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Effects of Collaborative Training Using Virtual Co-embodiment
on Motor Skill Learning

Daiki Kodama , Takato Mizuho , Yuji Hatada , Takuji Narumi , and Michitaka Hirose

Fig. 1: A) Virtual co-embodiment: A virtual avatar is controlled based on the weighted average of two users’ movements. This is the first study applying virtual
co-embodiment to motor skill transfer. The current system is implemented following the work done by Fribourg et al [19]. B) Dual task: Participants draw a
seven-pointed star with the right hand and a five-pointed star with the left. We found that learning dual task movements using virtual co-embodiment with a
teacher enhances the retention of motor skills compared with sharing the teacher’s first-person perspective and learning alone.

Abstract—Virtual reality (VR) is a promising tool for motor skill learning. Previous studies have indicated that observing and following a
teacher’s movements from a first-person perspective using VR facilitates motor skill learning. Conversely, it has also been pointed out
that this learning method makes the learner so strongly aware of the need to follow that it weakens their sense of agency (SoA) for
motor skills and prevents them from updating the body schema, thereby preventing long-term retention of motor skills. To address this
problem, we propose applying “virtual co-embodiment” to motor skill learning. Virtual co-embodiment is a system in which a virtual
avatar is controlled based on the weighted average of the movements of multiple entities. Because users in virtual co-embodiment
overestimate their SoA, we hypothesized that learning using virtual co-embodiment with a teacher would improve motor skill retention.
In this study, we focused on learning a dual task to evaluate the automation of movement, which is considered an essential element of
motor skills. As a result, learning in virtual co-embodiment with the teacher improves motor skill learning efficiency compared with
sharing the teacher’s first-person perspective or learning alone.

Index Terms—Collaborative training, Virtual co-embodiment, Motor skill learning, Sense of agency

1 INTRODUCTION

The acquisition and long-term retention of motor skills play an essen-
tial role in various activities such as sports [28], industrial work [5],
and nursing [6]. Typical motor skill learning involves observing the
teacher’s movements from a third-person perspective (3PP). Although
3PP observation has traditionally been employed as a method for learn-
ing motor skills, it can induce numerous errors in the cognitive process
of the learner when they replicate movements observed in the teacher’s
body coordinates [53]. These errors prevent learners from understand-
ing the correct movement and reduce the efficiency of motor skill
learning [53].

To address this problem, many systems using virtual reality (VR)
have been developed that allow learners to observe their teacher’s move-
ments from the teacher’s first-person perspective (1PP) [34,38,69]. For
instance, Yang et al. developed the “Just Follow Me” system [69],
which superimposes a teacher’s movements as a translucent avatar on
the learner’s body, and users observe it from 1PP in a virtual environ-
ment. Just Follow Me also allows learners to move their own bodies
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by understanding and following the teacher’s movements. They imple-
mented the task of reproducing a specific trajectory by moving the hand
and reported that the learner could reproduce the motions more accu-
rately using Just Follow Me than with 3PP observation. However, it was
also shown that although the learners could move accurately immedi-
ately after learning, they could not retain the motor skills learned. This
is because the system does not enable the learner to understand why
the teacher made a certain movement (motor intention [14]), whether it
is from 1PP or 3PP, simply by observing and imitating it.

Updating the body schema plays a critical role in skill retention [55].
Body schema is assumed to be a common unconscious representation
that supports all types of motor actions [9, 22]. The body schema is
updated through body movements with a high sense of agency (SoA).
SoA is the subjective feeling of initiating and controlling an action [7]
and arises when the predicted outcome is perceived to be consistent
with the actual outcome [11]. When learning requires a strong focus on
following the body movements of others, SoA weakens because there
is no need to predict the outcome of the action. If a strong SoA can be
evoked for correct body movements, the acquisition of a correct body
schema can be promoted and the efficiency of motor skill learning can
be improved.

Meanwhile, a system called “virtual co-embodiment” [19] has been
proposed. Virtual co-embodiment is a system in which a virtual avatar
is controlled based on the weighted average of the movements of mul-
tiple users, and each user embodies that avatar. Through multiple
experiments, Fribourg et al. reported that users overestimate their SoA
when using virtual co-embodiment, and that the movements of two



2305kODAMA ET AL.: EffECTS Of COLLAbORATIVE TRAINING USING VIRTUAL CO-EMbODIMENT ON...

users tend to be aligned when the goal is shared, suggesting that there
may be shared motor intention with its use [19]. These features may
help address some of the problems with observation-based learning de-
scribed earlier. Therefore, we propose a collaborative training method
in which a teacher and a learner use virtual co-embodiment and motor
skills are efficiently transferred from the former to the latter. Using
this configuration, learners can experience body movements with a
strong SoA, as if they themselves performed these movements, which
is appropriately compensated by mixing the teacher’s movements with
their own movements. It is then expected that the transmission of motor
intention from the teacher to the student will not only enable the student
to demonstrate appropriate motor skills during co-embodiment but also
update their body schema and retain motor skills after the training. To
test the effectiveness of the proposed method, we investigated the extent
to which learning using the proposed and existing methods is effective
for motor learning through a dual-task paradigm.

The contributions of this study are as follows:
• It represents the first proposed application of virtual co-

embodiment to motor skill transfer.

• It shows that learning using virtual co-embodiment with the
teacher improves motor skill learning efficiency compared to
sharing the teacher’s 1PP or learning alone.

2 RELATED WORK

2.1 Motor Skill Learning
Motor skill learning is the process of increasing the spatial and temporal
accuracy of movements through practice [66, 67]. It consists of three
phases [62] – cognitive, associative, and autonomous – with each phase
being sequential and subsequent [2, 18, 59].

First, in the cognitive phase, learners strive to understand the cor-
rect movements, which contain implicit knowledge that is difficult to
convey verbally [31]. Traditional 1PP VR systems for motor skill learn-
ing have focused on this phase; for instance, for improving walking
efficiency [46] and calligraphy tasks [58, 68, 69].

Next, following the cognitive phase, learners put their knowledge
into practice during the associative phase. Whether learners can move
correctly is irrelevant to knowing the correct movements [12]; thus,
they must practice moving their bodies consciously and repeatedly.

