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Abstract. Recent progress in 4D implicit representation focuses on
globally controlling the shape and motion with low dimensional latent
vectors, which is prone to missing surface details and accumulating track-
ing error. While many deep local representations have shown promising
results for 3D shape modeling, their 4D counterpart does not exist yet.
In this paper, we fill this blank by proposing a novel Local 4D implicit
Representation for Dynamic clothed human, named LoRD, which has
the merits of both 4D human modeling and local representation, and
enables high-fidelity reconstruction with detailed surface deformations,
such as clothing wrinkles. Particularly, our key insight is to encourage
the network to learn the latent codes of local part-level representation,
capable of explaining the local geometry and temporal deformations. To
make the inference at test-time, we first estimate the inner body skele-
ton motion to track local parts at each time step, and then optimize
the latent codes for each part via auto-decoding based on different types
of observed data. Extensive experiments demonstrate that the proposed
method has strong capability for representing 4D human, and outper-
forms state-of-the-art methods on practical applications, including 4D
reconstruction from sparse points, non-rigid depth fusion, both qualita-
tively and quantitatively. Please check out the project page for video and
code: https://boyanjiang.github.io/LoRD/.

1 Introduction

Dynamic 3D human modeling has been a long-standing challenge to 3D vi-
sion and graphics communities, as it is critical to various applications, such as
VR/AR, animation and robot simulation. Traditional methods leverage well-
designed parametric model [2] and physics-based simulation [61,67,22,20] to
model the inner human body and deformable outer cloth separately, but they
typically demand huge engineering efforts and expensive computational cost. Re-
cently, many learning based methods have been proposed [36,25,44,32,35,11,4,60];
unfortunately, some of these methods can not model fine-grained geometry de-
tails beyond inner body, while the others only support frame-wise reconstruction
to produce dynamic sequence.
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Fig. 1. LoRD represents dynamic human with a set of overlapping local parts. Each
part is temporally tracked with the estimated SMPL meshes, and contains low-
dimensional latent codes of motion, canonical shape and texture (optional), which
can be decoded to recover the detailed temporal changing of local surface patches by a
4D implicit network. During the test-time, these latent codes are optimized based on
the different types of input observations, such as sparse point clouds and monocular
RGB-D video to produce high-fidelity 4D human reconstruction.

The key challenge of dynamic human modeling is to find a way to model 4D
representations for both surface geometry and temporal motion. Typically, exist-
ing 4D human representation methods infer the single holistic latent code/vector
to control global motion and shape, which unfortunately are prone to over-
smoothing shapes and missing fine-grained surface details. Recent efforts are
made on inferring local representations for 3D modeling [19,15,30,6,54]. Typi-
cally, these methods utilize a set of local parts to model the geometry of local
surface regions for reconstructing complete 3D shapes. Such local formulation
improves the model capacity in recovering the detailed geometry with a stronger
generalization ability than global free-form modeling [49,45,52]. However, it is
nontrivial to directly enable these local methods to support the 4D scenario of
modeling a dynamic 3D human with temporal motions, as their näıve extension
to do per-frame reconstruction can not maintain the desirable properties of 4D
modeling, such as temporal inter-/extrapolation, 4D spatial completion.

To this end, this paper proposes a Local 4D implicit Representation for
Dynamic human, named LoRD, which combines the merits of 4D human mod-
eling and local representation. The LoRD is capable to produce high-fidelity
human mesh sequence. Given a dynamic clothed human sequence over a time
span T ∈ [0, 1], we decouple its temporal evolution into two factors: inner body
skeleton motion and outer surface deformation. We handle the skeleton motion
with the widely-used SMPL parametric model [40], which uses a shape parame-
ter and a series of pose parameters to represent the temporal changing of inner
body. On the other hand, for outer surface deformation, we resort to a local
implicit framework. Specifically, we sample a bunch of local parts on the inner
body mesh of the canonical frame (T = 0), each part is represented by a 3D
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sphere with the intrinsic parameters (not camera intrinsics) of radius and trans-
formation with respect to the world coordinate frame, and latent codes encoding
local deformation and canonical shape information. Since SMPL models have the
unified mesh topology, we can find the correspondence in subsequent frames and
temporally align the local coordinate systems for each part. Then we use a 4D
local implicit network to model the surface deformation within each part con-
ditioned on their latent codes. Such representation utilizes inner body model
to handle the global skeleton motion, and leaves the detailed surface dynam-
ics to the powerful local implicit network. This facilitates the dynamic human
modeling with high-quality geometry.

