of confusion sokgraph pairs in a 
20K lexicon, considering shape only, shape and start 
key position, shape and end key position, and shape 
and both start and end key positions  

If we consider shape plus the starting key position, the 
number of confusion pairs reduces to 519. If we consider 
shape plus ending key position, the number is 522.  If we 
consider shape plus both the start and ending key positions, 
the number of confusion pairs reduces to 493. Examples of 
confusion pairs with identical start and ending positions 
include refuge vs. refugee, webb vs. web, and traveled vs. 
travelled.  284 pairs (58%) of these remaining confusions 
pairs are Roman numerals, such as “lxvi” vs. “lxxxvi”, 
“xci” vs. “xcii”, and “mmxvii” vs “mmxviii”. Table 1 also 
shows the numbers of confusion pairs for the sokgraphs 
defined on QWERTY layout. Note that we have only 
considered identical conflicts, which give us a baseline 
understanding of the percentage and relative contribution 
factor of conflict. In conclusion, location cue helps to 
reduce sokgraph ambiguity.  

Location Memory Since in the SHARK2 paradigm, users 
initially use and learn a sokgraph by tracing the letters, the 
sokgraph location on the SK plays an important role in the 
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memory of the each individual sokgraph. Even for a 
completely memorized sokgraph, the user is likely to 
remember its approximate location on the SK together with 
its shape, particularly the beginning and ending positions.  

Location Channel Algorithms Therefore we use a location 
algorithm that computes the distance of the unknown input 
trace u  to the template (ideal) trace t  of word w on the SK 
(now both u  and t  are absolute). t  is defined by the lines 
connecting the centers of the letters that constitute w . Both 
t  and u  are re-sampled to a fixed number N  of 
equidistant points. The location channel distance is defined 
as: 

 ∑
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N

i
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1
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where N  is the number of points in the patterns. δ  is 
defined as: 
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where ui is the i th point of u.  D is in turn defined as:  
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where d  is 
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where N  denotes the number of sampling points in the 
patterns. r  is the radius of an alphabetical key. This means 
that we form an invisible “tunnel” of one key width that 
contains all letter keys in w . A perfect distance score of 
zero is given when the entire gesture input trace u  is within 
this tunnel of t . Otherwise, the sum of the spatial point-to-
point distances is used. In other words, Equations (3-6) give 
special weight to traces that are contained within the tunnel 
of radius r whose path is formed by serially connecting all 
the individual keys used in a word. This was based on the 
observation from actual use that when all letters in a word 
is traced (“tunneling”), one would expect the word to be 
recognized no matter what the shape of the trace is. 

),1(),( Nii ∈α  are weights for different point-to-point 

distances ( 1)(
1

=∑
=

N

i
iα ). The shape of )(iα can be set in 

various ways. For example it could be dynamically trained 
through a large amount of data when available. It can also 
be prescriptively set. Currently we use a function that gives 
the lowest weight to the middle point, and the rest of the 
points’ weights increase linearly towards the two ends. This 
is because when producing a gesture it is easier for the user 

to pay visual attention to the beginning and ending points 
than the rest of the locations.  

Channel Integration 
The shape and location channels output distance scores 
between an unknown gesture and templates drawn from the 
lexicon. These distances in the two channels are not on a 
common scale and cannot be directly compared. The issue 
of multiple classifier integration of distances or scores is 
not new in pattern classification. Several methods are 
proposed using such methods as voting or distance to rank 
conversion [6]. Bouchaffra et al. [4] present a method of 
deriving probabilities from handwriting recognizer scores 
based on training. Lacking training data, we devised our 
own method to convert channel distances to a common 
integration scale. 

As is common in engineering, a reasonable assumption is 
that the distance from an input gesture to the template of 
the intended word (in either channel) follows a Gaussian 
distribution. In other words, if an input gesture has distance 
x to a template y , the probability of y  being the targeted 
word can be calculated using the Gaussian probability 
density function: 
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where 0=µ  and σ  can usually be obtained through 
training from large amount of data. σ  reflects how 
sensitive a channel is. For example if σ  equals to one key 
radius, those templates whose distance to the input gesture 
are greater than one key width ( σ2 ) have practically zero 
probability of being the intended sokgraph.  In our current 
system we prescriptively use σ  as a parameter to adjust the 
weight of the contribution of each channel. The greater σ  
is, the more flat the )(xp  distribution will be, and hence 
the less discriminatory the channel is when it is integrated 
with the other channel (hence less weight).  As a pruning 
measure all candidates (templates) with σ2>x  are 
discarded without further processing. Among the remaining 
candidates Ww ∈ , the marginalized probability of a word  
w  with distance x  being the user intended target word is:  
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Finally we integrate the probabilities from the two channels 
using Bayes’ rule and obtain a confidence score for the 
word: 
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where )(wpS′ and )(wpL′ are the probability scores from the 
shape and location channel respectively; SW and LW  are the 
sets of the remaining candidates that passed the σ2  
threshold pruning stage in the shape and location channel 
respectively. The result of the integration process is a 
ranked list of the templates ordered by confidence. 

