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ABSTRACT
Prototyping is notoriously difficult to do with machine learning
(ML), but recent advances in large language models may lower the
barriers to people prototyping with ML, through the use of natu-
ral language prompts. This case study reports on the real-world
experiences of industry professionals (e.g. designers, program man-
agers, front-end developers) prototyping new ML-powered feature
ideas via prompt-based prototyping. Through interviews with
eleven practitioners during a three-week sprint and a workshop,
we find that prompt-based prototyping reduced barriers of access
by substantially broadening who can prototype with ML, sped up
the prototyping process, and grounded communication between
collaborators. Yet, it also introduced new challenges, such as the
need to reverse-engineer prompt designs, source example data, and
debug and evaluate prompt effectiveness. Taken together, this case
study provides important implications that lay the groundwork
toward a new future of prototyping with ML.
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1 INTRODUCTION
Prototyping is a fundamental step in the design process, yet quick
proofs of concept are notoriously difficult to achieve with machine
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learning [10, 16, 17]. Prototyping with AI can be uniquely challeng-
ing, due to the difficulty of: determining a priori what an AI can or
cannot do, finding skilled AI technical collaborators, and envision-
ing AI uses that do not yet exist [17]. Recently, advances in Large
Language Models (LLM) like GPT-3 [3] have lowered the barrier to
authoring new machine learning functionality on-the-fly by allow-
ing users to feed natural language prompts to an LLM, a practice
known as “prompt programming” [1, 3]. For example, given a gen-
eral purpose LLM, a user could customize it to act like a specialized
English-to-French translation engine, by giving the LLM a natural
language prompt containing pairs of English and French examples:
“English: how are you? French: comment allez-vous? English: good-
bye! French: au revoir! English: hello! French: ”. Given this prompt,
the LLM is likely to output the French translation: “bonjour!”

While the translation example above serves as a toy example, in
practice there are numerous types of ML functionality a designer
may want to prototype, ranging from innovative new application
ideas (e.g., given the weather, generate clothing advice; given fa-
vorite ingredients, generate new recipes), to new machine learning
models that would form critical components of envisioned applica-
tions (e.g., given noisy audio captions, remove dis-fluencies; given
a peer review, rewrite it to be more polite). There may also be
multiple reasons why non-ML practitioners may desire to proto-
type quick proofs-of-concept of functional ML features, such as for
de-risking and testing out the feasibility of half-baked ideas, surfac-
ing edge-cases or realistic AI error modes early on, or grounding
communication with ML collaborators via a tangible, functional
prototype – currently difficult to do with traditional prototyping
techniques alone (e.g. wizard-of-oz [8] and wire-frames) [17]. The
relative ease with which LLMs can be customized to produce a
wide range of functionality suggests that it may be useful as a
flexible AI design material, enabling non-ML experts to create new
ML functionality through natural language alone. In the context
of prototyping, we call this natural language prompting process
prompt-based prototyping.

This case study reports on the real-world experience of industry
teams prototyping new machine-learning-powered concepts and
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applications via prompt programming of a state-of-the-art LLM.
Through interviews with eight industry professionals (designers,
program managers, and content strategists) during a three-week
LLM prototyping sprint, as well as a workshop with three front-end
engineers who had been developing prompt-based prototypes for
several months, we describe how prompt programming transformed
the prototyping process by:

(1) Democratizing who can author with ML (by reducing re-
liance on ML experts by non-ML experts),

(2) Substantially reducing prototyping time,
(3) Increasing early intuition about what may or may not be

possible, and
(4) Acting as a “social glue” between cross-functional collabora-

tors.

Furthermore, we uncover four unique challenges users faced
during prompt-based prototyping:

(1) The strategic know-how required to reverse engineer a de-
sign goal into a prompt,

(2) The effort required to source examples for a prompt,
(3) The inability to systematically and reliably debug prompts,

and
(4) The difficulty of evaluating whether a prompt is improving.

Taken together, this case study illustrates a foundational shift in
who can easily prototype with machine learning, the time required
to develop a functional AI prototype, what it means to prototype
ML in this new way, and what people need to better support this
process, paving the way towards a new future of prototyping with
ML.