Finally, in the autonomous phase, learners can gradually perform
their skills unconsciously. After this phase, the performance becomes
smooth, effortless, and fast in any environment [15, 33]. The uncon-
scious body image acquired in this phase is called body schema [9, 22].
For instance, when attempting to grasp an object accurately, people
calculate how much they should move their body parts based on the
body schema [13,56]. Additionally, body schema is known to be plastic
in nature [10, 49]. When the body schema is appropriately updated,
learners can unconsciously perform their skills [50]. For instance, Iriki
et al. [35] trained macaque monkeys to retrieve distant objects using
a rake. After training, the monkey’s visual receptive fields of bimodal
neurons were altered to include the entire length of the rake, implying
that the body schema was updated to use the rake.

Body schema does not automatically get updated simply by trans-
forming the body shape or grasping a tool in a virtual environment. The
SoA plays an important role in updating the body schema [16]. The
SoA represents the subjective feeling of initiating and controlling an
action [7, 37]. In 1PP VR, the learner does not feel a strong SoA for
updating body schema because they focus on tracing the teacher’s move-
ment. As a result, they cannot similarly demonstrate the skill the next
day [58, 68]. Compared to 1PP VR systems, virtual co-embodiment
can induce a stronger SoA for more appropriate body movements in
which teacher and student movements are integrated. Therefore, we hy-
pothesize that co-embodiment can realize motor skill learning as if the
teacher’s motor skills are transferred to the students, and the efficiency
of motor skill learning is superior to that of traditional methods.

To measure whether the body schema is updated during this automa-
tion phase, the dual-task paradigm is commonly used [40]. Here, users
simultaneously perform two simple tasks [54, 63]. It has been reported
that participants can perform the dual task better after practice [17], and

high-skilled sports players can perform the dual task better than low-
skilled ones because more skilled participants can focus on multiple
objects with a lower cognitive load [20, 21].

2.2 Virtual Co-embodiment

Virtual co-embodiment is a system that enables a user to share a virtual
avatar with another entity [19]. Virtual co-embodiment consists of
two configuration methods: weighted-average-based and body-part
-segmented based. In this section, we describe each of these methods.

2.2.1 Weighted-average-based Virtual Co-embodiment

Weighted-average-based virtual co-embodiment is a system in which a
virtual avatar is controlled based on the weighted average of the move-
ments of multiple entities. The percentage of each entity’s movement
contributing to the avatar is called the “weight.” In weighted-average-
based virtual co-embodiment, it is known that the user’s sensation
toward the avatar changes according to their weight [19, 27]. For ex-
ample, it is known that SoA and sense of body ownership (SoBO)
increase as the user’s weight increases. Therefore, setting an appropri-
ate weight is essential to ensure that SoA is required for motor skill
learning. The strength of the SoA varies depending on the type of user
movements [19]. For example, compared with free actions, actions
with a fixed target position or trajectory tend to generate a stronger SoA
because of the ease of movement prediction. Furthermore, they sug-
gested that the interaction between the two users could lead to sharing
of motor intention and motor synchronization in the weighted-average-
based virtual co-embodiment [19]. This sharing motor intention could
be applied to skill transfer. It is known that the avatar’s hand move-
ments become straighter and less jerky than the participant’s hand
movements in the weighted-average-based virtual co-embodiment with
50% weight [26]. In addition, the user can prioritize the movement
of a co-embodied avatar rather than their own body. This knowledge
indicates that the teacher may be able to move a co-embodied avatar
so that it performs the skill correctly even when the learner’s incorrect
movement is reflected.

2.2.2 Body-part-segmented Virtual Co-embodiment

Body-part-segmented virtual co-embodiment is a system in which two
users simultaneously manipulate different body parts. Hapuarachchi et
al. [29, 30] developed this method in which two individuals controlled
their left or right limbs. They found that embodiment toward the arm
controlled by the partner was significantly higher when the participant
dyads shared a common objective or when they were allowed to see
their partner’s goal, compared to when their partner’s goal was unknown
to them.

In body-part-segmented virtual co-embodiment, only pre-selected
body parts are reflected in the teacher’s movements, making it difficult
for the learner to learn how to move other body parts. In addition,
to properly transfer skills, it is necessary to appropriately determine
which body parts of the co-embodied avatar are moved by the teacher
and which by the students. However, the optimal method of mapping
body parts is considered to vary from skill to skill, and no guidelines
for designing such a mapping method have been investigated to date.
Therefore, in this study, we adopted a weighted-average-based virtual
co-embodiment because the teacher can move all the body parts of the
co-embodied avatar to perform the skill correctly. Additionally, we
adopted 50% as the weight commonly used in previous studies.

3 EXPERIMENT

This study was conducted to test whether the virtual co-embodiment
improves motor skill learning efficiency. Participants learned the skill
of performing two simple tasks simultaneously using three methods:
Virtual Co-embodiment, Perspective Sharing, or Alone. The efficiency
of motor skill learning was defined based on performance improvement
from the baseline. This study was approved by the ethics committee of
Graduate School of Information Science and Technology, the University
of Tokyo (UT-IST-RE-220901-32).
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Table 1: Defined terms for the calculation of the virtual co-embodiment system

Variable Definition

ω Control weight of the learner (0 ≤ ω ≤ 1)
xlearner Hand position of the learner
xteacher Hand position of the teacher
xshared Hand position of co-embodied avatar

qlearner Hand quaternion of the learner
qteacher Hand quaternion of the teacher
qshared Hand quaternion of co-embodied avatar

3.1 Participants
Sixty-four participants were recruited for the experiment [53 males, 11
females, average age = 23.5 ± 3.4 (SD)]. All participants were unaware
of the purpose of the experiment and had a normal or corrected-to-
normal vision. Two participants had no previous experience with VR,
39 had limited previous experience with VR, and 23 were familiar with
VR.

3.2 Virtual Co-Embodiment Platform
A virtual co-embodiment system was developed using Unity (version
2020.3.2f1). Our setup was based on two computers, two Meta Quest
2 head-mounted displays (HMDs), and two pairs of controllers to im-
merse the teacher and learner in a virtual environment. The participants
were embodied in a virtual avatar from the 1PP. We used the male avatar
(Male_Adult_08) for men and the female avatar (Female_Adult_05)
for women from the Microsoft Rocketbox Avatar Library [25].

