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Fig. 1. We present a system for creating 3D photos from a single mobile phone picture (a). The process involves learning-based algorithms for estimating depth
from the 2D input (b) and texture inpainting (d), as well as conventional algorithms for lifting the geometry to 3D and extending it in parallax regions (c), as
well as generating a final mesh-based representation (e). All steps are optimized to be fast given the limited compute and memory resources available on a

mobile device. The resulting representation (f) can be viewed instantly, generating novel viewpoints at real-time rates.

3D photography is a new medium that allows viewers to more fully experi-
ence a captured moment. In this work, we refer to a 3D photo as one that
displays parallax induced by moving the viewpoint (as opposed to a stereo
pair with a fixed viewpoint). 3D photos are static in time, like traditional
photos, but are displayed with interactive parallax on mobile or desktop
screens, as well as on Virtual Reality devices, where viewing it also includes
stereo. We present an end-to-end system for creating and viewing 3D photos,
and the algorithmic and design choices therein. Our 3D photos are captured
in a single shot and processed directly on a mobile device. The method
starts by estimating depth from the 2D input image using a new monocular
depth estimation network that is optimized for mobile devices. It performs
competitively to the state-of-the-art, but has lower latency and peak mem-
ory consumption and uses an order of magnitude fewer parameters. The
resulting depth is lifted to a layered depth image, and new geometry is
synthesized in parallax regions. We synthesize color texture and structures
in the parallax regions as well, using an inpainting network, also optimized
for mobile devices, on the LDI directly. Finally, we convert the result into a
mesh-based representation that can be efficiently transmitted and rendered
even on low-end devices and over poor network connections. Altogether, the
processing takes just a few seconds on a mobile device, and the result can be
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instantly viewed and shared. We perform extensive quantitative evaluation
to validate our system and compare its new components against the current
state-of-the-art.
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1 INTRODUCTION

Traditional 2D photography lets us capture the world around us,
with a single click, as an instant frozen in time. 3D photography is
a new way to make these captured moments come back alive. We
use the term 3D photo to refer to any representation that can be
displayed with parallax induced by viewpoint motion at viewing
time (as opposed to a stereo pair, where inter-ocular parallax is
baked in at capture time). Although still static in time, 3D photos
can be interactively explored. The ability to change the viewpoint
is compelling on “flat” mobile or desktop screens, and enables truly
life-like experiences in Virtual Reality, by adding stereo viewing to
head-motion induced parallax.

However, creating and displaying 3D photos poses challenges
that are not present in 2D or even stereo photography: dense depth
is required in addition to color, viewpoint changes reveal previously
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occluded parts of the scene that must be filled, and the affordances
for changing the viewpoint must be developed.

Accurately triangulating depth requires capturing at least two
views of the scene; reconstructing occluded content requires even
more captured views [Hedman et al. 2017; Zitnick et al. 2004]. This
goes beyond the effort that most people are willing to spend on a
photograph. While some high-end smartphones are equipped with
multi-lens cameras that can be used to estimate depth from stereo,
they do not help with occluded regions, due to the small baseline of
the lenses. More importantly, there is currently at least an order of
magnitude more phones in use that only have regular single-lens
cameras.

We propose a system that provides a more practical approach to
3D photography. Specifically, we address these design objectives:

Effort: the capture should occur in a single shot and not require any
special hardware.

Accessibility: creation should be accessible on any mobile device,
even devices with regular, single-lens cameras.

Speed: all post-capture processing should at most take a few seconds
(on the mobile device) before the 3D photo can be viewed and
shared.

Compactness: the final representation should be easy to transmit
and display on low-end devices for sharing over the internet.
Quality: rendered novel views should look realistic; in particular,
depth discontinuities and disocclusions should be handled grace-

fully.

Intuitive Interaction: interacting with a 3D photo must be in real-
time, and the navigation affordances intuitive.

Our system relies only on a single image as input, and estimates
the depth of the scene as well as the content of parallax regions
using learning-based methods. It comprises four algorithm stages
(Figure 1b-e), each containing new technical contributions:

Depth Estimation: A dense depth map is estimated from the input
image using a new neural network, constructed with efficient
building blocks and optimized with automatic architecture search
and int8-quantization for fast inference on mobile devices. It per-
forms competitively w.r.t. the state-of-the-art while consuming
considerably fewer resources and having fewer parameters.

Layer Generation: The pixels are lifted onto a layered depth image
(LDI), and we synthesize new geometry in parallax regions using
carefully designed heuristic algorithms.

Color Inpainting: We synthesize colors for the newly synthesized
geometry of the LDI using an inpainting neural network. A novel
set of neural modules enables us to transform this 2D CNN to
one that can be applied to the LDI structure directly.

Meshing: Finally, we create a compact representation that can be
efficiently rendered even on low-end devices and effectively trans-
ferred over poor network connections.

All processing steps are optimized for running fast on a mobile
device with limited available resources. We also discuss affordences
for viewing 3D photos on mobile and fixed flat screens, as well as
using head-mounted displays for virtual reality.

We validate our system through extensive quantitative evalua-
tion of our system’s components, in particular, comparing depth
estimation and inpainting to alternative state-or-the-art algorithms.
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We believe that our proposed system, altogether, largely achieves
the stated objectives and makes 3D photography truly practical and
accessible for everyone.

2 PREVIOUS WORK

Manual annotation: The classic way to create 3D images, pro-
posed in the seminal “tours into the picture” [Horry et al. 1997],
involves carefully annotating the depth of a picture manually. This
can also be done semi-manually with the help of tools [Oh et al.
2001]. While the manual-assisted approach promises the ability
to generate arbitrarily high quality depth maps for downstream
processing, depth annotation is a laborious process and requires a
skilled user.

Single-image depth estimation: Since the seminal paper of Saxena
et al. [2006] there has been considerable progress on estimating
depth from a single image, by leveraging advances in deep learning.
Chen et al. [2016] propose a convolutional neural network (CNN)
architecture and large quantities of training photos with ordinally
labeled point pairs, and provide substantially improved generaliza-
tion capability compared to previous work. Li and Snavely [2018]
provide even denser depth annotation from large-scale photometric
reconstruction. Networks can also be trained with a photometric
loss and stereo supervision [Garg et al. 2016; Godard et al. 2017,
2019; Kuznietsov et al. 2017], which might be easier to obtain than
depth annotation. In addition, synthetic data [Niklaus et al. 2019; Ra-
mamonjisoa and Lepetit 2019] might help with synthesizing sharper
depth discontinuities. Ranftl et al. [2019] show a good improvement
by training from several datasets. While the work mentioned above
achieves commendable results, the proposed network architectures
are too resource intensive in terms of processing, memory consump-
tion and model size for mobile devices (Section 6.4). We propose a
new architecture in this work that performs competitively, but is
considerably faster and smaller.