2 BACKGROUND: PROMPT PROGRAMMING
At the most basic level, a generative language model is designed
to continue its input with plausible output (e.g., given a prompt “I
went to the”, it might auto-complete this phrase with “the store
and bought some apples”). However, when pre-trained on billions
of samples from the Internet, recent LLMs like GPT-3 [3] can now
adapt at run time to perform new tasks defined by the user. For
example, purely using natural language prompts, one could adapt
an LLM to translate between languages, write fiction, or generate
source code. The design of the prompt to produce a particular type
of model output is typically referred to as prompt programming
[1, 3].

A number of strategies have been developed to design prompts
so that they are more likely to produce the desired outcome [14].
The most common strategies can be categorized as few-shot and
zero-shot prompting strategies. Few-shot prompts provide sets
of examples (e.g., “English: welcome French: bienvenue English:
hello French: ”), while zero-shot prompts directly state what ought
to happen by priming the model with context, but without any
examples (e.g., “The translation of “hello” into French is: ”).

3 CASE STUDIES
This case study reports on the real-world experience of industry
professionals prototyping new machine learning-powered features
and applications, through prompt programming of an LLM.

We draw our analysis from two groups. The first group par-
ticipated in a three-week prototyping sprint in August 2021. The
purpose of the sprint was to prototype product and feature ideas
with large language models. In the first week, participants were
introduced to LLMs at a high level, and brainstormed ideas to proto-
type. In the second and third week, participants were provided with
a tool (described below) for prompt-based programming, as well as
an online tutorial showing them the basics of prompting. Following
a typical design process [4, 9], participants were encouraged to
explore multiple ideas initially, and to narrow them down to one or
two ideas per team by the start of the third week. Interviews were
conducted once at the start of week two, and once at the end of week
three, to capture both the early and later phases of prompt-based
prototyping. During interviews, we asked participants to describe
their existing ML-prototyping processes (if any), how they used
the prompt programming tool during the sprint, and how this af-
fected their prototyping practices. The eight participants consisted
of designers (6), a content strategist (1), and a program manager
(1), working in product teams ranging from conversational agents,
geolocation, and games, to R&D and new product innovation.

The second group participated in a one-hour participatory de-
sign workshop in March 2021. They consisted of three front-end
software engineers who had been prototyping a web-based tool to
support creative writers, creating ML-powered features by prompt
programming an LLM. During the workshop, participants were
asked to reflect on the existing opportunities and challenges of pro-
totyping with LLMs, and to sketch ideas for overcoming those chal-
lenges. Both the sprint participants and workshop participants were
industry professionals at our institution. Both the sprint interviews
and workshop think-alouds were transcribed before conducting
thematic analysis.

4 THE PROMPTMAKER TOOL
We developed a user interface, PromptMaker, that enables users
to prototype new ML functionality by making and testing natural
language prompts. We provided PromptMaker to participants at the
start of the sprint, and used it to study the prompt programming
process as well as how prompt programming may influence the
prototyping process. PromptMaker uses a version [7] of the large
model described in [2], which is a 137-billion parameter generative
language model that behaves in a similar way to GPT-3 in its ability
to follow prompts.

Given a desired ML functionality to prototype (e.g., translate
English to French), a prototyper types an initial prompt into the
Prompting Panel, either in the freeform mode (Figure 1, part 1a),
or in the structured mode (Figure 1, part 1b). The structured mode
provides a convenient way to create few-shot prompts: one can add
sets of examples (one set per row), and PromptMaker automatically
concatenates these examples into a single prompt string to send to
the model. After making a prompt, the prototyper then presses the
“Run” button in the Testing Panel (Figure 1, part 2) to see how well
the model’s top-N outputs match the desired functionality (in this
case, the correct French translation). Often, prompts are meant to be
reusable and should generalize across many different hypothetical
user inputs (e.g., a translation prompt should be able to translate any
word or phrase provided by a user). Thus, in the freeform mode,
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Figure 1: PromptMaker interface. Users prototype new ML functionality by writing a prompt either in freeformmode (1a), or
in a structured mode (1b). The structured mode (1b) helps users make few-shot prompts more conveniently, by allowing them
to insert one set of examples per row; it automatically concatenates those examples into a raw prompt string. Users can then
test the prompt on inputs of their choice (2), view the top-N model outputs, then further iterate on their prompt.

