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Although human activity recognition (HAR) has been studied extensively in the past decade, HAR on smartphones is a relatively
new area. Smartphones are equipped with a variety of sensors. Fusing the data of these sensors could enable applications to
recognize a large number of activities. Realizing this goal is challenging, however. Firstly, these devices are low on resources, which
limits the number of sensors that can be utilized. Secondly, to achieve optimum performance efficient feature extraction, feature
selection and classificationmethods are required.Thiswork implements a smartphone-basedHAR scheme in accordancewith these
requirements. Time domain features are extracted from only three smartphone sensors, and a nonlinear discriminatory approach is
employed to recognize 15 activities with a high accuracy.This approach not only selects the most relevant features from each sensor
for each activity but it also takes into account the differences resulting from carrying a phone at different positions. Evaluations are
performed in both offline and online settings. Our comparison results show that the proposed system outperforms some previous
mobile phone-based HAR systems.

1. Introduction

It was about two decades ago that MarkWeiser introduced to
the world the concept of ubiquitous computing, a computing
paradigm with a goal of making computing an integral and
invisible part of people’s lives [1].The ability of the computing
devices to provide services and information properly and
automatically, while vanishing into the background at the
same time, requires the use of context. Context is any
information that can be employed to describe the situation
of entities that are considered relevant to the interaction
between users and application themselves [2]. Though con-
text comes in different kinds, one such kind is the activity
being performed by a user at any given time.

Activity recognitionmeans recognizing the actions of one
or more entities using a series of observations on entities’
actions and environmental conditions [2]. In the case of

human activity recognition (HAR), activities can be divided
into two categories [3]: high-level activities, such as having
a meeting and taking a shower, or simple low-level physical
activities, such as walking and running.

HAR emerged as an important research area over the past
decade because a variety of applications rely on sensing and
recognizing users activities, including health and environ-
ment monitoring applications, home and industry automa-
tion applications, and security and surveillance applications.

The task of HAR starts with sensing the physical world,
and two main techniques have been employed for this pur-
pose: external and wearable sensors.The former case is where
the devices, such as simple sensors embedded in everyday
objects [4–6] and video cameras [3], are used for the sake of
HAR. On the other hand, the latter case deals with HAR by
means of small sensors attached to a user’s body or clothing
[7]. Though capable of recognizing activities with a high
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accuracy, the external approach to HAR lacks pervasiveness
because it forces users to stay within a parameter defined by
the position and the capabilities of the sensor. Therefore, the
focus of this research is on HAR by means of sensors that can
be carried anywhere by the user.

Among thewearable sensors, themost widely used sensor
for HAR is the accelerometer sensor. The advancement in
technology in the past few years has resulted in miniature,
low-cost yet highly reliable accelerometers that can be used
to collect information about the physical activities of a user
in a highly pervasive and invisible manner. Consequently, a
large number of research studies have investigated the use
of triaxial accelerometers for the sake of HAR with varying
success rates [8–14].

These studies have demonstrated the fact that accelerom-
eters could be used as an inexpensive and reliable means
for capturing and analyzing physical activities. However, this
technique is still obtrusive, as it relies on attaching a sensor
device to a human body, and a very few people would like
to have sensors attached to their bodies or wear special t-
shirts or belts for the sake of HAR in real life. Furthermore,
sometimes noise sources (such as motion artifacts and com-
munication error) affect the recognition accuracy in wearable
accelerometer-based HAR systems. Therefore, some studies
have investigated the use of multisensor or sensor fusion
approach to maximize the information content and reduce
both systematic and random errors [15, 16]. But like previous
works, these systems also rely on attaching multiple sensors
to a human body, which limits their use in real life scenarios.

These days, smartphones come equipped with a rich set
of sensors, including accelerometer, pressure, compass, gyro-
scope, proximity, light, GPS, microphone, and camera.These
devices have become a part of our daily lives, as we carry
smartphones nearly everywherewe go.Thus, the ubiquity and
unobtrusiveness of the phones and the availability of different
wireless interfaces, such as Wi-Fi, 3G, and Bluetooth, make
them an attractive alternative platform for multisensor based
HAR [17].

Recently many studies have used such phones for activity
classification [18–28]; however, most of the previous works
have used smartphones only for data collection, which were
then transferred to an accompanying device (such as PC)
for further processing. Also, mobile phones are generally
energy constrained and extending their battery life is an
essential requirement. Therefore, using these devices for
activity recognition requires a lightweight recognition system
in order to preserve battery life.

Accordingly, this paper introduces a smartphone-based
HAR system based on a sensor fusion approach. The contri-
butions of this work are fivefold. Firstly, instead of focusing on
a small number of similar activities, a large variety of activities
are recognized by using three most commonly available
sensors on smartphones, that is, the accelerometer sensor, the
pressure sensor, and the microphone. Secondly, in order to
preserve the battery life, only time domain features are used
from all the three sensors. Thirdly, to ensure a fast response,
small time/data windows are employed. Fourthly, the use of
only time domain features, coupled with small data windows,
to recognize a large variety of activities while carrying phones

freely results in a complex classification problem. This is
solved by employing a hybrid classification strategy where
a nonlinear discriminant analysis approach is coupled with
a classifier to find the most optimum decision boundaries.
Lastly, system evaluations are carried out in both offline
and online settings, for both subject-dependent and subject-
independent scenarios, using a large number of subjects.

The rest of paper is organized into the following sections.
Section 2 discusses some related work. Section 3 explains
in detail the proposed sensor fusion approach for activity
recognition. Section 4 talks about experiments and presents
the experimental results with some discussion. Finally in
Section 5, we conclude our work and briefly talk about the
future directions.