The movement of the co-embodied avatar is calculated as follows:
Table 1 presents the variables used in the calculations. The co-embodied
avatar’s hand position (xshared) can be calculated based on the weighted
average of the learner’s controller position (xlearner) and the teacher’s
controller position (xteacher). Similarly, the co-embodied avatar’s hand
quaternion (qshared) can be calculated based on the weighted average
of the learner’s controller quaternion (qlearner) and the teacher’s con-
troller quaternion (qteacher). These can be described by the following
equations:

xshared = ω xlearner +(1−ω) xteacher (0 ≤ ω ≤ 1) (1)
qshared = ω qlearner +(1−ω) qteacher (0 ≤ ω ≤ 1) (2)

The positions and postures calculated for each frame based on these
equations were reflected in the co-embodied avatar using the Final IK
Unity package1. Final IK is a plug-in to compute full body motion
based on inverse kinematics from the position and rotation of the head
and hands.

In this study, the head was not co-embodied with the collaborative
partner, based on Fribourg’s virtual co-embodiment system [19]. A
preliminary experiment (N = 2) indicated that the user became sick in
VR when sharing the head positions because the user’s vision moved re-
gardless of their intention. Furthermore, in the preliminary experiment,
the avatar’s head was fixed such that it sometimes entered the field of
view and distracted the user’s immersion when they moved their head
backward. Therefore, we made the avatar’s head transparent to prevent
it from entering the user’s view.

3.3 Dual Task
In this study, we adopted a dual-task paradigm, which is a proce-
dure that requires an individual to perform two tasks simultaneously,
as a commonly used method to measure whether a body schema is
updated [40]. The task included the simultaneous drawing of a seven-
pointed star with the right hand and a five-pointed star with the left
hand. Figure 2 shows a participant performing the dual task. Spheres
were displayed at the vertices of the five and seven-pointed stars, and
the participants drew figures by touching the vertices in turn. Figure 3

1https://assetstore.unity.com/packages/tools/animation/
final-ik-14290

Fig. 2: A participant performing the dual task. The head of the avatar was kept transparent
so that it did not interfere with the task.

Fig. 3: Spheres were displayed at the position of the vertices of the five- and seven-pointed
stars. The participants drew figures by touching the vertices in turn. The red and
blue lines were not visible to the participants.

shows the hand movements to be made by the participant with lines
and arrows. The red and blue lines in Fig. 3 are for illustrative purposes
and were not actually visible to the participants. When the participants
touched the vertex, vibration feedback was provided for 0.1 s. The
color of the vertex changed to red when the participants touched the
correct vertex and to yellow when they touched the wrong vertex, as
shown in Fig. 4. The participants were informed of the current number
of trials, number of times they touched the correct vertices, number of
mistakes, remaining time, and current experimental phase (attempt or
rest) from the board in front of them.

One trial of the dual task consisted of a 30 s task attempt and a 30
s rest phase. At the beginning of the task attempt phase, the color of
one vertex in each figure changed to red, and participants started the
task by touching the vertex. The vertex that the participants should
have touched first was randomly selected. In the rest phase, all vertices
became white, did not change color, and provided no vibration feedback
when touched by the participants.

3.4 Design
The experiment was conducted using a mixed design.The independent
variable between participants was the learning method with three levels:

Fig. 4: Feedback on whether the participants touched the correct vertex. As shown on the
left, the color of vertex changed to red when the participant touched the correct
vertex. Conversely, as shown on the right, the color of vertex changed to yellow
when the participants touched the wrong vertex. Vibration feedback was given to
the participants for 0.1 s when they touched the vertex.
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Fig. 5: Perspective Sharing. The avatar in vintage red clothes represents the teacher’s avatar.
The participant performed the dual task by sharing the teacher’s perspective, which
superimposes the teacher’s movements as a translucent avatar on the participants’
1PP of their body in the learning phase.

Co-embodiment, Perspective Sharing, and Alone. Participants were
randomly assigned in advance to three conditions (Co-embodiment: 19
males, 3 females, average age = 22.7 ± 2.1 (SD), Perspective Sharing:
17 males, 4 females, average age = 24.2 ± 4.0 (SD), Alone: 17 males,
4 females, average age = 23.5 ± 3.8 (SD)). The independent variable
within the participants was the trial (11 levels: first, second, ..., tenth,
test).

Co-embodiment: The participant performed the dual task using the
virtual co-embodiment during the learning phase. The collabo-
rative teacher of the virtual co-embodiment was a skilled experi-
menter. The weight ω (shown in Tab. 1) was set to 50%, as the
teacher and learner could recognize each other’s movement.

Perspective Sharing: The participant performed the dual task by shar-
ing the teacher’s perspective. Figure 5 shows the scene presented
to both the teacher and the participants. The teacher’s movements
were superimposed as a translucent avatar on the participants’
1PP of their bodies in the learning phase. The teacher was a
skilled experimenter.

Alone: The participant performed the dual task alone in the learning
phase.

The same experimenter (one of the authors) was in charge of the
teacher’s role for all participants in both the Co-embodiment and Per-
spective Sharing conditions. The author played the role of the teacher
because the teacher had to become very proficient with virtual co-
embodiment, perspective sharing, and dual task. These proficiencies
were prioritized over a limitation that the author knew the hypoth-
esis and would make it easier to get desirable results. In both Co-
embodiment and Perspective Sharing, the teacher consciously tried to
move toward the next vertex slightly earlier than the participants to
guide the learner’s movements. He practiced the dual task in advance
and until he gained sufficient proficiency. The fact that no participant
became more proficient than him in this experiment proves that was pro-
ficient enough. In addition, he was assisted by pink lines indicating the
correct direction and vertex to move next to stabilize his performance.
This pink line was not presented to the participants.