PromptMaker enables prototypers to specify optional variables
using a double-bracket notation (e.g., “[[word]]”), which act as
placeholders in the prompt. The prototyper can then test their
prompt on inputs of their choice (e.g. “hello”) in the Testing Panel.
PromptMaker automatically substitutes the bracketed placeholder
(“[[word]]”) with the provided test input (e.g., “hello”) when the
user presses “Run”. After viewing model results, the prototyper can
further iterate on their prompt, add more test examples, or adjust
the temperature slider (Figure 1, part 2). The “temperature” slider
adjusts the randomness of the generated output. Finally, prototypers
can share their prompt with others via a prompt gallery.

5 PARTICIPANTS’ OVERALL PROMPT
PROGRAMMING JOURNEY

In this section, we first provide a high-level overview of the proto-
types produced in the three-week sprint, then describe the partici-
pants’ overall prompt-programming journey.

Participants in the sprint explored a wide range of use cases
spanning creativity, recommendations, and conversational agents
in different domains. By the end of the sprint, they had converged
on eight prototypes, including the following use cases: education
(e.g., given a paragraph, generate reading comprehension ques-
tions; given a science paragraph, classify which scientific method
it is using), games (given characters and roles, generate new char-
acters and roles to create new game rules; given a chess move,
generate next chess move), podcasts (given a celebrity, generate a
podcast introduction of that person), travel (given a location, gen-
erate travel recommendations), conversational personality (given
weather-related questions, generate responses with the personality
of a character).

Participants’ initial impressions of prompt programming tended
to be influenced by the tailored scope of specific demo(s) they
had seen. For example, some assumed large language models were
primarily meant to be used for chatbot applications, for customizing
the personality of bots, or for tasks such as style transfer. While

these are indeed common uses of LLMs, they do not alone capture
the key advancement of LLMs, which is the ability to be customized
on-the-fly for a wide range of use cases. Some only grasped this
unique aspect of LLMs once they had browsed prompts created
by others, created a few prompts themselves, or participated in a
prompt-making tutorial early in the sprint.

In the early stages of prompt programming, participants oscil-
lated between being astounded by the LLM’s amazing capabilities,
to being perplexed by its unpredictability and tendency to go “off
the rails.” Participants were particularly impressed with its ability
to “learn” to mimic nuanced patterns of speech and adapt them
to new topics. For example, one user was surprised that, given
some few-shot examples of celebrities and their corresponding This
American Life podcast introductions, their prompt did a remarkable
job of generating a new podcast introduction of a new celebrity
(e.g. Michelle Obama), with its output mimicking the typical tropes
of a podcast, while simultaneously being germane to a celebrity
not provided in the few-shot prompt examples (Michelle Obama).

Conversely, participants were bewildered when their early model
prototypes started hallucinating or veering far from their desired
functionality. One participant was awestruck that “if I ask if it has a
social media account, it will just make something up.” Another said,
“After a handful of turns. . . it would go way off script. . . and then I
would have to rein it back in.” These surprising behaviors prompted
users to experience imposter syndrome with respect to their ability
to reliably produce prompts (“Maybe there’s someone who can do
it better than me” ), or wonder if there were unwritten rules that
they did not have knowledge of (“I’m not sure how the hardcoded
memory works” ). Overall, users felt they were in an “uncanny valley
of magic, where it’s so magical but it’s not fully magical. You can’t
just—in freeform text—describe what you want.”