Technically, our local representation is learned on 100 human sequences with
ground truth mesh and its corresponding inner body mesh, each sequence con-
tains L = 17 frames. For each training sequence, we first sample the local parts
on the surface of inner body mesh and randomly initialize the latent codes. Then
we use objective function introduced by IGR [23] to optimize the local implicit
network and latent codes. During the test-time, we fix the local implicit network
to support a particular application (e.g., 4D reconstruction from sparse points,
non-rigid depth fusion) via the auto-decoding method [52]. To obtain the inner
body mesh, we use the existing work H4D [29] to provide plausible body estima-
tion. Moreover, our representation can combine with the H4D motion model to
conduct body reference optimization introduced by PaMIR [80], and support in-
ner body refining to handle the imperfect body estimation (detailed in Sec. 3.4).
This improves the robustness of LoRD against inaccurate inner body tracking.

To summarize, the main contributions of our work are: 1) We propose a novel
local 4D implicit representation, which divides surface of a dynamic human into
a collection of local parts and supports high-fidelity dynamic human modeling;
2) To temporally align each part for training and test-time optimization, we
leverage inner SMPL body mesh for local part tracking; 3) We design an inner
body refining strategy based on our local representation to optimize imperfect
initial body estimation; 4) Our representation only requires a small set of data for
training, and outperforms the state-of-the-art methods on practical applications,
e.g. 4D reconstruction from sparse points, non-rigid depth fusion.

2 Related Work

4D representation Deep learning methods have shown impressive results on
3D-related tasks based on various representations, such as voxels [12,21,71],
point clouds [57,18,56,1], meshes [24,31,69,37,7] and neural implicit surfaces
[45,52,9,30,10,17,6,19]. While great success has achieved for static 3D object,
recent works [49,58,28] attempt to investigate elegant 4D representation of mod-
eling dynamic 3D object with an additional temporal dimension. When targeting
the dynamic human, recent methods [49,28] always suffer from missing surface
details and inaccurate motion due to the global shape modeling and lack of hu-
man motion prior. In contrast, the proposed local 4D representation leverages
inner body tracking to handle the global skeleton motion and leaves the detailed
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dynamics to a set of local parts, which is effective to recover high-fidelity surface
deformation, and generalize well to the novel sequences.
Local shape representation The implicit representations conditioned on a
global latent vector [52,45] often produce over-smooth results and have failed
to recover detailed geometry such as human hands and clothing wrinkles. To
tackle this problem, some recent works utilize local implicit representation for
shape modeling [19,14,30,54] and neural rendering [53,39], but none of them has
used it to build 4D representation that represents how 3D geometry deforms
continuously over time. Similar to us, there is a family of work [68,8] build-
ing human avatar which supports shape generation under arbitrary body poses.
However, they process different timestamps independently and do not explicitly
estimate temporal correspondences, which are shown to be important for recov-
ering geometry details from multiple input frames or applications like motion
completion/prediction. In contrast, our method extends the local representation
to 4D scenario by combining the human prior model and 4D implicit network,
which can directly produce 4D results with one-shot optimization process.
Dynamic human modeling When it comes to capturing the dynamic human,
some methods [75,26,27] require a pre-scanned template as a good initialization
to obtain results from monocular color information. Recent methods [47,77,79,62]
utilize depth sensors to achieve real-time speed based on the classical deforma-
tion graph [63] and volumetric fusion [48], which get rid of subject-specific tem-
plate. Since these methods are conducted in a frame-by-frame manner without
intermediate motion representation, they are prone to error accumulation and
hard to recover from tracking failures. Most recently, NDG [5] learns a globally-
consistent deformation graph to facilitate non-rigid reconstruction, but requires
per-sequence retraining and relies on multi-view depth sensors, which is incon-
venient in the actual usage. As a popular line of works, NeRF-based [46] human
modeling methods [53,55] typically do not satisfy both local and temporal mod-
eling. Most similar to us, Zheng et al. [78] propose a structured temporal NeRF
for dynamic human rendering. We note that these methods mainly focus on ren-
dering quality but usually produce unsatisfactory geometry. In contrast, LoRD
models motion and shape jointly with local representation, so that information
from two domains can be exchanged through the 4D model and benefit each
other, which produces high-fidelity geometry results.

