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Figure 1: A) Digits is a wrist-worn sensor for freehand 3D interactions on the move. By instrumenting only the wrist, the user’s
entire hand is left to interact freely without wearing a data glove. B and C) Digits recovers the full 3D pose of a user’s hand. D)
Spatial interactions using a mobile phone and Digits.

ABSTRACT
Digits is a wrist-worn sensor that recovers the full 3D pose
of the user’s hand. This enables a variety of freehand inter-
actions on the move. The system targets mobile settings, and
is specifically designed to be low-power and easily repro-
ducible using only off-the-shelf hardware. The electronics
are self-contained on the user’s wrist, but optically image the
entirety of the user’s hand. This data is processed using a new
pipeline that robustly samples key parts of the hand, such
as the tips and lower regions of each finger. These sparse
samples are fed into new kinematic models that leverage the
biomechanical constraints of the hand to recover the 3D pose
of the user’s hand. The proposed system works without the
need for full instrumentation of the hand (for example using
data gloves), additional sensors in the environment, or depth
cameras which are currently prohibitive for mobile scenarios
due to power and form-factor considerations. We demon-
strate the utility of Digits for a variety of application sce-
narios, including 3D spatial interaction with mobile devices,
eyes-free interaction on-the-move, and gaming. We conclude
with a quantitative and qualitative evaluation of our system,
and discussion of strengths, limitations and future work.
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INTRODUCTION
Our hands are extremely dexterous, making them the pri-
mary mechanism to manipulate and interact with the phys-
ical world. Understandably a considerable focus of HCI re-
search has been in transferring such ‘natural’ hand manipu-
lations into the digital domain. However, current user inter-
faces rarely leverage the full dexterity of our hands. This is
largely due to the technical challenges in sensing the full 3D
pose of the hand, with its many degrees-of-freedom (DoF).
Consequently, systems constrain the problem along differ-
ent dimensions, such as limiting hand tracking to 2D input
only [9, 24], focusing on fingertips or other specific parts of
the hand [19, 35], only supporting interactions through sur-
faces and other tangible mediators [5, 10, 11], or support-
ing a small discrete set of hand gestures [14, 32, 33]. Until
recently, real-time 3D hand tracking required full instrumen-
tation of the hand (see [7]). Researchers (particularly in the
computer vision community) have begun to demonstrate al-
gorithms for real-time 3D hand pose recovery [27, 31] and
their applications for HCI [37].
Whilst sensing the full 3D pose of the hand is becoming more
tractable, particularly with the advent of consumer depth
cameras, there are certain domains where it still remains a
fundamental challenge. The mobile domain is one such ex-
ample, and the focus of this paper. In mobile settings, com-
putational cost, power consumption, form-factor, everyday
use, and self-containment are all key requirements. This
makes hand tracking solutions impractical that require the
sensor to be embedded in the environment, leverage currently
bulky and power inefficient depth cameras, or that require the
hands of the user to be fully covered.
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This paper explores this very challenge and enables dexter-
ous 3D hand interactions on the move. Our system, called
Digits, is a compact form-factor wrist-worn device, built us-
ing easily reproducible off-the-shelf hardware, which is or-
ders of magnitude lower power than current depth cameras.
The sensor is fully contained on the body, requiring no ex-
ternal sensing infrastructure in the environment, and allows
diverse bare hand interactions.
This focus on mobile use does not come at the cost of sens-
ing fidelity. We present efficient processing techniques for
robustly detecting features of the hand using the wrist-worn
device, and new algorithms, which leverage knowledge re-
garding the biomechanical constraints of the hand to recover
a fully articulated 3D model of the hand.
We leverage the recovered 3D hand pose to recognize di-
verse hand gestures, including discrete and continuous 3D
gestures. We demonstrate interactive scenarios, including:
eyes-free spatial interactions on the move, in-air 3D inter-
actions around the periphery of the mobile device, combi-
nations of on surface and above the surface input on mobile
phones, controlling large displays from a distance using free-
hand gestures, and immersive 3D gaming experiences.
Our main contributions can be summarized as follows:

• A wrist-worn system that senses the full 3D hand pose
without external sensing infrastructure or full instrumen-
tation of the hand (unlike existing data gloves).
• A real-time signal processing pipeline that robustly tracks

points on the user’s hand.
• Two new kinematic models that allows for full reconstruc-

tion of the hand pose from these sparse points.
• A demonstration of compelling interactive scenarios that

Digits enables.
• An evaluation of the feasibility of this approach through

preliminary qualitative and quantitative studies.

RELATED WORK
Given their dexterity, sensing the full 3D pose of a user’s
hand is a technically challenging and active area of research.
One approach is to instrument the hand directly by wear-
ing a glove with embedded sensors or markers (see [7] for
an overview). Originally designed for AR/VR, such sensors
have since been leveraged for mobile scenarios. However,
gloves can be cumbersome and uncomfortable to wear, can
degrade tactile sensation and limit interaction with capacitive
touch sensors, which are now standard on mobile phones.
An approach that avoids user instrumentation is to place a
camera in the environment pointed directly at the user’s hand.
Many systems focus purely on fingertip detection for on sur-
face (see [5]) or in-air input (see literature review in [20]).
Other systems have recognized a small set of discrete 3D
hand poses (e.g. [14]), or leveraged 3D shape and motion
analysis for approximating freehand interactions [12].
The vision community has explored higher fidelity 3D hand
tracking methods (see [8] for a detailed survey). Real-time
3D pose recovery is becoming feasible, using either non-
parametric methods that typically use nearest neighbor lookup
into a database of RGB [31] or depth images [37], or at-
tempt to fit a parametrized model of the hand to observed

images [27]. These systems offer some of the most sophis-
ticated mechanisms for 3D hand tracking, without the need
for direct user instrumentation. However, these approaches
clearly lack mobility, requiring sensors embedded in the en-
vironment and high computational cost.