3.5 Procedure
Figure 6 summarizes this procedure. Participants were briefed and
signed a consent form to participate in the experiment. They were
briefed on the dual task. At this time, they were instructed to perform
the task as fast as possible without touching the incorrect vertex. For
Co-embodiment and Perspective Sharing, they were explained the sys-
tem they would use. As a tutorial for the dual task, they wore HMDs
and confirmed that the correct vertex would turn red with vibration
feedback when they touched a vertex, and the wrong vertex would turn
yellow with no vibration. In the case of Co-embodiment, participants
experienced virtual co-embodiment while they experienced sharing
the teacher’s perspective in Perspective after the tutorial. The partic-
ipants first performed the dual task once alone as a baseline. They

Fig. 6: The procedure of the experiment. One trial of the dual task consisted of a 30 s task
attempt and a 30 s rest phase.

then performed the dual task five times as a learning phase under pre-
determined condition, that is, Co-embodiment, Perspective Sharing, or
Alone. After removing the HMDs and resting for 3 min, they performed
the dual task another 5 times under the same condition. Finally, the
participants performed three trials of the dual task alone as part of the
test. After they completed all trials, they removed HMDs, answered the
virtual embodiment (VEQ) questionnaire (as described in the following
section), and orally commented on the dual task and the system they
used. The participants were asked to provide data regarding their age
and experience with VR along with the VEQ. The total experimental
time was approximately 45 minutes.

3.6 Measurement
3.6.1 Task performance

We compared the following measurements in the dual task between
the learning method. We evaluated task performance as the number
of times participants touched the correct vertex.First, we measured
task performance in the tutorial and used it as the baseline for the
participant. Second, for each trial, the improvement was defined as
the task performance at that point minus the baseline and was used to
measure the learning effect. Third, as a measure of learning retention,
the test score was defined as the maximum improvement of the three
test trials in the test phase in that the participants performed the task
alone after the learning phase. The test score was used as an indicator
of the efficiency of motor skill learning for the participant. Finally, as
an indicator of the degree of residual learning outcomes, we defined
the performance drop as how much performance is reduced when
the assistance is terminated. Performance drop was calculated as the
improvement in the last trial of the learning phase minus the test score.

3.6.2 Hand Distance

In addition, because it is known that interaction using virtual co-
embodiment can influence the two users’ movements [19, 26], we
also recorded the trajectory of the hands. Hagiwara et al. showed that
participants coordinated their movements with each other so that the
co-embodied avatar moves in a more goal-oriented manner [26]. They
showed that the positions of the two users’ hands became further apart
after the continuous use of the virtual co-embodiment. This movement
coordination according to the situation may be useful when executing a
movement in virtual co-embodiment, but may not be functional with-
out partners. On the contrary, Hagiwara et al. have shown that such
partner-aware movement changes appear using a simple reaching task,
but the task used here involves more complex movement. Therefore,
it is not obvious whether such partner-aware movement changes are
observed in the present experimental setup. In Perspective-Sharing, it is
expected that the teacher and learner’s movements become closer as the
learning progresses. Conversely, following previous research [26], the
teacher and learner’s movements are expected to become further apart
under the virtual co-embodiment condition. As a result, it is possible
that the learner may not be able to retain the assigned task after the
assistance of virtual co-embodiment was terminated. Considering these
points, the change in two users’ movements may also affect the final
learning effect. Therefore, we calculated the Euclidean distance of the
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teacher’s and learner’s hands for each frame and defined hand distance
as the average distance within a trial. We evaluated two main things:
(a) the change in hand distance and (b) a relationship between the hand
distance and the performance drop.

3.6.3 Sense of Embodiment
We measured indices that described the degree of embodiment in the
virtual avatar: SoA, the SoBO, and Change. Along with SoA, SoBO
is a component of the sense of embodiment that emerges when the
avatar’s properties are processed as if they are the properties of one’s
own biological body [43]. Change refers to the change in the perceived
body schema due to stimulation [57]. We used a virtual embodiment
questionnaire [57] (VEQ) to assess SoA, SoBO, and Change to confirm
that participants embodied in their avatars. The VEQ is a commonly
used questionnaire that can be applied in various VR experiments [57].

3.7 Hypothesis
The learner is expected to be able to improve their movements more
efficiently during the learning phase because the learner receives feed-
back on the teacher’s correct movements in the Co-embodiment and
Perspective Sharing

H1: The improvement in the Co-embodiment and Perspective Sharing
conditions is higher than that in the Alone condition during the
learning phase.

In the Perspective Sharing condition, participants are so focused
on following the teacher’s movements that they do not have room to
understand the teacher’s motor intentions, which is expected to result
in a significant performance drop. On the other hand, participants in
the Co-embodiment condition are expected to have a stronger SoA to
the teacher’s movements and could learn the teacher’s motor intentions,
thus relatively reducing the performance drop.

H2_1: The performance drop in the Perspective Sharing condition is
significantly greater than that in the Alone condition.

H2_2: The performance drop in the Co-embodiment condition is
smaller than that in the Perspective Sharing condition.

Finally, the test score measured without teacher assistance is ex-
pected to be smaller because participants in the Perspective Sharing
condition do not have the room to understand the teacher’s motor inten-
tions compared to participants in the Co-embodiment condition.

H3: The test score in the Co-embodiment condition is higher than
those in the Perspective Sharing and Alone conditions.

4 RESULT

The data from one participant who could not complete the experiment
due to a system error was removed. Data from the remaining 63
participants were analyzed. The significance level was set at p < 0.05.

4.1 Baseline
To ensure that there was no bias in the assignment to learning method,
we verified whether there were differences in the baseline. Figure 7a
shows the baseline for each condition. One-way ANOVA with the
between-subjects factor learning method (three levels: Co-embodiment,
Perspective Sharing, and Alone) was performed for the baseline be-
cause the normality assumption (Shapiro–Wilk’s normality test) was
not violated. The results of one-way ANOVA showed no significant
differences between baselines (F (2,60) = 1.48, p = .24, ηp

2 = 0.05).

4.2 Skill Learning
4.2.1 Improvement
Figure 8 shows a line chart of the improvement and the observed testing
score. Because the normality assumption (Shapiro–Wilk’s normality
test) was not violated, two-way ANOVAs with the between-subjects
factor learning method (three levels: Co-embodiment, Perspective
Sharing, and Alone) and within-subjects factor trials (ten levels: first,
second, ..., tenth) were performed for improvement. The two-way
ANOVAs revealed a significant main effect of the learning method (F
(2, 60) = 94.04, p < .001, ηp

2 = 0.76) and of trial (F (9, 18) = 95.96,

p < .001, ηp
2 = 0.62). Because the two-way ANOVAs also exhibited

a significant interaction effect between the learning method and trial
(F (18, 540) = 6.93, p < .001, ηp

2 = 0.19), a post-hoc analysis, the
Welch’s t-test adjusting p-value using the Bonferroni’s method, was
performed.

