TextureMe: High-Quality Textured Scene Reconstruction in Real Time

JUNGEON KIM, HYOMIN KIM, HYEONSEO NAM, JAESIK PARK, and SEUNGYONG LEE,

POSTECH, Korea

[NieBner et al. 2013]
Real-time

[Zhou and Koltun 2014]
Offline

[Lee et al. 2020]
Real-time

TextureMe (ours)
Real-time

Fig. 1. Reconstruction result of TextureMe for ‘Sofa’ scene. TextureMe jointly recovers 3D geometry and high-quality texture in real time. The generated

texture of the reconstructed model is much sharper than the result obtained from a per-voxel color fusion approach. Although our approach runs in real time,
the reconstructed textures are even comparable to state-of-the-art texture mapping methods that run offline (see the supplementary video for a real-time

demo).

Three-dimensional (3D) reconstruction using an RGB-D camera has been
widely adopted for realistic content creation. However, high-quality tex-
ture mapping onto the reconstructed geometry is often treated as an of-
fline step that should run after geometric reconstruction. In this article, we
propose TextureMe, a novel approach that jointly recovers 3D surface geom-
etry and high-quality texture in real time. The key idea is to create triangu-
lar texture patches that correspond to zero-crossing triangles of truncated
signed distance function (TSDF) progressively in a global texture atlas. Our
approach integrates color details into the texture patches in parallel with
the depth map integration to a TSDF. It also actively updates a pool of

This work was supported by the Ministry of Science and ICT, Korea, through IITP
grants (SW Star Lab, 2015-0-00174; Al Innovation Hub, 2021-0-02068; Artificial Intel-
ligence Graduate School Program (POSTECH), 2019-0-01906).

Authors’ address: J. Kim, H. Kim, H. Nam, J. Park, and S. Lee, POSTECH, 77 Cheongam-
Ro, Nam-Gu, Pohang, Gyeongbuk, Korea 37673; emails: {jungeonkim, min00001,
hyeonseo.nam, jaesik.park, leesy}@postech.ac kr.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2022/03-ART24 $15.00

https://doi.org/10.1145/3503926

texture patches to adapt TSDF changes and minimizes misalignment arti-
facts that occur due to camera drift and image distortion. Our global texture
atlas representation is fully compatible with conventional texture mapping.
As a result, our approach produces high-quality textures without utiliz-
ing additional texture map optimization, mesh parameterization, or heavy
post-processing. High-quality scenes produced by our real-time approach
are even comparable to the results from state-of-the-art methods that run
offline.

CCS Concepts: « Computing methodologies — Mesh models; Textur-
ing;

Additional Key Words and Phrases: Real-time, 3D reconstruction, texture
mapping, single-view RGB-D

ACM Reference format:

Jungeon Kim, Hyomin Kim, Hyeonseo Nam, Jaesik Park, and Seungyong
Lee. 2022. TextureMe: High-Quality Textured Scene Reconstruction in Real
Time. ACM Trans. Graph. 41, 3, Article 24 (March 2022), 18 pages.
https://doi.org/10.1145/3503926

1 INTRODUCTION

Three-dimensional (3D) reconstruction has gathered widespread
attention since the last decade. In particular, as RGB-D sensors and
high-performance computing have become prevalent, effective al-
gorithms for real-time reconstruction of 3D objects and scenes

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

24:2 « J.Kimetal.

Voxel color

Vertex color

/D)
/

P
INV ¥
/S
Y=
Vi

Multipleptg(\tltgferatches

One texture tile
per voxel

Fig. 2. lllustration of different representations for coloring the geometry.
The target surface is drawn as a black curve, and the stored color infor-
mation of each representation is shown. Detailed color information can
be lost with vertex or voxel color representation. TextureFusion [Lee et al.
2020] (bottom left) assigns a texture tile for a voxel. Our approach (bottom
right) can assign multiple texture patches depending on the shape of the
reconstructed surface.

have been developed. KinectFusion [Newcombe et al. 2011] is a
representative real-time geometry reconstruction method. Follow-
up studies extended the approach to be able to process large-scale
scenes [Niefiner et al. 2013; Whelan et al. 2012] and to reduce ac-
cumulated reconstruction errors [Dai et al. 2017b].

These reconstruction methods utilize volumetric representation,
such as truncated signed distance function (TSDF), to update the
recovered surface. In the reconstruction process, TSDF integrates
noisy depth images and successfully produces a clean surface ge-
ometry. However, when surface color is required, the volumetric
representation has a limited ability to restore detailed color infor-
mation. In the conventional volumetric data structure, one voxel
stores only one color value; representing a detailed color texture
requires tiny voxels and would require significant memory.

To reconstruct a surface from a TSDF, the Marching Cubes algo-
rithm [Lorensen and Cline 1987] has been widely adopted. It can
produce multiple triangles from a single voxel. The triangles could
represent detailed color, but conventional approaches encode the
color by interpolating neighboring voxel colors. Consequently, the
amount of surface color detail is constrained by the volume res-
olution. Modern depth cameras such as Kinect Azure [Microsoft
2020] can capture high-definition (HD) quality color images, but
volumetric representation may miss useful color contents due to
its insufficient spatial resolution.

Offline approaches based on texture mapping have been pro-
posed to resolve the problem. In these approaches, a texture map
is generated from high-quality color images after geometry recon-
struction has been completed. Producing a global texture map by
merging color images often induces misalignments due to inaccu-

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

rate camera poses and image distortions. Prior methods attempted
to solve the problem by optimizing camera poses [Zhou and Koltun
2014], texture map coordinates [Jeon et al. 2016], and image re-
gions [Fu et al. 2018; Waechter et al. 2014]. These approaches gen-
erate high-quality texture maps, but they run offline with a sub-
stantial computational burden.

In this work, we propose a novel framework, which we call Tex-
tureMe, that jointly creates a high-quality texture map and the sur-
face geometry on the fly from a sequence of RGB-D images in real
time. The key idea is to maintain a special type of texture map,
which we call a global texture atlas, together with a TSDF volume in
the reconstruction process. A global texture atlas consists of right-
angled triangles, which we call texture patches, that store color de-
tails of triangle faces of the reconstructed surface. We construct
texture patches by mapping the triangles obtained from Marching
Cubes onto the input color images. The texture patches are inte-
grated on the global texture atlas to accumulate the surface color
details.

TextureFusion [Lee et al. 2020] is a contemporary work to ours,
and it achieves the same goal as our framework—building both ge-
ometry and texture map jointly in real time. TextureFusion asso-
ciates a facet of each voxel to a single two-dimensional (2D) tex-
ture tile, and the texture of only one facet is maintained for each
voxel (Figure 2). The method is fit for sufficiently small voxels.
However, due to the diverse polygon configurations from March-
ing Cubes and improper assignment of a texture tile to a voxel
facet, this scheme may yield inaccurate, blurry texture maps (see
Figure 14). The issue would become more serious if the size of the
voxel gets larger. On the other hand, our approach directly handles
one or multiple triangles from a single voxel extracted by Marching
Cubes. The triangles are seamlessly mapped to the global texture
atlas, enabling our method to avoid the inaccurate texture map is-
sue of TextureFusion.

Our approach is equipped with a few novel components to
improve the visual quality of reconstructed colored scenes. We
present a multi-scale optimization method for texture patch con-
struction from the input color image to minimize misalignments
among integrated texture patches. In addition, we introduce a
hysteresis-based TSDF filter to prevent unnecessary connectivity
changes of reconstructed triangles. By doing so, we can perform
a stable texture patch update. We propose an effective resampling
method to update the global texture atlas when the triangle con-
nectivity changes. We also present a weighting scheme that takes
into account effective information of new texture patches from the
input color image. All of these elements are integrated to produce
realistic colored scenes.

The contributions of this article are summarized as follows:

e We propose TextureMe, a novel real-time 3D reconstruction
framework that generates a geometry model and a high-
quality texture map simultaneously. With the framework, a
texture-mapped scene can be immediately obtained on the fly
without any post-processing, such as mesh parameterization
or texture map optimization.

e Our TextureMe framework fully exploits the color informa-
tion in the input color images by building and updating a
global texture atlas during the reconstruction process.

TextureMe: High-quality Textured Scene Reconstruction in Real Time « 24:3

e We introduce effective methods to handle misaligned texture
patches, mesh connectivity changes, and texture patch up-
dates. These methods help our framework to obtain a high-
quality texture map.

e Our real-time system produces high-quality texture mapping
results that are comparable to prior offline methods. We pro-
vide comprehensive comparisons with prior methods qualita-
tively and quantitatively.

2 RELATED WORK

Dense 3D surface reconstruction. In contrast to 3D reconstruc-
tion techniques that utilize complete 3D point clouds [Kazhdan
and Hoppe 2013] or 2D images [Furukawa et al. 2010; Furukawa
and Ponce 2010], online dense reconstruction methods integrate
incoming depth frames incrementally to obtain complete models.
The option of fusing depth maps in an explicit form such as a
mesh [Turk and Levoy 1994] is not viable; thus, almost all on-
line methods adopt volumetric representation [Curless and Levoy
1996]. KinectFusion [Newcombe et al. 2011] is the first real-time
volumetric fusion system for 3D reconstruction. For each incom-
ing depth map, it estimates the camera pose and updates TSDF on
a regular volume grid. Kintinuous [Whelan et al. 2012] extended
KinectFusion by conditionally moving the TSDF volume to recover
larger scenes. Niefiner et al. [2013] used voxel hashing to handle a
large volume and relieve the computational burden of a hierarchi-
cal structure based on a GPU-based octree [Zhou et al. 2011].

As the scanning area gets larger, the accumulation error of esti-
mated camera poses may increase. A representative offline method
[Zhou et al. 2013] segments the input stream and reconstructs local
fragments, which are then registered for loop closure [Choi et al.
2015]. Other recent methods perform loop closure online. Elastic-
Fusion [Whelan et al. 2015] constructs a deformation graph and
non-rigidly deforms surfel-based models. BundleFusion [Dai et al.
2017b] uses hierarchical pose optimization based on image features
and dynamically updates the reconstructed scene on the fly.