Depth Cameras On the Move The rise of consumer depth
cameras has led to interest in 3D interaction on the move. Re-
searchers have explored handheld [15, 25], shoulder- [10] or
even shoe-worn depth cameras [3], all requiring line of sight
of the user’s hands. None of these systems however sup-
port full 3D hand pose recovery, but instead focus on sensing
touch interaction with planar [10] or more complex physical
surfaces [15, 25]; or detect simple pinch gestures for interac-
tion [3]. Handheld systems can restrict freeform hand inter-
actions that require both hands. Shoulder and shoe mounted
systems alleviate this issue, but can suffer from occlusions of
the hands from other parts of the body. In addition, whilst
compelling in terms of sensor fidelity, there are practical bar-
riers in making depth cameras mobile, in particular power
consumption and form-factor.

Ultra-mobile Wearable Gesture Systems The wearables
literature has proposed many lightweight systems for mo-
bile gestural interaction. Instead of supporting high-fidelity
sensing, they use IR proximity sensors to detect coarse mo-
tion of fingers [13, 17, 18, 26], sense muscle or tendon
activity to recognize a small set of discrete hand gestures
[30, 32], or leverage acoustics to coarsely localize touch on
the body [11]. Given their lightweight form-factor, a vari-
ety of on-body placements including forearm [32] and wrist-
worn [17, 18, 30] have been demonstrated.
Our work builds upon these systems in that we aim to provide
always-available body-worn input but extend the interaction
scope from sensing discrete events or coarse motion gestures
to much richer continuous 3D input.

Body-Worn 2D Camera Systems One final class of wear-
able systems uses 2D cameras to add higher fidelity sens-
ing without greatly compromising form-factor. These sys-
tems use either monochrome cameras and diffuse IR illumi-
nation [9, 33] or RGB cameras [19, 24, 28, 34, 35]. Inferring
the full 3D pose of the hand is clearly challenging from such
2D input. Currently systems have only demonstrated simple
2D pinch gestures [9] or detecting fingers using marker [24]
or markerless approaches [19, 35] for simple pointing, open
and closed hand gestures. [33, 34] classify a wider set of
discrete hand postures e.g. for sign language. The form-
factor of these systems allows for various body-worn place-
ments (see [22]). These include placement on shoulder or
head [19, 34] and around the neck [9, 33], which have the
benefit of capturing both hands for bimanual input, but re-
strict the interaction space to a fixed region directly in front
of the user’s upper body. Interactions often cannot be subtle
and are publicly visible (a potential barrier for adoption in
public [3]). Arm fatigue can be an issue for prolonged use.
A viable option to closer couple hand and sensor are cam-
eras directly looking across the hand of the user. [35] use a
watch-like camera to count visible fingers for coarse input.
[28] presents a prototype of a wrist-worn camera that looks
across the hand and images fingertips with markers placed
on each finger, inferring hand pose from the 3D fingertip
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estimate using inverse kinematics (IK). The system is fairly
large in terms of form-factor and the requirement of wearing
markers on each finger is a clear limitation.
Design Considerations As illustrated by the breadth of
the related work, this is a rich and challenging design space.
With Digits we aim to bring some of the high fidelity sens-
ing found in data gloves and environment-based vision tech-
niques to mobile settings. This requires the full recovery of
3D articulated hand poses in real-time without the require-
ment to wear a glove. We strive to build a system that is
more practical than using today’s depth camera technologies,
which as outlined carry serious limitations for mobile use.
We identify an interesting area in this design space and focus
on a wrist-worn device to recover the full 3D hand pose, but
do this with only a 2D camera.
We build upon learnings from the wearables literature that
have shown the benefits of wrist-worn devices [17, 18, 13]
for supporting eyes-free, always-available interactions [1], as
well as overcoming some of the limitations of other sensor
placements, including occlusions of the hands by other body
parts, imposing interactions that are overly performance-
centric (instead of private or subtle [3]), and physically con-
straining the interaction space due to line of sight require-
ments of the sensor.
DIGITS – SYSTEM OVERVIEW
Digits is a small camera-based sensor attached to the wrist
that optically images a large part of the user’s bare hand. The
camera is placed so that the upper part of the palm and fin-
gers are imaged as they bend inwards towards the device.
Two separate infrared (IR) illumination schemes are used to
simplify signal processing. The use of IR allows the illumi-
nation to be invisible to the user, and offers a level of robust-
ness to ambient visible light. Both illumination schemes use
low cost, readily procurable, and low-power components.

Figure 2: Digits main hardware components attached to a
wrist brace.