2. Related Work

Asmentioned earlier, the presence of a large variety of sensors
in a single device makes smartphone a highly suitable device
for HAR in particular and context recognition in general. As
for HAR, smartphones have been used in many ways. For
example, [18, 19, 21, 24] have used the smartphone accelerom-
eter to recognizemovements, such aswalking and running. In
[29, 30], the researchers employed the microphone to classify
acoustic environments using sound analysis. Some studies
used the smartphone GPS sensor to recognize transportation
related activities [31–33]. One common thing between these
approaches is that all of them employed one particular kind of
sensor for the sake of HAR, or context recognition. It should
be noted that the use of one sensor limits the scope of the
recognition problem, that is, the number of activity classes
that can be recognized, or the accuracy of the recognition
[34]. This problem can be solved by employing or fusing
multiple sensors together.

Though it did not use a smartphone, the first work that
employed the multisensor approach to HAR was reported
in [15]. In this work, the researchers employed body-worn
microphones and accelerometers to recognize assembly and
maintenance tasks in a wood-workshop. The sensors were
mounted at different positions on users’ arms. Activity
classification was performed using linear discriminant anal-
ysis (LDA) on the sound data and hidden Markov models
(HMMs) on the acceleration data, and four differentmethods
at classifier fusion were compared. For sound classification,
they used fast Fourier transform (FFT) as the feature extrac-
tion approach, whereas, for acceleration classification, the
number of peaks within a frame and the mean amplitude of
these peaks were used as features. This work showed that the
combination of audio with acceleration helps in improving
the accuracy of HAR.

In [35], the authors presented the design, implementa-
tion, evaluation, and user experiences of CenceMe applica-
tion. Their system employs a large variety of sensors, that
is, Bluetooth, accelerometer, microphone, camera, and the
GPS, to recognize user’s context (such as dancing at a party),
and then shares this information on social network portals
(such as Facebook). To recognize user’s context, they used a
multiclassifier approach where each classifier recognizes only
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one specific type of context, that is, the accelerometer classi-
fier to recognize ambulation (such as walking and running)
and the audio classifier to determine whether a person is in
a conversation or not. For accelerometer classification, the
mean, standard deviation, and the number of peaks of the
accelerometer readings were used as features, whereas, for
audio classification, discrete Fourier transform (DFT) was
used as features.

In [34], a comprehensive context recognizer is presented
that is capable of recognizing ambulatory activities (such as
walking, jogging, or being still) and transportation related
activities (such as riding a bus, or a subway) by means of
the accelerometer, themicrophone, and theGPS sensor.Their
approach is also a multilevel classification approach, where at
the first level accelerometer data is used to recognize whether
a person is in ambulatory mode or transportation mode.
For ambulatory mode, the GPS sensor is then employed to
verify if the user is walking, jogging, or being still. As for
the transportation mode, microphone is activated to capture
audio data, which is then utilized to detect if a person is in a
bus or a subway. They used HMMs with simple time domain
features, frequency domain features, and linear predictive
coding (LPC) features for accelerometer data classification,
whereas GMMS with Mel Frequency Cepstral Coefficients
(MFCCs) were employed for audio data classification. Other
similar works include [17, 33, 36].

In summary, some excellent multisensor approaches for
smartphone-based activity recognition have been developed
by researchers in the past; however, a few problems can be
identified. Firstly, most of these works have used a multilevel
or a multiclassifier approach for activity classification. This
approach, though capable of providing high recognition
results, uses long time windows to recognize activities. For
example, in [33–35], window sizes of 12.8 seconds, 6 seconds,
and 30 seconds were used, respectively. In contrast, non-
multi-level approaches use shorter time windows. For exam-
ple, [17, 18, 24] used a time window of 2.5 seconds, 3 seconds,
and 1 second, respectively. Secondly, existing systems are
based on both time domain and frequency domain features.
In [37], it is shown that the time domain features are less
energy/battery hungry as compared to frequency domain
features. Lastly, majority of the systems have explored the
recognition of a small number of activities. Therefore, it is
desirable to investigate if it is possible to recognize a large
number of activities using only the time domain features
computed from small data windows employing only a single
level classifier. And this is what we have investigated in this
study.

3. The Proposed System

The architecture of the proposed system is shown in Figure 1,
which follows a common activity recognition architecture,
that is, Data Collection → Preprocessing → Feature Extrac-
tion → Classification [7].

The recognition process starts with collecting data from
the three sensors, that is, the accelerometer sensor, the pres-
sure, and the microphone, using a 3.5 second window. The

Start Collect 3.5 s of accelerometer, microphone,
and pressure sensor data

Noise reduction

Feature extraction

Discriminant analysis

Classification

Recognized activity

Figure 1: Flowchart of the proposed system.

window size was chosen based on the results of [37]. In [37],
we implemented a real-time smartphone-based HAR system.
Using exploratory data analysis techniques on acceleration
signals of different physical activities, it was shown that these
signals are generated by an autoregressive (AR) process, and
an accurate time series models of these signals can be built
using low sampling rates (20Hz) and small data windows (3.5
seconds).

A total of 15 activities are targeted in this work, which
are a combination of physical activities mostly explored in
the area of physical activity recognition over the last decade
[3, 7]. These include walking, walking on treadmill, running,
running on treadmill, going upstairs, going downstairs, rid-
ing elevator up, riding elevator down, hopping, riding a bike,
idle (sitting/standing), watching TV, vacuuming, driving a
car, and riding a bus.

After collecting the activity data, the data are subjected to
appropriate noise reduction techniques in the preprocessing
step. This step is important because the data can contain
noise, such as the gravity component in the case of acceler-
ation data. Once filtered, the data are processed to extract
various features.

After feature extraction, discriminant analysis is carried
out. This step is important because an accelerometers output
is very sensitive to the position of the human body at
which it is placed, as shown in Figure 2, which shows the
result of an experiment in which a person walked with 5
phones (LG Nexus 4) at 5 different positions (trousers front
pockets, trousers back pockets, and jackets inner pocket) for
15 minutes along an L-shaped corridor. Acceleration data
were recorded from each phone.The figure clearly shows how
different the output of a smartphones accelerometer could be
for the same activity when carried at different positions. Such
differences result in high within-class variance, which could
result in low classification accuracy. It was for this reason that
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we employed discriminant analysis after feature extraction,
that is, to minimize this variance.