3 Method

Our framework is overviewed in Fig. 2: given a 3D clothed human mesh sequence
of length L = 17 frames that performs some motions in a normalized time span
[0, 1], we first define a set of local parts (Sec. 3.1) around inner body surface of
the canonical frame (T = 0 in our setup). Then we temporally track these parts
which are controlled by the skeleton motion of the inner body model (SMPL).
Note that we use the ground truth SMPL mesh during training, whereas the
SMPL parameters are estimated with the off-the-shelf method [29] at test-time.
Each part contains a motion code cm, a shape code cs and a texture code ct
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Fig. 2. Overview of our framework. We use a set of spherical parts to model the local
surface deformation of dynamic human. Given a 3D point (x, y, z) under the world
coordinate frame, we determine which part it falls into and transform it into the local
coordinate frame, i.e. (x′, y′, z′), according to the estimated SMPL parameters. The
transformed point is queried into a local implicit network, which is conditioned on
the latent codes of local part, to obtain signed distance and RGB (optional) value.
Note that our local implicit network is shared by all parts. Meshes are extracted with
Marching Cubes [41].

(optional), which can be decoded by our local implicit network (Sec. 3.2) to ob-
tain the reconstructed surface. Overall, we utilize the inner body model to track
global skeleton motion and leave the detailed temporal deformation, geometry
and texture of the local surface patch to the local implicit network. Training and
test-time optimization are discussed in Sec. 3.3 and Sec. 3.4, respectively.

3.1 Local Part Formulation

Inner body model There are many ways to track the global skeleton motion of
a dynamic human, e.g. optical/scene flow [66,38], dense human correspondence
[73,65], and deformation graph [63]. In our formulation, we choose the widely-
used SMPL model [40] as it naturally provides surface correspondence between
frames and its low-dimensional representations are easily to be optimized.

LoRD represents a 4D human with a set of local parts (defined as 3D spheres)

P = {Pk}Kk=1, where Pk = {r,Rk, ck} is the intrinsic parameters of part k (do
not confuse them with camera intrinsics); r ∈ R is the radius of the sphere shared
by all parts (we use r = 5cm in our experiments); Rk ∈ R9 and ck ∈ R3 are the
rotation matrix relative to the world coordinate frame and the center of sphere
for each part respectively. Given the inner body mesh of the canonical frame,
a sampling algorithm (detailed in Supp.) is conducted on its surface to obtain
the part centers. Inspired by [30,6], to make the result smooth over the parts
border, we use the overlapping strategy during the part sampling process, where
each part overlaps with its neighboring parts by maximum 1.5× the part radius
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r, and finally produce 2127 parts. The transformation of each part is based on
the local coordinate frame as shown in Fig. 2. Details are in Supp. Mat.

3.2 Local Implicit Network

Besides the intrinsic parameters, each local part also has the latent parameters
as low-dimensional codes cm, cs and ct, which encode respectively the informa-
tion of the local surface deformation, canonical geometry and texture. The goal
of the local parts is to represent the detailed temporal deformation and geometry
of the local surface patches. To this end, we follow D-NeRF [55] and use a 4D
implicit network, which consists of a motion model and a canonical shape model.
Moreover, if the observed data contain texture information, the additional tex-
ture model would be triggered to predict colors for the vertices of reconstructed
mesh. Note that the implicit network is shared by all local parts. Next, We briefly
introduce each model and the detailed architecture can be found in Supp. Mat.

Motion modelAs shown in Fig. 2, we formulate the motion model fm (x, T | cm)
as a 4D function conditioned by the motion code cm ∈ R128, which takes a 3D
point x = (x, y, z) in the local coordinate frame and a time value T (normalized
to [0, 1]) as input, and predicts a deformation vector ∆x that transforms this
point to the canonical frame, i.e. T = 0, by x∗ = x+∆x. We adopt the network
architecture of IM-Net [9], and reduce the feature dimension of each hidden layer
by 4 fold [30] to obtain an efficient motion model.

Canonical shape model The canonical shape model fs (x | cs) is a neural
signed distance function, which only holds a static implicit geometry of the
canonical frame as the temporal deformation is handled by the motion model.
Specifically, given a 3D query point at time T , we first obtain its position in the
space of the canonical frame with the motion model, and then use the canonical
shape model that is conditioned on a canonical shape latent code cs ∈ R128 to
predict the signed distance of the given point towards the surface. The same
network architecture as DeepSDF [52] is adopted for canonical shape model. For
training and testing efficiency, we reduce the number of layers and the feature
channels for each layer to 6 and 256 respectively. During inference, we compute
the bounding box of human based on the inner body mesh for each frame, and
utilize the Marching Cubes algorithm [41] to extract the iso-surface.