First, we tested whether participants improved their skills in the
dual task during the learning phase. The first trial’s improvement was
compared with that of the tenth trial in each condition. As a result, the
first trial’s improvement was found to be significantly lower than that
of the tenth trials for each learning method (p < .01 in all conditions).
The result indicated that participants may have improved their skills in
the dual task during the learning phase in all learning methods.

Second, we tested which conditions participants became most profi-
cient in the learning phase. Post-hoc analysis between conditions was
conducted on all learning trials. The results indicated that, for all trials,
the improvement in the Co-embodiment condition was significantly
higher than that in the Perspective Sharing (p < .001 in all learning
trials) and Alone conditions (p < .001 in all learning trials). In addition,
for all trials, the improvement in the Perspective Sharing condition was
significantly higher than that in the Alone condition (p < .01 in all
learning trials). As the ANOVA indicated that the strong effects origi-
nated from the trial factor, a linear regression analysis was conducted
across trials for each method to further characterize the relationship
between the improvement and trial. The regression equations were as
follows:
Co-embodiment: y = 1.98x+14.13 (R2 = 0.44),
Perspective Sharing: y = 1.14x+7.50 (R2 = 0.31),
Alone: y = 0.86x+2.34 (R2 = 0.25).
The regression equations exhibited positive linear correlations between
improvement and trial in each learning method. We then calculated
the slope of improvement over trial for each participant. We conducted
one-way ANOVA to compare the regression slopes among learning
methods because the normality and homogeneity of variance assump-
tions (Shapiro–Wilk’s normality test and Levene test) were not violated
for the slope. The Welch’s t-test adjusting p-value using the Shaf-
fer’s method was performed because the result showed the significant
main effect of the learning method (F (2, 60) = 24.45, p < .001, ηp

2

= 0.45). The result showed that the slope of improvement under the
Co-embodiment condition was significantly higher than that under the
other two conditions (Perspective Sharing: t (60) = 6.72, p < .001,
Alone: t (60) = 5.02, p < .001). Furthermore, the result reported
that the slope of improvement under the Perspective Sharing condition
was marginally higher than that under the Alone condition (t (60) =
1.70, p = .094). These results indicated that the slope of improvement
during learning phase was significantly higher in the order of the Co-
embodiment, the Perspective Sharing, and the Alone conditions. In
addition, the improvement during the learning phase was significantly
higher in the order of the Co-embodiment, the Perspective Sharing, and
the Alone conditions. These results support H1.

4.2.2 Hand Distance

Figure 7b shows the number of trials and the hand distance from the
teacher in the Co-embodiment and the Perspective Sharing conditions.
Because the normality assumption (Shapiro–Wilk’s normality test)
was not violated, two-way ANOVAs with the between-subjects factor
learning method (two levels: Co-embodiment and Perspective Sharing)
and within-subjects factor trials (10 levels: first, second, ..., tenth) were
performed for the hand distance. The two-way ANOVAs revealed a
significant main effect of the learning method (F (1, 40) = 37.50, p
< .001, ηp

2 = 0.48) and trial (F (9, 9) = 4.04, p < .001, ηp
2 = 0.09).

Because the two-way ANOVAs also exhibited a significant interaction
effect between the learning method and trial (F (9, 360) = 11.23, p
< .001, ηp

2 = 0.22), a post-hoc analysis, the Welch’s t-test adjusting
p-value using Bonferroni’s method was performed. First, hand distance
in the first trial was compared with that in the tenth trial for each
learning method. As a result, the hand distance in the first trial was
found to be significantly lower than that in the tenth trial in the Co-
embodiment condition (p < .001). Conversely, the hand distance in
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Fig. 7: (a) : The baseline in each condition. No significant differences were found among the three conditions. (b) : Graph of the number of trials and the hand distance during the
learning phase. Error bands are standard errors. The hand distance was significantly greater in the Co-embodiment condition than in the Perspective Sharing condition. In the
Co-embodiment condition, the hand distance tended to increase with the number of trials. On the contrary, in the Perspective Sharing condition, the hand distance tended to
decrease with the number of trials. (c) : Point plot of the mean hand distance from the teacher at the last learning trial and performance drop in the Co-embodiment and Perspective
Sharing conditions. No correlation was found in both conditions.

Fig. 8: Line chart of the improvement. Error bands are standard errors. Trials 1–10 show
the improvement during the learning phase. Test shows the maximum improvement
of the three test trials, where the participants performed the task alone. The im-
provement during the learning phase was higher in the order of the Co-embodiment,
the Perspective Sharing, and the Alone conditions. The performance drop was
significantly greater in the order of the Co-embodiment, Perspective Sharing, and
Alone conditions. The test score in the Co-embodiment condition is higher than
that in the Perspective Sharing or Alone conditions.

the first trial is significantly higher than that in the tenth trial in the
Perspective Sharing condition (p < .001). The ANOVA indicated a
strong relationship between the number of trials and hand distance
in both learning methods. Therefore, a linear regression analysis of
the number of trials and hand distance for each learning method was
conducted to further characterize these relationships. The regression
equations are as follows:
Co-embodiment: y = 0.0053x+0.102 (R2 = 0.094),
Perspective Sharing: y =−0.0017x+0.083 (R2 = 0.096).
The regression equations exhibited positive linear correlations between
hand distance and trial in the Co-embodiment condition. In contrast,

the regression equations exhibited negative linear correlations between
hand distance and trial in the Perspective Sharing condition. We com-
puted Pearson’s product-moment coefficient for each condition to de-
termine whether the computed slopes differed significantly from 0.
As a result, we found that the two variables were strongly correlated
(Co-embodiment: Pearson’s r (208) = 0.31, p < .0001, Perspective
Sharing: Pearson’s r (208) = -0.31, p < .0001). These results suggest
that the distance between the participant’s and teacher’s hands may
have gradually increased in the Co-embodiment condition. In contrast,
the distance between the participant’s and teacher’s hands may have
gradually decreased in the Perspective Sharing condition.