Finally, the newly generated features after the discrimi-
nant analysis are fed to the classifier for activity recognition. A
brief description of each of these components is given below.

3.1. Noise Reduction. A triaxial accelerometer embedded in a
phone carried by a user registers two kinds of acceleration
along 3 dimensions (𝑥, 𝑦, and 𝑧): a constant acceleration
due to gravity, and any acceleration the mobile device is
subjected to by the user [38]. The acceleration due to gravity
is considered as noise. Thus to calculate the real acceleration
of the device the gravity must be eliminated. The technique
to get rid of the gravity factor is borrowed from Androids
own documentation [38], which employs a low-pass filter as
follows.

𝑔 = (1 − 𝛼) ∗ 𝑔 + 𝛼 ∗ V
𝑡
, (1)

where 𝛼 is the filter factor. Several values were compared
and finally a value of 0.2 was for 𝛼, as it not only got rid of
most of the noise but also kept most of the details intact, as
shown in Figure 3, which compares the after-filtering results
for walking for three different values of alpha and the raw
data. 𝑔 is the global variable initially set to 0 (you will need
three of these corresponding to three axes), and V is the
accelerometer’s value for a particular axis at time 𝑡. This will
isolate the force of gravity which can then be subtracted from
the sensor value as

V
𝑡
= V
𝑡
− 𝑔. (2)

3.2. Feature Extraction. Just like any other classification sys-
tem, feature extraction plays a vital role in any wearable HAR
system. Mobile phones are generally energy constrained, so
extending phone’s battery life is an essential requirement. In
other words, using smartphones for HAR requires features
that are both light-weight (energy efficient) and accurate
(possess high discriminating power) to preserve battery life
and ensure high accuracy.The details of feature extraction are
as follows.

3.2.1. Features from the Accelerometer Sensor Data. A large
number of frequency and time domain features have been
investigated in the past for accelerometer-based HAR with
varying success rates. The most widely used time domain
features includemean [39–41], variance or standard deviation
[39, 41], energy [39–41], entropy [40], correlation between
axes [39–41], signal magnitude area [42], tilt angle [42],
and autoregressive (AR) coefficients [9]. The most popular
frequency domain features used so far are the FFT [43–45]
and discrete cosine transform (DCT) coefficients [46].

In one of our previous research studies [37], we per-
formed exploratory data analysis on the acceleration signals
of various activities and learned that simple statistical features
(SSFs) and the coefficient of time series analysis are highly
suitable for smartphone-based activity recognition, as these
features are capable of providing high recognition rates at

lower sampling rates. Based on this finding, this work extracts
two kinds of time domain features from the accelerometer
sensor data: (1) SSFs: mean, standard deviation, correlation,
and signal magnitude area; (2) coefficients of time series
analysis, including autoregressive (AR) analysis, and moving
average (MA) analysis.

AR models are useful for describing situations in which
the present value of a time series depends on its preceding
value, whereasMAmodels are useful in capturing seasonality
in time series data. For more details on AR and MA models,
please refer to [47].

In order to use the AR and MA models, one must first
choose a model order, that is, the number of coefficients of
the model. Based on the findings of [37], this work employs
a model order of 10, that is, 10 coefficients per axis, for
both the AR and MA models. Including SSFs, AR, and MA
coefficients, a total of 70 features are extracted from the
accelerometer sensor data.

3.2.2. Features from the Pressure Sensor Data. The pressure
sensor embedded in a smartphonemeasures air pressure.The
main reason behind including this sensor into our system is to
be able to track altitude,more importantly the relative altitude
between different points, as a user performs a physical
activity. This information could help us in recognizing the
activities which result in an increase or decrease of altitude,
such as going upstairs or downstairs. To the best of our
knowledge, it is the first time this sensor has been employed
in this way in a smartphone-based HAR system. Using the
air pressure captured by the pressure sensor, altitude can be
calculated as follows [48]:

ℎ (𝑝
0
, 𝑝
𝑡
) =

𝑇
0

𝐿

(1 − (

𝑝
𝑡

𝑝
0

)

𝑅𝐿/𝑔𝑀

)

= 44330 × (1 − (

𝑝
𝑡

𝑝
0

)

1/5.255

) ,

(3)

where ℎ is altitude, 𝑝
0
is the standard air pressure at the sea-

level, 𝑝
𝑡
is the air pressure estimate provided by the pressure

sensor at time 𝑡, 𝑇
0
is sea-level standard temperature, 𝐿 is the

temperature lapse rate, 𝑅 is the universal gas constant, 𝑔 is
the gravitational acceleration, and𝑀 is themolar mass of dry
air. Relative altitude can then be calculated as the difference
between the altitudes in two points, such as altitude difference
between floors in a building, as follows [48]:

ℎ
𝑟
(𝑎, 𝑏) = ℎ (𝑝

0
, 𝑝
𝑏
) − ℎ (𝑝

0
, 𝑝
𝑎
) , (4)

where ℎ
𝑟
is the relative altitude between points 𝑎 and 𝑏.

A positive value reflects an increase in the overall altitude,
and vice versa. In this study, for every 3.5 second window
of pressure/altitude data, altitude differences are calculated
between three points, that is, first, middle, and the last
samples. Different points were tested before choosing these
three points. In conclusion, the altitude feature 𝑓alt calculated
from the pressure sensor data can be expressed as follows:

𝑓alt = [ℎ𝑟 (𝑓,𝑚) , ℎ𝑟 (𝑚, 𝑙) , ℎ𝑟 (𝑓, 𝑙)] , (5)
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Figure 2: Activity acceleration signals for walking from 5 different positions, showing how different the output of a smartphone accelerometer
could be for the same activity when carried at different positions.
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Figure 3: After-filtering results for walking (𝑦-axis) for three different values of alpha and their comparison with the original raw data.
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where 𝑓,𝑚, and 𝑙 are the first, middle, and the last samples in
a 3.5 second window.

3.2.3. Feature from the Microphone Data. The use of micro-
phone for HAR has been studied before [15, 34]. However,
these works employed frequency domain features, such as
MFC, LPC, and FFT coefficients. The results of [37] showed
that in terms of energy consumption, it is less expensive
to use time domain features for smartphone-based HAR as
compared to frequency domain features. Accordingly, this
work uses only the time domain features from the audio data.