In terms of accelerating CNNs for monocular depth inference,
Wofk et al. [2019], Poggi et al. [2018], and Peluso et al. [2019] each
proposed a low-latency architecture for real-time processing on
embedded platforms. Lin et al. [2020] explored reducing the mem-
ory footprint of monocular depth estimation networks by super-
resolving predicted depth maps. Finally, Tonioni et al. [2019] pro-
posed an online domain adaptation learning technique suitable for
realtime stereo inference. We compare against some of these meth-
ods in Section 6.4.

Layered Depth Images: Shade et al. [1998] provide a taxonomy
of representations for 3D rendering and our work leverages one
of them for processing. In particular, we leverage Layered Depth
Images (LDI), similar to recent work [Hedman et al. 2017; Hed-
man and Kopf 2018], but with more sophisticated heuristics for
inpainting occlusions, and optimized algorithms to compute the
result within seconds on mobile devices. LDI provide an easy-to-use
representation for background expansion and inpainting, and lend
themselves for conversion into a textured triangle mesh for final
content delivery and rendering.

Multi-plane Images: Stereo Magnification [Zhou et al. 2018] pro-
posed synthesizing a Multi-plane Image (MPI) representation, i.e.,



a stack of fronto-parallel planes with RGBa textures, from a small-
baseline stereo pair. This work is extended to Srinivasan et al. [2019]
to reduce the redundancy in the representation and expand the abil-
ity to change the viewpoint. Flynn et al. [2019] generate high-quality
MPIs from a handful of input views using learned gradient descent,
and Mildenhall et al. [2019] blend a stack of MPIs at runtime. All
MPI generation methods above have in common that they require
two or more views as input, while our proposed method uses only
a single input image.

Other Representations and Neural Rendering: Sitzmann et al. [2019]
encode the view-dependent appearance of a scene in a voxel grid
of features and decode at runtime using a “neural renderer”. Other
methods [Martin-Brualla et al. 2018; Meshry et al. 2019] also leverage
on-the-fly neural rendering to increase the photorealism of their
results. However, these methods do not guarantee that disocclusions
are filled consistently from different viewing angles, and they require
too powerful hardware at runtime to perform in real-time on mobile
devices.

Single-image Novel View Synthesis: Most aforementioned view
synthesis methods require multiple input images, while there are
only a few that can operate with a single input image, like ours.
This is important to mention, because view synthesis from a single
input image is a considerably more difficult and ill-posed problem.
Yet, it is desirable, because requiring a user to capture a single view
is more practical and the method can even be applied retro-actively
to any existing photo, as demonstrated with historical photos in the
accompanying video.

Liu et al. [2018a] predict a set of homography warps, and a se-
lection map to combine the candidate images to a novel view. It
employs complex networks at runtime, leading to slow synthesis.
Srinivasan et al. [2017] predict a 4D light field representation. This
work has only been demonstrated in the context of narrow datasets
(e.g., of plants, toys) and has not been shown to generalize to more
diverse sets.

3 OVERVIEW

3D photography requires a geometric representation of the scene.
There are many popular choices, although some have disadvan-
tages for our application. Light fields capture very realistic scene
appearance, but have excessive storage, memory, and processing
requirements. Meshes and voxels are very general representations,
but are not optimized for being viewed from a particular viewpoint.
Multi-plane images are not storage and memory efficient, and exhibit
artifacts for sloped surfaces at large extrapolations.

In this paper we build on the Layered Depth Image (LDI) represen-
tation [Shade et al. 1998], as in previous work [Hedman et al. 2017;
Hedman and Kopf 2018]. An LDI consists of a regular rectangular
lattice with integer coordinates, just like a normal image; but every
position can hold zero, one, or more pixels. Every LDI-pixel stores a
color and a depth value. Similar to Zitnick et al. [2004], we explicitly
represent the 4-connectivity of pixels between and among layers,
i.e., every pixel can have either zero or exactly one neighbor in each
of the cardinal directions (left, right, up, down).

This representation has significant advantages:
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Sparsity: It only stores features that are present in the scene.

Topology: LDIs are locally like images. Many fast image processing
algorithms translate to LDIs.

Level-of-detail: The regular sampling in image-space provides in-
herent level-of-detail: near geometry is more densely sampled
than far geometry.

Meshing: LDIs can be efficiently converted into textured meshes (Sec-
tions 4.4.1-4.4), which can be efficiently transmitted and ren-
dered.

While LDIs have been used before to represent captured scenes
[Hedman et al. 2017; Hedman and Kopf 2018], our work makes
several important contributions: (1) unlike previous work, our al-
gorithm is not limited to only producing at most two layers at any
point; (2) we better shape the continuation of depth discontinuities
into the disoccluded region using constraints; (3) we propose a new
network for inpainting occluded LDI pixels, as well as a method
to translate existing 2D inpainting networks to operate directly on
LDIs; (4) efficient algorithms for creating texture atlases and simpli-
fied triangle meshes; (5) our complete algorithm is faster and runs
end-to-end in just a few seconds on a mobile device.

In the next section, we describe our algorithm for creating 3D
photos from single color images. Next, we describe in Section 5 how
they are experienced on mobile and fixed flat screens, as well as
using head-mounted displays for virtual reality. Finally, in Section 6
we provide detailed quantitative evaluation of our algorithm com-
ponents as well as comparisons to other state-of-the-art methods.

4 CREATING 3D PHOTOS

The input to our method is a single color image. It is typically
captured with a mobile phone, but any other photo may be used
(e.g., historical pictures).

Our system comprises four stages (Figure 1b—e) and runs end-to-
end on the mobile capture device. We describe depth estimation in
Section 4.1, lifting to an LDI and synthesizing occluded geometry in
Section 4.2, inpainting color on the occluded layers in Section 4.3,
and converting the LDI into the final mesh representation in Sec-
tion 4.4.