First, an IR laser line generator projects a thin IR line across
the user’s hand which intersects with the fingers as they bend
inwards [36]. This approach can be used to robustly sample a
single 3D point on each of the fingers and thumb. From these
five sparse samples, and by exploiting biomechanical con-
straints, we derive a forward kinematics (FK) algorithm to
reconstruct a fully articulated hand skeleton. This initial ap-
proximation allows us to support a variety of 3D hand poses
as shown in Fig. 9. However, each fingertip is essentially re-
duced to a single dimension of input, limiting its motion to
curling either towards or away from the sensor (see Fig. 7B).

To more faithfully replicate the pose of the hand, more fea-
tures need to be sampled on the hand. A complimentary
method uses a ring of modulated IR LEDs to uniformly illu-
minate the user’s hand. We demonstrate how to robustly ex-
tract the 2D positions of fingertips from this IR image, with
an associated coarse depth estimate, by modeling the light
falloff from the IR LEDs. This fingertip sensing approach
can be coupled with the laser line sensing method to derive a
new inverse kinematics (IK) based algorithm for computing
the full joint-angle configuration of the hand. This method
allows for even more realistic reconstructions of the hand as
shown in Fig. 12, resulting in higher DoF input.
These methods work together to help constrain the other-
wise ill-posed problem of recovering the full 3D hand pose
from a 2D image. Because each method may be useful by
itself, we keep the description of the two approaches sepa-
rate. This also aids in understanding the underlying concepts,
techniques and algorithms presented in this paper. Finally, an
inertial measurement unit (IMU) can be used to approximate
wrist and forearm motions in 3D (see Fig. 2).
Digits is primarily a new type of sensor and an enabling tech-
nology for interaction, however before describing the system
in full, we demonstrate its interactive capabilities.
Interactive Scenarios
We have explored a number of interactive scenarios enabled
by our system which we briefly illustrate here. Each scenario
looks at a different configuration of output coupled with Dig-
its. The first scenario looks at spatial interaction with a situ-
ated display (see Fig. 3A+B). For example, interacting with
a TV at home or a large public display. Here the user inter-
acts at a distance using a Digits device. Application scenar-
ios can include gaming or CAD, where the user can perform
a variety of continuous or discrete hand gestures to support
spatial navigation, pointing or selection in 3D (Fig. 3A+B).
From this tracked 3D hand model, discrete gestures can be
robustly recognized by looking at the joint angle configura-
tion (Fig. 3C).

Figure 3: Illustration of potential Digits application scenar-
ios. A+B) Continuous interaction with 3D content on a large
display. C) Gesture recognition performed on reconstructed
hand model.

Mobility was a strong motivation in our work. We envi-
sion Digits will expand the physical interaction area of mo-
bile devices beyond the display. In one application scenario
(see Fig. 4A+B) the user holds and interacts with a tablet (or
phone) using the dominant hand and uses the non-dominant
hand to provide 3D input to the application. For example, se-
mantic zooming is initiated with an in-air pinch gesture, and
the zoom factor is controlled with the remaining digits.
An interesting possibility here is to support on-screen inter-
actions and simultaneous freehand interactions. For exam-
ple, dividing between fine-grained interactions on the touch-

169



Figure 4: Digits application scenarios. A+B) Extending in-
teraction space around a mobile device into 3D. C+D) Non-
visual UIs allow users to manipulate application parameters
without looking at or touching a physical device (GUI ele-
ments are for illustration only).

screen and coarser navigation tasks using the non-dominant
hand and Digits. Our tracker is gloveless and enables the user
to interact with the mobile device and operate Digits with the
same hand. This allows standard 2D touch gestures to be
coupled with above-the-surface interactions in 3D. For ex-
ample, for quickly changing the Z-order of a selected ob-
ject by first touching the target and then performing an in-air
pinch-based zoom.

Finally, the display could be removed entirely in an eyes-free
interaction scenario. The 3D input capabilities of Digits can
allow spatial interactions with invisible UIs, such as dials,
sliders, or buttons without visual output (see Fig. 4C+D).
For example, we can leverage both proprioceptive knowl-
edge and spatial memory to allow the user to set the volume
on a mobile phone by directly reaching out and interacting
with a virtual dial; turning their hand to the right of the body
and performing typing gestures on a virtual number pad to
place a call; or moving the hand to the left of the body and
touching their thumb and individual fingers to activate other
phone functions. One interesting possibility here is to detect
the type of action by the initial 3D shape of the hand. For
example, if the user requires to change the volume, they sim-
ply configure their hand as if they are holding a virtual dial,
which can then be rotated to set the desired level.

These scenarios illustrate the utility of the Digits as a gen-
eral purpose platform for a variety of hand-based interac-
tions. In the next sections, we describe the system imple-
mentation in full, focusing on how we sense features of the
hand and from these build different articulated models of the
hand, with varying levels of fidelity.

SENSING HARDWARE
The Digits hardware is shown in Fig. 2. A PointGrey Fire-
Fly MV IR camera (640x480 resolution capturing frames at
90Hz) is attached to a wristband worn on the anterior (inner)
side of the wrist. An IR laser line generator (Gated Cameo
1260 from Global Laser) operating at 850nm, with 105◦ an-
gular spread is positioned at a fixed baseline from the camera.
4 diffuse IR LEDs (OSRAM CHIPLED SFH 4053) again op-
erating at 850nm are attached around the lens of the camera.
Finally, an IMU (x-IMU from x-IO Technologies) provides
absolute tri-axis orientation data of the forearm at 120Hz.