For microphone data feature extraction, we followed the
same approach as [15]; that is, instead of calculating the
features once for the entire window (3.5 seconds), the given
window is divided into segments and subsegments of size
0.5 seconds and 50ms, respectively. The features are then
repeatedly calculated for these segments and subsegments.
These values were chosen empirically, where classification
accuracy was compared for segments and subsegments of dif-
ferent lengths.The results of this study for segments and sub-
segments of different lengths are shown in Figures 4 and 5,
respectively.

In other words, firstly, each 3.5 second window of the
audio data is divided into equal segments of 0.5 seconds,
with no overlap, which are further divided into subsegments
of 50ms. From each of these subsegments two features are
calculated: (1) zero-crossing rate (ZCR) [29], number of zero-
crossings within a frame, and (2) Short-time average energy
(SAE) [29], computed as the sum of squared amplitudes
within a frame.This step generates a total of 140 features from
a 3.5 second window. Secondly, mean, variance, min, and
max of both ZCR and SAE are calculated for each 0.5 second
segment of audio data. This step generates 56 features. In the
third and the last step, the same four values are calculated
for both ZCR and SAE for the entire 3.5 seconds of audio
data. In conclusion, a total of 204 features are calculated from
eachwindow ofmicrophone data.Thewhole process of audio
feature extraction is demonstrated in Figure 6.

3.3. Discriminant Analysis. It should be noted that acceler-
ometer’s and microphone’s outputs depend on where the
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phone is placed. While performing an activity, a user can
carry the phone freely in any pocket or place it on a table or
hold it in hands in some cases. This results in high within-
class variance. Also, the goal is to recognize a variety of
activities using only time domain features calculated from
small data windows. Therefore, it is desirable to improve
the discriminatory power of these features. Furthermore, as
mentioned above, instead of using a particular feature extrac-
tion method, the proposed system utilizes various kinds
of well-known feature extraction techniques to construct a
high number of features. However, using a high number of
features does not guarantee better performance. Therefore,
it is desirable to reduce the high within-class variance while
achieving dimensionality reduction by selecting only the
most useful features. Most commonly used techniques for
this purpose include principal component analysis (PCA),
linear discriminant analysis (LDA) [49], and kernel discrim-
inant analysis (KDA) [49, 50]. The performances of each of
these techniques were compared (please see Section 4.2.1),
and KDA was chosen for its better performance.

KDA is a nonlinear discriminating approach, which seeks
nonlinear discriminating features using kernel techniques.
Suppose we have a set of 𝑚 feature vectors x

1
, x
2
, . . . , x

𝑚
∈

R𝑛 belonging to 𝐶 activity classes where 𝑛 is the number of
dimensions of the feature vector. KDA considers the problem
in a feature space 𝐹 induced by some nonlinear mapping
𝜑 : R𝑛 → 𝐹. In this work, after experimenting with various
options𝜑 is selected to be the radial basis function (RBF)with
Gaussian kernel (please see Section 4.2.1).

For a properly chosen 𝜑, an inner product ⟨, ⟩ can be
defined in 𝐹 which makes for the so-called reproducing
the kernel Hilbert space. More specifically, ⟨𝜑(x

𝑖
), 𝜑(x
𝑗
)⟩ =

𝐾(x
𝑖
, x
𝑗
) holds where 𝐾(⋅, ⋅) is a positive semidefinite kernel

function. To find the linear discriminant in 𝐹, the following
criterion needs to be maximized:

𝐽 (𝜔) =

𝜔
𝑇
𝑆

𝜑

𝑏
𝜔

𝜔
𝑇
𝑆

𝜑

𝑤𝜔

, (6)
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where 𝑆

𝜑

𝑏
and 𝑆

𝜑

𝑤
are the between-class and within-class

scatter matrices in 𝐹 and are defined as

𝑆

𝜑

𝑏
=

𝐶

∑

𝑘=1

𝑚
𝑘
(𝜇

𝑘

𝜑
− 𝜇
𝜑
) (𝜇

𝑘

𝜑
− 𝜇
𝜑
)

𝑇

,

𝑆

𝜑

𝑤
=

𝐶

∑
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(

𝑚𝑘

∑

𝑖=1

(𝜑 (𝑥

𝑘

𝑖
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𝑘

𝜑
) (𝜑 (𝑥

𝑘

𝑖
) − 𝜇

𝑘

𝜑
)

𝑇

) ,

(7)

where 𝜔 is the KDA basis vector. 𝜇𝑘
𝜑
and 𝜇

𝜑
are the mean

of the 𝑘th class and the global mean, respectively. 𝑚
𝑘
is the

number of samples in the 𝑘th class. The solution to (6) is a
linear combination of 𝜑(x

𝑖
) with coefficients 𝛼

𝑖
such that

𝜔 =

𝑚

∑

𝑖=1

𝛼
𝑖
𝜑 (x
𝑖
) . (8)

Let 𝛼 = [𝛼
1
, . . . , 𝛼

𝑚
]
𝑇, and it can be proved that (8) is

equivalent to

𝐽 (𝛼) =

𝛼
𝑇KWK𝛼
𝛼
𝑇KK𝛼

(9)

and the optimal 𝛼(s) are given by the eigenvectors with
respect to the maximum eigenvalues of

KWK𝛼 = 𝜆KK𝛼, (10)

where K is the kernel matrix (K
𝑖𝑗
= 𝐾(x

𝑖
, x
𝑗
)) and W is

defined as

W
𝑖𝑗
= {

1/𝑚
𝑘
, if x

𝑖
and x

𝑗
belong to 𝑘th class

0, otherwise.
(11)

For a new pattern x, its projection onto a KDA basis vector 𝜔
in 𝐹 is calculated as

(𝜔, 𝜑 (x)) = 𝛼𝑇𝐾 (:, x) , (12)

where

𝐾 (:, x) = [𝐾 (x
1
, x) , . . . , 𝐾 (x

𝑚
, x)]𝑇. (13)

Formore details onKDAplease refer to [50]. In summary, the
discriminant analysis step produces the KDA feature vector
that can be considered as a mapping from a linear feature
space to a nonlinear feature space with better discriminatory
capabilities.