4.1 Depth Estimation

The first step in our algorithm is to estimate a dense depth map
from the input image. Monocular depth estimation is a very active
field, and many competitive methods have just appeared in the
months prior to writing [Godard et al. 2019; Niklaus et al. 2019;
Ramamonjisoa and Lepetit 2019; Ranftl et al. 2019]. While these
methods achieve high quality results, they use large models that
consume considerable resources during inference. This makes it
difficult to deploy them in a mobile application. In fact, most of
these methods cannot run even on high-end smart phones due to
the limited memory on these platforms (see Section 6.4).

In this section we propose a new architecture, called Tiefenrausch,
that is optimized to consume considerably fewer resources, as mea-
sured in terms of inference latency, peak memory consumption, and
model size, while still performing competitively to the state-of-the-
art.
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Fig. 2. Depth estimation network schematic. Gray TR blocks are used in
down-/up-sampling passes and blue TR blocks are used to preserve spatial
resolution. TR Blocks are defined in Fig. 3

These improvements were achieved by combining three tech-
niques: (1) building an efficient block structure that is fast on mobile
devices, (2) using a neural architecture search algorithm to find a
network design that achieves a more favorable trade-off between
accuracy, latency, and model size, and, then, (3) using 8-bit quanti-
zation to achieve a further reduction of the model size and latency
while retaining most of the accuracy. Below, we describe these opti-
mizations as well as the training procedure in detail.

Efficient Block Structure. We built an efficient block structure
inspired by previous work [Sandler et al. 2018; Wu et al. 2019] and
is illustrated in Fig. 3. The block contains a sequence of point-wise
(1x1) convolution, KxK depthwise convolution where K is the kernel
size, and another point-wise convolution. Channel expansion, e, is
a multiplicative factor which increases the number of channels
after the initial point-wise convolution. In layers which decrease the
spatial resolution, depthwise convolution with stride, s; > 1, is used.
When increasing the spatial resolution, we use nearest neighbor
interpolation with a scale factor, s;, > 1, after the initial point-wise
convolution. If the output dimensions of the block are the same
as the input dimensions (i.e., s = sy = 1, Cin = Cour), then a
skip connection is added between the input and output with an
additional block in the middle.

We combine these blocks into a U-Net like architecture [Chen
et al. 2016; Li and Snavely 2018; Ronneberger et al. 2015] as shown
in Fig. 2. We fixed the number of downsampling stages to 5 where
each stage has a downsampling factor s; = 2. All stages have 3
blocks per stage and skip connections are placed between stages
with the same spatial resolution.

Neural Architecture Search. We then use the Chameleon methodol-
ogy [Dai et al. 2019] to find an optimal design given an architecture
search space. Briefly, the Chameleon algorithm iteratively samples
points from the search space to train an accuracy predictor. This
accuracy predictor is used to accelerate a genetic search to find a
model that maximizes predicted accuracy while satisfying specified
resource constraints. In this setting, we used a search space which
varies the channel expansion factor and number of output channels
per block resulting in 3.4 X 10?2 possible architectures. We set a
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Fig. 3. Block structure used to create the depth estimation architecture. s,
and sg refer to the up and down sampling scale factors, respectively, and e
is the channel expansion factor. Refer to the text for details.

FLOP constraint on the model architecture and can vary this con-
straint in order to achieve different operating points. The total time
to search was approximately three days using 800 Tesla V100 GPUs.

Quantization. The result of the architecture search is an opti-
mized model with a reduced FLOP count and a lower number of
parameters. As our model is friendly for low-bit precision computa-
tion, we further improve the model by quantizing the 32-bit floating
point parameters and activations [Choi et al. 2018] to 8-bit integers.
This achieves a 4X model size reduction as well as a reduction in
inference latency and has been shown to result in only a small ac-
curacy loss in other tasks [Dai et al. 2019]. We use a standard linear
quantizer on both the model parameters and the activations. Fur-
thermore, we utilize Quantization-Aware Training (QAT) in order
to determine the quantization parameters [Jacob et al. 2018] so that
performance translates between training and inference. Our archi-
tecture is particularly amenable to quantization and QAT, because
it only contains standard 1x1 convolution, depth-wise convolution,
BatchNorm, ReLU and resize operations and both convolutions are
memory-bounded. The model can be further simplified by fusing
BatchNorm operations with convolutions and ReLU can be handled
by fixing the lower bound of the quantization parameters to zero.
The convolution and resize operators are the only operators retained
in the final model.

Training Details. We train the network with the MegaDepth
dataset, and the scale-invariant data loss and the multi-scale scale-
invariant gradient loss proposed by Li and Snavely [2018], but ex-
clude the ordinal loss term. The training runs for 100 epochs using
minibatches of size 32 and the Adam optimizer with $; = 0.5 and
P2 = 0.999. The ground truth depth maps in the MegaDepth dataset
do not include depth measurements for the sky region. We found
that using this data as-is led to a network that would not reliably
place the sky in the background. To overcome this limitation we
leverage PSPNet [Zhao et al. 2017] to identify the sky region in the
images. We then replace any missing depth information in the sky



(c) Filtered

(d) Cleaned

Fig. 4. Depth image before and after cleaning (a). Discontinuities are initially
smoothed out over multiple pixels. Weighted median filter sharpens them
successfully in most places (c). We fix remaining isolated features at middle-
values using connected component analysis (d).

(a) Raw / cleaned depth image

region with twice the maximal depth observed in the depth map.
Intuitively, this forces the sky to have the largest depth in the scene
for all MegaDepth images.

To prevent overfitting to specific camera characteristics in our
data we perform data augmentation by varying color saturation,
contrast, image brightness, hue, image area, field of view, and left-
right flipping. Specifically, all images have an aspect ratio of 4:3
(or its inverse) and are first uniformly resized so the short side is
288a pixels long. a is a uniform random sample in [1, 1.5] to avoid
overfitting to the field of view of the training data. The resize oper-
ation uses nearest neighbor point sampling for both the depth map
and the image (it, interestingly, performed better than proper anti-
aliased sampling). Next, we select a random crop of size (288, 288)
from the resized image and depth map. Finally, we apply random
horizontal flipping to the (288, 288) image and depth map crops.