Color mapping for 3D reconstruction. Several methods have been
introduced to recover the color information of the reconstructed
geometry. VoxelHashing [Niefiner et al. 2013] provides colored
scene reconstruction in real time. This approach assigns a sin-
gle color to each voxel to reconstruct a colored model. Zhou
and Koltun [2014] proposed an optimization-based color mapping
method that corrects inaccurate camera poses by maximizing pho-
tometric consistencyand Maier et al. [2017] recover spatially vary-
ing spherical harmonics for colors, camera parameters, and cam-
era poses together with geometry. These approaches utilize the
vertices of a dense surface to represent color information, and the
quality would be degraded for sparse models.

As another line of work, texture mapping methods that are not
restricted to the density of surface geometry have been proposed.
In these methods, a texture map is generated by mosaicking sub-
regions of color images, in which the subregions are selected by
solving a labeling problem [Fu et al. 2018; Gal et al. 2010; Huang
et al. 2017; Lempitsky and Ivanov 2007; Li et al. 2018; Waechter
et al. 2014] or by using heuristics that consider view direction
[Bernardini et al. 2001; Velho and Sossai Jr 2007]. The seams on
image region boundaries are reduced by a few color correction

RGB-D

Image Geometry (TSDF)

Update > Mesh Extraction

Pose Estimation =}

L Texture Atlas Texture Patch
Update Construction & Optimization

J
rendered color, depth, and normal maps of a textured mesh model

Fig. 3. Overview of our TextureMe framework.

methods, including gradient-domain image composition [Pérez
et al. 2003]. Another approach utilizes texture blending. Jeon
et al. [2016] proposed an optimization-based method that updates
texture coordinates to reduce misalignments of subtextures to be
merged. All of these methods operate offline; they first need to se-
lect high-quality keyframes from the input color image sequence
and then perform substantial optimization.

There exist a great deal of image-based rendering methods based
on light fields [Buehler et al. 2001; Chen et al. 2002; Gortler et al.
1996; Levoy and Hanrahan 1996], projective texture mapping [De-
bevec et al. 1998], and patch match optimization [Bi et al. 2017].
They synthesize imagery from a novel viewpoint without gener-
ating a texture atlas, in which a proxy geometry can be used for
better quality of synthesized images. Recently, deep-learning ap-
proaches have been introduced for novel view synthesis [Chen
et al. 2018; Huang et al. 2020; Liu et al. 2020; Mildenhall et al. 2020;
Thies et al. 2019]. In these approaches, production of high-fidelity
imagery requires dense image samples. Xu et al. [2019] proposed a
deep convolutional neural network that synthesizes a novel view
from sparse, wide-baseline image samples. A few methods that use
deep learning also achieve geometry reconstruction in addition to
novel view synthesis from images [Liu et al. 2020; Mildenhall et al.
2020]. All of these methods need a reconstructed model that is used
as a proxy geometry, or heavy computation for optimization or
deep network training, making them run offline.

TextureFusion [Lee et al. 2020] is a contemporary work to ours,
achieving the same goal of building both geometry and texture
map jointly in real time. TextureFusion updates geometry and a
texture map in real time without explicit mesh extraction. With
the assumption that a voxel size is sufficiently small, texture infor-
mation of one voxel facet is maintained for each voxel. To resolve
color misalignment, they proposed spatially varying perspective
warping. In contrast, our method constructs and updates triangu-
lar texture patches that correspond to triangle faces extracted from
Marching Cubes. As a result, the produced texture map from our
approach can be properly applied to the geometry regardless of
voxel size (see Figure 14). To handle texture misalignment, we effi-
ciently optimize the texture sampling coordinates in a multi-scaled
image domain.

We present high-quality colored scene reconstructions using
an HD quality RGB-D camera. The results are qualitatively and
quantitatively evaluated using evaluation metrics designed for 3D
reconstruction.

3 SYSTEM OVERVIEW

TextureMe (Figure 3) performs 3D geometry reconstruction and
texture map generation simultaneously in real time.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

24:4 « J.Kimetal.

surface 1. 1
[voxel I '
® negative SDF == Q
® positive SDF Sht

color image

texture atlas

voxel grid

Fig. 4. Texture patch representation. When a depth image is integrated to
update the TSDF in the voxel grid (middle), voxels containing the surface
generate triangle faces using Marching Cubes. In our pipeline, each trian-
gle face is mapped onto a texture patch in the global texture atlas (right). A
texture patch takes rich color content from the color image (left) and puts
it in the global texture atlas.

The geometry reconstruction module of TextureMe is built
upon KinectFusion [Newcombe et al. 2011], which reconstructs
a complete 3D model by integrating noisy input depth images.
KinectFusion uses a variant of ICP [Low 2004], which takes only
geometric alignment into account. However, we observed that
using additional color information could relieve color misalign-
ments. Similarly to Park et al. [2017] and Whelan et al. [2015],
we adopt a Colored ICP that penalizes the intensity differences
between a rendering of the reconstructed model and an input
color image. For an RGB-D frame in the input sequence, the
reconstruction module performs camera pose estimation to obtain
the current camera pose Q. The module then updates the TSDF
volume for surface reconstruction using the input depth image
D; and the estimated pose Q.

To construct texture patches, a mesh model of the recon-
structed geometry is necessary. TSDF implicitly represents ge-
ometry during reconstruction; thus, we use the Marching Cubes
algorithm [Lorensen and Cline 1987] to extract a mesh M. Af-
ter obtaining triangle patches from each voxel that contains zero-
crossings, we map the triangles onto the input color image Cj
using Q. to obtain the corresponding color details, then construct
texture patches for the current frame. We use the texture patches
to update the global texture atlas maintained so far. The updates
are performed by adaptively averaging the texture patches from
the current frame with the corresponding texture patches in the
global texture atlas.

The entire process of geometry and texture updates repeats for
every frame to produce a fully textured mesh model. In our frame-
work, the intermediate mesh model at each frame can be fully tex-
tured with the global texture atlas reconstructed until then, and
the mesh model evolves in terms of coverage and quality through
the reconstruction process.

The core of TextureMe is to effectively represent, store, con-
struct, and update texture patches that constitute the global tex-
ture atlas. The representation and storage of texture patches are de-
tailed in Section 4. The construction and update of texture patches,
as well as handling of mesh connectivity changes, are covered in
Section 5. Misalignments among texture patches can be caused by
inaccurate pose Qy, rolling shutter, or imperfect synchronization
of depth and color sensors, and should be resolved before texture
patch update. We present an optimization method for the step in
Section 6.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

free A

N
DD DD

allocate B

[free cell
[allocated cell

| current pointer
¥™\ free operation
"™ allocate operation

voxel grid texture patch indices
¥ VAV VAVAYAYd|
S I S B R AR N =
[PNPNPN free A
Y
eee T [« s s ss[7]]
4 allocate B
...| | | |4‘ 5‘15‘16‘17‘18‘19‘
free list texture atlas

Fig. 5. Dynamic storage management for texture patches. Consider a case
in which texture patches of voxel A are not needed anymore and voxel B
needs to get one. Three texture patches (index: 3, 4, 5) for voxel A are re-
leased, and B receives one of the released texture patches (index: 3). The
assigned texture patch indices are stored in the voxel grid. The free list
shown below maintains ready-to-use texture patch indices. Once a tex-
ture patch index has been released, it is added to the free list (free opera-
tion). Then, it can be reallocated to another voxel when needed (allocate
operation).

4 TEXTURE ATLAS REPRESENTATION

For real-time processing, all of the main components of TextureMe
are performed on a GPU. This section presents an efficient data
structure for our global texture atlas to maintain texture patches
during the reconstruction process.

4.1 Texture Patch and Texture Atlas Representation

Texture patch. Our approach creates and progressively updates
texture patches as the reconstruction procedure advances. A tex-
ture patch is a triangular region in the texture domain that stores
color details for the corresponding triangle face of the recon-
structed model. In our implementation, texture patches are main-
tained as triangles that reside in a 2D global texture atlas on the
GPU side. They are stored as right-angled triangles for efficient
memory usage.

Texture atlas. A texture atlas is a large image that stores a set of
right-triangled texture patches (Figure 4). Before the reconstruc-
tion process begins, we preallocate memory on the GPU for a tex-
ture atlas. At the same time, by uniformly partitioning the texture
atlas into right-angled triangles, we precalculate UV coordinates of
vertices of each texture patch in the texture atlas. We predefine the
minimal size of a texture patch that can store the possible maximal
texture details from input color images. To be specific, we calculate
the size of a right-angled triangle for a texture patch by projecting
the size of a voxel onto the color image plane, where the voxel is
distant from the RGB-D camera by the minimum depth that the
camera can estimate. Each triangle face of the reconstructed final
mesh M has a unique corresponding texture patch in the texture
atlas.

4.2 Storing and Managing Texture Patches

We generate triangle faces from zero-crossing voxels and assign
them unique indices of texture patches. The maximum number of
triangles n;,; that can be extracted from a voxel is bounded due

TextureMe: High-quality Textured Scene Reconstruction in Real Time « 24:5

to the characteristics of Marching Cubes, where n;,; is five in our
implementation. If n,, denotes the total number of voxels in the
volumetric space used for reconstruction, a naive implementation
would be to allocate memory for a texture atlas to store n;,; X ny,
texture patches. However, this approach wastes a massive amount
of GPU memory because the portion of voxels crossing the recon-
structed surface is quite small. In addition, most of them would
generate fewer than n;,; triangles. Our goal is to manage the re-
sources effectively so that memory space for the texture atlas fits
in a budget during reconstruction.

We use a free list to manage storage for texture patches effec-
tively. The free list is a stack that contains indices of unoccupied
texture patches in the texture atlas. At the outset, we fill all
possible texture patch indices ([0, 1,...n — 1]) into the free list,
where n is the maximum number of texture patches that can fit
into the texture atlas. When the storage for a new texture patch
is requested, we POP an index from the free list. When a texture
patch no longer needs to be maintained in the texture atlas, we
release the storage and PUSH its index to the free list. PUSH and
POP operations are performed with an atomic GPU operation.
Figure 5 illustrates the mechanism.