3.4. Classifier. The proposed system employs SVMs for
activity classification. The selection of SVMs is based on a
comparison study, which is explained in Section 4.2. SVMs
are a very powerful data classification technique.Theworking
of SVMs is based on finding the best separating hyperplane. It
is the plane with maximum margins between the two classes
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of the training samples within the feature space. For this,
SVMs focus on the training cases placed at the edge of the
class descriptors. In this way, not only an optimal hyperplane
is fitted but also less training samples are effectively used; thus
high classification accuracy is achieved with small training
sets [51].

The traditional SVM algorithm can be summarized as the
following optimization problem:

min
𝑤,𝑏,𝜉

{

1

2

𝑤

𝑇
𝑤 + 𝐶(

𝑙

∑

𝑖=1

𝜉
𝑖
)}

subject to: 𝑦
𝑖
(𝑤

𝑇
𝜙 (𝑥
𝑖
) + 𝑏) ≥ 1 − 𝜉

𝑖
,

𝜉
𝑖
≥ 0,

(14)

where𝑥
𝑖
are the training vectors that aremapped into a higher

dimensional space using 𝜙(𝑥) which is the kernel function.
𝑤, 𝑏, 𝜉

𝑖
, and 𝐶 are the weight vector, bias, slack variable, and

the penalty error term, respectively. For more details on SVM
classification, please refer to [52].

4. System Validation

4.1. Data Acquisition. As mentioned earlier, a total of 15
activities were selected for this research study. Data on these
activities were collected in an unsupervised study using 30
healthy subjects. The subjects consisted of 18 males and 12
females between the ages of 26 and 35 years old, with an
average height of 172.4 cm and average weight of 64 kg. The
data were collected using an Android operating system based
mobile phone called the LG NEXUS 4. Ten different NEXUS
4 mobile phones were used. Each user used a single phone at
a time. Table 1 provides a linking for mobile phones to each
user.

A custom-built application was used for data collection
and annotation. The application and a brief description on
how to use the application are available for download at
http://www.ubilife.net/adc/. Sample data will also be made
available at the same web address in near future. The appli-
cation has a simple user interface that allows subjects to enter
their names, choose the activity label, and start/stop the data
collection. Subjects were trained on the use of this application
before data collection. They were also requested to perform
the activities in a natural way, without any fixed duration or
sequence. Each subject then collected the activity data at their
homes for a period of one month.

For accelerometer and pressure sensor, a sampling rate
of 50Hz was used; whereas, the microphone data were
captured at the rate of 8000Hz. In order to ensure position-
free recognition of activities, subjects were allowed to carry
phone freely in any pocket, including trousers’ (both front
and back) pockets or jacket’s (both inner and outer) pockets.
Furthermore, they were also allowed to place the phone
on a table or simply carry it in hands while being idle
(sitting/standing) or watching TV.

Initially the data were stored on the SD cards. Later the
data were moved to a computer for further analysis. We col-
lected over 33,000 instances on 15 activities. Approximately,

Table 1: Linking between mobile phones and users.

Mobile Phone ID User ID
P 1 U 1, U 11, U 21
P 2 U 2, U 12, U 22
P 3 U 3, U 13, U 23
P 4 U 4, U 14, U 24
P 5 U 5, U 15, U 25
P 6 U 6, U 16, U 26
P 7 U 7, U 17, U 27
P 8 U 8, U 18, U 28
P 9 U 9, U 19, U 29
P 10 U 10, U 20, U 30

3000 instances were collected on each activity, except going
upstairs and downstairs (1205 & 1513), elevator up and down
(1008 & 1213), hopping (1205), vacuuming (1134), and riding
bike (2120) instances. Also, 1500 instances were collected for
cases which were not among the 15 activities and labeled as
others.

4.2. Experimental Results and Discussion. Five experiments
were performed: (1) offline recognition via 10-fold cross vali-
dations (subject-dependent); (2) subject-independent offline
recognition via leave-one-subject-out; (3) offline evaluation
of different sensors and combination of sensors; (4) subject-
independent online recognition on smartphones using eight
new subjects; and (5) comparison with some of the previ-
ous mobile phone based HAR systems. The term subject-
independent means that the classifier did not see any data
from the test subjects during the training phase, and vice
versa. The results for these experiments are discussed below.

4.2.1. Offline Recognition via 10-Fold Cross Validations. The
purpose of this experiment was four-fold: (a) compare the
performance of different kernel functions for KDA; (b)
compare the performance of different discriminant analysis
techniques; (c) compare the performance of employing KDA
versus using all the features; and (b) compare the perfor-
mance of different classifiers.

For this experiment, the training data were divided into
10 subsets. Of these, the data from one subset were retained
as the validation data, whereas the data from the remaining
nine subsets were used as the training data.Thewhole process
was repeated 10 times, each time picking a different subset as
the validation subset.

For (a), four different kernel functions were compared
for KDA, that is, linear, RBF (Gaussian), polynomial, and
sigmoid. The results are summarized in Figure 7. It can be
seen that the RBF provided the best accuracy. For (b), three
techniques were compared, that is, PCA, LDA, and KDA
(with RBF). The results are summarized in Figure 8; KDA
outperformed the other two in this case.

For (c) and (d), each time, two sets of three different
classifiers, that is, ANNs, GMMs, and SVMS, were trained.
The first set was trained using all the features, whereas the
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Table 2: Average recognition rates for the three classifiers for subject-dependent offline recognition test, usingAll-Features andKDA-Features
(Unit: %).