Another deficiency we found with early networks was that they
failed to generalize to images from lower quality cameras. The
images in the MegaDepth dataset are well-exposed, but we often
found that other cameras fail to provide such good exposure. To
enable robustness to image color variations, we combine the above
data augmentation with the following color data augmentation.
We vary the brightness of the image by a gamma adjustment with
a uniformly distributed factor in [0.6, 1.4]. Similarly, we vary the
contrast uniformly between 60% and 100% (i.e., blending with a
middle-gray image) as well as the color saturation of the image.
Finally, images are converted to the HSV colorspace and the hue is
rotated by a uniformly distributed value in [-25°, 25°] before being
converted back to RGB.

4.2  Lifting to Layered Depth Image

Now that we have obtained a dense depth map, we are ready to lift
the image to the LDI representation. This will allow us to express
multiple layers, so we can show detail in parallax regions. These
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are details that have not been observed in the input view, they have
to be synthesized.

After discussing depth pre-processing in Section 4.2.1, we will dis-
cuss hallucinating new geometry in parallax regions in Section 4.2.2,
and finally inpainting of color on the new geometry in Section 4.3.

4.2.1 Depth Pre-processing. The most salient geometric feature in
3D photos are depth discontinuities. At those locations we need
to extend and hallucinate new geometry behind the first visible
surface (as will be explained in the next section). The depth images
obtained in the previous section are typically over-smoothed due to
the regularization inherent to the machine learning algorithms that
produced them. This smoothing “washes out” depth discontinuities
over multiple pixels and often exhibit spurious features that would
be difficult to represent (Figure 4b). The goal of the first algorithm
stage is to de-clutter depth discontinuities and sharpen them into
precise step edges.

We first apply a weighted median filter! with a 5 X 5 kernel size.
Depth values within the kernel are Gaussian-weighted by their
disparity difference to the center pixel (using ogispariry = 0.2). The
weighting of the filter is important to preserve the localization of
discontinuities, and, for example, avoid rounding off corners. Since
we are interested in forcing a decision between foreground and
background, we disable the weights of pixels near the edge (ie.,
pixels that have a neighbor with more than 7, = 0.05 disparity
difference.)

This algorithm succeeds in sharpening the discontinuities. How-
ever, it occasionally produces isolated features at middle-depth val-
ues (Figure 4c). We perform a connected component analysis (with
threshold 7,;5) and merge small components with fewer than 20
pixels into either foreground or background, whichever has a larger
contact surface (Figures 4d).

4.2.2  Occluded Surface Hallucination. The goal of this stage is to
“hallucinate” new geometry in occluded parts of the scene. We start
by lifting the depth image onto an LDI to represent multiple lay-
ers of the scene. Initially, the LDI has a single layer everywhere
and all pixels are fully connected to their neighbors, except across
discontinuities with a disparity difference of more than 7.

To create geometry representing occluded surfaces, we next ex-
tend the geometry on the backside of discontinuities iteratively
behind the front-side by creating new LDI pixels. A similar algo-
rithm has been employed by Hedman and Kopf [2018]. However,
their algorithm has an important limitation: pixels are allowed to ex-
tend in all directions (as long as they remain hidden behind the front
layer). This causes frequent artifacts at T-junctions, i.e., where back-
ground, midground, and foreground meet: the midground grows
unrestrained, expanding the foreground discontinuity and creating
a cluttered result (Figure 5b). The authors reduce the undesired
excess geometry by removing all but the nearest and farthest layers
anywhere in the LDI. However, this creates disconnected surfaces
(Figure 5c). We resolve these problems by grouping discontinuities
into curve-like features and inferring spatial constraints to better
shape their growth (Figure 5d). We group neighboring discontinuity

li.e, sort the samples by value and find the one whose sums of preceding weights and

following weights are closest to being equal.
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(b) Instant3D N-layer

(c) Instant3D 2-layer

(;1) Expansion constraints » (d) Our method

Fig. 5. Expanding geometry on the back-side of discontinuities into oc-
cluded parts of the scene. Previous work [Hedman and Kopf 2018] produces
artifacts at T-junctions: either extraneous geometry if left unconstrained (b)
or cracked surfaces when using their suggested fix (c). We improve this by
grouping discontinuities into curve-like features (color-coded), and inferring
spatial constraints to better shape their growth (dashed lines).

pixels together, but not across junctions (see color coding in Fig-
ure 5a). At this point, we remove spurious (shorter than 20 pixels)
groups from consideration.

In one extension iteration, each group grows together as one
unit, creating a one pixel wide “wave front” of new LDI pixels. To
avoid the previously mentioned cluttering problem, we restrain
curves from growing beyond the perpendicular straight line at their
end points (dotted lines in Figure 5a). 3-way intersections deserve
special consideration: at these points there are 3 different depths
coming together, but we are only interested in constraining the
midground, while the background should be allowed to freely grow
under both of the other layers. Therefore, we only keep the one of
the three constraints at 3-way intersections that is associated with
the mid-/foreground discontinuity (Figure 5a).

The depth of newly formed pixels is assigned an average of their
neighbors, and the color is left undefined for now (to be inpainted in
the next section). Intersecting groups are merged if their disparity
difference is below 745, We run this expansion algorithm for 50
iterations to obtain a multi-layered LDI with sufficient overlap for
displaying it with parallax.

4.3 LDl Inpainting

At this point we have an LDI with multiple layers around depth
discontinuities, but it is still missing color values in the parallax
regions (i.e., the red pixel in Figure 1c). In this section, we discuss the
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inpainting of plausible colors, so that disocclusions when viewing
the 3D photo appear seamless and realistic.

A naive approach to filling missing regions in disocclusions would
be to inpaint them in screen space, for example using a state-of-the-
art network, such as Partial Conv [Liu et al. 2018b]. However, this
would not lead to desirable results, because (1) filling each view
at runtime would be slow, (2) the independent synthesis would
result in inconsistent views, and, finally, (3) the result would be
continuous on both foreground and background sides of the missing
region (while it should only be continuous on the background side),
thus leading to strong blur artifacts along the edges.

A better approach would be to inpaint on the LDI structure. Then,
the inpainting could be performed once, each view would be con-
sistent by design, and, since the LDI is explicitly aware of the con-
nectivity of each pixel, the synthesis would be only continuous
across truly connected features. However, one complication is that a
LDI does not lend itself easily to processing with a neural network,
due to the irregular connectivity structure. One approach would
be, again, to turn to filling projected views and warp the result
back onto the LDI. But this might require multiple iterations from
different angles until all missing pixels are covered.