4.3 Skill Retention
4.3.1 Performance Drop
Because the normality assumption (Shapiro–Wilk’s normality test)
was not violated, one-way ANOVA with the between-subjects factor
learning method (three levels: Co-embodiment, Perspective Sharing,
and Alone) was performed for performance drop. Because the result
showed a significant main effect of learning method (F (2, 60) = 23.85,
p < .001, ηp

2 = 0.44), a post-hoc analysis, the Welch’s t-test adjusting
p-value using the Shaffer’s method, was performed. The result indicated
that performance drop was significantly greater in the order of the Co-
embodiment, the Perspective Sharing, and the Alone conditions (p <
.0001, between all possible pairs). This result supports H2_1, but not
H2_2.

4.3.2 Test Score
Because of concerns about outliers from the histogram shape, we con-
ducted the Grubbs test. The analysis did not detect any outliers. Be-
cause the normality assumption (Shapiro–Wilk’s normality test) was
not violated, one-way ANOVA with the between-subjects factor learn-
ing method (three levels: Co-embodiment, Perspective Sharing, and
Alone) was performed for the test score. Because one-way ANOVA
revealed a significant main effect of the learning method (F (2, 60)
= 5.33, p < .01, ηp

2 = 0.15), a post-hoc analysis, the Welch’s t-test
adjusting p-value using the Shaffer’s method, was performed. The
result indicated that, the test score in the Co-embodiment condition
was significantly higher than that in the Perspective Sharing (t (60) =
3.18, p < .05) and Alone conditions (t (60) = 2.23, p < .05). There was
no significant difference between the Perspective Sharing and Alone
conditions (t (60) = 2.61, p = .35). This result supports H3.

To investigate the possibility that the participants’ proficiency may
have influenced their test score, a plot of the correlation between base-
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Fig. 9: Point plot of the baseline and the test score. No correlation was observed in the
Perspective Sharing and Alone conditions. On the contrary, a positive correlation
was observed in the Co-embodiment condition: the higher the baseline, the higher
the learning efficiency.

line and test score in all learning methods is shown in Fig. 9. A
regression analysis was performed for all learning methods.

Co-embodiment: y = 1.08x+4.97 (R2 = 0.20),
Perspective Sharing: y = 0.23x+7.40 (R2 = 0.034),
Alone: y =−0.06x+13.0 (R2 = 0.004).

We computed Pearson’s product-moment coefficient for each learning
method to determine whether the computed slopes differed significantly
from 0. As a result, there was a significant positive correlation under the
Co-embodiment condition: the higher the baseline, the more efficient
learning (Pearson’s r (19) = 0.45, p < .05). On the other hand, there
was no significant correlation under Perspective Sharing (Pearson’s r
(19) = 0.19, p = .42) and Alone conditions (Pearson’s r (19) = -0.07, p
= .77).

4.3.3 Correlation between Hand Distance and Performance
Drop

Figure 7c shows a point plot of the mean hand distance at the last
learning trials and the performance drop in the Co-embodiment and
Perspective Sharing conditions. A linear regression analysis was per-
formed, resulting in the following regression equation:

Co-embodiment: y = 5.0x+13.0 (R2 = 0.012),
Perspective Sharing: y = 116.9x+0.27 (R2 = 0.014).

We computed Pearson’s product-moment coefficient for each learning
method to determine whether the computed slopes differed significantly
from 0. As a result, no correlation was confirmed in both learning
methods (Co-embodiment: Pearson’s r (19) = 0.03, p = .90, Perspective
Sharing; Pearson’s r (19) = 0.25, p = .26).

4.4 Sense of Embodiment

Figure 10 shows the scores of the sense of embodiment. The Friedman
test for the SoA, SoBO, and Change(Fig. 10a, Fig. 10b, and Fig. 10c)
were conducted with the between-subjects factor learning methods
(three levels: Co-embodiment, Perspective Sharing and Alone). The
results showed no significant difference for each measurement (SoA:
χ2 = 1.81, p = .40, SoBO: χ2 = 0.22, p = .89, Change: χ2 = 0.04, p =
.98).

5 DISCUSSION

5.1 Skill Learning
5.1.1 Higher Improvement under Conditions with the Teacher’s

Assistance
The improvement in the Co-embodiment and Perspective Sharing con-
ditions during the learning phase was significantly higher than in the
Alone condition (Sec. 4.2.1). The results were consistent with the pre-
vious work reporting that dyadic interaction allows the user to estimate
the motion intention of the partner based on feedback and modify their
motion [4, 24, 51]. In the Perspective Sharing condition, the partici-
pants could improve their performance during the learning phase by
observing the translucent teacher avatar’s movements and modifying
their movements. In contrast, in the Co-embodiment condition, per-
formance was improved during the learning phase simply because the
teacher could correct the avatar’s movements directly. Thus, the im-
provement in the Co-embodiment condition did not purely represent
learners’ improvement.

5.1.2 Various Trend of Hand Distance between learning meth-
ods

Figure 7b shows the hand distance had gradually increased in the Co-
embodiment condition (Sec. 4.2.2). This result indicates that the user’s
behavior changed due to the interaction using virtual co-embodiment
in the more complex task of this study, as seen in simple tasks such
as reaching in previous studies [19, 26]. On the contrary, the dis-
tance between the participant’s and teacher’s hands may have gradually
decreased in the Perspective Sharing condition. This difference in
correlation may indicate a difference in learning methods between the
Co-embodiment and Perspective Sharing conditions. In the Perspective
Sharing condition, participants might have learned by feedback error
learning [41]. Feedback error learning is the process of learning by
diminishing the error between the intended motor prediction and the
perceived result [36,42]. In the Perspective Sharing condition, feedback
error learning that diminished the error with the teacher is likely to
have occurred because the learner eliminated the difference between
their movement and that of the teacher. On the other hand, in the
Co-embodiment condition, feedback error learning is unlikely to occur
because the hand distance from the teacher gradually increases. In the
Co-embodiment condition, the learning mechanism may differ from the
feedback error learning and does not necessarily correspond to making
their real body movements closer to the teacher. This possibility was
supported by the no correlation between the hand distance of the last
learning trial and performance drop in the Co-embodiment condition
(Shown in Fig. 7c). The participant’s comment also supports this pos-
sibility, “In the latter half, I no longer felt that I was assisted by the
teacher and was moving as my own body.” This participant may have
become less conscious of their own bodies as their learning progressed.
It is also possible that the learner was distracted and slacked off by the
reflection of the teacher’s actions. In this case, further improvement in
efficiency can be expected by motivating the learner. Either way, it is
necessary to examine the mechanism of motor skill transfer through
virtual co-embodiment.