During the reconstruction process, new texture patches must
be created when a voxel gets involved with zero-crossings the first
time at a frame. Then, we create and store the texture patches in the
texture atlas, where the texture patch indices are maintained in the
voxel. On the other hand, texture patches are released from a voxel
when the voxel is revisited with zero-crossings at a later frame but
different numbers, types, or both of texture patches are needed for
the voxel. Note that the numbers, types, or both of extracted trian-
gles may change in Marching Cubes depending on the configura-
tions of zero-crossings. In that case, we release old texture patches
with the indices maintained in the voxel and create new texture
patches based on the current zero-crossings. Our simple but effec-
tive resampling method from old to new texture patches will be
explained in Section 5.4. If the types of texture patches needed for
a revisited voxel remain the same as before, we keep and update
the texture patches in the texture atlas.

5 TEXTURE PATCH FUSION

This section elaborates on how to construct and update the rich
color contents of texture patches stored in the texture atlas using
an input color image. We first construct new texture patches by
mapping triangles extracted from the updated TSDF volume onto
the color image. Then, we adaptively fuse the new texture patches
from the current frame with the existing texture patches main-
tained in the texture atlas. We use a weighting scheme reflecting
the blurriness of a color image for texture patch fusion. In addi-
tion, we introduce effective solutions to handle mesh connectivity
changes that induce complications on texture patch fusion.

5.1 Constructing Texture Patches from the
Current Frame
Let My be the mesh model extracted from the TSDF volume us-

ing Marching Cubes at the current frame k. We construct a tex-
ture patch T for each triangle in M. By projecting a triangle in

M. onto the current color image Cj using the estimated camera
pose Q. and camera calibration parameters, we can determine the
corresponding triangle on Cj. that contains the color information
for texture patch Tl,c' We use barycentric coordinates to map the
color details from Cj onto T;c. For a position inside T/ , we obtain
the corresponding position on Cy by using the same barycentric
coordinates.

5.2 Updating Texture Patches in the Texture Atlas

A new texture patch T/ has a corresponding texture patch Ty_; in
the global texture atlas if the number and types of texture patches
for the voxel that contains T’k remain the same at the current frame
k. Otherwise, we resample the texture patch Tj_; corresponding
to TI'C from the texture atlas, as will be described in Section 5.4.
In both cases, texture patch T;_; contains the color details accu-
mulated up to the previous frame k — 1. To smoothly fuse color
information, we perform weighted averaging of Tl/c and Ty_q.
Texture patch update is defined as

T Wi 10T + W, 0T
k= Wi + W/,

, 1)

where, for simplicity, we omit texture coordinates and consider
element-wise multiplication and division. T} denotes the texture
patch in the texture atlas after update. Wy is its weight map that
contains a scalar weight for each texel in Ty. Wy is defined as

Wi =min(Wy_; + W;cv Wmax), ()

where min is the element-wise minimum operator. wy,qx is a pre-
defined maximum weight and W) is the weight map for T . We
perform this update with each texture patch T; constructed from
the current mesh M.

The validity of color information in T;{ is related to the normal
direction, the depth from the camera, and the texture sharpness.
To reflect these factors, we define the weight map W;C for T;C as

W,k(P) =Wn - Wq - Wp, ®3)

where p denotes a 2D pixel position inside T]’C. Let q be the 3D
position that corresponds to p within the triangle of M whose
texture patch is Tl;' Then, w, is defined as max(n - v, €,,), where
n and v denote the normal vector and the view direction of 3D
position q, respectively. €, is a fixed small positive value to pre-
vent unfilled texture patches caused by noisy normal vectors. wy
is inversely proportional to the depth of q from the camera, as
wy = exp(—adi), where d,, = min(max(%,o), 1) and
max min

a is a fixed positive value. d is the depth of q. dpmin and dpax are
constant values that normalize the depth range.

Camera motion blur frequently occurs in real-time scanning. If
a blurry texture patch has a large weight in texture patch update
using Equation (1), the updated texture patch would also become
blurry. To avoid this artifact, we make the weight small for any tex-
ture patch extracted from a blurry color image. We compute the
blurriness using a perceptual blur metric [Crete et al. 2007]. The
value of blurriness by, is between 0 and 1, and a smaller value means
a sharper image. Then, wy, is defined aswy, = 1—

-1
i) I+exp(y (w—bi))’
where wy is the reference blurriness. We use wy = pp — op, where

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

24:6 « J.Kimetal.

TSDF
+6 —— l—:

Filtered TSDF

S TsDF

Time

Fig. 6. Hysteresis-based TSDF filtering. (Left) Yellow dotted curve shows
that an original TSDF value of a voxel fluctuates during geometry recon-
struction. Blue and red curves indicate hysteresis-based filter output. The
filter produces output according to whether and from which direction the
original TSDF value has entered the wavering region (|x| <). In this
example, TSDF value enters the wavering region from above; thus, the
output of our filter is +8. The output remains the same until the origi-
nal TSDF value becomes equal to or less than —&. Once it has gone down
into x < —§, the filter switches the output of the wavering region to —4d.
(Right) Visualization of the filter in terms of input and output.

Hr and oy are the mean and the standard deviation of the blurri-
ness values from the color images of previous frames. Weight wy,
becomes 0.5 when by equals wj and rapidly decreases as by gets
bigger. Parameter y controls the decay speed of the weight; we use

Y = = in our experiments, where f is a scalar constant.
Ok

5.3 Reducing Mesh Connectivity Changes

In practice, a depth image is often noisy, even if a denoise filter
is applied. The depth noise can influence TSDF to be wavering. If
the TSDF value of a voxel oscillates across zero value, the number
and types of triangles extracted from Marching Cubes tend to fre-
quently change as well. We design a hysteresis-based TSDF filter
to stabilize the mesh connectivity variation. The filter behaves as
an identity function when the absolute value of the input TSDF
value is equal to or larger than §. Otherwise, the filter outputs §
or —¢ according to the history of the input TSDF values. Figure 6
illustrates the filter.

Specifically, let ¢ and t._; be the original TSDF values of a voxel
at the current k and the previous k — 1 frames, respectively. Let tl’C
and t; _ be the filter output for #; and t;_, respectively. Then, t;
is determined by

tr iflt] =6

+5 ifltgl <dandtp_1 =+

-5 ifltg|<Sandtj_; < -6
otherwise (|tx| < § and |t;._;| < J)

A IV

5.4 Resampling Texture Patches

If the number, types, or both of triangles extracted from a voxel
have changed, the set of texture patches maintained in the voxel
needs to be replaced with a new set. We handle this case by re-
sampling the color information of the new texture patches from
the global texture atlas reconstructed so far. The key idea is ren-
dering a snapshot of the current texture-mapped reconstructed
model using the estimated camera pose Q. of the current frame

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

Fig. 7. Image warping for texture patch optimization. We create a regular
grid on both a rendered color image C}_(left) and an input color image Cg
(right), and generate a planar textured mesh by connecting grid points. We
optimize the vertex positions of the planar mesh on Cy to warp Cy onto
CJ.- Red circles show optimized vertex positions. Note that the mesh and
the sample points {s} are shown for visualization only. In practice, we use
much denser sample points for optimization.

k. Then, color information for the new texture patches can be sam-
pled from the rendered image in the same way as the texture patch
construction described in Section 5.1 except that the rendered im-
age replaces the input color image Cj. We can also resample the
weights of the new texture patches in a similar way by rendering
texture patch weights stored in the global texture atlas as well as
color information. In this manner, the mesh model with a changed
set of surface triangles can inherit the same texture information
from the previous frame.

6 TEXTURE PATCH OPTIMIZATION

In practice, camera pose and estimated geometry cannot be per-
fectly accurate. Such inaccuracy may incur misalignment of tex-
ture information in texture patch update using Equation (1). In-
put color images themselves also often suffer from lens distortions,
rolling-shutter artifacts, and imperfect color and depth image syn-
chronization. In this section, we introduce an optimization method
to adjust the texture patches used for texture patch update to be
more resilient to these challenges.

6.1 Image Warping Field

In the ideal case with perfect camera pose estimation and no imag-
ing artifacts, an input color image Cj. and the rendered image Cz
of the textured reconstructed model should match each other in
the overlapped regions. However, in practice, due to camera drifts
and image distortions, Cy and CZ can become slightly misaligned.
We obtain an image warping field that warps Cy onto CZ to resolve
the misalignments and then use the warping field to determine op-
timized sampling positions of texture patches T;c to be used for
texture updates.

Similarly to Zhou and Koltun [2014], we use a regular grid to
define a warping function. For efficient computation on GPU, we
regard the input image Cy. and the rendered image C;_as textured
planar meshes, where updated vertex positions define a warping
function. We make a virtual planar mesh by connecting grid points
to make triangles as shown in Figure 7. Among the two possible
options to form triangles on a grid cell, we select the one that min-
imizes the depth differences in the resulting triangles. Then, the
variables for optimization are 2D vertex positions of the mesh over-
laid on Cy.