Our solution to this problem uses the insight that the LDI is locally
structured like a regular image, i.e., LDI pixels are 4-connected in
cardinal directions. By traversing these connections we can aggre-
gate a local neighborhood around a pixel (described below), which
allows us to map network operators, such as convolutions, to the
LDI This mapping, in turn, allows us to train a network entirely in
2D and then use the pretrained weights for LDI inpainting, without
having done any training with LDIs.

4.3.1 Mapping the PConv Network to LDI. We represent the LDI in
tensor form as a tuple of a CxK float32 “value” tensor  and a 6xK
int32 “index” tensor 7, where C is the number of channels, and K
the number of LDI pixels. The value tensor P stores the colors or
activation maps, and the index tensor stores the pixel position (x, y)
position and (left, right, top, bottom) neighbor indices for each LDI
pixel. We also store a 1 X K binary “mask” tensor M which indicates
which pixels are known and which pixels must be inpainted.

The PartialConv [Liu et al. 2018b] network uses a U-Net like
architecture [Ronneberger et al. 2015]. We map this architecture to
LDI by replacing every PConv layer with LDIPConv layer which
accepts an LDI (P, 7') and mask M instead of a C X H X W color
and 1 X H X W mask image tensor. All value tensors at a level
(i.e. scale 1/s) of the U-Net share the same index tensor Jg. Most
operations in the network are point-wise, i.e., the input/output is a
single pixel, for example ReLU or BatchNorm; these map trivially to
the LDI. The only non-trivial operations, which aggregate kernels,
are 2D convolution (the network uses 3 X 3, 5 X 5, 7 X 7 kernel sizes),
down-scaling (convolutions with stride = 2), and up-scaling.

Convolution: We aggregate the 2D convolution kernels by explor-
ing the LDI graph in breadth-first manner: starting at the center
pixel we traverse LDI pixels in up / down / left / right order to
greedily fill the kernel elements. Once a kernel element has been
visited we do not traverse to this position again. If an LDI pixel
is unconnected in a direction (e.g., at a silhouette) we treat it as
if the pixel was on an image edge i.e. zero-padding. Since we are



(a) Pixel labels

(b) Inpainted and padded
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(c) Packed texture atlas

Fig. 6. Partitioning the layered depth image into charts for texturing. (a) Pseudo-coloring different kinds of pixels that require inpainting, on two example
charts. Dark blue pixels are occluded, and light blue pixels are on the foreground but close to a discontinuity, and, therefore, contain possibly mixed colors.
Red pixels add padding for texture filtering: dark red pixels (at silhouettes) are inpainted and light red pixels (elsewhere) are copied from adjacent charts.
Green pixels add padding for JPEG macroblocks (see text). (b) Final inpainted charts. (c) Packed atlas.
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(a) 3x3 kernel
(fully connected)

(b) 5x5 kernel
(with silhouette pixels)
Fig. 7. Aggregating convolution kernels on a LDI with breadth-first explo-
ration. The numbers indicate the traversal order. Gray elements cannot be
filled and are zero-padded.
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Fig. 8. Coarsening scheme for the up-/downscale operators.

using partial convolutions and the mask is also zero-padded, this
results in partial convolution based padding [Liu et al. 2018c]. For a
3 X 3 kernel where all LDI pixels are fully connected, the pattern in
Figure 7a emerges. Figure 7b shows an example of a 5 X 5 kernel,
where some silhouette pixels have no neighbors in certain direc-
tions. In this case, the breadth-first aggregation explores around
these “barriers”, except for the two pixels in the top-right right that
cannot be reached in any way and are partial-padded [Liu et al.
2018¢].

Downscaling or Strided Convolutions: In the image-version of the
network, downscaling is done by setting a stride of 2 on convolution
operations, i.e., for every 2 X 2 block of pixels at the fine scale, only
the top-left pixel is retained at the coarser scale. We implement

down-scaling for the LDI in a similar way: every LDI pixel with
mod(x, 2) = mod(y, 2) = 0 is retained. If multiple LDI pixels occupy
a (x, y) position, they will all be retained. If for two retained pixels
there was a length-2 connecting path at the fine scale, they will also
be connected a the coarse scale. Figure 8 illustrates this coarsening
scheme.

Upscaling: In the image-version of the network, upscaling is done
with nearest interpolation, i.e., a 2 X 2 block of pixels at the fine scale
all take the value of the corresponding 1 pixel at the coarser scale.
We again, emulate this for the LDI: the whole group of LDI pixels
that collapsed into a coarse pixel all take its value. We implemented
the original PConv network in Caffe2 with the custom convolution
and scaling operators.

4.3.2  Mobile Optimized Inpainting Network. This network enables
high-quality inpainting of parallax regions on LDIs. However, simi-
lar to prior work in depth estimation, it is too large and resource
intensive for mobile applications.

In the following, we propose a new architecture, called Farbrausch
that is optimized in this regard. We begin with a traditional screen-
space (2D) PartialConv network with 5 stages of downsampling.
This network is converted to our LDI representation with our cus-
tom operators. Chameleon Search is used to identify the best set of
hyperparameters encoding the number of output channels for each
stage of the encoder (and similarly the paired decoder stage). In par-
ticular, FLOP count is traded off against the PartialConv inpainting
loss on its validation set [Liu et al. 2018b]. This hyperparameter
search took 3 days on 400 V100 GPUs. In this time, 150 networks
were trained to build the accuracy predictor used in the genetic
search.

4.4 Conversion to Final Representation

Now that we have a fully inpainted multi-layer LDI, we are ready
to convert it into a textured mesh, which is our final representation.
This is done in two parts: creating the texture (Section 4.4.1), and
the mesh generation (Section 4.4.2).

4.4.1 Texture Atlas Generation. The LDI contains many self-over-
lapping parts and has a complex topology. Hence, it cannot be
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Fig. 9. Farbrausch Network

mapped to a single contiguous texture image. We thus partition it
into flat charts that can be packed into an atlas image for texturing.

Chart generation: We use a simple seed-and-grow algorithm to
create charts: the LDI is traversed in scanline order, and whenever
a pixel is encountered that is not part of any chart, a new chart
is seeded. We then grow the chart using a breadth-first flood fill
algorithm that follows the pixel connections in the LDI, but respects
several constraints:

(1) charts cannot fold over in depth, since that would not be
representable;

(2) we cap the maximum chart size to improve packing efficiency
(avoids large non-convex shapes);

(3) when encountering pixels at the front side of depth edges
(without neighbors in some direction), we mark a range of
adjacent pixels across the edge unusable to avoid filtering op-
erations from including pixels from different surfaces. These
marked pixels will eventually land in a separate chart.