The hardware is designed to be simple, easily reproducible
with off-the-shelf components, and low-power. The setup
is powered entirely over USB, both laser and the 4 LEDs
powered and driven by strobes from the camera General Pur-
pose Input/Output (GPIO) pins. This results in a total power
draw of less than 400mW (16mW for the laser, 60mW for
the IR LEDs, and 300mW for remaining camera hardware).
This compares favorably to the 3.4 to 5W consumption of the
current generation Kinect cameras. A Digits device weighs
around 75g, 124g with the wireless IMU, and is lighter than
standard watches with a metal wristband (160-180g). The
device is attached to the forearm with a 2cm wide Velcro
band around the wrist, and the contact area at the inner wrist
is covered with soft padding (5x5cm).

SIGNAL PROCESSING
The main processing pipeline is broken down into the fol-
lowing steps:

Background Subtraction We reduce the influence of ambi-
ent IR light by capturing three consecutive frames from the
IR camera under different illumination conditions (giving an
effective frame rate of 30Hz). The first frame turns all ac-
tive illumination off, capturing only ambient IR. This is sub-
tracted from the other two frames; the first with only the laser
on, and the second with just LEDs on. As shown, ambient IR
light is greatly reduced in our input images e.g. from room
lights or sunlight (Fig. 5).

Image Rectification Rectifies both actively lit images based
on a previous intrinsic camera calibration step.

Finger Separation Splits the LED lit IR image into regions
that correspond to different unique fingers or thumb.

Laser Line Sensing Triangulates the 3D points where each
finger or thumb intersects with the laser line generator.

Forward Kinematics These 3D points are passed to a new
forward kinematics algorithm, which reconstructs the full 3D
hand pose, based on assumptions regarding the biomechani-
cal constraints of the hand.

Diffuse IR Fingertip Detection Additionally, depending on
the hand pose, we can also use the LED illuminated image
to robustly extract high-quality surface normals and coarse
depth estimation for robust detection of fingertips.

Inverse Kinematics The 3D points sensed from the laser
and 2D fingertip locations are passed onto a new IK model
for higher DoF recovery of hand poses.

Finger separation One of the important initial pipeline
steps associates regions of the image with each of the digits
of the hand. A technique utilized in seam carving [2] is used
to disambiguate the main vertical boundary between pairs of
fingers in the IR illuminated image. A one dimensional sobel
filter finds vertical edges in the IR image. We detect valleys
[20] between two fingers as concavities in the traced hand
contour. At each valley location, we trace multiple vertical
paths along the edges, and use dynamic programming to de-
tect the path with the lowest overall energy by penalizing
paths not following the edge (see Fig. 5F). This method di-
vides the image into five areas each mapped to a unique digit.

Laser Line Sensing The laser line generator projects a
horizontal line above the palm that intersects with parts of
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Figure 5: Background subtraction. A) Active illumination
off. B) IR laser + background IR. C) IR LEDs + background
IR. D) Background subtracted IR LEDs. E) Background
subtracted IR laser. F) Finger separation via seam carving.

each finger. These intersections appear as bright regions in
the 2D IR camera image, and move towards the palm as the
finger is bent, and in the opposite direction when the finger
is straightened (see Fig. 7). With a fixed known baseline be-
tween laser and the camera, it is possible to triangulate the
exact 3D position of each laser line segment (our current im-
plementation uses a 3cm baseline as a reasonable trade-off
between depth accuracy and ergonomics, see Fig. 2).
In a one-off process, the camera and laser are calibrated: The
camera’s intrinsic parameters are retrieved using a checker-
board calibration method [39], and are used for image recti-
fication. Next, the user moves the same target and intersects
it with the laser line (see Fig. 6A). The 6DoF extrinsic pose
of the target is computed relative to the camera center [39].
The user clicks on an intersection point, and the associated
3D point is recorded. The process is repeated until three non-
coplanar points are selected to define the laser plane relative
to the camera.
To triangulate the 3D intersections of the finger and laser, the
background subtracted and rectified image is first binarized
for connected component analysis. Intersections are clearly
visible as elongated ellipsoids which are filtered based on
size and shape. Merged connected components (when fin-
gers are close to each other) are separated using the previous
seam carving output. The centroid of each connected com-
ponent is reprojected using the camera intrinsics. From the
camera center a ray through the centroid is intersected with
the derived laser plane (see Fig. 6B). This defines a 3D point
for each finger, relative to the camera.

Figure 6: A) Laser plane calibration procedure. B) Repro-
jected ray intersecting with the laser plane.

A SIMPLE KINEMATIC HAND MODEL
After retrieving the 3D intersections of laser with fingers, we
use a new kinematic method to recover the hand pose. Fig. 7

shows the main finger bones and joints in a hand. Each fin-
ger is comprised of three bones, namely proximal, middle,
and distal phalanges. From fingertip to palm, these bones
are interconnected by a 1DoF revolute joint called the distal
interphalangeal (DIP) joint, a 1DoF revolute proximal inter-
phalangeal (PIP) joint, and a 2DoF spherical joint called the
metacarpophalangeal (MCP) joint [4].

Figure 7: A) Illustration of main finger bones and joints.
B) Natural flexing of fingers. Proposed forward kinematics
model reconstructs this behavior.