TextureMe: High-quality Textured Scene Reconstruction in Real Time « 24:7

6.2 Objective

We formulate an objective that minimizes photometric discrepancy
between a warped color image Cy and the rendered color image
C]C of the reconstructed model. To calculate photometric errors be-
tween the two 2D textured meshes, inspired by the work of Jeon
et al. [2016], we use intensities of Cz and Cy at the selected loca-
tions {s} on the image plane. A location s corresponds to prede-
fined barycentric coordinates in a 2D mesh triangle.
The objective for image warping is defined as

Etex(U) = Egara(U) + AregEreq(U), (5)

where Ej,:,(U) evaluates photometric errors, and Eyeq(U) pre-
serves edge lengths in a 2D mesh. Optimization translates 2D orig-
inal vertex positions Uy = {ué} of the mesh overlaid on Cy. to opti-
mized ones U = {u’}. The data term is written as

Faaa) =) 3 S (cu (stb 1) ~ 5 (st 1))

VEV)\ fGFv bEBf
(6)

where V) is the set of vertices of the planar mesh on Cg, Fy, is
the set of faces that contain vertex v, Bf is the predefined set
of barycentric coordinates to densely sample intensities in the
images, {uf} is the set of vertex positions of a triangle f, and
s(b, {u/}) is a sampled position in an image corresponding to the

barycentric coordinates b in f. ug indicates initial positions before
optimization. The regularization term is defined as

Ereg(U) = > ()~ 1)), 0

VeV v/ Ny (v)

where v’ is a vertex in the 1-ring neighborhood Nj(v) of
v, l(uv,u”/) is the Euclidean distance between u? and uv/,
and I(ug ,ué’,) is the distance between the two vertices before
optimization.

6.3 Efficient Optimization

The objective is formulated as non-linear least squares; thus, we ap-
ply the Gauss-Newton method to optimize U. In practice, solving
a large linear system of Jacobian matrix requires a highly efficient
linear system solver. Instead of constructing Jacobian using Equa-
tion (5), similarly to Jeon et al. [2016], we exploit the locality of the
problem that can be readily parallelized on GPU.

To be specific, we optimize u’ € U of a vertex v; independently
from other parameters &/ € U\ u’. When optimizing u’ of vertex
v; using Equation (5), we regard parameters u/ of the 1-ring neigh-
borhood of v; as constant. Therefore, for each vertex v;, only nx 2
Jacobian matrix and n X 1 residual need be calculated, where n is
the number of sample points {s} inside the 1-ring faces of vertex
v;. Then, we obtain a step vector Au’ for updating u’ by solving
the linear system from Jacobian and the residual.

We update u’ € U of every vertex v; in parallel on the GPU. We
iterate this update process until it approaches the predefined maxi-
mum iteration number or the energy of the objective converges. To
achieve real-time performance, we use CUDA to fully parallelize
computation of Jacobian and residual, as well as linear system solv-
ing, for each vertex.

6.4 Multiscale Optimization

The computation time of texture patch optimization depends
on the size of the regular grid laid on Cy, because the size deter-
mines the number of unknowns u’ in U. The time is also affected
by the amounts of texture misalignments as U are incrementally
updated through iterations. If texture misalignments are large rel-
ative to the grid cell size on Cg, the number of iterations would in-
crease. However, if we use a large grid cell to reduce the iterations,
small texture misalignments could not be resolved. To handle this
trade-off, we introduce a multiscale approach to our texture patch
optimization.

We construct (1) Gaussian pyramids of the input color image
C}. and the rendered image Clrc and (2) a hierarchy of regular grid
meshes corresponding to the image pyramids. The same triangle
size is used for the grid mesh at each level of the pyramids. In
this way, a triangle at a coarser level covers a larger region on the
original image.

With this configuration, we optimize the objective (Section 6.2)
from coarse to fine levels progressively. For each level [of the pyra-
mid except for the coarsest level, we set initial vertex positions Uy ;
of the grid mesh by interpolating the previously optimized ones
Uof 1t at level [— 1. Starting from these refined vertex positions, U;
at level I can be optimized with only a few iterations.

6.5 Optimized Texture Patch Sampling

We use the computed warping field that aligns C onto Cz for opti-
mized sampling of new texture patch T;(in Section 5.1. Initially, the
sampling positions for T/ on Cj. are determined by projecting the
corresponding triangle face in the current 3D mesh M. Let xq be
the initial 2D position of a projected vertex v on C.. We have a 2D
(’;pt - u(i) for each vertex of the 2D grid mesh used
for image warping. Then, the updated position x of the projected
vertex v is determined using the 2D warping vectors. Specifically,
let f be the triangle face of the 2D grid mesh that contains xo. We
calculate the barycentric coordinates of x(inside face f and use
the barycentric coordinates as the weights for interpolating the 2D
warping vectors of three vertices of f. The interpolated 2D warp-
ing vector is then added to x(to obtain the updated position x.
Finally, the updated vertex positions of the projected triangle
are used to sample color information for T} from Cy. As a result,

warping vector u,

misalignments are reduced between texture patches T;C and Tr_4
that are used for texture update in Section 5.2.

7 EXPERIMENTS

7.1 Dataset and Implementation Details

Dataset. To evaluate our TextureMe system, we recorded sev-
eral medium-sized indoor and outdoor scenes by using an Azure
Kinect DK [Microsoft 2020]. Most existing datasets have color
and depth image resolutions of the same size, whereas the Azure
Kinect RGB-D camera supports various color and depth image res-
olutions. Among them, we utilized 1,080 p for color images and
576 p for depth images to capture high-quality color images. The
numbers of frames in our scene data range from 600 to 2,400
(30 fps). We perform additional experiments for several scenes

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

24:8 « J.Kimetal.

Table 1. Timing of the Components in Our TextureMe System on Some Scenes in Different Datasets (Ours, 3D ScENE [Zhou and Koltun 2014], and
ScANNET [Dai et al. 2017a]), and with Different Voxel Sizes (1 cm, 2 cm, and 4 cm)

Unit: milliseconds

Scene Image resolution Geometry module Texture module Others Total
RGB Depth Pose TSDF | Construction Optimization Update
OUR DATASET, Sofa 1920 X 1080 640 X 576 | 4.7 +0.8 3.9+ 0.9 8.6 £1.6 9.1+£0.8 92+19|41+04|39.6+4.6
3D ScENE, Fountain 640 X 480 640 x 480 |43 £0.7 2.0+0.4 54 +0.8 7.6 £0.7 34+0.7]26+04]252+19
ScANNET, Scene0261_02 | 1296 X 968 640 X 480 | 4.6 £ 0.7 2.3 +0.8 5.7+ 1.4 7.9 £0.8 6.9+17|45+09]|321+4.1
. Geometry module Texture module
1 h Total
Scene Voxel size Pose TSDF ‘ Construction Optimization = Update ‘ Others ‘ ota
OUR DATASET, Sofa 1cm 47+£08 39+09 8.6 + 1.6 9.1+0.8 92+19 | 41+04 | 39.6 £4.6
OUR DATASET, Sofa 2 cm 43+09 16+04 3.0+0.7 8.2+0.7 6.0+15|31+05 | 26.1+27
OUR DATASET, Sofa 4 cm 43+£08 09+0.2 1.6 £0.3 8.2+0.7 33+07 | 30+04 | 21.3+14

Image sizes (in pixels) for datasets are also presented. Pose and TSDF denote Colored ICP and TSDF update on the volume (Section 3), respectively. Construction in the texture mod-
ule includes mesh extraction using Marching Cubes and building connections between mesh triangles and texture patches in the global texture atlas (Section 4). Optimization indi-
cates texture patch optimization (Section 6). Update denotes texture patch update (Section 5). Others include extra computations such as blurriness score calculation, image pyramid
generation for texture patch optimization, and rendering vertex and normal maps. The numbers indicate the average times in milliseconds for handling a single RGB-D frame.

Table 2. Timing of Other Online Systems ([Nief3ner et al. 2013] and [Lee et al. 2020]) on Some Scenes in Different Datasets (Refer to Table 1 for the Scene
Information), with Different Voxel Sizes (1 mm, 4 mm, 1 cm, 4 cm)

Unit: milliseconds

Scene [Niefiner et al. 2013] ‘ [Lee et al. 2020] Scene | Voxel size ‘ [Niefiner et al. 2013] ‘ Voxel size ‘ [Lee et al. 2020]
Sofa 7.1+0.8 60.8 £ 3.9 1 mm 423 £ 23 4 mm 60.8 £ 3.9
Fountain 4.9+ 0.7 28.2 +£43 Sofa 4 mm 7.1+0.8 1 cm 36.4 + 4.2
Scene0261_02 54 +0.7 30.1 +3.2 1cm 6.4+0.9 4 cm 53.7+ 23

The numbers indicate the average times in milliseconds for handling a single RGB-D frame. All numbers in the left sub-table are calculated using the 4 mm voxel size, except
that the number of ‘Scene0261_02" for Lee et al. [2020] is evaluated with the 1cm voxel size due to GPU VRAM limitation. The right sub-table shows the average times with
varying voxel size in the ‘Sofa’ scene. Niefiner et al. [2013] always met real-time speed with the 4 mm voxel size, whereas Lee et al. [2020] slowed when using small voxels

(4 mm) in scenes with high-resolution color images, such as ‘Sofa.

from public datasets such as the 3D ScenE dataset [Zhou and
Koltun 2013, 2014] and SCANNET [Dai et al. 2017a].

Parameters. We used the following parameters for all of the re-
sults in this article. For texture patch update, wpax = 5, €5 =
0.0001, @ = 3, f = 3, dmin = 0.35, and djqx = 3.4. For hysteresis-
based TSDF filter, § = 0.1cm. For texture patch optimization, we
set the width of a regular grid cell to 50 and determine the height
by following the aspect ratio of the color image. The number of
levels in the Gaussian image pyramid L = 3, and the numbers of
the max iteration for the Gauss-Newton optimization are set to 5,
4, 4 from the coarsest to the finest levels. The sample points {s}
inside triangles that constitute the regular grid cells are sampled
every two pixels horizontally and vertically. Last, Ayeg = 0.001.

Seamless rendering. In our framework, the spatial adjacency in
the generated texture atlas does not indicate spatial adjacency on
the reconstructed 3D model. Therefore, adjacent texture patches
may contain different contexts. If we render a reconstructed model
with its texture atlas by a typical texture mapping method, bleed-
ing artifacts [Carr and Hart 2002] may be observed on the bound-
aries of texture patches. To resolve the problem, we introduce a
gutter space on the boundary of each texture patch. This space can
be filled by fetching a slightly larger triangular patch than the real
projected one from a color image. When the reconstructed model

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

is texture-mapped, the gutter space prevents blending of adjacent
texture patches in the texture atlas.