Activities ANNs GMMs SVMs
All Features KDA Features All Features KDA Features All Features KDA Features

Walking 70 85 69 84 78 98
Walking on Treadmill 73 86 72 85 81 99
Running 82 99 82 96 87 100
Running on Treadmill 85 99 85 99 86 100
Going Upstairs 70 83 68 80 84 99
Going Downstairs 70 85 65 80 83 99
Elevator Up 80 92 78 92 87 99
Elevator Down 78 93 75 92 86 99
Riding a Bike 72 95 69 93 84 99
Hopping 72 92 72 90 84 99
Idle (Sitting/Standing) 78 95 76 95 89 100
Watching TV 72 94 67 91 82 99
Vacuuming 76 96 69 93 84 100
Driving a Car 72 93 65 90 82 98
Riding a Bus 78 92 72 90 83 99
Others 79 91 72 90 84 99
Total 75 92 72 90 84 99
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Figure 7: Comparison of classification accuracy for different kernel
functions for KDA.

second set was trained using the KDA features. The results
for this experiment are summarized in Table 2.

For the ANNs, each network had 𝑛 input neurons (where
𝑛 corresponds to the dimensions of the input feature vector),
one hidden layer with three neurons, and 15 output neurons
corresponding to the 15 activities. A different number of
hidden layers and neurons were tested for each ANN to
optimize the accuracy, and at the end, the given settings were
chosen. As for the GMMs, we followed the details given in
[34].

It can be noticed that using all features did not result
in high accuracy with any of the classifiers. However, when
coupled with KDA, the accuracy for all the classifiers got
better, especially that of SVMs with the average accuracy for
99.1%. In conclusion, KDA was able to learn discriminative
feature transformation which was able to help each classifier

Classification accuracy comparison of different
discriminant analysis techniques
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in discriminating 15 activities more accurately, especially the
SVMs.

4.2.2. Offline Recognition via Leave-One-Subject-Out. One
major goal of any context-aware system is to be able to
recognize context of those who it has not seen before, in
other words, the ability of the system to recognize context
of new users. Accordingly, the purpose of this experiment
was twofold: (a) compare the performance of employing
KDA versus using all the features for subject-independent
recognition and (b) compare the performance of different
classifiers for subject-independent recognition.

This experiment was repeated 30 times. Each time, the
data from one subject were retained as the validation data,
whereas the data from the remaining 29 subjects were used
as the training data.Thewhole process was repeated 30 times,
each time picking a different subject as the validation subject.
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Each time, two sets of three different classifiers, that is, ANNs,
GMMs, and SVMS, were trained. The first set was trained
using all the features, whereas the second set was trained
using the KDA features. The results for this experiment are
summarized in Table 3.

It is clear that subject-independent case is more difficult
than subject-dependent case, as the performance for all
the three classifiers decreased compared to the previous
case. However, the KDA-with-SVMs still provided the best
performance in this experiment, with an average accuracy of
94%.

4.2.3. Evaluation of Different Sensors andTheir Combinations.
The purpose of this experiment was to evaluate the perfor-
mance of different sensors and their combinations using the
SVM and KDA features, in order to assess which is the best
system.

Seven settings were evaluated in total. The overall recog-
nition results are summarized in Figure 9. In summary,
when used alone, though none of the sensors produced high
recognition accuracy, accelerometer sensor performed better
than the other two sensors. It is mainly due to the fact
that most of the activities involved body movement. For the
two-sensor combination, acc-mic setting produced the best
results. However, the optimum performance was achieved
when all the sensors were used at the same time.

In conclusion:

(i) when considering a large number of activities in
an activity recognition problem, a single sensor
might not produce high recognition accuracy. It is
mainly due to the fact that activities appear similar
if only one source of information is considered, such
as watching TV versus idle, walking/running on
treadmill versus normal walking/running, and going
upstairs/downstairs versus walking.

(ii) In other words, the use of one sensor limits the scope
of the recognition problem, that is, the number of
activity classes that can be recognized, or the accuracy
of the recognition.

(iii) In such scenarios, combining or fusing the informa-
tion from different sensors can improve the accuracy.

4.2.4. Online Recognition via Eight New Subjects. Since KDA-
based SVMs provided the best performance in the offline
recognition tests; they were selected as the recognitionmodel
for online recognition tests. It was a subject-independent
recognition test. Under this setting, eight new subjects (four
males and four females) were recruited. These subjects
belonged to different age groups: two subjects had the same
age group as the subjects who collected the training data, two
were aged between 18 and 20 years old, whereas the rest of the
four subjects were between the ages of 45 and 50 years old.

The subjects carried phones with a custom-built Android
application for capturing the acceleration data, computing
the features, classifying the activity, and storing the true
label, as well as the classified label, in a database. Finally,
the recognition accuracy was evaluated by comparing the

recognized labels for the activitieswith their true labels.These
results are summarized in Table 4.

One can argue that the recognition accuracy for our
online tests is very similar to [34]; however, it should be noted
that this work considers the problemof recognizing 15 human
activities, as opposed to [34], where the researchers targeted
only three physical activities and two transportation modes.
Furthermore, the proposed system uses only time domain
features which are less resource hungry in contrast to fre-
quency domain features. Also, our online test was completely
subject-independent with eight new subjects, none of whom
took part in data collection. Lastly, the proposedmethod does
not use the GPS sensor in any scenario, and it is an obvious
fact that the GPS sensor is one of the most battery hungry
sensors in a smartphone.

4.2.5. Comparison with Previous Mobile Phone-Based HAR
Systems. It is difficult to compare our system with other
mobile phone-based HAR systems because each system
employed a different set of sensors and had its own exper-
imental plan, data collection, and reporting mechanism.
Nevertheless, we picked four recent studies thatwere themost
similar to our work for comparison.These are [17, 18, 34, 35].

In [17], authors focused on the recognition of basic
locomotion activities using the accelerometer, gyroscope, and
magnetic field sensor embedded in smartphones. In [18],
the authors proposed an evolutionary fuzzy model to rec-
ognize dynamic activities using smartphone accelerometers;
whereas accelerometer and microphone were used in [34]
and [35] to recognize the basic activities of daily living.