By the end of the sprint, participants felt that they had developed
a more nuanced, calibrated understanding of the LLM’s strengths
and weaknesses through interactive play. One participant described
their early experiences in prompt-making as a roller coaster of
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elation and disappointment, eventually resolving in tempered opti-
mism: “I’ve kinda gone through a couple phases. . . I remember when
GPT-3 came out and getting all hyped about it, then going ‘nah this
thing is just gonna produce gobbly gook.’ This sprint re-energized me
about it. Just getting in and tinkering with it and seeing what it can
do. I can sort of see the light at the end of the tunnel more.”

6 HOW PROMPT PROGRAMMING
AFFECTED AI PROTOTYPING

6.1 Improving the AI Prototyping Process
6.1.1 Reducing prototyping time and reliance on others. By far the
most substantial benefit noted by participants was their empowered
ability to author and originate new uses cases of ML, and to pro-
totype ML functionality much more quickly than they otherwise
would. Previously, designers would reach an inevitable roadblock
once they needed to transition their static prototypes into func-
tional, model-backed prototypes: “You have a pen and paper idea,
you’ll play with it using Sheets or Slides or pen paper scissors, do
a WoZ [Wizard-of-Oz] exercise. As soon as you have to write code,
the process slows down, someone has to write a backend and server,
everyone needs to have a Linux box.” With prompt programming,
users could quickly transform half-baked ideas into rough, func-
tional prototypes, without needing to know how to code, find a
custom model, or gather any training data. Hence, participants
felt that prompt programming enabled them to fail faster and test
ideas substantially more quickly, before investing more time and
resources: “You want to fail fast and then when you got something
good, then start investing in more code and more UX.”

As may be inferred, part of the time savings can be attributed to a
reduced reliance on others. In the early ideation phases, participants
typically needed to interact with engineers and teammates with
more expertise in machine learning, even to get a basic sense of
model capabilities and limits: “It was sort of a process of interrogation
– not of the model itself, but of the people who had the ability to
understand it or created it.” Once they have an initial idea, designers
bemoan the time and effort typically required to find machine
learning collaborators and convince them to build out their ideas:
“Spending a long time trying to find the ML researchers...We don’t
have a lot of ML engineers on our team, or any. Being able to...do
some experiments ourselves without having to bother a bunch of SWEs
(software engineers) is really useful.”

Even when they could find like-minded collaborators, partici-
pants noted it usually takes them much longer to communicate the
idea to someone else, compared to building it themselves in Prompt-
Maker: “I was able to sketch something in 20 minutes. . . I didn’t have
to write a big a long doc. . . like a deck or a document...” For many,
this increase in self agency significantly sped up their prototyping
process: “Maybe four times as fast!”

6.1.2 Building an early intuition for interaction feasibility. Prompt
programming enabled users to directly probe and interact with
their envisioned ML functionality, thus allowing them to quickly
test out the feasibility of a half-baked idea. Previously, the process
of thinking through possible human-AI interactions often involved
manually brainstorming hypothetical user inputs and model out-
puts: “As somebody who’s not an engineer, prototyping for me is

usually just me sitting down and writing a bunch of sample dia-
logues.” To develop an intuition for model capabilities prior to one
being fully implemented, participants noted that they would try
to find interactive machine learning demos online geared towards
non-ML audiences (e.g., Teachable Machine [6]), or self-educate by
reading popular blog posts. However, they found it difficult to gain
an intuition for what might be possible, or what realistic AI quirks
or errors might arise, through these indirect methods: “It was very
indirect. . . You have to really intellectualize how it’s working rather
than get an intuition of how it’s working."

Conversely, participants felt it was a world of difference when
they could directly author and interact with rawMLmaterial: “Being
able to play around with [the model] directly and. . . get a sense of
what things are easy and what things are hard. . . just so much more
useful than a wishful thinking sample dialog.” By gaining a hands-on
intuition for potential model capabilities and limitations, users felt
they were able to prototype the “physics” or feasibility of their
half-baked ideas: “I could say, ‘This isn’t completely outside of the
rules of physics. This might work, you know? This is close enough to
something that you will believe it’s worth investing [in].” Another
participant echoed this sentiment: “I have a much better sense of
when I ask it to generate something, whether something interesting
will happen or whether it will be a mess. . . helps to develop a sense of
what kinds of things are worth trying out.”