Timing. We used a PC equipped with an Intel i7-8700K 3.7GHz
CPU, 64 GB RAM, and a single NVIDIA Titan RTX GPU having
24 GB VRAM. We fully utilize both NVIDIA CUDA API and
OpenGL API to implement our TextureMe system. With our imple-
mentation, the average processing time for geometry reconstruc-
tion is 6~9 ms per frame. Our texture fusion module has three com-
ponents: surface triangle and texture patch construction, texture
patch optimization, and texture patch update in the texture atlas.
The computation time of each component is proportional to the
number of faces extracted at the current viewpoint, the frequency
of mesh connectivity change, the size of a texture patch, and the
color image resolution. For surface triangle construction, we per-
form Marching Cubes. To reduce the computation for Marching
Cubes, our system extracts mesh triangles from zero-crossing vox-
els only within the current view frustum. In Table 1, we report the
computation time of the respective component according to dif-
ferent types of datasets, where 1-cm voxel size is used. The table
also shows the computation time changes of each component ac-
cording to different voxel sizes. Among the aforementioned main
factors of texture module computation time, three (number of ex-
tracted faces, frequency of mesh connectivity change, and size of

TextureMe: High-quality Textured Scene Reconstruction in Real Time « 24:9

WLk

Colored ICP + Averaging

mft‘]

ICP + Averaging

W 1.

Colored ICP + Optimization Input color image

Fig. 8. Ablation study on our system with different pose estimation schemes (ICP and Colored ICP) and texture update methods (Averaging and Optimiza-
tion). The images are rendered from textured geometries obtained by three approaches (ICP + Averaging, Colored ICP + Averaging, and Colored ICP +
Optimization). ICP + Averaging produces blurry textures. Colored ICP resolves global camera drifts to some extent, but it cannot relieve spatially vary-
ing misalignments. Our approach indicated as Colored ICP + Optimization produces better results. For these results, we use fountain in the 3D ScENE
dataset [Zhou and Koltun 2014] and scene0261_02 in the ScanNet dataset [Dai et al. 2017a].

a texture patch) are strongly correlated with voxel size. The com-
putation time of texture patch construction increases as the voxel
size decreases because the number of managed voxel-to-texture-
patch mappings increases. Using larger voxels increases memory
locality of generated texture patches and decreases the total num-
ber of updated texels in the global texture atlas during scanning,
reducing the computing time for texture patch update. In contrast,
texture patch optimization is less affected by voxel size variation,
because the optimization is performed in the image domain.

7.2 Analysis

Effect of Colored ICP. We use Colored ICP to estimate the camera
pose that minimizes the point-to-plane errors and the photometric
errors simultaneously (Section 3). Global color misalignments be-
tween an input image and the rendered image are considerably
reduced by utilizing color information (Figure 8).

Effect of texture patch optimization. Colored ICP effectively re-
duces global color misalignments, but spatially varying misalign-
ments remain due to various distortions (Figure 8). We handle the
problem by computing a warping function to align an input color
image to the rendered color image of the reconstructed model tex-
tured with the global atlas. Figure 9 demonstrates that our multi-
scale texture patch optimization can reduce large and small mis-
alignments between the input color image and the rendered color
image with only a few iterations of optimization. Figure 9 also
shows the effect of the multi-scale approach compared with the
single-scale one. To obtain the optimization results (Figures 9(c),
9(d)), we used the same iteration number for both approaches.
Computation of the single-scale optimization took about 1.7 ms
longer than the multi-scale approach. Some iterations of the multi-
scale approach run at coarse scales and take fewer computations
than in single-scale optimization. With our multi-scale approach,
we can effectively reduce misalignments between texture patches

involved in texture fusion, which is hardly resolved even with
globally consistent pose estimation approaches, such as BundleFu-
sion [Dai et al. 2017b]. Qualitative comparison with BundleFusion
is shown in Figure 10. As a result of texture patch optimization, the
textured model keeps sharper and clearer color information.

Resilience to fast camera motion. To test the robustness of our
system in fast camera motion, we generated two differently sam-
pled sequences from the ‘Fountain’ scene, in which the sequences
consist of RGB-D images sampled every 4 or 16 frames, respec-
tively. As shown in the left image of Figure 11, our system can re-
cover a sharp texture well in four-times-fast camera motion. How-
ever, when estimating entirely wrong camera poses due to too-fast
camera motion, our system fails, as in the right image of Figure 11.
Overall, our system works stably and reconstructs sharp textures
in various scenes under modest camera pose accuracy (Figures 15,
16, and 18).

Effect of hysteresis-based TSDF filtering. Our hysteresis-based
TSDF filter is designed to reduce mesh connectivity changes.
It helps stable accumulation of color information onto texture
patches by reducing the number of texture patch resamplings.
However, an excessively high § could cause a non-smooth recon-
structed mesh as a side effect. Based on this observation, we se-
lected 6 = 0.1 cm to balance the qualities of texture and geometry.
Figure 12 demonstrates the impact of the filtering.

Less sensitivity to voxel size. Compared with the volumetric color
fusion approach, the obvious benefit of our approach is that the
texture mapping result is less affected by the voxel size, as shown
in Figure 13. This is a natural consequence of our pipeline in that
texture patches are maintained for voxels while volumetric color
fusion stores single color values. Since VoxelHashing [Niefiner
et al. 2013] still has spare computational resources for real-time
processing when using the 4-mm voxel size, we performed an

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

24:10

J. Kim et al.

(b)

(@

Fig. 9. Texture patch optimization. Given an input image Cy and the ren-
dered image C]z of the reconstructed mesh, let C]‘c” be the warped in-
put image obtained by our multi-scale texture patch optimization. (a) is
(Cx + Cp)/2 and shows that only improving the camera pose using color
information cannot handle spatially varying distortions. (b) is (C}Y +C[) /2
and shows that our texture patch optimization helps avoiding a blurry tex-
ture map. (b) looks sharper as the input image is properly aligned with the
rendered image. (c) and (d) show the final textured models obtained using
the single-scale and multi-scale approaches in texture patch optimization,
respectively. The multi-scale approach (d) corrects various texture patch
misalignments more effectively than the single-scale one (c).

(@) (b) ©

Fig. 10. Final reconstructed models of (a) VoxelHashing [Niefiner et al.
2013] and (b) BundleFusion [Dai et al. 2017b] using 4-mm voxels. (c) Our
TextureMe result using 1-cm voxels. Although BundleFusion provides more
accurate camera poses than VoxelHashing, there are slight color misalign-
ments caused by various image distortions. On the other hand, our Tex-
tureMe can effectively relieve the misalignments, resulting in a better re-
sult than BundleFusion.

additional experiment using the 1-mm voxel size, at which the
average per-frame computation time of VoxelHashing is about
42 ms on the ‘Sofa’ scene (Table 2). As shown in Figure 13, the
reconstructed model of VoxelHashing using 1-mm voxels shows
sharper and clearer colors than using 4-mm voxels. However,
these small voxels generate a highly dense reconstructed model
that may be unsuitable for real-time applications. Furthermore, as

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

Ours (x4 camera speed) Ours (x16 camera speed)

Fig. 11. Resilience of our TextureMe to fast camera motions. To obtain the
reconstruction results, we used two differently sampled sequences from
the ‘Fountain’ scene. While our optimization scheme can successfully re-
cover a sharp texture in a four-times accelerated camera motion (left), it
fails when camera motion is accelerated by 16 times (right), which causes
erroneous camera-pose estimates.

With small

Without Hysteresis

Fig. 12. Effect of hysteresis-based TSDF filter. (Left) Reconstruction with-
out hysteresis. Some texture patches undergo frequent resampling and
become incoherent with neighbors. (Middle, right) Reconstructions with
hysteresis, where & is set to 0.1 and 0.2 cm, respectively. Our TSDF fil-
ter reduces Marching Cubes’ triangle configuration changes and, thereby,
provides stable texture patch updates. (Bottom) However, as a side effect,
the geometry of the reconstructed model could be less smooth when a big
S is used.

VoxelHashing does not deal with color misalignments at all, the
result is less sharp than our reconstructed model (Figure 13).

Effect of different texture representations. We compare our tex-
ture representation with TextureFusion [Lee et al. 2020], analyzing
its effect on the resulting appearance as the voxel size is increased
(Figure 14). To obtain the result of TextureFusion at 4-cm voxels,
we set the texture tile size to 16 X 16. For other voxel sizes, we fol-
low the original paper setting [Lee et al. 2020]. Both approaches of
ours and Lee et al. [2020] manage and update a texture map to store
detailed color information for single voxels regardless of voxel size
but use different texture representations. TextureFusion assigns a
single texture tile on a side of a zero-crossing voxel (see Figure 2),
then obtains textures of faces of the final mesh model by perform-
ing orthographic projection onto the texture tile stored at a voxel
side. Therefore, if the reconstructed mesh faces within a voxel are
orthogonal to the texture tile on the voxel side, color information

TextureMe: High-quality Textured Scene Reconstruction in Real Time

’E

Volumetric Fusion Volumetric Fusion
(voxel size: 4cm, #faces~18K) (voxel size: 4mm, #faces~2M)

Volumetric Fusion Ours
(voxel size: 1mm, #faces~32M) (voxel size: 4cm, #faces~18K)

Fig. 13. Renderings of the reconstructed models using different voxel sizes
for the ‘Sofa’ scene. Large voxel size severely degrades the result from volu-
metric color fusion. Using a smaller voxel size at the cost of highly detailed
geometry and increased computation time still produces a model that has
an unsatisfactory, blurry appearance. In contrast, our method reconstructs
a high-quality texture even with 4-cm voxels.

that can be obtained from the texture tile for the mesh faces is re-
duced as shown in Figure 14. On the other hand, as our texture
representation directly maps texture patches to the corresponding
reconstructed mesh faces, it does not suffer from the problem.

7.3 Comparisons

Baselines. We compare our system with a real-time volumetric
fusion algorithm [Niefiner et al. 2013] and two offline color re-
finement algorithms [Fu et al. 2018; Zhou and Koltun 2014]. We
also compare it with TextureFusion [Lee et al. 2020], which recon-
structs geometry and its texture map in real time, similarly to our
method. We obtained all results using the original codes provided
by the authors.