Texture model If the input data contains texture information, e.g. colored
point clouds, our representation can be extended to support surface texture
inference. We achieve this by learning a function f t (x, T | ct) to predict the 4D
texture field [50,59,60] of the dynamic local surface conditioned on a texture
code ct ∈ R128. It takes a 3D point x in the local coordinate frame and a time
value T , and outputs the RGB value of this point. We use the architecture of
TextureField [50] decoder for our texture model. Please refer Supp. Mat. for
the detailed network architecture. Note that we use our texture model in a
per-sequence fashion during the test-time without pre-training, i.e. fit the input
sequence with updating the network parameters, for better visualization results.
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3.3 Training

Thank to our local formulation, the training of our model is very data efficient.
We only use 100 sequences of length L = 17 frames from CAPE dataset [42] to
learn our representation. During training, we adopt the auto-decoding method
[52] and optimize our motion model, canonical shape model, and the latent
codes for training parts. Specifically, given a training sequence that contains
ground truth clothed meshes and the corresponding inner body meshes, we first
sample a bunch of local parts on the surface of the inner body mesh of the first
frame. Since the SMPL mesh has the unified surface topology, we can obtain the
rotations and locations of each part in the following time steps, thus align their
local coordinate frames. Next, we initialize the motion code and canonical shape
code for each part with the vectors randomly sampled from N (0, 0.01), these
codes are optimized with the network parameters during training. To train our
implicit networks, the query points are sampled from three sources, i.e. surface,
near surface space and free space in the bounding box.
Loss functions The point sets sampled on-surface and off-surface are denoted
as X and X̄ respectively. We optimize our 4D implicit function f(·) base on the
loss functions introduced by IGR [23]:

Ls =
1

|X |
∑
x∈X

f(x) + ∥∇xf(x)− n(x)∥) , Le =
1

|X̄ |
∑
x∈X̄

(∥∇xf(x)∥ − 1)
2

where Ls ensures the zero signed distance values for on-surface points and their
normals aligned with the ground truth. Le is the regularization term encouraging
the learned function to satisfy the Eikonal equation [13]. In addition, we also add
a latent regularization term Lc = ∥cm∥2+∥cs∥2 to constrain the learning of latent
spaces. The final objective function for training is L = λ1Ls + λ2Le + λ3Lc. We
use λ1 = 1.0, λ2 = 1e−1, λ3 = 1e−3 in our experiment.
Evaluate SDF for query points During the training process, the sampled
points are only evaluated by the local parts that cover them. In our case, “point
x is covered by part k” means the Euclidean distance between x and the center
of part ck is less than or equal to the pre-defined part radius r, i.e. d (x, ck) ≤ r.
The sampled parts are highly overlapping, thus for one query point, we randomly
choose n parts that covered this point to evaluate its SDF, and then average n
SDF values (n = 4 in our experiments) as the final output. This could encourage
the network to produce the smooth results in the overlapping regions. If some
points are not covered by any parts, e.g. points sampled in the free space far
from surface, then it will choose n-nearest parts to obtain the SDF prediction.
Note that this is important for reconstructing complete results, since we cannot
ensure the local parts sampled from inner body mesh would completely cover
the surface of the clothed human.

3.4 Test-Time Optimization

After learning our local representation, we can then conduct the test-time opti-
mization to reconstruct the dynamic human based on the given observations. In
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our experiments, we mainly focus on recovering 4D humans from complete point
clouds or partial depth sequences. Generally speaking, the test-time optimization
is similar to the training process, which performs backward optimization with
the auto-decoding fashion, except that we fix the network parameters and only
update the latent codes for each local part. Since we leverage the loss functions
from IGR [23], and directly perform optimization based on the point clouds
with local-based representation, the geometry covered by each part is a non-
watertight surface, which causes the extracted surface contains artificial interior
back-faces. We borrow the post-processing algorithm from LIG [30] to remove
such artifacts. The details about the post-processing algorithm and the choices
of hyper-parameters can be found in Supp. Mat. In addition, there are some
technical details that we want to clarify below.
Inner body estimation Given a testing sequence, we first need to estimate
inner body meshes to sample local parts. As the temporal consistency could facil-
itate our reconstruction, we use the recent motion based human body estimation
method H4D [29] to fit the SMPL parameters via backward optimization.
Inner body refining The fitting results of H4D [29] are accurate enough in most
cases, but still imperfect on some sequences, which may cause the observations
of some local parts vary too much over time. Inspired by PaMIR [80], we propose
a strategy to refine the initial inner body fitting from H4D. Specifically, we first
sample and track the local parts on the initial body mesh sequence produced by
H4D, and optimize the latent codes for each part. Then we fix the latent codes
and local parts, query the SMPL vertices into our local implicit network, and
optimize the SMPL parameters for shape and initial pose, and latent vector for
motion of H4D. We follow the body reference optimization proposed in PaMIR
to build the loss functions of our refining process:

LSMPL =

{
|f (x) | f (x) ≥ 0
1
η |f (x) | f (x) < 0

, Lreg =
∥∥V − V init

∥∥
2
,

where η = 5, f (·) is our local implicit signed distance function; V = (β, θ0, cm)
contains the shape parameter, initial pose parameter and latent motion code
of H4D, and the superscript “init” means initial estimations. This reflects the
fact that, if the body estimation is accurate, then the vertices of the body mesh
will get the negative SDF predictions (inside surface). Moreover, we also use an
additional observation loss Lobs, which denotes Chamfer loss for the complete
point cloud and point-to-surface loss for partial point cloud from the depth
image. The final objective function is L = λ1LSMPL + λ2Lobs + λ3Lreg, where
λ1 = 1.0, λ2 = 1e2 and λ3 = 1e−3 in our experiments. We verify the effectiveness
of our inner body refining strategy in Sec. 4.4.
Texture model optimization As mentioned in Sec. 3.2, we optimize the tex-
ture model for each testing sequence. Given a colored point cloud sequence, we
can obtain the ground truth color CT (x) of a surface point x in time T . Then
we query x into the texture model conditioned on the texture code ckt of part k
to get the color prediction. We also use the average of n predicted colors as the
final output (Sec. 3.3). To optimize the network parameters and texture codes,
we add the L1-loss Lcolor = |f c(x, T | ct)− CT (x)| into the objective function.
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Fig. 3. 4D human fitting. We choose SoTA implicit 3D/4D representations to overfit
a given mesh sequence and compare the results with us. The colors on our results
indicate the correspondences across different frames, which cannot be obtained by the
framewise baselines, i.e. NGLoD, DeepSDF. The zoomed-in part shows we reconstruct
better finger details than NGLoD.

4 Experiments

In this section, we evaluate the representation capability of LoRD and its value
in practical applications, i.e. 4D reconstruction and non-rigid depth fusion.

Fig. 4. Temporal inter-/extrapolation. Colored meshes are inter-/extrapolated frames.

Dataset and metric For training and evaluation, we use the CAPE [42] dataset
which contains more than 600 motion sequences of 15 persons wearing different
types of outfits, and the SMPL registrations are provided. Additionally, some raw
scanned sequences with texture information are also available. We choose 100
sub-sequences of length L = 17 for training, and use the sub-sequences of novel
subjects for testing. To compare with the baseline methods, we use Chamfer
Distance-L2[45], normal consistency [60] (the average L2 distance between the
normal of given point on the source mesh and the normal of its nearest neighbor
on the target mesh), and F-Score [69] as evaluation metrics.
Implementation details We use PyTorch with Adam optimizer [34] of learn-
ing rate 1e−3 and batch size 1 for both training and test-time optimization.
The experiments are conducted on a single Nvidia 2080Ti GPU. The test-time
optimization takes around 15min for each 17 frames sequence.

4.1 Representation Capability

4D human fitting We first evaluate the efficacy of LoRD in representing dy-
namic human by overfitting a given mesh sequence. We select one sequence from
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Table 1. Comparisons on 4D human fitting. Left: framewise methods, Right: temporal
methods. “Ch.-L2” and “Normal” mean Chamfer Distance (×10−4m2) and Surface
Normal Consistency respectively. The threshold for computing F-Score is τ = 5mm.

Framewise Ch.-L2 ↓ Normal ↓ F-Score ↑

DeepSDF [52] 0.846 0.291 0.669

NGLoD [64] 0.074 0.135 0.969

Temporal Ch.-L2 ↓ Normal ↓ F-Score ↑

OFlow [49] 0.317 0.312 0.675
4D-CR [28] 5.249 0.359 0.425
Ours 0.075 0.131 0.969

the CAPE dataset for this task. For comparison, we choose 3D neural SDF
methods DeepSDF [52] and NGLoD [64], DeepSDF is a global representation
which represents the complete shape with a single latent code, while NGLoD
is a SoTA local neural SDF representation based on the Octree, both of them
are 3D representations that need to work with frame-wise manner to produce a
temporal sequence. In addition, we choose the SoTA 4D representation methods
OFlow [49] and 4D-CR [28] as our baseline.