This algorithm is fast and produces charts that are reasonably
efficient for packing (low count, non-complex boundaries). Figure 6
shows a few typical examples.

Texture filter padding: When using mipmapping, filtering kernels
span multiple consecutive pixels in a texture. We therefore add a
few pixel thick pad around each chart. We either copy redundant
pixels from neighboring charts, or use isotropic diffusion at step-
edges where pixels do not have neighbors across the chart boundary
(dark/light red in Figure 6, respectively).

Macroblock padding: Another possible source of color bleeding
is lossy image compression. We encode textures with JPEG for
transmission, which operates on non-overlapping 16 X 16 pixel
macroblocks. To avoid bleeding we smoothly inpaint any block
that is overlapped by the chart with yet another round of isotropic
diffusion (green pixels in Figure 6a). Interestingly, this also reduces
the encoded texture size by almost 40% compared to solid color fill,
because the step edges are pushed from the chart boundaries to
macroblock boundaries where they become “invisible” for the JPEG
encoder.
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Packing: Finally, we pack the padded charts into a single atlas
image, so the whole mesh can be rendered as a single unit. We use
a simple tree-based bin packing algorithm?. Figure 6c shows the
complete atlas for the 3D photo in Figure 1.

4.4.2 Meshing. In the final stage of our algorithm, we create a tri-
angle mesh that is textured using the atlas from the previous section.
A dense mesh with micro-triangles can be trivially constructed from
the LDI by replacing pixels with vertices and connections with tri-
angles. However, this would be prohibitively large to render, store,
and transmit over a network.

Simplification algorithms for converting detailed meshes into
similar versions with fewer triangles are a long-studied area of com-
puter graphics. However, even advanced algorithms are relatively
slow when applied to such large meshes.

Therefore, we designed a custom algorithm that constructs a
simplified mesh directly. It exploits the 2.5D structure of our repre-
sentation, by operating in the 2D texture atlas domain: simplifying
and triangulating the chart polygons first in 2D, and then lifting
them to 3D later.

We start by converting the outline of each chart into a detailed 2D
polygon, placing vertices at the corners between pixels (Figure 10a).
Next, we simplify the polygon using the Douglas-Peucker algorithm
[1973] (Figure 10b). Most charts share some parts of their boundary
with other charts that are placed elsewhere in the atlas (e.g., light
red padding pixels in Figure 6a). We are careful to simplify these
shared boundaries in the exact same way, so they are guaranteed to
fit together when re-assembling the charts.

Now we are ready to triangulate the chart interiors. It is useful
to distribute internal vertices to be able to reproduce depth varia-
tions and achieve more regular triangle shapes. We considered using
adaptive sampling algorithms but found their degree of sophistica-
tion unnecessary, since all major depth discontinuities are already
captured at chart boundaries, and the remaining parts are relatively
smooth in depth. We therefore simply generate strips of vertical
“stud” polylines with evenly spaced interior vertices (Figure 10c).
The studs are placed as evenly as possible, given the constraint that
they have to start and end on chart boundary vertices. We trian-
gulate the composite polygon using a fast plane-sweep algorithm
[de Berg et al. 2008] (Figure 10d).

Having obtained a 2D triangulation, we now simply lift it to 3D
by projecting every vertex along its corresponding ray according
to its depth (Figure 10e). This 3D triangle mesh, together with the
atlas from the previous section, is our final representation.

5 VIEWING 3D PHOTOS

Without motion, a 3D photo is just a 2D photo. Fully experiencing
the 3D format requires moving the virtual viewpoint to recreate
the parallax one would see in the real world. We have designed
interfaces for both mobile devices and desktop browsers, as well
as for head-mounted VR displays, where we also leverage stereo
viewing.

Zhttp://blackpawn.com/texts/lightmaps/
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(d) 2D triangulation

(d) Lifted to 3D

Fig. 10. Directly constructing a simplified triangle mesh in the 2D atlas domain.(a) Detailed polygon from the outline of a single chart. (b) Simplified chart
polygon. Adjacent charts are simplified identically to guarantee a tight fit. (c) Added interior vertices to represent depth variation and achieve more regular
triangle shapes. (d) 2D triangulation. () Lifting the mesh to 3D by projecting vertices along their corresponding rays according to their depth.

Fig. 11. Rotating phone induces parallax through sensing from the gyro.

5.1 Mobile and Browser

On mobile devices, there are a number of possible affordances that
can be mapped to virtual camera motion. These include scrolling in
the application interface, using the device’s IMUs such as the gyros
to detect rotation, and using touch to manually rotate the view.

After considerable user testing, mapping scrolling behavior to
both vertical rotation (about the horizontal axis) as well as dollying
in and out (translation along the “z” axis) emerged as the best set of
control interactions. This gives the illusion while scrolling through
a vertical feed that the viewing point moves up and into the scene.
We also added a small bit of horizontal rotation (about the vertical
axis) mapped to scrolling. Furthermore, we add additional rotation
to the virtual camera based on rotation of the device detected by
gyros (see Figure 11). In a web browser, we substitute mouse motion
for gyro rotation.

5.2 In Virtual Reality

In VR, we have the advantage of being able to produce two offset
images, one for each eye, to enable binocular stereo. This creates
a stronger feeling of immersion. 3D photos are currently the only
photographic user-generated content in VR that makes use of all
degrees of freedom in this medium.

We use three]S (a Javascript 3D library) to render the scene to a
WebGL context, and we use WebVR to render this context to a VR
Device. The renderer queries the device parameters (eye buffer size

and transforms), applying the information separately for the left
and right eye views to produce a stereo image.

In addition to stereo, we map head motion directly to virtual
camera motion. In 6-DOF headsets, this is a one-to-one mapping.
In 3-DOF (rotation only), we mimic head translation from rotation
around the neck since rotating the head to the left, for example, also
translates the eyes leftward.

We create a frame around the model to hide the outer boundary
of the photo. The result appears like a 3D model viewed through a
2D frame. Since the quality of the 3D photo display degrades when
moving too far away from the original viewpoint, we constrain the
viewing angles and fade the model out if there is too much head
motion.

6 RESULTS AND EVALUATION
6.1 Results

We have extensively tested the robustness of our system. Early
versions of the system have been deployed in a social media app,
where they have been used over 100 million times, attesting to the
quality and robustness of the algorithms.