Although comparison of our real-time approach with offline
methods may not be fair, we provide it to show the effective-
ness of our approach. The offline methods require the recon-
structed model, camera poses, and keyframes. Thus, to test these
approaches, we use VoxelHashing [Niefiner et al. 2013] to compute
camera poses and to obtain the reconstructed model. For these
approaches, we also select sharp color images as the keyframes
using the heuristics proposed in Zhou and Koltun [2014].

For all results obtained by VoxelHashing [Niefiner et al. 2013],
the size of a voxel was set to 4 mm, which would be a reasonable
setting for room-sized test scenes. We also set the voxel size to 4
mm to obtain reconstruction results of TextureFusion [Lee et al.
2020] on all test scenes except for a few scenes (Scene0000_00,
Scene0261_02, Lounge, and Stonewall), for which the voxel size
is set to 1 cm due to GPU VRAM limitation. The texture tile size
was set to 4 X 4 for 4-mm voxels and to 8 X 8 for 1-cm voxels as
suggested in Lee et al. [2020]. To reproduce the results of Zhou

24:11

TextureFusion Ours
(voxel size: 4cm) (voxel size: 4cm)

TextureFusion Ours
(voxel size: 4mm) (voxel size: 1cm) (voxel size: 1cm)

TextureFusion

Reference

Fig. 14. Effect of different texture representations on the final recon-
structed models. We compare our texture representation with the one-
texture-tile-per-voxel scheme of TextureFusion [Lee et al. 2020]. (Refer to
Figure 2 for visualization of respective representations.) Our texture rep-
resentation is more flexible in that plentiful color information is retained
regardless of voxel size variation. However, the texture expressive power of
TextureFusion drastically decreases as the voxel size increases and texture
tiles are assigned to improper voxel sides. As shown in the ‘Fountain’ scene
(bottom row), albeit using even 4-mm voxels, TextureFusion lost color de-
tails due to its inflexible texture representation.

and Koltun [2014], the reconstructed model by VoxelHashing was
directly used. In this approach, the quality of the colored geom-
etry profoundly depends on the vertex density of the model. On
the other hand, to reproduce the results of Fu et al. [2018], we deci-
mated the mesh faces to retain 3% of the original. The method takes
excessive time to handle a large number of faces. Our system used
a voxel size of 1 cm for all results reported here.

Computation time comparison. For timing comparison to real-
time methods (VoxelHashing [Niefiner et al. 2013] and TextureFu-
sion [Lee et al. 2020]), we measured the average time to process a
single frame on some scenes of different datasets (Tables 1 and 2).
We also measured the dependence of computation time on voxel
size. VoxelHashing is the fastest since it does not have any addi-
tional computation burdens to prevent color from being blurry,
unlike our TextureMe or TextureFusion [Lee et al. 2020]. Thus, it
shows the poor color quality of reconstructions (Figures 15, 16, and
18). While TextureFusion with the 4-mm voxel size needs a much
larger computation time (about 20 ms) than ours in the ‘Sofa’ scene
with high-resolution color images, the visual quality of the scene
reconstruction is rather lower than ours (Figure 1, supplementary
video). The visual quality superiority of our system to TextureFu-
sion is overall maintained in other scenes in our dataset (Figure 17).

Qualitative comparison. As can be observed in Figures 15, 16,
and 18, our results show better quality than the real-time volumet-
ric fusion method [Niefiner et al. 2013]. Volumetric fusion has a lim-
ited capacity since a single color value is stored at each voxel. More-
over, it does not resolve color misalignments, resulting in blurry
color information. In contrast, our framework allows each voxel

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

24:12 « J.Kimet al.
Table 3. Quantitative Comparison with Previous Methods on Various Datasets (Ours, 3D SCENE [Zhou and Koltun 2013, 2014],
and SCANNET [Dai et al. 2017a])
[Fu et al. 2018] [Niefiner et al. 2013] [Zhou and Koltun 2014] [Lee et al. 2020] TextureMe (ours)
Offline (1 hr + @) Real-time Offline (18 minutes + o) Real-time Real-time
Ougrs | PSNR SSIM [Cp|+[Cc| | PSNR SSIM [Cpl+ICc| | PSNR SSIM [Cpl+[Ce| | PSNR SSIM [Cpl+|Cc| | PSNR SSIM [Cp|+ [Cyl
Cuboid 21334 0.642 1.998 19.806 0.619 2.151 21759 0.674 1.968 13.760 0.585 2.168 24.032 0.751 1.741
Einstein 19.683 0.472 2.715 21.026 0471 2.738 21505 0.491 3.210 17.151 0476 3.434 23.384 0.565 2.245
LabShelf 18.627 0.695 3.773 19.415 0.729 3.674 19.749 0.742 3.519 12.801 0.573 4.811 21212 0.770 2.987
Sofa 19.435 0.627 2.376 18472 0.615 3.405 20.256 0.679 2.322 15.853 0.540 3.013 21244 0.691 2.383
Bookshelf 1 | 15.451 0.351 3.820 15834 0.355 4.079 16.080 0.386 4.003 13.901 0.304 4.542 18.314 0.488 2.965
Bookshelf2 | 14.590 0.350 7.118 14348 0313 7.953 14735 0.358 6.997 11944 0.204 10.306 16.359 0.413 5.631
Puppet 15.083 0.263 3.168 15185 0.287 3.906 16.076 0.317 3.490 12.892 0.257 4.003 18.160 0.371 2.642
Room 1 22.822 0.754 2.492 21.937 0.781 2.535 23.108 0.814 2.285 13.836 0.638 4.988 23.731 0.79 2.173
Room 2 21063 0.747 2.905 20.955 0.760 3.312 21755 0.793 2.751 12444 0.643 4.735 21.918 0.775 3.043
3D SCENE PSNR SSIM [Cp|+[Cr| | PSNR SSIM [Cp|+|Ci| | PSNR SSIM [Cp|+[Cr| | PSNR SSIM [Cp|+[Ci| | PSNR SSIM |Gyl + |G|
Fountain 18.060 0.318 3.926 17.939 0.293 4.893 19.410 0.382 3.457 18.186 0.358 3.919 18428 0.295 4.511
Lounge 12.935 0.354 6.373 13180 0.402 6.688 14.834 0.504 5.059 12543 0.458 5.682 12,588 0.423 6.649
Totempole 16.793 0.404 3.136 16.056 0.342 4.176 18.521 0.486 2.733 15563 0.395 3.618 16579 0.384 3.661
Stonewall 19.876 0.451 3.134 18.103 0.416 4.261 21.014 0518 2.607 17.298 0.467 3.235 18914 0.398 4.118
SCANNET | PSNR SSIM [Cpl+[Ci| | PSNR SSIM [Cpl+ICi| | PSNR SSIM [Cpl+ICi| | PSNR SSIM [Cpl+ICi| | PSNR SSIM |Gyl + |Gyl
Scene0000_00 | 15399 0.572 5.590 16769 0.682 5.242 17.741 0.719 4.138 14.810 0.638 5.347 17.466 0.711 4.137
Scene0261_02 | 16.424 0.633 4.238 20303 0.733 3.382 22.028 0.783 2.604 15.394 0.685 4.161 22294 0.761 2.584

Note that our real-time approach is even comparable to the offline approaches. Offline approaches we compare with need additional preprocessing time for 3D model
reconstruction, keyframe sampling, and mesh decimation. & denotes the additional computation time for such preprocessing.

to store and update texture patches on the global texture atlas, and
keeps the color information being reconstructed as sharp as possi-
ble by our texture patch optimization. As a result, we obtain much
sharper and cleaner textures for the reconstructed model.

Models reconstructed by TextureFusion [Lee et al. 2020] occa-
sionally show appearances that are inferior even to models from
VoxelHashing [Niefiner et al. 2013] that do not include any color
alignment algorithm, when its perspective warping produces erro-
neous alignments (Figures 17 and 18). In contrast, our texture patch
optimization works more stably and robustly on several test scenes.
In addition, TextureFusion reconstruction results may suffer from
black-colored regions, which are caused by the strong constraint
on texture tile update and are frequently observed in the results
(Figure 17). Each texel in a texture tile is updated only if its oc-
clusion weight is larger than the prescribed scalar value, so there
could exist texels that have not been updated at all and remain
in black. On the other hand, our approach does not have such a
problem since our method instantly assigns and updates texture
patches for reconstructed mesh faces. Overall, our reconstruction
results show better visual quality than TextureFusion (Figures 17
and 18).

Our results are on par with the offline texture mapping results of
Fu et al. [2018] and Zhou and Koltun [2014]. It is worth noting that
our approach does not need to extract keyframes, unlike offline
techniques. The computation times of these offline methods de-
pend on the number of vertices and the faces of the model. Specifi-
cally, Zhou and Koltun [2014] spend about 18 minutes for a model
with about 2.5 M vertices, and Fu et al. [2018] spend about one hour
for a model with 0.1 M faces. Fu et al. [2018] select a single frame
for texturing each face so that they could avoid the blurry arti-
fact. However, their method still leaves seams on vastlymisaligned
regions. Moreover, as the offline approach suffers from shading
variations among keyframes, color correction is necessary at post-
processing. On the other hand, our method reduces the artifact by
blending all incoming frames and needs no post-processing.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

Quantitative comparison. Evaluation of the textured geometry is
not straightforward to devise, since it is hard to obtain the precise
ground truth geometry with textures. In this article, we adopt the
evaluation scheme proposed by Waechter et al. [2017], which is
based on novel view predictions. Under the assumption that cam-
era poses (ground truths or estimates) of real images are known,
the approach obtains an image of a novel view using the standard
rendering pipeline and compares the rendered image with the real
captured image. It evaluates the rendered image in terms of com-
pleteness and accuracy. Completeness is the measure that depends
on the geometry. Since all of the approaches, including ours, are
based on the same geometry reconstruction pipeline of KinectFu-
sion [Newcombe et al. 2011], we aim at comparing the accuracy.