All of thesemethodswere implemented using the instruc-
tions given in their respective papers. During the experiment,
10 subjects were used to collect data on the 15 activities using
our custom-built Android application. All of the sensors used
in these studies as well as in our work were active during the
data collection.The data were then transferred to a computer
for recognition accuracy comparison and an 𝑛-fold cross-
validation rule (based on subjects) was applied. The average
recognition results for all of these systems, along with their
respective time windows, are shown in Figure 10. It can be
seen that the proposed system outperformed the existing
mobile phone-basedHAR systems in terms of accuracy using
a window of just 3.5 seconds.

The recognition accuracies of [17, 18, 34, 35] in this
experiment were lower than the values presented by their
corresponding authors in the original papers, that is, 70%,
61%, 81%, and 62% compared to 96.82%, 95%, 92.43%, and
78%, respectively. We believe that this drop in accuracy is
due to two factors: (a) more complex classification problem,
that is, 15 activities in contrast to 5 [17], 7 [18], 8 [34], and 6
activities [35]; and (b) carrying phones on different positions
in contrast to attaching or carrying them on a single position.

5. Conclusion

This study aimed at implementing an accurate and robust
HAR system for smartphones with three characteristics: (1)
instead of targeting a small number of activities, the system
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Table 3: Average recognition rates for the three classifiers for subject-independent offline recognition test, using All-Features and KDA-
Features (Unit: %).

Activities ANNs GMMs SVMs
All Features KDA Features All Features KDA Features All Features KDA Features

Walking 62 74 57 72 68 90
Walking on Treadmill 63 78 62 78 72 94
Running 75 90 71 88 76 94
Running on Treadmill 76 92 74 91 75 95
Going Upstairs 64 75 60 72 73 95
Going Downstairs 60 75 58 70 72 94
Elevator Up 65 82 62 82 75 95
Elevator Down 63 83 60 82 75 95
Riding a Bike 61 86 59 81 74 94
Hopping 60 83 60 81 74 95
Idle (Sitting/Standing) 65 89 62 86 78 100
Watching TV 61 84 70 82 72 94
Vacuuming 60 85 59 82 74 98
Driving a Car 62 80 56 81 72 95
Riding a Bus 65 82 58 82 73 96
Others 64 82 62 81 73 95
Total 64 82 62 81 73 94

Table 4: Average recognition rates for KDA-based SVMs for subject-independent online recognition test (Unit: %).

Activities Subjects Total
1 2 3 4 5 6 7 8

Walking 90 91 88 89 90 88 90 90 89.5
Walking Treadmill 90 91 90 92 90 92 90 90 90.6
Running 92 93 92 94 94 92 92 90 92.3
Running Treadmill 94 95 94 93 95 92 92 92 93.3
Going Upstairs 92 91 92 92 93 91 90 90 91.3
Going Downstairs 92 92 91 91 92 93 91 91 91.6
Elevator Up 94 95 94 92 93 92 94 92 93.2
Elevator Down 94 94 91 92 92 91 93 92 92.3
Riding a Bike 92 92 93 92 93 91 92 91 92
Hopping 94 93 92 93 94 92 91 90 92.3
Idle 98 99 99 100 100 99 98 99 99
Watching TV 91 92 92 93 94 91 91 90 91.7
Vacuuming 94 95 92 93 92 94 93 92 93.1
Driving a Car 92 94 92 93 92 91 92 91 92.1
Riding a Bus 93 94 92 92 91 93 92 92 92.3
Others 93 93 92.7 92.7 93 92 92 91 92
Total 92.8 93.4 92.2 92.7 93 92.1 92 91.4 92.4

should be able to recognize a large variety of activities using a
single device; (2) it should be able to provide high recognition
accuracy while allowing its users the freedom to keep the
device in any pocket or hold it in hands in some cases; (3)
the system should be less power hungry and should have a
decent response time.

In order to achieve the first goal, the proposed system
incorporates a sensor fusion approach to HAR, where three
smartphone sensors, that is, the triaxial accelerometer, the
pressure sensor, and themicrophone, are used to recognize 15

activities. For the second characteristic, the system employs
a nonlinear discriminatory approach (KDA) together with a
nonlinear classifier (SVMs). This helps in finding nonlinear
discriminating features while reducing the high within-
class variance that results from carrying phones at different
positions. Lastly, the proposed system uses only time domain
features from the three sensors, computed from small data
windows, in order to preserve phone’s battery and achieve
a better response time, respectively. Average recognition
accuracies of 99.1% in offline subject-dependent test, 94% in
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sors and their combinations.
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offline subject-independent test, and 92.4% in online subject-
independent test show the feasibility of using this system for
long-termmonitoring of human activities using smartphones
in free-living conditions.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by the New Faculty Research Fund
of Ajou University (2012).

References

[1] M. Weiser, “The computer for the 21st century,” in Human-
Computer Interaction, R. M. Baecker, J. Grudin, W. A.
S. Buxton, and S. Greenberg, Eds., pp. 933–940, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1995,
http://dl.acm.org/citation.cfm?id=212925.213017.

[2] W. Liu, X. Li, andD. Huang, “A survey on context awareness,” in
Proceedings of the International Conference on Computer Science
and Service System (CSSS ’11), pp. 144–147, June 2011.

[3] S. Vishwakarma and A. Agrawal, “A survey on activity recog-
nition and behavior understanding in video surveillance,” The
Visual Computer, vol. 29, no. 10, pp. 983–1009, 2013.

[4] A. Tolstikov, X. Hong, J. Biswas, C. Nugent, L. Chen, and G.
Parente, “Comparison of fusion methods based on DST and
DBN in human activity recognition,” Journal of Control Theory
and Applications, vol. 9, no. 1, pp. 18–27, 2011.

[5] J. Yang, J. Lee, and J. Choi, “Activity recognition based on RFID
object usage for smart mobile devices,” Journal of Computer
Science and Technology, vol. 26, no. 2, pp. 239–246, 2011.

[6] J. Sarkar, L. T. Vinh, Y.-K. Lee, and S. Lee, “GPARS: a general-
purpose activity recognition system,” Applied Intelligence, vol.
35, no. 2, pp. 242–259, 2011.