These bones do not move in an entirely independent fash-
ion. Specifically, it has been shown that the DIP joint angle
depends on the PIP angle owing to interaction of tendons at-
tached to middle and distal phalanges [4]. Furthermore, as
shown experimentally by [16] during natural flex of the fin-
ger (i.e. when not explicitly controlling MCP independently
of other joints) MCP joint angles depend on the PIP angle
when bending the middle and distal phalanges. We leverage
the interdependency of these bones and joints to map from
sparsely sensed 3D locations on each finger to a 3D articu-
lated model of the hand.

Specifically, during natural flex of each finger (see Fig. 8
Right) a linear relationship exists between all three joints of
the finger, such that both MCP and DIP can be derived if the
PIP angle is known. Kamper [16] experimentally found the
ratio between PIP and DIP is 1

0.84 and 1
0.54 for PIP to MCP

respectively. Using these ratios, we can approximate a com-
mon finger motion, when an outstretched finger curls inwards
until it touches the palm, only with a single parameter.

Figure 8: Left: Forward kinematics model for a single finger
intersecting with laser line. Right: Graph mapping between
laser distance and PIP joint angle.

Calculating joint angles
To determine the articulation of each finger during natural
flex, we experimentally derived the mapping between 3D
intersection points and the PIP joint angle using a simple
forward kinematic model Fig. 8. We simulate each of the
bones with predefined lengths (l0, l1, l2 respectively). Av-
erage bone lengths can be taken from the literature [4, 16]
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or measured per user. We compute the PIP angle at simula-
tion time as θp [0◦, 120◦]. MCP and DIP are calculated as
θm = aθp and θd = bθp respectively where a and b are the
joint ratios derived from [16].

During calibration, we also derive the 6DoF pose of the palm
with respect to the camera (using a checkerboard placed on
the palm), which allows us to determine the offset of the laser
and its direction with respect to the palm. We simulate the
forward kinematics model by changing the joint angle θp.
At 0◦ the finger is outstretched and fully bent at 120◦. For
each of the angles of θp we measure the intersection between
the laser ray and each of the bones, and take the minimum
distance. The sampled data is plotted in Fig. 8 and used to
map from laser distance to θp. The graph can be fitted using
the following cubic function (where d is the distance to the
intersection in mm):

θp = −0.0003 ∗ d3 + 0.059 ∗ d2 − 4.07 ∗ d+ 119.75 (1)

As fingers have similar anatomy, it is reasonable to assume
that this function is valid for all fingers. We therefore provide
a simple one-off online calibration process for each finger,
where we plot the principal axis of motion for each finger.
New intersections are normalized along this axis. Because
we normalize along a 3D line, this approach also works for
the thumb which moves more diagonally in the sensor im-
age. While articulated thumb motion is reasonably tracked in
practice, results could be further refined by explicitly build-
ing a similar model as in Fig. 8 purely for the thumb. Our
model can be extended to lateral motions of fingers (i.e. al-
lowing fingers to move left and right), by mapping deviation
from the calibrated principal axis to a 3D rotation, which is
applied to each finger after articulating finger bend.

Figure 9: Top: Various hand poses supported by our for-
ward kinematics model. Bottom: User’s real hand poses.

Strengths and limitations
This approach provides a simple, but yet natural approxi-
mation of hand poses. Fig. 1 and Fig. 9 show a number of
real-world hand poses and how these can be replicated using
Digits. Whilst the combination of laser line sensing and for-
ward kinematics model is powerful in its own right, there are
limitations. In particular, it assumes a strong relationship be-
tween all of the joints of each finger. However, there are also
common cases where for example the MCP joint moves inde-
pendently of the PIP. To deal with these wider range of hand
poses, we need to sense other parts of the hand and provide
an extended kinematics model. Through experimentation we
have found that illumination from IR LEDs can be used to

robustly detect fingertips, which allows us to define a more
complete kinematic model of the hand.
FINGERTIP DETECTION
Despite it being unfeasible to place a full depth camera on the
wrist (due to form-factor and power), we demonstrate how
to generate high-resolution normal maps and coarse depth
estimates, by modeling the light falloff from the LEDs. This
provides a robust method for identifying fingertips in the 2D
image, even when fingers are directly facing the camera.

Figure 10: Our fingertip detection pipeline. A) Background
subtracted imaged fingers. B) Estimated depth encoded in
red color channel. C) Normal map computed from depth
map. D) Response map from template matching (darker is
closer match), black rectangles mark fingertip candidates.
E) Recovered mesh viewed from the physical camera’s view.
F) Depth distortion visible when viewed from off-center view-
point. Note the distinct peaks caused by fingertips.