To discover the possibilities, one user made prompts for multiple
envisioned applications, each of which overshot or undershot the
model’s capabilities until one hit a sweet spot. First, he attempted to
make a “scientific method classifier,” which the model could not do
reliably. He then made a word definition generator, which seemed
too easy for the model. Finally, he made a prompt that generated
new game characters. With this final prompt, he discovered some
potential limits (“It’s not inventing new rules. . . just reflections of rules
that exist” ) and some remarkable capabilities (“if it understands a
thing, it can translate that thing onto other words” ), culminating in
a personal sense of the model’s strengths and weaknesses (“Certain
kinds of meaning it’s good at, but higher abstractions of meaning it’s
bad at” ).

6.2 Reducing the Social Friction of AI
Prototyping

Participants described the complex social processes typically in-
volved in prototyping with AI. The previous section already de-
scribed one potential source of friction: finding machine learn-
ing experts to help understand what is possible, or to help build
prototypes. This section describes other ways that prompt-based
prototyping may affect social processes.

6.2.1 Prototypes as boundary objects to ground communication be-
tween collaborators. Participants felt that their prompt-based proto-
types served as mechanisms for grounding communication between
cross-functional collaborators with a common, tangible object. In
this light, the prototypes act as boundary objects [11, 12, 15], pro-
viding a common frame of reference for collaborators. Whereas
it can be hard to see eye-to-eye on an abstract idea, jointly inter-
acting with the same functional prompt helped users understand
each others’ perspectives and make progress faster: “I was actually
referencing something, but he [an engineering collaborator] could
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then use [it], and so it was a common material that we were both
using [despite] different abilities. . . I think that was really important
in terms of increasing that velocity.” Without this grounding mecha-
nism, “I would have had to detail out what my intention was far more
deeply because we weren’t referencing the same material.” One user
contrasted the more arduous, intellectual process of communicating
ideas through documents, to the more direct, instinctive process of
communicating through prototypes: “That was one of the more time
consuming processes in a way because you had to think about how to
communicate what you want rather than a material understanding
of what you have.”

6.2.2 Reducing risk imposed on collaborators. Critically, partici-
pants felt that because prompt-making helped them de-risk their
own ideas, it also allowed them to reduce the burden they would
otherwise impose on collaborators, who would typically need to
invest time upfront without guaranteed rewards. For example, a
participant felt that, by demonstrating an idea was “not outside of
the laws of nature in terms of how the [model] may operate,” they
felt like they were imposing less risk on engineering collaborators:
“It didn’t feel like I was putting as much risk on [my collaborator] as
a result of doing that. It kind of. . . derisks the pitch. . . Being able to
really really quickly ground yourself without risking anybody else’s
time or attention, that was great.”

6.2.3 Creating transferable objects between collaborators. Interest-
ingly, a few participants reported that the modularity and reusabil-
ity of a prompt allowed their team to quickly build on each other’s
progress. For example, some teammates each individually created
few-shot examples in a spreadsheet, then merged them together.
Another user discovered that structuring a prompt with prefixes not
only helped the prompt perform more reliably (e.g., using “Place:”
and “Description:” in this prompt: “Place: Space Needle in Seat-
tle. . . Description: Seattle Center was built for the 1962 World’s
Fair”), but also enabled teammates to easily borrow and modify that
template to create new character styles: “I realized wait a minute
I could just give [collaborators] a dump of the format. . . one wrote
Tony soprano, another wrote Hipster guy. That was awesome!...It was
quicker for them to rewrite what I already had [written] for the base
Seattle response.”

7 CHALLENGES OF PROMPT-BASED
PROTOTYPING

7.1 Reverse-Engineering Design Goals into
Prompts

Although prompting can be done entirely in natural language, users
still faced an immediate hurdle of determining how to “reverse-
engineer” their desired functionality into an effective prompt. With
zero-shot prompts, participants quickly noticed that different para-
phrases of the same prompt could have vastly different levels of
effectiveness towards producing the desired effect. For example,
while writing a zero-shot prompt to generate example sentences
given a vocabulary word, one participant was surprised to find that
the prompt “The sentence that uses the word [[word]] would be:
” worked well, but a different phrasing “Use the word [[word]] in
a sentence: ” did not work well. These differences are likely due

to certain prompts matching patterns in the LLM’s training data
better than other prompts.