The accuracy relates to the consistency between the reconstruc-
tion and the input image. We render the textured reconstructed
model using the camera poses without any shading. The rendered
images are compared with the input color images using three met-
rics — PSNR, SSIM, and |Cy| + |C;|. |Cp| + |C;| —proposed by
Waechter et al. [2017] that measure the sum of absolute differences
of the two chrominance channels in the YC},C; color space. We did
not take holes into account when calculating the metrics.

Two offline algorithms [Fu et al. 2018; Zhou and Koltun 2014]
use 3D models reconstructed by VoxelHashing [Niefiner et al.
2013] as the input. Thus, we used the camera poses estimated by
VoxelHashing during reconstruction to produce rendered images.
For our method and TextureFusion [Lee et al. 2020], we used the
camera poses estimated during the reconstruction process.

We compute the three measures for every frame in a test scene
and calculate the average values. The comparison with the four
representative approaches [Fu et al. 2018; Lee et al. 2020; Nief3ner
et al. 2013; Zhou and Koltun 2014] are shown in Table 3.

Our TextureMe shows better quantitative results than the vol-
umetric fusion [Niefiner et al. 2013] for 20 test scenes except for
the lounge scene. With our dataset (denoted as ours), TextureMe
produces better images than the other two offline methods and

TextureMe: High-quality Textured Scene Reconstruction in Real Time « 24:13

]
2
el
=
@]
~ ~» >
R=i
U
k7
A=
| ‘ V i
[Fu et al. 2018] [Niefiner et al. 2013] [Zhou and Koltun 2014] Ours
Sy
©
<
75}
<
—

Bookshelf 1

[Zhou and Koltun 2014] Ours

[Fu et al. 2018] [Nieiner et al. 2013]

Fig. 15. Visual comparison with previous methods on various scenes of our dataset. We compare our approach against one real-time volumetric fusion
system [Nief3ner et al. 2013] and two offline algorithms [Fu et al. 2018; Zhou and Koltun 2014]. The leftmost image of each row shows the reconstructed
model by our method, and we list closeup views for models reconstructed by respective methods. Although our system operates in real time, it obtains
high-quality textured meshes comparable to two offline algorithms, or preferably better in some scenes.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

24:14 « J.Kimetal.

i)

Bookshelf 2

Koltun 2014]

ol

[Fu et al. 2018]
- d

[Zhou and

Puppet

2
[Zhou and Koltun 2014]

Room 1

Room 2

[Zhou and Koltun 2014] Ours

Fig. 16. Visual comparison with previous methods of other scenes of our dataset. We compare our approach against one real-time volumetric fusion
system [NiefSner et al. 2013] and two offline algorithms [Fu et al. 2018; Zhou and Koltun 2014]. The leftmost image of each row shows the reconstructed
model by our method, and we list closeup views for models reconstructed by respective methods. Although our system operates in real time, it obtains
high-quality textured meshes comparable to two offline algorithms, or preferably better in some scenes.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

TextureMe: High-quality Textured Scene Reconstruction in Real Time

Lee et al. 2020]

[Lee et al. 2020]

24:15

Ours

[Lee et al. 2020]

Fig. 17. Visual comparisons with TextureFusion [Lee et al. 2020] of scenes of our dataset. We show the reconstructed models of ours and TextureFusion at
both holistic and closeup views. Overall, the models reconstructed by our method have better visual quality than ones constructed by TextureFusion.

TextureFusion. Our approach would be a good fit for HD high-
quality color images, since our texture patch representation can
easily capture details in the color images. The plentiful color infor-
mation also has a positive influence on our texture patch optimiza-
tion since the optimization is based on the photometric error.

The color images of 3D SCENE and SCANNET datasets are low
resolution and blurry. Even with these datasets, our approach pro-
duces comparable results to offline methods. Note that the offline
methods spend a substantial amount of time obtaining the opti-
mized colors of the reconstructed model. Additional time is neces-
sary for preprocessing, including 3D mesh model reconstruction,
keyframe sampling, and mesh decimation.

Discussion. Our global texture atlas is highly fragmented,
thereby making it inconvenient for a user to edit the texture at-
las directly. However, we think indirect texture map editing would
be possible by manipulating the texture on the 3D model surface
and projecting the manipulation result onto the texture atlas.

If texture patches in the global texture atlas are blurred and
distorted due to accumulated color misalignments, texture patch
optimization may not work appropriately because it cannot find
proper gradients to decrease the objective function of the optimiza-
tion. In that case, texture patches would be fused without effective
texture patch optimization. On the other hand, since weights of

texture patches in the global texture atlas cannot be larger than
the predefined maximum, the accumulated texture patches are
mainly affected by recently observed color images. As a result,
texture patches in the global atlas are not distorted more than a
certain level, as observed in various texture reconstruction results
(Figures 15, 16, and 18).

We consider geometry and its texture reconstruction for static
scenes in this paper. We believe that with some adaptation, the
texture module of our system can be applied to volumetric fusion
methods for dynamic objects, such as DynamicFusion [Newcombe
et al. 2015]. To be specific, such a method generally retains a vol-
ume space in the canonical frame to update the geometry and color
of the target model. For geometry and color update, the method de-
forms the model being reconstructed in the canonical frame to fit
the current frame, and then update TSDF and color values stored
at voxels using the current depth and color images. We could han-
dle dynamic objects by managing and updating voxels and their
texture patches for the volume maintained in the canonical frame.

Limitations. Even though our approach can create a high-
quality texture map in real time, its result can be degraded by
non-uniform lighting conditions (Figure 19). In this case, during
the capture, the brightness of a part of the scene changes abruptly
with camera motion due to strong specular lighting. Then, textures

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

24:16

J. Kim et al.

Scene0000_00

[NieBner et al. 2013]

[Lee et al. 2020]

Fountain

-u\.‘

[NieBner et al. 2013]

Totempole

E

[Nleﬁner etal. 2013]

[Lee et al 2020]

o /N

[NieBner et al. 2013]

N

Stonewall

Fig. 18. Additional visual comparison with VoxelHashing [Niefiner et al. 2013] and TextureFusion [Lee et al. 2020] of scenes of public datasets (3D
SceNE [Zhou and Koltun 2013, 2014] and ScANNET [Dai et al. 2017a] datasets). The left figure of each scene shows the reconstructed model by our method.
As seen in closeup images, our reconstructed models show sharper appearances than results by VoxelHashing on all scenes. Compared with TextureFusion,
our results show comparable or sharper visual quality except in the ‘Fountain’ scene.

Fig. 19. Failure case I. Our approach suffers from non-uniform lighting
conditions of input color images. In ‘Bookshelf2’ scene, the brightness of a
part of the scene severely changes during the capture due to strong spec-
ular lighting. As a result, the fused texture of that part shows saturated
brighter colors compared with other parts.

with different brightness could be merged on that part, resulting
in a much brighter texture than other parts. We think solving for
coherent scene radiance may be possible to resolve the artifact.

Our weight computation for texture patch update includes a
blurriness score computed using a perceptual blur metric [Crete
et al. 2007]. However, the metric is not always accurate and may
regard a blurry frame as a sharp one, resulting in a less sharp tex-
ture map. Our system may obtain performance improvement with
a more reliable method for blurriness estimation.

Since our texture patch optimization is based on the photomet-
ric error and assumes a moderately accurate camera pose and a

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

Fig. 20. Failure case Il. The left image shows a tracking failure case on a
challenging indoor scene in SCANNET [Dai et al. 2017a]. The underlying
reconstruction pipeline can be improved with a globally consistent pose
estimation pipeline, such as BundleFusion [Dai et al. 2017b]. The right im-
age shows the reconstruction result using the camera poses obtained by
BundleFusion. As shown in the red and blue boxes, the textures are im-
proved with the camera poses.

proper voxel size, it will not work (1) when an input color im-
age changes abruptly locally or globally due to specular light-
ing or auto-white balancing, resulting in large discrepancy from
the color of the current reconstructed model, (2) if camera pose
tracking fails or a large camera pose error occurs (Figure 20), and
(3) when too-large voxels are used to make the geometry oversim-
plified, incurring mismatches between input color images and ren-
dered images (Figure 21).

If the camera pose error is too large to be recovered by
our texture patch optimization, the remedy would be to adopt
high-level image features and to detect loop closure to relieve
pose error accumulation. Figure 20 shows an example of this
idea. We used BundleFusion [Dai et al. 2017b] to obtain more
reliable camera poses while keeping our texture mapping pipeline

TextureMe: High-quality Textured Scene Reconstruction in Real Time

Ours (voxel size: 16cm)

Ours (voxel size: 8cm)

Fig. 21. Failure case Ill. In our TextureMe reconstructions with large voxels
(8 cm and 16 cm), as the voxel size increases, the reconstructed geometry
becomes simplified, consequently, intensifying the discrepancy between
the input color image and the rendered one. Our texture patch optimiza-
tion may not be able to resolve such a large discrepancy.

unchanged. The reconstruction subsequently improved, and the
texture mapping result was also improved with the camera poses.
Note that the color images in this dataset exhibit severe motions
blur due to rapid camera motions.

8 CONCLUSIONS

In this article, we proposed a novel approach to reconstruct a high-
quality texture map as well as 3D geometry using RGB-D images
in real time. The key to our approach is to create and manage a
dynamic global texture atlas that can be naturally adapted to the
complex geometry being evolved through reconstruction.

With our texture patch update scheme, we produce a high-
quality texture-mapped mesh. Our texture patch optimization
module effectively and efficiently handles large and small color
misalignments that frequently occur in typical camera tracking.
Our approach does not require any post-processing, such as tex-
ture map optimization or mesh parameterization.

To verify the performance, we compared our system with real-
time and offline methods, both qualitatively and quantitatively, on
various indoor and outdoor scenes. Our results are superior to
voxel-based color blending schemes and comparable to or better
in some scenes than state-of-the-art color optimization approaches
that run offline.