[7] O. Lara and M. Labrador, “A survey on human activity recog-
nition using wearable sensors,” IEEE Communications Surveys
Tutorials, vol. 15, no. 3, pp. 1192–1209, 2013.

[8] M. J. Mathie, A. C. F. Coster, N. H. Lovell, and B. G. Celler,
“Accelerometry: providing an integrated, practical method
for long-term, ambulatory monitoring of human movement,”
Physiological Measurement, vol. 25, no. 2, pp. R1–R20, 2004.

[9] A. M. Khan, Y. K. Lee, and T.-S. Kim, “Accelerometer signal-
based human activity recognition using augmented autoregres-
sive model coefficients and artificial neural nets,” in Proceedings
of the 30th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBS ’08), pp. 5172–
5175, August 2008.

[10] T. P. Kao, C. W. Lin, and J. S. Wang, “Development of a portable
activity detector for daily activity recognition,” in Proceedings of
the IEEE International Symposiumon Industrial Electronics (ISIE
’09), pp. 115–120, July 2009.
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[26] P. Siirtola and J. Röning, “Recognizing human activities user-
independently on smartphones based on accelerometer data,”
International Journal of Interactive Multimedia and Artificial
Intelligence, vol. 1, no. 5, pp. 38–45, 2012.

[27] J. Frank, S. Mannor, and D. Precup, “Activity recognition with
mobile phones,” inMachine Learning and Knowledge Discovery
in Databases, vol. 6913 of Lecture Notes in Computer Science, no.
3, pp. 630–633, 2011.

[28] J. B. Gomes, S. Krishnaswamy, M. M. Gaber, P. A. C. Sousa,
and E.Menasalvas, “Mars: a personalisedmobile activity recog-
nition system,” in Proceedings of the IEEE 13th International
Conference on Mobile Data Management (MDM ’12), pp. 316–
319, IEEE, Washington, DC, USA.

[29] A. Eronen, V. Peltonen, J. Tuomi et al., “Audio-based context
recognition,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 14, no. 1, pp. 321–329, 2006.

[30] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Camp-
bell, “SoundSense: Scalable sound sensing for people-centric
applications on mobile phones,” in Proceedings of the 7th ACM
International Conference on Mobile Systems, Applications, and
Services (MobiSys ’09), pp. 165–178, ACM, New York, NY, USA,
June 2009.

[31] L. Liao, D. Fox, and H. Kautz, “Extracting places and activities
from GPS traces using hierarchical conditional random fields,”

International Journal of Robotics Research, vol. 26, no. 1, pp. 119–
134, 2007.

[32] “Location-based activity recognition,” in In Advances in Neural
Information Processing Systems (NIPS), pp. 787–794, MIT Press,
Boston, Mass, USA, 2005.

[33] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Coop-
erative transit tracking using smart-phones,” in Proceedings of
the 8th ACM International Conference on Embedded Networked
Sensor Systems (SenSys ’10), pp. 85–98, ACM, New York, NY,
USA, November 2010.

[34] M. Han, L. T. Vinh, Y. K. Lee, and S. Lee, “Comprehensive con-
text recognizer based on multimodal sensors in a smartphone,”
Sensors, vol. 12, no. 9, pp. 12588–12605, 2012.

[35] E. Miluzzo, N. D. Lane, K. Fodor et al., “Sensing meets mobile
social networks: the design, implementation and evaluation of
the cenceme application,” in Proceedings of the International
Conference on Embedded Networked Sensor Systems (SenSys
’08), pp. 337–350, ACM, 2008.

[36] O. Banos, M. Damas, H. Pomares, and I. Rojas, “Activity recog-
nition based on amulti-sensormeta-classifier,” in Proceedings of
the 12th International Conference on Artificial Neural Networks:
Advences in Computational Intelligence, pp. 208–215, Springer,
Berlin, Germany, 2013.

[37] A. M. Khan, M. H. Siddiqi, and S. W. Lee, “Exploratory data
analysis of acceleration signals to select light-weight and accu-
rate features for real-time activity recognition on smartphones,”
Sensors, vol. 13, no. 10, pp. 13099–13122, 2013.

[38] Android SensorEvent: Isolating the Force of Gravity Using
a Low-Pass Filter, 2014, http://developer.android.com/
reference/android/hardware/SensorEvent.html#values.

[39] L. Bao and S. S. Intille, “Activity recognition from user-
annotated acceleration data,” in Pervasive Computing, vol. 3001
of Lecture Notes in Computer Science, pp. 1–17, 2004.

[40] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity
recognition from accelerometer data,” in Proceedings of the
national conference on artificial intelligence, pp. 1541–1546,
AAAI Press, MIT Press, July 2005.

[41] S. Wang, J. Yang, N. Chen, X. Chen, and Q. Zhang, “Human
activity recognition with user-free accelerometers in the sensor
networks,” in Proceedings of the International Conference on
Neural Networks and Brain Proceedings (ICNNB ’05), vol. 2, pp.
1212–1217, IEEE, October 2005.

[42] M. J.Mathie, A. C. F. Coster, N.H. Lovell, B. G. Celler, S. R. Lord,
and A. Tiedemann, “A pilot study of long-term monitoring of
human movements in the home using accelerometry,” Journal
of Telemedicine and Telecare, vol. 10, no. 3, pp. 144–151, 2004.

[43] T. Huynh and B. Schiele, “Analyzing features for activity recog-
nition,” in Proceedings of the Joint Conference on Smart Objects
and Ambient Intelligence: Innovative Context-Aware Services:
Usages and Technologies, pp. 159–163, ACM, 2005.

[44] Y. P. Chen, J. Y. Yang, S. N. Liou, G. Y. Lee, and J. S. Wang,
“Online classifier construction algorithm for human activity
detection using a tri-axial accelerometer,” Applied Mathematics
and Computation, vol. 205, no. 2, pp. 849–860, 2008.

[45] J. Mäntyjärvi, M. Lindholm, E. Vildjiounaite, S. M. Mäkelä,
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