Unlike most other view synthesis methods our systems takes
only a single color image as input. We can therefore apply it to any
pre-existing image. In the supplementary video we show results on
a wide range of historically significant photographs. We also show
a large variety of results on snapshots.

6.2 Code

Pretrained models of our depth estimation network and inpainting
networks are publicly available at the project page.

6.3 Performance

The table below breaks out the runtime of our algorithm stages on
a typical image. We measured these numbers on an iPhone 11 Pro
on six randomly selected 1152 X 1536 images. Depth is estimated at
288 x 384 resolution in 230ms. We report the median time for each
stage.
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Algorithm stage Mean Runtime

Depth estimation 230ms
Depth filter 51ms
Connecting components 12ms
Occluded geometry 31ms
Color inpainting 540ms
Texture chart generation 72ms
Texture chart padding 151ms
Meshing 11ms
Total 1098ms

We store the final textured mesh in a GL Transmission Format
(gITF) container for transmission. This representation can be ren-
dered practically on device using standard graphics engines as dis-
cussed in Section 5. The final size of the textured mesh represen-
tation is typically around 300-500kb for an input image of size
1152 X 1536.

An important advantage of our representation is that it is uses
GPU memory efficiently. While an MPI stores a stack of full-sized
images, the texture atlas only represents surfaces that are actually
used.

6.4 Depth Estimation

We quantitatively compare our optimized depth estimation net-
work against several state-of-the-baselines methods in Table 1. For
most methods the authors only provided fine-tuned models and no
training code. We list for each method the datasets it was trained
with. In the training data column RW refers to ReDWeb [Xian
et al. 2018], MD to MegaDepth [Li and Snavely 2018], MV to Stereo
Movies [Ranftl et al. 2019], DL to DIML Indoor [Kim et al. 2018], K
to KITTI [Menze and Geiger 2015], KB to Ken Burns [Niklaus et al.
2019], CS to Cityscapes [Cordts et al. 2016], WSVD [Wang et al.
2019], PBRS [Zhang et al. 2017], and NYUv2 [Silberman et al. 2012].
3DP refers to a proprietary dataset of 2.0M iPhone dual-camera
images of a wide variety of scenes. A — B indicates that a model
was pretrained on A and fine-tuned on B.

We compare against Midas [Ranftl et al. 2019] (versions 1 and
2 released in June 2019 and December 2019, respectively), Mon-
odepth2 [Godard et al. 2019], SharpNet [Ramamonjisoa and Lepetit
2019], MegaDepth [Li and Snavely 2018], Ken Burns [Niklaus et al.
2019], and PyD-Net [Poggi et al. 2018].

Each method has a preferred resolution at which it performs best.
These numbers are either explicitly listed in the respective papers
or the author-provided code resizes inputs to the specific resolu-
tion. Also, different methods have different alignment requirements
(e.g., width/height must be a multiple of 16). We list these details
in the supplementary document, but briefly: all methods, except
Monodepth2, Ken Burns, and PyD-Net resize the input image so
the long dimension is 384 and the other dimension is resized to
preserve the aspect ratio. Ken Burns and PyD-Net resize the long
dimension to 1024 and 512, respectively, and Monodepth2 uses a
fixed 1024 X 320 aspect ratio. For this evaluation we resize the input
image to each algorithm’s preferred resolution, and then resize the
result to 384 pixels at which we compare against GT. We evaluate
models on the MegaDepth test split [Li and Snavely 2018] as well as
the entire ReDWeb dataset [Wang et al. 2019], and report standard
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metrics. In the supplementary document we provide a larger number
of standard metrics. For the Midas networks we omit the ReDWeb
numbers because it was trained on this dataset, and ReDWeb does
not provide a test split.

We evaluate four versions of our depth network:

Baseline: refers to a manually crafted architecture, as described in
Section 4.1.

AS + no-quant: refers to an optimized architecture with float32
operators (i.e., no quantization).

AS + quant: refers to the optimized architecture with quantization.
This is our full model.

AS + quant, MD + 3DP: for completeness we list another snap-
shot that was trained with a proprietary dataset of 2.0M dual-
camera images.

We evaluate the performance on an example image of dimensions
384%288. We first report the FLOP count of the model, computed
analytically from the network schematics. Because FLOP counts
do not always accurately reflect latency, we make runtime mea-
surements on a mobile device. At the same time, we measure peak
memory consumption during the inference. All models were run on
an iPhone 11 Pro. We ran the models on the device as follows. All
models came in PyTorch? format (except PyD-Net). We converted
them to Caffe2? using ONNX°, because of Caffe2’s mobile capabil-
ities (Caffe2go). We optimized the memory usage with the Caffe2
Memonger module. Because our scripts did not work on the PyD-
Net tensorflow model we omit it from the performance evaluation.
Then we measured the peak memory consumption by hooking the
Caffe2 allocator function and keeping track of the maximum total
allocation during the network run. Only Midas v1, Monodepth2,
and our models were able to run on device, the other ones failed
due to insufficient memory. Both models have footprints that are
more than an order of magnitude larger than ours.

Finally, we provide details about the model size. We list the num-
ber of float32 and int8 parameters for each model as well as the total
model size in MiB, with smaller models being more amendable to
mobile download. While our method does not perform best in terms
of quality compared to significantly higher number of parameter
state of the art models, it is competitive and the quality is sufficient
for our intended application, as demonstrated by hundreds of results
shown in the supplemental video. The main advantages of our model
is that its size is significantly smaller also resulting in significantly
reduced computation compared to the state of the art models. The
enables depth estimation even on older phone hardware.

6.5 Inpainting

We quantitatively evaluate inpainting on the ReDWeb dataset [Xian
et al. 2018], because it has dense depth supervision. In order to
evaluate inpainting we follow this procedure:

e For each image in the dataset we lift input image to single-
layer LDI (i.e., no extending) and use micro-polygons. That
is, we capture all detail, but we don’t hallucinate any new
details. (Figure 12a).

3https://pytorch.org/
“https://caffe2.ai/
5https://onnx.ai/
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Table 1. Quantitative evaluation our our depth estimation network. The best performance in each column is set in bold, and the second best underscored.
Note, that for the quality evaluation every network used its preferred resolution, while for the performance evaluation we used a fixed resolution of 384 x 288
for all networks. Please refer to the text for a detailed explanation.