Given this, beginners were particularly surprised when their
initial zero-shot prompts did not behave as intended. Since zero-
shot prompting has the ostensible look-and-feel of other familiar
interactions (e.g., sentence auto-completion, or talking to a chatbot),
participants initially treated the LLM like an agent that can “under-
stand" a request like a fellow human collaborator (e.g. “Use the word
‘eccentric’ in a sentence"). Instead, they needed to work backwards
from a desired goal to a zero-shot prompt design (e.g. by consider-
ing “how is existing text on the internet phrased, to show example
vocabulary words used in a sentence?"); in effect, they needed to
alter their mental model by treating the LLM as an entity that pro-
duces the most likely output given the input and its training data,
as opposed to a chatbot or human collaborator. Participants found
this process of working backwards somewhat counter-intuitive, and
often relied on acquiring tips and tricks through word-of-mouth,
such as “name-dropping” keywords that are likely to be correlated
with the desired results (e.g., some learned that “tldr:” can help
prime the prompt to perform summarization).

Eventually, some participants gravitated more towards few-shot
prompts, because it gave them a more systematic way of reverse-
engineering their goal into pairs of inputs and outputs (compared
to zero-shot prompts, whose syntax felt more open-ended). Still,
it took some effort to transform a problem into input and output
pairs: “How do I get it to do the thing I want it to do? Made me think
about the two sides, what the role [input] and the description [output]
should be.”

7.2 Example-Sourcing
One benefit of LLMs is that users can quickly customize model
behavior by providing a few examples of input-output pairs (as a
few-shot prompt string). Despite these benefits, participants noted
the challenges involved with finding or generating these examples,
a process we dub example-sourcing.

While a few participants searched the web or extracted examples
from their own content, the vast majority created their own made-
up examples on-the-fly to use in their prompts. Among the rare
few who sourced examples from an existing corpus, it often took
additional effort to clean the data: “I happen to have this collection
of Star Trek scripts. Unfortunately they’re kind of messy and they
haven’t been formatted. . . a bunch of line breaks and extra stuff in
there.” In essence, while prompt programming lowers the barrier
for non-experts to produce new AI prototypes, they may still need
to engage in more traditional machine learning activities, such as
creating and curating a dataset for training the model (albeit, a
much smaller dataset than is typical for deep neural networks).
However, in contrast to typical machine learning, the source of the
examples is often the users themselves.

Participants noted that example-sourcing was upper-bounded
by the limits of their own creativity and mental energy required
to conjure up examples. To extend beyond their own limits, one
user recruited a collaborator to broaden their set of examples, and
commented on the level of human intelligence required to produce
high-quality AI-output: “I recruited a creative writer to help out. . . it
was interesting to see the kind of creative stuff he put in and how his
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voice would shine through. . . ” Rather than sourcing examples from
other colleagues, another participant sourced additional examples
from the model itself by picking good results from initial model
output, adding them to the few-shot prompt, running the model,
and then repeating this process: “I would generate some and. . . just
scroll through scroll through scroll through until I found some gold,
and put that back in and go from there. . . I’m kinda using [it] for
coming up with. . . sequences of words that I would not have come up
with on my own.” However, even this process could be painstaking
if it requires sifting through dozens of examples before coming
across a good one: “It required a lot of digging through examples.”

7.3 Debugging and Control
While prompt-making, participants found it particularly difficult to
debug their prompts, partly due to the non-deterministic nature of
model output. Because generative models produce different outputs
on different runs, it is difficult for users to decipher whether it was
a change they made that produced an error, or whether it was due
to random luck of the draw: “makes it hard for you to understand
which lever you pulled correctly.” As a result, users formed hypothe-
ses and folk theories on what might have produced the changes
observed. Because prompts often contain multiple components and
characteristics (keywords, phrasing, prefixes, length), users could
not tell which specific aspect of their prompt most influenced the
results: “So is my specifying one, two, three sentences actually making
a difference or is it the fact that my summary was one sentence?”
Some even wondered if there was a system error: “I don’t know
what changed. Maybe there was an upgrade or something.”