The quantitative results are shown in Tab. 1. Our LoRD representation
clearly outperforms DeepSDF and all the SoTA 4D representation methods,
and performs comparable with framewise method NGLoD. We show the visual
results in Fig. 3, the colors of our results indicate the dense correspondences
w.r.t the first frame. Specifically, for each vertex on the reconstructed mesh of
time T , we use the optimized motion codes to transform it to the first frame, and
obtain color value of the nearest vertex. We note that this cannot be achieved
by DeepSDF or NGLoD, since they do not model temporal information.
Temporal inter-/extrapolation To further show the superiority of LoRD
over the framewise representations, we show the temporal inter-/extrapolation
results achieved by our method in Fig. 4. Given a sequence of length L = 17
frames, for interpolation, we randomly choose 9 frames as the observations to
perform SDF fitting, the goal is to complete the missing frames to obtain a
temporally complete sequence. And for extrapolation, we only use the first 9
frames and need predict the future motion of the last 8 frames. Fig. 4 shows
that LoRD produces the plausible results on both inter- or extra-polation modes.
Again, these temporal completion tasks also cannot be achieved by the framewise
3D representations, e.g. DeepSDF, NGLoD. We also provide the results about
interpolation of the latent codes in Supp. Mat. (Sec. 2.2) as a sanity check.

4.2 4D Reconstruction from Sparse Points

We then show that LoRD can support various applications. First, we demon-
strate that LoRD can achieve high quality 4D reconstruction from sparse point
clouds. In this case, we assume the point normal directions are available (oriented
point cloud, the same for Poisson Reconstruction [33] and LIG [30]).
Compare to instance-level methods We first compare LoRD with the in-
stance level methods, the “instance-level” in here means we only overfit one
sequence at a time and do not consider generalization to other instances. We
choose the traditional Poisson Surface Reconstruction with octree depth value
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Fig. 5. 4D reconstruction from sparse points. Each input point cloud contains around
4000 points. Note the detailed geometry in the zoomed-in parts and the surface defor-
mation recovered by our method. We provide more qualitative results in Supp. Mat.
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d = 10 (PSR10) [33], Alpha Shape [16] and Ball Pivoting [3] as the baseline.
Moreover, we also compare with the SoTA network-based surface reconstruc-
tion method Deep Hybrid Self-Prior (DHSP), and the non-rigid reconstruction
method Neural Deformation Graph (NDG). The quantitative results are show
in Fig. 6 (a, I), the leftmost column represents the sampled point cloud density
(number of points per square meter of surface), the smaller number corresponds
to the sparser point cloud, the surface area of SMPL mesh used for point sam-
pling is around 2m2. As can be seen, our method outperforms all the baselines
by a large margin. More importantly, the sparser point cloud hardly affects our
performance while the baseline methods have been significantly affected, this is
because LoRD is a 4D representation, sparse observation from each frame can
compensate each other through the motion model. The qualitative comparisons
are shown in Fig. 5 (above the solid line), our method can recover geometry de-
tails on the face and cloth with high resolution texture, while the baselines only
produce over-smooth results due to the limited information from sparse inputs.

I. Comparisons to instance-level methods

P./m2 Method Ch.-L2 ↓ Normal ↓ F-Score ↑

500

Alpha[16] 1.665 1.205 0.422

BallPvt[3] 0.740 0.433 0.590

PSR10 [33] 0.664 0.310 0.714

DHSP [74] 1.383 0.864 0.520

NDG [5] 0.706 0.2901 0.712

Ours 0.105 0.176 0.938

1000

Alpha [16] 0.966 1.191 0.546

BallPvt [3] 0.337 0.545 0.746

PSR10 [33] 0.301 0.271 0.822

DHSP [74] 0.352 1.131 0.686

NDG [5] 0.316 0.254 0.819

Ours 0.105 0.160 0.946

2000

Alpha [16] 0.343 1.160 0.726

BallPvt [3] 0.187 0.546 0.860

PSR10 [33] 0.175 0.223 0.905

DHSP [74] 0.181 0.607 0.808

NDG [5] 0.177 0.217 0.901

Ours 0.102 0.154 0.952

II. Comparisons to generalizable methods

Type Method Ch.-L2 ↓ Normal ↓ F-Score ↑

Framewise

IPNet [4] 0.752 0.298 0.572

PTF [72] 0.582 0.278 0.485

CAPE [42] 0.749 0.332 0.411

LIG [30] 0.623 0.289 0.875

Temporal

OFlow [49] 5.767 0.344 0.350

4D-CR [28] 5.162 0.398 0.390

Ours 0.306 0.204 0.908

Ours

Dynamic
Fusion

NPMs

PTF

GT

Dynamic

Ours

Dynamic
Fusion

NPMs

PTF

GT

Dynamic

(a) 4D reconstruction (b) Non-rigid depth fusion

Fig. 6. (a) Comparisons on 4D reconstruction from sparse points. The leftmost column
in Block I represents the sampled point cloud density, the smaller number corresponds
to the sparser point cloud. The results in Block II are obtained from the point cloud
of density 2000 points/m2. (b) Qualitative comparisons on non-rigid depth fusion.