Quality (MegaDepth) Quality (ReDWeb) Performance Model footprint

Method Training data §<1.257 Absrel] RMSE| | §<1.257 Absrel] RMSE| | FLOPs| Runtime| Peak mem.| | float32 int8 Size|
Midas (v1) RW, MD, MV 0.955 0.068  0.027 - - - 332G 1ils 4537MiB | 373M - 142.4MiB
Midas (v2) RW, DL, MV, MD, WSVD 0.965 0.058 0.022 - - - 723G - - 104.0M - 396.6 MiB
Monodepth2 K 0.845 0.145 0.049 0.350 4.368 0.176 6.7G 0.26s 194.1 MiB 14.3M - 54.6 MiB
SharpNet PBRS — NYUv2 0.839 0.146 0.051 0.308 6.616 0.196 549G - N 1141 M - 435.1 MiB
MegaDepth DIW — MD 0.929 0.086 0.033 0.434 2.270 0.137 63.2G - - 53M - 20.4 MiB
Ken Burns MD, NYUv2, KB 0.948 0.070 0.026 0.438 2.968 0.140 594G - - 99.9M - 381.0 MiB
PyD-Net CS—K 0.836 0.148 0.052 0.310 5.218 0.198 - - - 2.0M - 7.9 MiB
Tiefenrausch (baseline) MD 0.942 0.078 0.031 0.383 1.961 0.156 18.9G - - 3.0M - 11.4 MiB
Tiefenrausch (AS + no-quant) MD 0.940 0.080 0.031 0.378 1.987 0.157 6.4G - - 35M - 13.4 MiB
Tiefenrausch (AS + quant) MD 0.941 0.079 0.031 0.382 1.950 0.156 6.4G 0.23s 196.1 MiB - 3.5M 3.3 MiB
Tiefenrausch (AS + quant) MD, 3DP 0.925 0.090 0.035 0.407 1.541 0.142 6.4G 0.23s 196.1 MiB - 35M 3.3 MiB
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(c) Second layer, ground truth

Novel view

(d) Second layer, Inpainted

Fig. 12. Inpainting evaluation. In order to evaluate inpainting we follow this procedure: left input image to single-layer LDI (i.e., no extending)

(a) Ground truth

(b) Wrapped view

(c) Masked input

(d) Farbrausch screen space

(e) Farbrausch LDI inpainting

inpainting

Fig. 13. Comparing screen space inpainting to our LDI space inpainting using the same network (Farbrausch) trained on 2D images.

o Then we render the image from a canonical viewpoint and
use depth peeling to obtain an LDI with known colors at all
layers, not just the first one (Figure 12b-c show the first two
layers).

e We consider all layers except the first one as unknown and
inpaint them (Figure 12d).

o Finally, we reproject the inpainted LDI back to the original
view (Figure 12e). This is useful, because in this view all

inpainted pixels (from any LDI layer) are visible, and because
it is a normal rendered image we can use any image-space
metric.

In the “Quality (LDI)” column in Table 2 we report a quality loss
computed on the LDI (i.e., between Figures 12c and 12d). In the
“Quality (reprojected)” column in Table 2 we report PSNR and SSIM
metrics. Since SSIM and PSNR evaluate for reconstruction error, we
also include the LPIPS metric [Zhang et al. 2018] to better evaluate
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Table 2. Inpainting Evaluation. The best performance in each column is set in bold, and the second best underscored. Note, FLOP count depends on the input
size, and in the case of LDI this number is variable depending upon the geometric complexity; we report FLOP counts for screen space inpainting with an

image resolution of 512 X 512.

Quality (LDI) Quality (reprojected) Performance Model footprint
Method PSNRT PSNRT SSIMT LPIPS| FLOPs| float32| Caffe2 Size]
Farbrausch 33.852 34.126  0.9829  0.0232 - 0.37M 1.9 MiB
Partial Convolution 33.795 34.001 0.9832 0.0224 - 32.85M 164.4 MiB
Farbrausch (screen space) - 32.0211 0.9784 0.0325 2.56 G 0.37M 1.9 MiB
Partial Convolution (screen space) - 33.225 0.9807 0.0280 37.97G 32.85M 164.4 MiB

the perceptual similarity of the inpainted image compared to the
ground truth.

We compare our optimized model against original full size Par-
tialConv model. We also compare against using both models applied
in regular screen space inpainting. Fig. 13 illustrates the signifi-
cant artifacts on the edges when naively using regular screen space
inpainting.

6.6 End-to-end View Synthesis

In the supplementary material we provide a qualitative comparison
to the “3D Ken Burns Effect” [Niklaus et al. 2019]. Note that the
output of that system is a video showing a linear camera trajectory,
and their inpainting is optimized solely for viewpoints along that
trajectory. In contrast, the output of our system is a mesh that is
suitable for rendering from any viewpoint near the point of capture.

6.7 Limitations

As with any computer vision method, our algorithm does not always
work perfectly. The depth estimation degrades in situations that are
not well represented in the training data. An inherent limitation of
the depth representation is that there is only one depth value per
pixel in the input; semi-transparent surfaces or participating media
(e.g., fog or smoke) are not well represented. We thus see a number
of cases where the resulting 3D photo suffers from bad depth values.
Nevertheless, most scene captures do result in successful 3D photos.
The sets of images in the two “results” parts in the supplemental
video, were only selected for content before applying our algorithm.
We did not remove any failure cases based on processing. Therefore,
you can see some artifacts if examined closely. They thus provide
an idea of the success rate of the algorithm.

7 CONCLUSIONS AND FUTURE WORK

In this work, we presented a new medium, a 3D Photo, and a sys-
tem to produce them on any mobile device starting from a single
image. These 3D photos can be consumed on any mobile device as
well through desktop browsers. Scrolling, device motion, or mouse
motion all induce virtual viewpoint change and thereby motion par-
allax. 3D Photos also are viewable in HMDs enabling stereoscopic
viewing responsive to head motion.

Not only have we described the steps necessary to produce 3D
Photos, but we’ve also presented advancements in optimizing depth
and inpainting neural networks to run more efficiently on mobile
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devices. These advancements can be used to improve fundamental
algorithmic building blocks for Augmented Reality experiences.

There are many avenues for exploring human-in-the-loop cre-
ative expression with the 3D photo format. While this work shows
how to auto-generate a 3D photo using real imagery, a future di-
rection is to build out a rich set of creative tools to accommodate
artistic intent.
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