Dynamic Channel Weighting by Gesturing Speed  
The shape and location channels extract different types of 
information from the user’s input gesture. As discussed 
earlier, the user could base the production of a sokgraph 
gesture on either visual guidance from the SK or recall 
from memory, depending on the degree of familiarity with 
the particular sokgraph. Visual guidance results in greater 
location dependency than memory recall. If the user 
visually traces a sokgraph letter by letter on the keyboard, 
the location channel should yield a high score for the traced 
word. On the other hand, if the user produces a gesture 
primarily based on fast open-loop memory sokgraph recall, 
the location channel is likely to yield a poor score since the 
user could only aim approximately at the initial landing 
position on the keyboard and the rest of production would 
be more focused on the shape with little reference to the 
absolute location of each of the letter keys.    

This analysis suggests a dynamic weighting scheme of the 
two channels; namely, adjusting the relative weight of the 
two channels according to the speed of the input gesture 
production. In general, open-loop recall movements are 
faster than closed-loop feedback-based movements.  The 
gesture completion time should therefore be informative on 
how strongly the location channel should participate in the 
final selection of the target word.  

However, the time to complete a pen gesture also depends 
on the length and complexity of the pen gesture. This issue 
can be addressed by understanding human action laws. The 
visual feedback based movement (tracing) can be viewed as 
a series of either pointing or crossing actions, both can be 
modeled using robust quantitative laws [1, 2]. The total 
normative writing time for a sokgraph gesture for a word 
w  in this mode can be modeled using Fitts’ law
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where 1, +kkD  is the distance between the k th and 1+k th 
letters of word w  on the keyboard,  W  is the key width, 
N  is the number of letters in the word; a  and b  are two 
constants in Fitts’ law. In the context of SKs, their values 
were estimated at 83=a  ms, 127=b  [29]. 

Once we have obtained )(wtn  for each word and the total 
time of the actual sokgraph production, at , we can use 
them to modify the probability calculated from the location 

channel scores. In equation 7 we can use this 
transformation to substitute σ  with 1σ  as follows: 

 
⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

≥

=
otherwise ,

)(
log1

)( if ,

2
1

a

n

na

t
it

wtt

γσ

σ

σ  (11) 

For example, if at  is 50% of )(it n , σ  increases with γ100   
percent. γ  is an empirically adjustable parameter, expected 
to be between 1 and 10. In our current system we set 

0.2=γ . 

Note that this approach is more than simply adjusting the 
relative weight between the shape and location channels. It 
modifies the location channel probability of each individual 
word according to its path on the keyboard.  

USING LANGUAGE INFORMATION 
We have achieved quite satisfactory performance with the 
two core channels of recognition. However there may still 
be conflicting words even if both shape and location are 
considered, as suggested in Table 1. Most of these can be 
resolved by the language context (previous or surrounding 
words).  It is also possible to give the user greater flexibility 
of sokgraph gesturing by taking advantage of language 
context. Using language models to improve performance is 
common, and in fact a key technology, in both speech and 
handwriting recognition. 

Language Model and Integration 
SHARK2 uses a basic language model by default and can 
modify such a model by mining the user’s email or other 
documents. We have explored several approaches to utilize 
a language model to improve the performance of the 
system. We currently use smoothed bigrams as the 
language model. A future extension of this model would be 
to use the trigram backoff method commonly used in 
speech recognition systems [10]. 

Once we have constructed the language model, we can use 
it to re-arrange the N-best list obtained from the classifier. 
Recall that the classifier outputs a confidence score )(wc  
for a word w  in the N-best list. Let pw  be the previous 
word entered by the user. We compute a language model 
score by transforming the bigram probabilities with a 
Gaussian function: 
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where )|( pwwP  is the probability of w  occurring after 

pw . σ  is a constant weighting the contribution of the 
language model. The motivation for using a Gaussian 
function is the heavily skewed bigram probability 
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distribution, and the desire to bring classifier confidence 
scores and bigram probabilities on an approximate common 
scale. By adjusting σ  we can also tune the language 
context influence to be at the appropriate level. 