Compare to generalizable methods To show the generalization ability of
our method, we train LoRD on the training set of 100 sequences, then fix the
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network parameters and optimize the latent codes of local parts to fit the input
point cloud via back-propagation. In this experiment, we use the point density of
2000 points/m2 (same as the results in the last group of Fig. 6 (a, I)), and choose
10 testing sequences of novel subjects for evaluation. As framewise baselines, we
choose: IPNet [4] and PTF [72], which takes point cloud as input and output
reconstructed mesh via feed forward fashion; CAPE [42] and LIG [30], which
obtain reconstructions via the backward optimization similar to us. The OFlow
and 4D-CR are still considered as the baseline of temporal methods, we remove
their encoders, fix the decoder parameters, and perform backward optimization.
For OFlow and 4D-CR, we use the ground truth occupancy instead of oriented
point cloud as supervision for more stable results. The results are shown in Fig.
5 (below the solid line) and Fig. 6 (a, II), our method beats all the baselines
both qualitatively and quantitatively. We can observe the fine-grained geometry
recovered by LoRD in the zoomed-in parts of Fig. 5, as well as detailed cloth-
ing deformation, which show that our model trained on small set of data can
generalize well to the novel motion sequences. More results are in Supp. Mat.

4.3 Non-Rigid Depth Fusion

We further test LoRD with the application of non-rigid depth fusion. Given a
static RGB-D camera, with a person standing in front of it performing different
actions, the goal is to accurately track the human motion and merge all depth
observations in a time span, and finally produce a dynamic mesh sequence. In this
experiment, we use the mesh sequences of length L = 17 from CAPE dataset [42],
and render each frame to get depth image of resolution 512× 512. We compute
the normal map based on the depth image, and back-project each pixel into 3D
space with the known camera intrinsics to obtain the partial oriented point cloud
as the observations. Then we run H4D [29] to get the inner body estimation,
and use our pretrained LoRD model to perform auto-decoding. Our approach
formulates non-rigid fusion as a temporal completion problem within local parts.
We choose DynamicFusion [47], NPMs [51] and PTF [72] as our baseline and
show the qualitative comparisons in Fig. 6 (b). We observe that PTF produces
overly smooth results, NPMs cannot model the detailed surface geometry for
different subjects, and DynamicFusion fails to track the human motion that
is very fast or contains self-occlusion and leads to unsatisfactory fusions. In
contrast, our model is capable to produce more complete fusion results than
DynamicFusion, e.g. back of the first example, and more detailed geometry than
PTF and NPMs. Additional results including non-rigid fusion on real-world data
and the comparison to more recent human specific fusion work DoubleFusion [77]
are provided in Supp. Mat. for the sake of space. Our method shows robustness to
the SMPL fitting error and provides more complete results than DoubleFusion.

4.4 Ablation Study

Imperfect body tracking We first provide an ablation study to demonstrate
the effectiveness of the proposed inner body refining method. We use the 4D
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reconstruction task with the point density 2000 point/m2 for evaluation. Given
the initially estimated SMPL inner body, we manually add the random Gaus-
sian noise to it and compare the reconstruction performances before and after
refining. Specifically, we perturb the SMPL shape (β) and pose (θ) parameters
by β+ = λβ · σ · µ and θ+ = λθ · σ · µ, where µ ∈ N (0, 1), λβ = 0.05, λθ = 0.01,
and σ ∈ [3, 5] represents the level of noise. The quantitative results are show in
Tab. 2 (left). Without inner body refining, the reconstruction performance drops
fast as the noise level up. And by using our refining method, the performance
improves and in general stable on different noise levels.
Local part size We then study the effect of different radii for local part. To
this end, we use our pretrained model, and test on the task of 4D reconstruction
as previous. The comparisons are shown in Tab. 2 (right). As can be seen, the
reconstruction performance is affected by the choice of part radius r. We choose
r = 5cm in our experiment for slightly better results. We find that the over-small
part is inclined to produce artifacts, possibly due to the limited receptive field
within part. And the larger part could lead to overly smooth results.