A common problem users encountered was the model either
over-generalizing, by straying too far from the examples provided,
or under-generalizing, by fixating too much on the examples pro-
vided. To combat under-generalizing, some tried to eliminate overly-
influential examples, or shuffled examples to decrease the influence
of the final example: “I would find it starting to fixate on certain
examples, so I would have to eliminate those examples. . . I might have
tried reordering things.” Under-generalization was particularly prob-
lematic when users wanted the prompt to generate new topics
different from the few-shot examples, but following a style similar
to the examples. For example, one participant used touristic de-
scriptions of Seattle in some few-shot examples, with the intent of
having the model generate touristic descriptions of other cities, but
could not find a way to prevent the model from continuing to create
Seattle-related descriptions. To combat under-generalization, users
tried to diversify their prompt examples for broader coverage: “I put
a second example, so that when I generated output it would have more
variety.” Overall, this need to debug prompts and modify “training”
examples (even among non-engineers) suggests that prompt-based
prototyping practices may require practices commonly found in
software engineering and machine learning.

Beyond debugging, participants also had trouble controlling and
expressing logic that they wanted their prototype to follow. One
user wanted to create low-level rules like “only output a single sen-
tence.” Another needed to express high-level logic, such as enforcing
the prototype to follow canonical social scripts (e.g., well-known
steps to making a restaurant reservation), or enforcing the model to
behave differently in different settings (e.g., phone vs. car vs. tablet).

They desired to define this sort of “business logic” into prompts,
but could not find an immediate way to do so: “How do you pro-
vide real-world pragmatic information...appropriate guardrails that
is required for a specific domain or business?”

7.4 Evaluating Prompt Effectiveness
Participants also attributed the difficulty of debugging to the chal-
lenge of evaluating whether their prompts were improving. Those
newer to prompt-making struggled with the non-deterministic na-
ture of the model, whereas more experienced prompt-makers found
it difficult to systematically evaluate and track improvements over
time.

To address the non-determinism of the model, a common strat-
egy employed to evaluate changes to the prompt was to re-run the
model multiple times to see if the observed behavior was consistent.
Another strategy was to test the prompt on “extreme caricatures,”
or on inputs that the user has deep familiarity with, to test against a
known groundtruth: “I would always pick things that I’m obviously
familiar with.” Yet another strategy was to first test the prompt
at a low temperature setting to confirm that results were reason-
able, then increase the temperature to see if model output yielded
interesting results as opposed to completely irrelevant results: “If
you crank it up a little bit, you see ‘is it going to give me something
interesting...? Or is it giving me something so far off from what I want
that it’s no longer helpful?’” In other words, they were evaluating
whether ostensibly reasonable output at low temperatures meant
that the model truly matched their intended concept, or whether it
may have been due to noise or other confounds.

More experienced prompt-makers indicated that a key barrier to
evaluating promptswas themental load of skimming and evaluating
large volumes of text: “It’s a pain to read all of these things and hold
it all in your mind.” Currently, this process is somewhat haphazard:
“I just kind of eyeball it and think it’s a better answer but it’s super
judgmental.” To more systematically evaluate their prompts, users
wished they could assign a “quality score” to model outputs, and
see how that score changes over iterations. They also wished this
score could be automated, but the scoring they suggested (e.g.,
number of pronouns, parts of speech) tended to be highly specific
to their use case (e.g., creative writing), rather than a metric that
could be universally applied. Other suggestions included building
canonical “test sets” for their prompt, to test the prompt on different
types of input and see where it breaks down: “helps you narrow
down which data is on the manifold of cases that don’t work.” For
example, a “paraphrase” prompt could be tested onwords, sentences,
and paragraphs. A related idea was to test the same test set on
multiple variations of the same prompt, to determine which prompt
works best. Beyond evaluating the prompt itself, some designers
desired to evaluate their proofs-of-concept within more authentic
environments, such as plugging prompts into visual prototyping
tools or existing web apps.
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8 DISCUSSION
8.1 Considering How LLMs Alter the Need for