The integration of the confidence scores and the 
transformed bigram probabilities is computed using Bayes’ 
rule: 
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where W  is the set of words contained in the N-best list. 
 

Statistical Text Stream  
It is possible to evaluate the probability of the word stream 
entered by the user for a sentence segment (i.e. a sequence 
of words delimited by punctuation, enter key presses, etc.). 
The system may find and give the user the most likely 
stream among all possible paths formed by the N-best 
outputs for each word from other channels (shape, location, 
and bigram modeling). In other words, the system can take 
advantage of more global language regularities.   

The search for this path can be efficiently performed using 
dynamic programming based on the products of the bigram 
probabilities. We adapted a version of the well-known 
Viterbi algorithm from continuous speech recognition [10] 
(pp. 244-251) to achieve this function. 

A potential drawback in using global constraints is that the 
user may or may not like the fact that words already 
committed (displayed) by the system can change as the user 
writes new words. This is an effect similar to using T9 in 
mobile phones where the current part of a word may change 
after each subsequent key press. 

Alternatively, we can take a more conservative approach. 
Rather than changing the committed stream to the most 
likely one, the system can highlight a stream when it 
deviates from the most likely path. The user may click on 
the highlight and choose other phrases. In other words, this 
may serve as a high level “spelling checker”. 

FEEDBACK AND OUTPUT INTERFACES 
Designing effective feedback and output interfaces is 
critical to the overall usability of SHARK2. This section 
presents some of the key components of the current 
SHARK2 system in this regard. 

Managing Visual Attention 
Unlike ten finger touch typing on a typewriter keyboard, 
SHARK2 (and all pen-based methods) requires visual 
attention.  Because of this, the user would not be able to 
keep his attention on the application the text is written to 
and may not notice errors in the text output.  It is therefore 
important to counter such a limitation. 

A simple measure is to pronounce the word output through 
a speaker or earphone. We have experimented with such an 
option and found it quite effective. The privacy and 
disturbance drawbacks of this approach are obvious.  The 
second option we explored was to overlay the word that 
was recognized directly on the SK, at the point of the last 
pen up position, i.e. where the user is most likely to be 
looking. 

The third measure we explored is the use of a “text stream 
editor” above the SHARK2 keyboard (see Figure 4). As the 
user writes new words, text continuously flows into the 
stream editor from the right and out to the left, and also 
goes to the application window with focus. Since the text 
stream editor is in close vicinity to the keyboard, one does 
not have to switch visual attention far away to confirm if 
the intended words are written. The user can also use this 
text stream editor area to edit text output by various means, 
including the “spelling highlight” function mentioned 
earlier, and selecting candidate words from an N-best list. 

 

Figure 4. The stream editor showing a fragment of 
the sentence “Text editing made easy despite 
recognition errors”. Gray words indicate that the 
user can press the stylus on them and reveal an 
N-best list of other possible candidate words. 
 

Dynamic Visualization of Gesture Recognition    
As a general rule of user interface design, a good UI always 
projects a clear conceptual model to the user on how the 
underlying system works. This is particularly a challenge 
for recognition based user interfaces. Users of speech and 
handwriting recognition systems are often perplexed by 
unexpected results. We made two attempts to expose the 
high level logic in sokgraph recognition, particularly as an 
option to novice users who are still learning to use the 
system. 

The first is to communicate which sokgraph was selected 
by the system as matching the user’s input gesture. This is 
performed in two different ways depending on whether the 
shape or location channel contributed the most to the 
recognition result. If the location channel had the most 
contribution the sokgraph is projected over the 
corresponding keys of the word on the keyboard layout, 
thereby emphasizing that location was the primary cue to 
the input. If the shape channel was the main contributor, the 
pattern is projected onto the bounding box of the user’s pen 
trace. 

49Volume 6, Issue 2



Second, a visualization technique based on animating 
patterns or morphing was used to communicate how the 
user’s gesture input is different from the ideal gesture. We 
observed that merely presenting the ideal sokgraph pattern 
does not expose the actual recognition process. Since 
SHARK2 matches models (sokgraphs) using spatial 
similarity, a natural feedback mechanism is to visualize the 
spatial distance between a user’s pen trace and the matched 
sokgraph. Using morphing, the system gradually transforms 
the user’s gesture to the ideal sokgraph the system 
identified by linear interpolation. The segments of a user’s 
pen trace that are the most far away from the ideal sokgraph 
has the largest and most noticeable motion, hereby 
communicating to the user where the major deviations from 
the ideal pattern lies (Figure 5). If an unintended word is 
recognized, the user can see how it happened. Both the on-
keyboard word and the morphing trace disappear as soon as 
the user is no longer interested in the feedback information 
and puts down the pen for the next gesture. 