5.2 Skill Retention
5.2.1 Significant Performance Drop under Conditions with the

Teacher’s Assistance
The performance drop in the Perspective Sharing condition was sig-
nificantly greater than that in the Alone condition (Sec. 4.3.1). The
results were consistent with the previous work reporting that partici-
pants depended so much on force feedback during learning and could
not perform well on their own during testing in motor skill learning with
haptic feedback [39]. Several participants support this by mentioning
that the loss of the teacher’s assistance made them unsure of what to
do during the test. Certain participants also stated that the teacher’s
translucent avatar sometimes moved before they began to think about
how to move. From these comments, it can be inferred that participants
were so focused on following the teacher’s movements that they could
not learn actively.
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Fig. 10: Box-and-whisker diagram of sense of embodiment. No significant differences were found among the three learning methods. (a) Box-and-whisker diagram of SoA. SoA refers
to the perception of control over a virtual body and, through that, control over events in the environment [57]. (b) Box-and-whisker diagram of SoBO. SoBO refers to the
perception of perceiving a virtual body as the own, as the source of all sensations [57]. (c) Box-and-whisker diagram of Change. Change refers to the change in the perceived
body schema due to stimulation [57].

The performance drop in the Co-embodiment condition was signifi-
cantly larger than that in the Perspective Sharing condition (Sec. 4.3.1).
In addition, the performance drop in the Co-embodiment condition was
significantly larger than that in the Alone condition. The most signifi-
cant performance drop in the Co-embodiment condition may be due to
a significant improvement by the assistance. It is known that excessive
system assistance tends to improve performance during learning but is
also known to be prone to cause performance drop [39]. System assis-
tance might have been most significant in the Co-embodiment condition
because the improvement in the learning phase was most outstanding
in this condition. Enormous system assistance in Co-embodiment
condition may have caused a most significant performance drop. As
described in the following section, the effectiveness of the proposed
method is supported by the test score.

5.2.2 Higher Test Score in the Co-embodiment condition

The test score in the Co-embodiment condition was significantly higher
than that in the Perspective Sharing and Alone conditions (Sec. 4.3.2).
During the learning phase, as expected, improvement was significantly
higher in the Co-embodiment and Perspective Sharing conditions than
in the Alone condition. The highest test scores were obtained in the
co-embodiment condition, indicating that the virtual co-embodiment
with the teacher allows efficient transfer of motor skills. On the other
hand, contrary to the expectation, the performance drop in the Co-
embodiment condition was significantly greater than in the Perspective
Sharing and Alone conditions. Nevertheless, H3 was supported. This
result may be because the effect of improvement in the Co-embodiment
condition during the learning phase was too significant to counteract
the effect of performance drop.

The relationship between weight and proficiency of the learner in
virtual co-embodiment can be found in the scatter plots (Fig. 9) of
baseline and test score (Sec. 4.3.2). From this figure, it can be inferred
that participants with higher baselines acquired motor skills with higher
learning efficiency when using Co-embodiment. This trend is not
observed in other conditions. Many participants in the Co-embodiment
condition commented in support of this relationship. For example,
one participant stated, “I felt that I could perform better by doing the
task several times by myself or with high weights at first. After I
become a little proficient at the task, I will be able to understand the
motor intent of the teacher and acquire the motor skill more easily
using virtual co-embodiment.” The virtual co-embodiment system
implemented in this study was considered to be particularly effective
for users with a certain level of proficiency. This is possible because
those with a certain level of proficiency already understood the basic
movements and were then able to improve and automate the skills
while understanding their partner’s motor intentions. The points to

be learned may change depending on the level of proficiency prior to
practice. And the appropriate weights may change depending on what
is to be learned. We used a virtual co-embodiment of 50% weight in this
study, but different weights may be effective for learners with different
proficiency levels. In addition, dynamical weight control can be used
to improve the efficiency of motor skill transfer because it can affect
the perceived SoA [45]. It is worthwhile not only to clarify the effect
of fixed weights but also to examine whether dynamically changing
weight based on the learner’s proficiency level or motion pattern can
efficiently convey the teacher’s motor intention.

5.3 Sense of Embodiment
No significant differences among all learning methods were observed
in the sense of embodiment (Sec. 4.4). We could not confirm the dif-
ference of whether the participants predicted motor intention actively
from the SoA score in this experiment. Fribourg et al. showed that
the sense of embodiment is lower with virtual co-embodiment of 50%
weight than with 100% (when the avatar is fully operated by the partic-
ipant) [19]. Nevertheless, in the present study, there was no difference
in the embodiment scores between the co-embodiment condition with
the avatar that reflects only 50% of the participants’ movements and
the perspective-sharing condition with the avatar that directly reflects
the participants’ movements, and a strong SoA was evoked in both
conditions. One possible reason for this may be that the experience of
success in the difficult task generated an even greater SoA than in Fri-
bourg’s experiment. Wen et al. showed that success in a task enhances
the sense of agency [64, 65]. Such an effect was likely observed in
the co-embodiment with the teacher, where a high learning efficiency
was observed. Another reason could be that in the perspective-sharing
condition, users were so focused on following the teacher’s movements
that their sense of agency was reduced.

As a limitation, note that the participants evaluated SoA by recalling
the learning trial after they had performed the test trial alone (Fig. 6).
The reason for the questionnaire timing was that our priority was seeing
the skill retention immediately after the practice. They might overes-
timate the SoA because they experienced complete reflection of their
movement in their avatar during the test.