ML Expertise in Prototyping
Currently, AI expertise may be concentrated within a few individ-
uals, such as AI engineers and researchers. This concentration of
expertise increases barriers of access to non-experts who must rely
on others, both to determine whether an idea is feasible, and to im-
plement ideas via functional prototypes. LLMs have the potential to
alter these dynamics by empowering non-experts to directly create
functioning prototypes, gain the intuition necessary to conceive
of promising new ML use cases, and use those working proofs-of-
concept to ground communication with collaborators. Hence, we
may find that future AI-based features and products can be more
rapidly iterated on and de-risked earlier in the product cycle, since
more people have the ability to test out ideas, and in less time.

While prompt programming lowers the barrier to prototyping
new AI ideas, it may occasionally deter practitioners from pursing
designs that could eventually work with alternative ML methods
(e.g., training a specialized model, prompt-tuning [13], etc.) or a
better prompt design. In other words, the inability to produce an
effective prompt does not necessarily mean that a model cannot
eventually be produced to solve the intended problem. Conversely,
successes on a few example inputs may not generalize to behavior
in authentic environments, thereby limiting the prototype’s utility
in understanding larger issues related to creating responsible AI.
At the same time, we also observed in our study that, relative to the
status quo, prompt programming gave users a much more intuitive
way of developing calibrated expectations about generative models
in general, and to develop an awareness of risks and edge cases
they may not otherwise have considered. Given these benefits and
trade-offs, it may be worthwhile to provide onboarding documenta-
tion [5] to sensitize prompt programmers to the fact that there is a
limit to which conclusions can be drawn from prompt-based proto-
typing. In addition, these onboarding materials could provide go-to
strategies for effective prompt design, so that users are less likely
to be deterred by naive implementations of ineffective prompts.

8.2 Considering Changes to AI Prototyping
Practices

Given a shift in who can prototype with ML, we may also witness
a parallel shift in what non-ML practitioners do when prototyp-
ing in the future. Currently, designers engage in activities such
as Wizard-of-Oz [8], static mocks, or manual dialogues to imag-
ine what interactions may look like. With LLMs, their roles could
expand beyond consideration of the primary design concept, to
considering other issues such as how to handle AI failure modes
(by using concrete model output to guide that thought process). In
other words, they may now prototype more “deeply.” They may
also begin to borrow practices from traditional software develop-
ment and ML, such as debugging the prompt, finding examples to
“train” the prompt, testing the prompt, etc. Overall, prompt-based
prototyping introduces a new hybrid between UX design and ML
modeling: It introduces common ML practices into the traditional

design process, while imbuing AI development with more user-
centered perspectives through broadening participation to more
diverse professions.

8.3 Integration With Existing Prototyping
Tools

Finally, users desired to plug their prompts into existing prototyping
tools, so that they can bring their prototypes to life within authentic
product environments (e.g., a web application) or visual mockups
(e.g., in Figma).While PromptMaker currently allows users to export
their prompt as an endpoint to plug into web applications, future
work could consider no-code solutions, such as allowing a prompt
to be easily imported through a plugin into existing prototyping
tools like Figma. For example, a designer could drag and drop a text
box that is backed by an LLM prompt in a design tool. Integrating
prompt-based prototypes into authentic environments could enable
designers and developers to get earlier in situ feedback from users
reacting to ideas presented within their envisioned context of use.

9 CONCLUSION
This case study provides important implications toward a new
future of prototyping with ML: prompt-based prototyping substan-
tially reduced prototyping barriers, while also introducing new
prompt design challenges. While this research studied the use of
PromptMaker in a large industry setting, there are numerous set-
tings in which ML prototyping time is currently a bottleneck, and
for which non-ML expert participation is crucial. We hope future
work will build on this case study to lower the barriers to ML pro-
totyping in other environments, as well as for the general public.
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