 

Figure 5. Three steps in the morphing feedback 
process overlaid on a single bitmap. The outer 
trace is the user’s original pen trace. The inner 
trace is at the end of the morphing process where 
the user’s trace has almost completely morphed 
into the ideal sokgraph. 
 

N-best List Output 
As shown earlier, there are occasionally words sharing the 
same sokgraph (e.g. to and too, refuge and refugee). Most 
of these are corrected automatically by the language model, 
but one cannot completely exclude ambiguity in a 
recognition system. Fortunately, a recognition system 
always has multiple candidates for each user input, ranked 
by confidence (N-best list). We have designed interfaces in 
SHARK2 that give the user access to the next best choices.  
The primary interface is a linear menu containing the next 
best choices for a particular word. By holding down the 
stylus on a particular word, a translucent linear menu pops 
up. The user may select another candidate from the list, 
finalizing the decision by lifting the stylus. We 
implemented a linear menu instead of a pie menu, due to 
the fact that the hand tends to obscure half of the pie menu 
when the system is used on a touch-sensitive screen. A 
second technique is to simply let the user delete the word 
by a copy-mark gesture in the stream editor and write a new 
sokgraph. 

SYSTEM IMPLEMENTATION 
We have implemented all parts of the SHARK2 system in 

Java (version 1.4.2). Our system has been tested on 
Microsoft Windows, including the Tablet PC version, Mac 
OS X, and various UNIX flavors running an X server such 
as Linux and Solaris. Naturally our system is most useful 
on a Tablet PC or in a PDA environment. A subset of the 
system (SK and an early version of the sokgraph classifier) 
has been ported to the Sharp Zaurus Linux PDA. 

SYSTEM EVALUATION 
Effective text entry is a non-trivial user interface problem. 
The evaluation of novel text entry systems is also complex 
due to the many dimensions on which text entry 
performance can be measured. These include not only 
speed and accuracy, but also the particular user’s learning 
experience (see [28] for  a review). Comprehensive human 
performance and learning evaluations, based on both real 
use and laboratory experiments, is beyond the scope of the 
current paper which focuses more on technology. Thus, this 
section presents only initial indications of SHARK2’s 
performance, both as a method and as a system. 

In an early experimental study Zhai and Kristensson [27] 
demonstrated that users could learn about 15 sokgraphs per 
hour of practice, showing that although novel and artificial, 
users can learn, remember, recall, and produce sokgraph 
gestures. Equally important, users found the system 
interesting and fun to use, which is clearly important for a 
new writing system to be successful. These conclusions 
should still hold with SHARK2. 

Text entry speed with a new method is a function of 
practice and a matter of skill acquisition. Since the mean 
time to move a stylus from one key to another can be 
reliably modeled by Fitts’ law, the eventual input speed 
with a SK can be confidently predicted based on letter 
digraph frequencies and Fitts’ law [29]. Since SHARK2 
allows a degree of open-loop performance and uses a more 
fluid mode of motor movement, its writing speed can be 
potentially faster. Unfortunately there is not a human 
movement law that can reliably model sokgraph like 
gestures, despite the recent progresses in the study of “laws 
of action” as applied to user interfaces [1, 2]. Furthermore, 
with SHARK2 the ease of entering text also depends on its 
lexicon size. The smaller the lexicon size, the more 
flexibility the system offers to the user for writing words 
within the lexicon.  

Short of a theoretical prediction, we did some informal 
trials to estimate how fast a user could eventually write text 
with SHARK2 after sufficient amount of practice.  One 
simple method to simulate the eventual performance is to 
let users repeat phrases, so their learning of these specific 
words and sentences are saturated. Table 2 shows the 
“record” speed of the authors in such a scenario. Note that 
these are not typical average speed, but only indications of 
what SHARK2 could potentially achieve as limits or 
possibilities. The lexicon used in the test, containing 7777 
words, was mined from one of the authors’ email, both sent 
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and received over a period of seven years. The numbers 
show the potential of the SHARK approach as a speed 
writing method, which are much higher than any existing 
pen-based method. As a reference, the expert performance 
using an optimized stylus keyboard has been theoretically 
estimated to about 45 wpm [29]. 