Depth approximation Our approach adapts work on shape-
from-shading (SFS) (see overview in [29]). Our scenario
makes SFS more tractable, given partially known parame-
ters for (LED) light position, light power and radial inten-
sity falloff, as well as the ability to approximate the skin
reflectance model as purely Lambertian (given the typically
small angle of incidence between surface and light source
[21]).
We first estimate distance measurements for each pixel un-
der the inverse-square law. The intensity at distance d is
I = 1/d2 solving for d this gives us an initial distance es-
timate for each pixel u as: d(u) =

√
I(u) . This distance

estimate is then attenuated according to the radial falloff in
light intensity for pixels further away from the light’s central
ray. The final distance value is computed as:

D(u) =
√
I(u) ∗ 1

cos(arctan( (u−pp)fl ))

with known principal point pp and focal length fl from cam-
era calibration. This computes a depth map, where each pixel
can be reprojected as a 3D point in camera coordinate space.
Finally, we compute surface normals for each pixel from ad-
jacent pixels in the depth map (see Fig. 10).
Strengths and Limitations This technique provides only
approximated depth values, as pixel intensity depends on
many factors beyond distance to the light source and light
falloff. In particular, we do not model the shape and material
of the imaged 3D surface nor do we take the surface orienta-
tion into account. While the resulting depth map looks plau-
sible when viewed from the cameras perspective, distortions
and non-linearity of the signal become clearly visible when
viewed off-center (Fig. 10F).
However, this approach can be powerful in detecting finger-
tips and computing a relative depth estimate. Because finger-
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tips are fairly spherical in shape (in particular when pointing
towards the camera) they produce a distinct signal as it can
be seen clearly in the normal map (Fig. 10C) and the mesh
rendering (Fig. 10F). Each fingertip produces a very distinct
peak in depth very similar in shape to a Gaussian sphere cen-
tered around the finger’s most protruding part.
To detect and track these peaks many methods are viable.
We have obtained robust results with just simple template
matching (based on matching scores as squared distances
between a sliding synthetic fingertip template and the live
normal map). Fig. 10D-F shows the final result of our tech-
nique, reliably detecting fingertip locations. In particular, our
technique works for fingertips pointing towards the camera
and multiple fingers touching each other, situations in which
simple 2D techniques such as peak-and-valley algorithms, or
connected component analysis alone would have difficulties.
A NEW KINEMATICS MODEL
Fingertip estimates can be combined with the laser line in-
tersections to recover a more accurate hand model using in-
verse kinematics (IK). IK typically derives joint angles from
the 3D position of the end effector – the fingertip. We do not
have an accurate 3D measurement for fingertips, and the 3D
point sampled with the laser is not directly associated with
the end effector. However, the two sensing modalities can be
combined to derive a new IK model enabling separate artic-
ulation of the MCP joint and the PIP/DIP joints.

Figure 11: IK model that articulates both the MCP joint and
the PIP/DIP joints based on an sensor fusion approach

Fig. 11 illustrates a simplified parametrization of our IK
model. Note for illustrative purposes we have reduced the
problem to 2D and combined PIP and DIP joints, which
cannot be moved independently unless the finger is pressed
against a surface. In this parametrization, the palm is again
assumed to be resting directly on the X axis. The position of
the MCP joint is given by P0, the position of the PIP joint is
P1 and the end effector is at P2. Whilst the 3D location of the
end effector is not known, we can observe the projection of
the point (yobs) on the image plane (I) (as this equates to the
centroid of the detected fingertip in the IR image). Given the
calibration matrix of the camera, we can project a ray from
the camera center (C) through the image plane. We know
that P2 exists somewhere along this ray.
The length of each of the bones (l0, l1), of the finger are
again assumed to be known, either by measurement or from
assuming predefined values. We are solving for the MCP
and PIP joint angles given as θm and θp respectively. We can
also parameterize the laser as an offset from the origin (Lo)
and direction (Ld). We also have an observed 3D point with

distance tobs, sensed from the laser (Lobs) which we know
intersects one of the bones (the specific bone is unknown).
P0 is known ahead of time, using the laser line to calculate
the minimum 3D extent of each finger (as described previ-
ously). This allows us to calculate P1 by applying a local
transform (translation by bone length l0 and rotation around
the joint angle θm) to P0. So that P1 = R(θm) · [l0, 0]T +P0

and P2 = R(θp) · [l1, 0]T + P1.
Our aim now is to find the optimal combination of θm and
θp to best describe the observed data (the location of the 2D
fingertip sensed using the LEDs and 3D point measured with
the laser). For our fingertip location, we define the following
energy function:

Eled = |proj(P2)− yobs|2 (2)

This function generates estimated positions for P2 given vari-
ations of θm and θp, and projects these onto the image plane
I (using the intrinsic camera calibration parameters). It has a
low energy for points that are close to the observed point on
the image plane yobs.
Our second energy function first calculates intersections be-
tween the laser line and each bone in the finger, based on
variations of θm and θp and takes the minimum:

t =min{isect(
⇀

L0Ld, P0P1), (3)

isect(
⇀

L0Ld, P1P2)}

It then minimizes the distance between the observed 3D laser
point Lobs and this estimated intersection:

Elas = |tLd + Lo − Lobs|2 (4)

Our full energy function is specified as:

arg min
θm,θp

E = Eledλled + Elasλlas (5)

This allows us to weight the contribution of either the LED
or laser based sensing accordingly, using a scalar (λ). In
our current implementation, we evaluate this energy function
across θm [0◦, 100◦] and θp [0◦, 90◦] in a brute force manner
and select the value with the minimum energy.
This new kinematic model give us even higher DoF input
sensing. As shown in Fig. 12 a wider range of hand poses can
be more accurately predicted from the raw sensor data. This
includes a wide range of poses that are difficult to predict
using our simpler kinematics model. The combination of the
two sensing modalities – both laser line and light falloff –
allow us to solve the otherwise ill-posed IK problem.