Future work includes proposing scalable texture maps for large
scenes. Currently, our approach assumes that the scene to be recov-
ered is bounded in a certain range; thus, a fixed size of the texture
atlas is used. As volumetric fusion systems have been extended to
cover larger scenes, our texture atlas could be extended depending
on the size of the scene as well. Any large-scale volumetric fusion
system, such as BundleFusion [Dai et al. 2017b], can be a viable
option to integrate our texture module because our framework de-
pends on a volumetric fusion approach for geometry reconstruc-
tion. Another research direction is to design texture optimization
robust to local and global color changes.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their con-
structive comments.

REFERENCES

Fausto Bernardini, loana M. Martin, and Holly Rushmeier. 2001. High-quality texture
reconstruction from multiple scans. IEEE Transactions on Visualization and Com-
puter Graphics 7, 4 (2001), 318-332.

24:17

Sai Bi, Nima Khademi Kalantari, and Ravi Ramamoorthi. 2017. Patch-based optimiza-
tion for image-based texture mapping. ACM Transactions on Graphics 36, 4 (2017),
106-101.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen.
2001. Unstructured lumigraph rendering. In Proceedings of SGGRAPH Conference.
425-432.

Nathan A. Carr and John C. Hart. 2002. Meshed atlases for real-time procedural solid
texturing. ACM Transactions on Graphics 21, 2 (April 2002), 106-131.

Anpei Chen, Minye Wu, Yingliang Zhang, Nianyi Li, Jie Lu, Shenghua Gao, and Jingyi
Yu. 2018. Deep surface light fields. Proceedings of the ACM on Computer Graphics
and Interactive Techniques 1, 1 (2018), 1-17.

Wei-Chao Chen, Jean-Yves Bouguet, Michael H. Chu, and Radek Grzeszczuk. 2002.
Light field mapping: Efficient representation and hardware rendering of surface
light fields. ACM Transactions on Graphics 21, 3 (2002), 447-456.

Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. 2015. Robust reconstruction of
indoor scenes. In Proceedings of CVPR. 5556-5565.

Frederique Crete, Thierry Dolmiere, Patricia Ladret, and Marina Nicolas. 2007. The
blur effect: Perception and estimation with a new no-reference perceptual blur
metric. In Human Vision and Electronic Imaging XII, Vol. 6492. International Soci-
ety for Optics and Photonics, 649201

Brian Curless and Marc Levoy. 1996. A volumetric method for building complex mod-
els from range images. In Proceedings of SSGGRAPH Conference. 303-312.

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and
Matthias Niefiner. 2017a. ScanNet: Richly-annotated 3D reconstructions of indoor
scenes. In Proceedings of CVPR. 5828-5839.

Angela Dai, Matthias Niefiner, Michael Zollhéfer, Shahram Izadi, and Christian
Theobalt. 2017b. Bundlefusion: Real-time globally consistent 3D reconstruction
using on-the-fly surface reintegration. ACM Transactions on Graphics 36, 3 (2017),
24.

Paul Debevec, Yizhou Yu, and George Borshukov. 1998. Efficient view-dependent
image-based rendering with projective texture-mapping. In Eurographics Work-
shop on Rendering Techniques. 105-116.

Yanping Fu, Qingan Yan, Long Yang, Jie Liao, and Chunxia Xiao. 2018. Texture map-
ping for 3D reconstruction with RGB-D sensor. In Proceedings of CVPR. 4645—
4653.

Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. 2010. Towards Internet-scale multi-
view stereo. In Proceedings of CVPR. 1434-1441.

Y. Furukawa and J. Ponce. 2010. Accurate, dense, and robust multiview stereopsis.
IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 8 (Aug 2010),
1362-1376.

Ran Gal, Yonatan Wexler, Eyal Ofek, Hugues Hoppe, and Daniel Cohen-Or. 2010.
Seamless montage for texturing models. In Computer Graphics Forum, Vol. 29.
479-486.

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. 1996. The
lumigraph. In Proceedings of SSGGRAPH Conference. 43-54.

Jingwei Huang, Angela Dai, Leonidas J. Guibas, and Matthias Niefiner. 2017. 3Dlite:
Towards commodity 3D scanning for content creation. ACM Transactions on
Graphics 36, 6 (2017), 203-1.

Jingwei Huang, Justus Thies, Angela Dai, Abhijit Kundu, Chiyu Jiang, Leonidas J.
Guibas, Matthias Niefiner, Thomas Funkhouser, et al. 2020. Adversarial texture
optimization from RGB-D scans. In Proceedings of CVPR. 1559-1568.

Junho Jeon, Yeongyu Jung, Haejoon Kim, and Seungyong Lee. 2016. Texture map gen-
eration for 3D reconstructed scenes. The Visual Computer 32, 6-8 (2016), 955-965.

Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson surface reconstruction.
ACM Transactions on Graphics 32, 3, Article 29 (July 2013), 13 pages.

Joo Ho Lee, Hyunho Ha, Yue Dong, Xin Tong, and Min H. Kim. 2020. TextureFusion:
High-quality texture acquisition for real-time RGB-D scanning. In Proceedings of
CVPR. 1269-1277.

Victor Lempitsky and Denis Ivanov. 2007. Seamless mosaicing of image-based texture
maps. In Proceedings of CVPR. 1-6.

Marc Levoy and Pat Hanrahan. 1996. Light field rendering. In Proceedings of SIG-
GRAPH Conference. 31-42.

Wei Li, Huajun Gong, and Ruigang Yang. 2018. Fast texture mapping adjustment via lo-
cal/global optimization. IEEE Transactions on Visualization and Computer Graph-
ics 25, 6 (2018), 2296-2303.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020.
Neural sparse voxel fields. In Proceedings of NeurIPS.

William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution 3D
surface construction algorithm. In Proceedings of SSGGRAPH Conference. 163-169.

Kok-Lim Low. 2004. Linear least-squares optimization for point-to-plane ICP surface
registration. Technical Report TR04-004, Chapel Hill, University of North Carolina,
1-3.

Robert Maier, Kihwan Kim, Daniel Cremers, Jan Kautz, and Matthias Nief3ner. 2017.
Intrinsic3D: High-quality 3D reconstruction by joint appearance and geometry
optimization with spatially-varying lighting. In Proceedings of ICCV. 3114-3122.

Microsoft. 2020. Azure Kinect DK. Retrieved from https://azure.microsoft.com/en-us/
services/kinect-dk/ Online; accessed 19 Jan 2020.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

24:18 « J.Kimet al.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. NeRF: Representing scenes as neural radiance
fields for view synthesis. In Proceedings of ECCV. 405-421.

Richard A. Newcombe, Dieter Fox, and Steven M. Seitz. 2015. DynamicFusion: Recon-
struction and tracking of non-rigid scenes in real-time. In Proceedings of CVPR.
343-352.

Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,
Andrew J. Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. 2011. KinectFusion: Real-time dense surface mapping and tracking.
In Proceedings of ISMAR. 127-136.

Matthias Niefiner, Michael Zollhéfer, Shahram Izadi, and Marc Stamminger. 2013.
Real-time 3D reconstruction at scale using voxel hashing. ACM Transactions on
Graphics 32, 6 (2013), 169.

J. Park, Q. Zhou, and V. Koltun. 2017. Colored point cloud registration revisited. In
Proceedings of ICCV. 143-152.

Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson image editing. In
Proceedings of SSGGRAPH Conference. 313-318.

Justus Thies, Michael Zollhofer, and Matthias Niefiner. 2019. Deferred neural render-
ing: Image synthesis using neural textures. ACM Transactions on Graphics 38, 4
(2019), 1-12.

Greg Turk and Marc Levoy. 1994. Zippered polygon meshes from range images. In
Proceedings of SSGGRAPH Conference. 311-318.

Luiz Velho and Jonas Sossai Jr. 2007. Projective texture atlas construction for 3D pho-
tography. The Visual Computer 23, 9 (2007), 621-629.

Michael Waechter, Mate Beljan, Simon Fuhrmann, Nils Moehrle, Johannes Kopf,
and Michael Goesele. 2017. Virtual rephotography: Novel view prediction error

ACM Transactions on Graphics, Vol. 41, No. 3, Article 24. Publication date: March 2022.

for 3D reconstruction. ACM Transactions on Graphics 36, 1, Article 8 (Jan. 2017),
11 pages.

Michael Waechter, Nils Moehrle, and Michael Goesele. 2014. Let there be color! Large-
scale texturing of 3D reconstructions. In Proceedings of ECCV. 836-850.

Thomas Whelan, Stefan Leutenegger, R. Salas-Moreno, Ben Glocker, and Andrew
Davison. 2015. ElasticFusion: Dense SLAM without a pose graph. Robotics: Sci-
ence and Systems. In Proceedings of RSS.

Thomas Whelan, John McDonald, Michael Kaess, Maurice Fallon, Hordur Johannsson,
and John J. Leonard. 2012. Kintinuous: Spatially extended KinectFusion. In Pro-
ceedings of RSS’12 Workshop on RGB-D: Advanced Reasoning with Depth Cameras.

Zexiang Xu, Sai Bi, Kalyan Sunkavalli, Sunil Hadap, Hao Su, and Ravi Ramamoorthi.
2019. Deep view synthesis from sparse photometric images. ACM Transactions on
Graphics 38, 4 (2019), 1-13.

K. Zhou, M. Gong, X. Huang, and B. Guo. 2011. Data-parallel octrees for surface recon-
struction. IEEE Transactions on Visualization and Computer Graphics 17, 5 (May
2011), 669-681.

Qian-Yi Zhou and Vladlen Koltun. 2013. Dense scene reconstruction with points of
interest. ACM Transactions on Graphics 32, 4 (2013), 1-8.

Qian-Yi Zhou and Vladlen Koltun. 2014. Color map optimization for 3D reconstruction
with consumer depth cameras. ACM Transactions on Graphics 33, 4 (2014), 155.

Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. 2013. Elastic fragments for dense
scene reconstruction. In Proceedings of ICCV. 473-480.

Received November 2020; revised November 2021; accepted December
2021