Testing phrase User A User B 

The quick brown fox jumps over the lazy dog 69.0 70.3 

Ask not what your country can do for you 51.6 60.0 

East west north south 74.4 72.9 

Up down left right 74.1 85.6 

Table 2. Sample “record” speeds (wpm) with SHARK2 

Referring to the system design goals outlined in the 
introduction of this paper, the following results were 
achieved: 

1. SHARK2 can indeed handle all instances of word entry as 
sokgraph gestures or traces.  

2. If a word is not in SHARK2’s lexicon, one can enter it by 
tapping. The system is extensible. 

3. The system is real time. Due to the pruning techniques 
used, SHARK2 can search 20,000 sokgraphs on an 800MHz 
PIII IBM Thinkpad in 20 to 40 ms. 

4. The system is designed in accordance with the SHARK2 
paradigm, supporting gradual transition from visually 
guided tracing to recall driven gesturing. The system shifts 
its weight between the shape and location channel 
automatically according to the user’s gesturing speed.  

5. By incorporating a lexicon and a language model, the 
system maximizes input flexibility for the user. The system 
also has various feedback and output interfaces to allow the 
user to understand its mechanism and correct unintended 
text. 

DISCUSSIONS AND CONCLUSIONS 
We have made substantial progress towards making 
SHARK a practical writing approach. Zhai and Kristensson  
[27] demonstrated the feasibility of the SHARK approach by 
developing and experimenting with a small prototype 
system with dual modes of tapping and gesturing. In 
SHARK2 we revised the original dual mode paradigm to a 
modeless and seamless skill transfer paradigm, in which the 
users’ actions gradually shift from visually guided tracing 
to recall-based gesturing. We addressed the large 
vocabulary gesture recognition challenge by designing and 
developing a gesture recognition system that uses multiple 
channels of information—particularly shape and location to 
classify gesture input. In addition we have shown how to 
integrate a language model into the shorthand writing 
system to further increase recognition accuracy and relax 
the precision requirement. 

Although we believe every aspect the SHARK2 system can 
be further improved, the current system is the first complete 
system that makes writing with the sokgraph approach 
practical. Due to the novelty of the paradigm, we have 
relied on “prescriptive” algorithms based on use behavior 
analysis. In the future when a large user base is formed and 
training data become available, “data-driven” approaches 
such as neural networks can possibly make the system more 
adaptive. 

It is interesting to compare SHARK2 with traditional pen-
based stenography with respect to speed and overall ease of 
use. SHARK2 creates partially scale and translation invariant 
sokgraphs in a large vocabulary, similar to the word level 
shorthand symbols common in classic pen-based 
stenography for the most common words. However, in 
classic stenography a large part of the labor in high speed 
text writing is in transcribing the symbols to longhand text. 
In SHARK2 transcription is achieved automatically.  
Leedham and Downton [12] created a computer system to 
automatically recognize and transcribe Pitman shorthand 
strokes. They note that one key problem, aside from the 
general difficulty in recognizing stenographs, was that the 
users may write too fast and too inaccurate to contain 
enough information for any recognition system. SHARK2 
has a clear definition of a sokgraph shape and a 
visualization method to inform the user on just how close or 
far away the gesture was from the recognized template, thus 
advising users not to push the system too far. In classic 
stenography the user has to invest large amount of time in 
learning even to begin using it. In SHARK2 all words can be 
traced on a SK and the results are immediately displayed on 
the screen. A novice user only needs to find the letter keys 
on the keyboard in order to begin text writing. In this sense 
the SK works as a “training wheel” towards a new form of 
shorthand (sokgraph). The keyboard is also a mnemonic 
device that helps the user remember the sokgraphs. 

From an information theory point of view SHARK2 takes 
advantage of the information redundancy in a lexicon and a 
language model to relax the requirement of precisely 
specifying words verbatim. To write a word the user only 
has to make enough an effort to express the intention by the 
approximate shape and location of the word’s sokgraph. 
The error tolerance in the system is inversely proportional 
to the size of the lexicon used.  As a reference point, five 
consecutive letters have 265 or nearly 12 million 
permutations. Even 57,000 words, a large vocabulary size 
for any individual, is only a small fraction of all letter 
permutations in the usual word length. In practice, a 
SHARK2 lexicon only has to contain enough words for an 
individual. In some sense, SHARK2 is a step towards an 
optimal graphical coding scheme for text writing that 
interfaces the user’s intention and the computer. 
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