Figure 12: Truer hand pose recovery with inverse kinemat-
ics. Note PIP and MCP joint angles recovered correctly.
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INITIAL EVALUATION
We performed a preliminary evaluation of Digits, to get a
sense of the accuracy and repeatability of the system at re-
constructing different hand poses. Whilst not a detailed user
or system evaluation, this study was meant to provide an ini-
tial feasibility test for this approach to 3D hand tracking.

Gesture Feasibility Experiment
To provide a first step towards quantifying accuracy and re-
peatability, we asked participants to mimic hand postures
rendered on screen in an interactive 3D application. We used
ground truth data gathered using a Vicon motion tracking
system as proposed in [23]. Six static hand poses, as shown
in Fig. 13, were generated. In the experiment we tested the
full IK model described in the previous section.

Figure 13: Hand postures in experiment. A) Open palm
B) Counting two C) Pointing D) Grasping small object E)
Grasping large object F) Pinching.

Participants We recruited 12 participants aged 24 to 39,
with a mean age of 32. 10 participants were right handed.
None of the participants had any physical disabilities or lim-
ited range of motion. Related literature has shown that an-
thropometric differences in the upper limbs can make com-
parisons across genders incorrect [6]. Therefore for this first
experiment we only tested Digits with male participants.

Procedure and Task The system was mounted on each
user’s wrist, as in Fig. 13. The system was calibrated for
each user’s hand (including bone lengths and finger motion
range and trajectory). For left handed users, the camera and
laser placement was adjusted and a full camera/laser calibra-
tion performed. During the study phase participants were
presented with the six reference 3D hand configurations on
screen (Fig. 13). A second ‘live’ hand model, driven by
the participant’s input, was rendered on-top of the reference
hand. We ignored wrist and forearm reconstruction in this
study (and hence did not use the onboard IMU). Left and
right-handed reference postures were selected based on the
participant’s handedness.

Participants started each trial in a neutral pose (fully closed
fist). The experimenter triggered each task. Subsequently a
reference pose was rendered on screen and users were asked
to align their instrumented hands as closely as possible (la-
beled as the ‘acquisition’ phase). Users self-reported once
they were satisfied with their pose (by pressing a button
with their uninstrumented hand), at which point they were
asked to hold the pose for 3 seconds (labeled as the ‘static’
phase). Each user completed 3 blocks each consisting of 6
trials, which included all the 6 hand postures in random or-
der. Users had 10 minutes training time with the application.

Results and Discussion The mean acquisition time was
4074 ms. The first block averaged 4417 ms, second 3981 ms
and third 3823 ms. A repeated measures ANOVA reveals that
there is a significant main effect for acquisition time across
blocks (F2,28 = 48, p < 0.01). Post-hoc analysis (Bonfer-

roni corrected α
n = 0.05

3 = 0.0167) reveals linear improve-
ment between blocks 1 and 2 (p < 0.01) but no significant
difference between blocks 2 and 3 (p > 0.35).

Repeatability As a measure of repeatability we compute
intraclass correlation coefficients (ICC), the standard test for
repeatability [6, 23, 38] for this kind of time series data. For
each of the six poses we computed ICC scores per finger and
per joint between the three blocks of repetition (static phase
only). We repeatedly selected two blocks randomly. Then
for each block a trial was selected randomly and a ICC score
was computed between them. This procedure was repeated
40 times to ensure consistency and ICC scores were averaged
together. For brevity we only report individual scores for the
PIP angles but overall the ICC scores were in the range of
0.6 to 0.97 (moderate to strong correlation). Correlation be-
tween repetitions was found to be moderate for little finger
(ICC = 0.66) and good for thumb (ICC = 0.74) to strong
for index finger (ICC = 0.88), ring finger (ICC = 0.81)
and middle finger (ICC = 0.84). Overall these results
suggest that Digits produces moderate to strongly correlated
joint-angle measurements when the same pose is repeated
multiple times and by multiple participants.

Accuracy To determine accuracy, data was averaged across
blocks and participants, keeping joints and gestures separate.
Averaging across fingers would not be very meaningful as
finger motion is not entirely independent (see discussion on
biomechanical constraints earlier). Again for brevity we only
report results for PIP bend angles but results for PIP bend and
MCP bend and tilt angles are comparable.

Figure 14: Mean error in PIP joint-angle (in degrees) per
finger and for all six gestures. Error bars show std deviation.

Fig. 14 summarizes results for the five fingers and all six
gestures. Mean errors throughout the data remain relatively
small for all fingers and gestures (all < 9◦). The best ac-
curacy is usually found with the index finger (min 1.8◦ pose
“D”, max 2.9◦ pose “A”) this could be attributed to the impor-
tance of the index finger for many everyday activities (e.g.,
pointing, pinching, scratching). For most poses the error is
largest for the thumb, this maybe explained by the fact that
our IK model treats the thumb as a regular finger while in
reality the thumb shows a more complex motion (cf. [23]).
The mean error for the pinky is also comparatively high (min
3.8◦ pose “E”, max 7.3◦ pose “D”) this may be explained by
the camera placement in our setup – to achieve a compact
form factor the camera was moved very close to the palm so
that the pinky may not be visible in certain circumstances.

Although preliminary, these overall results are promising.