6 FUTURE WORK AND LIMITATIONS

The results demonstrated that the proposed method could enhance the
efficiency of motor skill learning. However, there were some limitations
to the experimental method. There is a gap between the dual task and
any other daily motor skills. We need to verify the proposed method’s
applicability to different kinds of tasks. The dual task is a commonly
used method to measure whether the body schema is updated [40].
The dual task used in this study is to perform different movements
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with the left and right arms in parallel. Such movements are used in
piano playing [1, 52] and drumming [44], and can be said to be an
extraction of one of the characteristics commonly found in complex
body movements. In the future, it will be necessary to verify the
applicability of the proposed method to more practical skills such
as piano and drums. Furthermore, it is also necessary to verify the
proposed method’s applicability to different tasks, such as tracing task,
which requires reflexes. There is also a limitation in the design of
the task. In this study, the number of learning sessions was set to 10.
Figure 8 shows that learning did not completely saturate with the 10
learning sessions. This is also supported by the many participants’
comments, such that their performance could have improved with
more practice. To verify the relationship between proficiency and skill
learning methods, the efficiency of skill learning after a more extended
study period will need to be examined. In addition, in this study, the
test trial was conducted only immediately after practice, and long-term
skill retention was not investigated. In the future, it will be essential to
investigate whether the learner can demonstrate the skill after a long
retention interval.

How the teacher indicates movement to the learner might have also
affected the efficiency of motor skill learning in virtual co-embodiment.
In this study, the experimenter played the teacher’s role. The exper-
imenter tried to prioritize the movement of the co-embodied avatar
rather than their own body and performed the movements slightly faster
than the learner based on the learner’s skill level. We observed the
participant who felt that the teacher’s approach worked well as well
as that who felt that did not work well. The participant who felt that
it worked well mentioned: “Because the teacher moved a little faster
than me, there is little difference in movement between myself and
co-embodied avatars. I learned the motor skill efficiently because I
could feel that the co-embodied avatar’s body was my own body.” In
contrast, the participant who did not feel it worked well mentioned: “I
concentrated on thinking proactively and moving ahead of the teacher
to acquire the skill. However, at the beginning of the test, I realized that
the teacher had given me the correct answer a little faster than my move-
ment, and I was just following it. Therefore, I could not demonstrate
the skill without the teacher’s assistance.” The difference between these
opinions may be whether they think of the co-embodied avatar as their
self-body. The teacher might have to adjust how to move to make the
learner recognize the co-embodied avatar as their own body. It is worth
analyzing what kind of movement should be presented to what kind of
learner, using the learner’s personality traits such as locus of control
(i.e., whether they believe that events in their life derive primarily from
their own actions [48]). In addition, the present experiment did not ex-
amine the impact of collaborative training using virtual co-embodiment
on the teacher’s skill. As stated in Sec. 2.2.1, co-embodiment with stu-
dents is not expected to negatively affect teachers, but rather a positive
effect. On the contrary, it cannot be denied that prolonged exposure
to the incorrect body movements of students may degrade the skills of
teachers. It will be necessary to clarify the effect on the teacher side in
future studies.

Further improvement in motor skill learning efficiency can be
achieved by considering which characteristics of learners affect learning
using virtual co-embodiment. For example, previous learning experi-
ence may affect efficiency. One participant commented: “It was easy
for me to learn motor skills using virtual co-embodiment because my
hand moving on its own was similar to the feeling I had when I was
learning calligraphy with my teacher.” Another participant commented:
“I can learn the skill well using virtual co-embodiment because the
feeling was similar to the feeling I had when I practiced on the piano.
When I practiced one hand on the piano, the teacher took charge of the
other hand, similar to virtual co-embodiment.” It is possible that the
learner who has had similar experiences could learn efficiently using
virtual co-embodiment. It would be worthwhile to obtain personal
traits and experiences and examine their relationship with motor skill
learning.

Further analysis could be done by measuring movement dynamics
(e.g., velocity and acceleration) and movement variability. Because
the velocity of the learner will become close to that of the teacher as

learning proceeds [8], it might be essential to see how the learners’
movement velocity responded to the teachers’ movements as a function
of training. Furthermore, movement variability could also be used as
an indicator of proficiency because would become less variable as the
participants develop proficiency in performing the task [47]. In this
study, we have already analyzed a large number of measurements, and
focused on hand distance and improvement because previous studies
of virtual co-embodiment [19, 26] have dealt with hand distance and
performance as a direct measurement motor skill learning efficiency.
Further analyses would help us gain a deeper understanding of how
different training modes affect learning efficacy.

Our result does not specify the mechanism by which motor intention
is conveyed using virtual co-embodiment. It is worth verifying the
mechanism using other evaluation measurements. For example, we-
mode is a cognitive mode in which motor intention is communicated
between the two [23]. In we-mode, interacting agents share their minds
by representing their contributions to the joint action as contributions
to something they will pursue together as a “we” [23]. Establishing we-
mode makes it easier to acquire the interaction partner’s point of view
and understand the motor intention of the partner both potentially and
automatically [32]. It is also known that the movements of individuals
and brain waves tend to synchronize in we-mode [70]. Whether we-
mode is established can be examined using button-pushing tasks such
as the Simon task [60, 61] or the Flanker task [3] as well as brain
wave measurement [70]. We may verify how motor intention transfer
occurs by verifying whether we-mode is established when using virtual
co-embodiment.

7 CONCLUSION

This is the first study to apply virtual co-embodiment to motor skill
transfer. We verified the hypothesis that virtual co-embodiment with
the teacher can help learners feel a strong SoA toward the correct
movements taught to them, enabling the update of body schema
and efficient skill transfer. We experimentally compared the Co-
embodiment, Perspective Sharing, and Alone learning methods (N
= 63). In Co-embodiment condition, the participants learned using vir-
tual co-embodiment in which the teacher’s movements also contributed
to the participant’s avatar. In the Perspective Sharing condition, the
participants observed and followed the teacher’s translucent avatar’s
movements from a 1PP. Finally, in the Alone condition, the participants
learned alone. In all learning methods, participants first performed the
dual task trial once alone as a baseline. The participants practiced the
task 10 times under each condition with breaks in between. For all
learning methods, participants performed the trials three times alone at
the end as a test. The efficiency of motor skill learning was compared
based on the differences between achievement in baseline and test trials.
A comparison of 3 learning conditions showed that the Co-embodiment
condition was significantly more efficient in motor skill learning than
the other two conditions. This result supports the effectiveness of the
proposed method. Furthermore, it is possible that the higher the perfor-
mance on the baseline measurement, the more a learner is proficient
when using the virtual co-embodiment. In the future, we plan to further
improve the efficiency of skill transfer by dynamically controlling the
weight in virtual co-embodiment according to the learner’s proficiency
level.
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