174



The achieved accuracy of the tracking and specifically the
joint-angle error rates are comparable to those reported in
studies on data gloves [6, 38]. Furthermore, the average ac-
curacy (between 2◦ and 9◦) is better than that defined in the
literature for manual goniometry (between 7◦ and 10◦) which
is considered “in clinical practice to be the gold standard of
joint angle measurement” [23].

DISCUSSION
Digits is a general purpose wearable 3D hand tracker. It
avoids direct instrumentation of the user’s hand, but instead
is wrist-worn. We have shown how the full 3D pose of the
user’s hand can be inferred, without requiring high-fidelity
and currently impractical hardware such as a depth camera
to be worn on the body. The preliminary evaluation of our
prototype system demonstrates tracking close to existing data
gloves, but without direct instrumentation of the hand.

A tale of two kinematic models In this paper we have intro-
duced two complementary ways to recover 3D pose from a
small number of samples on the user’s hand. While the dif-
ferent models (based on forward and inverse kinematics re-
spectively) provide different levels of interactive expressive-
ness they should not be seen as one fully replacing the other.
Both have their own strengths and weaknesses and utility in
different contexts. Our first model has the advantage of sim-
plicity. It allows reconstruction of rich 3D hand poses from
a single measurement on each finger which already enables
a number of compelling spatial continuous gestural interac-
tions (Fig. 1 and Fig. 9) and can facilitate gesture recognition
in mobile applications. The second model adds higher DOF
sensing and more independent movement of each finger joint,
and therefore provides more fidelity in recovering the user’s
hand pose. This model also allows a truer reconstruction of
the hand as shown in Fig. 15. This can be useful for example
in a physics-enabled application where you wish to model
grasping of an arbitrary virtual object or a medical appli-
cation where accurate joint-angle measurements are needed.
We enable this by adding only simple additional hardware,
although there is more algorithmic complexity.

Figure 15: Failure cases for our forward kinematics (FK)
model. Notice mismatch in PIP angle (left) and MCP angle
(right). Using our inverse kinematics (IK) model we can
mitigate such issues, and offer a truer reconstruction.

Limitations With our current implementation being a vision
based technique, occlusions resulting from crossed fingers,
overly bent thumb and handheld objects are problematic for
hand pose reconstruction. However, these are special cases
and we anticipate they can be avoided by careful gesture de-
sign. Furthermore, more advanced techniques for finger sep-
aration and identification could be used to mitigate these is-
sues. In the current Digits prototype we do not model wrist
bend and rotations about the forearm explicitly. In partic-
ular a fully flat or over-arching hand is problematic, while

our image processing techniques can cope better with lateral
motion of the hand relative to the camera.
Our proof-of-concept implementation already is wearable
and not overly bulky but requires user instrumentation. Fur-
thermore, the device is still tethered to a PC or laptop where
computations are being performed. It is however conceivable
to further miniaturize the device until it is either a standalone
watch-like device or fully integrated into a regular watch. Fu-
ture depth camera technologies such as time-of flight might
enable such compact form factor devices. For the time be-
ing we argue that our approach is the best trade-off between
practicality and availability concerns but also between com-
putational complexity, power consumption and form-factor.

Always available input It is worthwhile noticing that with
Digits input is not restricted to a fixed space around the user,
but instead moves with the user’s hand. For example, ges-
tures can be conducted in front of the body (much like other
body-worn systems [10, 24, 33]). However, gestural input
may also happen in a more subtle, effortless way. For exam-
ple, performing hand gestures whilst the hand is lowered by
the side of the body or resting on a physical surface, avoiding
arm fatigue during long periods of use. Examples of this are
shown in the accompanying video figure.

Emergent interactions There are other emergent interactive
features of Digits which can be fruitful to explore in future
work. For example, Digits may be used to track the spatial
positions of fingers from the other (non-instrumented hand)
when both hands interact. Using the palm of the reference
hand as a track pad, or using the segments of fingers on the
reference hand to control sliders in a GUI.
Whilst Digits has been designed to be a general purpose in-
teraction platform, we have demonstrated both in this pa-
per and accompanying video interactive scenarios using this
technology. We believe Digits is particularly useful for mo-
bile scenarios, where the sensor can coexist with existing per-
sonal devices such as mobile phones and tablets. The combi-
nation of touch and 3D input in free space around the device
is particularly interesting. Also of interest are eyes-free in-
terfaces which allow for interactions without needing to re-
move mobile devices from our pockets. One final application
area for Digits is in gaming, where technologies such as the
Xbox Kinect, or Nintendo Wii do not currently support the
level of fidelity of hand sensing. Again such a device could
be complimentary to these existing sensing modalities. For
example, combining the Kinect full body tracker with high
fidelity freehand interactions of Digits.

CONCLUSION
We presented Digits a wrist-worn system for sensing the
full 3D pose of the user’s hand. The system targets mobile
settings, and is specifically designed to be low-power and
easily reproducible using only off-the-shelf hardware that is
both smaller and more power efficient than current consumer
depth cameras. We have shown two complimentary methods
for robustly tracking features of the hand, and we demon-
strated the evolution of a kinematics model for reconstruct-
ing the full articulated hand from these sparse samples. We
demonstrated the utility of Digits for a variety of application
scenarios, including 3D spatial interaction on mobile phones,
eyes-free interaction on the move, and gaming.
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