Table 2. Ablation study. Left: the effectiveness of the inner body refining on different
noise levels; Right: the effect of the part radius. We choose part radius r = 5cm in our
experiments. The visualization examples are in Supp. Mat.

Noise σ Refining Ch.-L2 ↓ Normal ↓ F-Score ↑

3
Before 1.980 0.297 0.730
After 0.628 0.245 0.776

4
Before 5.469 0.382 0.605
After 0.896 0.256 0.758

5
Before 6.815 0.435 0.528
After 0.753 0.260 0.733

Radius r Ch.-L2 ↓ Normal ↓ F-Score ↑

3cm 0.406 0.278 0.858

5cm 0.306 0.204 0.908

8cm 0.346 0.205 0.905

10cm 0.373 0.210 0.896

5 Conclusion

This work introduces LoRD, a local 4D implicit representation for dynamic hu-
man, which aims to optimize a part-level temporal network for modeling detailed
human surface deformation, e.g. clothing wrinkles. LoRD is learned on a very
small set of training data (less than 100 sequences). Once trained, it can be used
to fit different types of observed data including sparse point clouds, monocular
depth images via auto-decoding. LoRD is capable to reconstruct high-fidelity 4D
human and outperforms the state-of-the-art methods.
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51. Palafox, P., Božič, A., Thies, J., Nießner, M., Dai, A.: Npms: Neural parametric
models for 3d deformable shapes. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 12695–12705 (2021)



18 B. Jiang et al.

52. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 165–174
(2019)

53. Peng, S., Zhang, Y., Xu, Y., Wang, Q., Shuai, Q., Bao, H., Zhou, X.: Neural
body: Implicit neural representations with structured latent codes for novel view
synthesis of dynamic humans. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 9054–9063 (2021)

54. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional
occupancy networks. In: European Conference on Computer Vision. pp. 523–540.
Springer (2020)

55. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural ra-
diance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 10318–10327 (2021)

56. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object
detection from RGB-D data. In: CVPR (2018)

57. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: CVPR (2017)

58. Rempe, D., Birdal, T., Zhao, Y., Gojcic, Z., Sridhar, S., Guibas, L.J.: Caspr: Learn-
ing canonical spatiotemporal point cloud representations. Advances in Neural In-
formation Processing Systems 33 (2020)

59. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: Pifu:
Pixel-aligned implicit function for high-resolution clothed human digitization. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
2304–2314 (2019)

60. Saito, S., Yang, J., Ma, Q., Black, M.J.: Scanimate: Weakly supervised learning
of skinned clothed avatar networks. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 2886–2897 (2021)

61. Selle, A., Su, J., Irving, G., Fedkiw, R.: Robust high-resolution cloth using paral-
lelism, history-based collisions, and accurate friction. IEEE transactions on visu-
alization and computer graphics 15(2), 339–350 (2008)

62. Su, Z., Xu, L., Zheng, Z., Yu, T., Liu, Y., Fang, L.: Robustfusion: Human volu-
metric capture with data-driven visual cues using a rgbd camera. In: Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part IV 16. pp. 246–264. Springer (2020)

63. Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipu-
lation. In: ACM siggraph 2007 papers, pp. 80–es (2007)

64. Takikawa, T., Litalien, J., Yin, K., Kreis, K., Loop, C., Nowrouzezahrai, D., Ja-
cobson, A., McGuire, M., Fidler, S.: Neural geometric level of detail: Real-time
rendering with implicit 3d shapes. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 11358–11367 (2021)

65. Tan, F., Tang, D., Dou, M., Guo, K., Pandey, R., Keskin, C., Du, R., Sun, D.,
Bouaziz, S., Fanello, S., et al.: Humangps: Geodesic preserving feature for dense
human correspondences. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 1820–1830 (2021)

66. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:
European conference on computer vision. pp. 402–419. Springer (2020)

67. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models.
In: Proceedings of the 14th annual conference on Computer graphics and interactive
techniques. pp. 205–214 (1987)



LoRD: Local 4D Representation for Dynamic Human 19

68. Tiwari, G., Sarafianos, N., Tung, T., Pons-Moll, G.: Neural-gif: Neural general-
ized implicit functions for animating people in clothing. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 11708–11718 (2021)

69. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: Generating
3d mesh models from single rgb images. In: ECCV (2018)

70. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv
preprint arXiv:2106.10689 (2021)

71. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-cnn: Octree-based con-
volutional neural networks for 3d shape analysis. ACM Transactions on Graphics
(TOG) 36(4), 72 (2017)

72. Wang, S., Geiger, A., Tang, S.: Locally aware piecewise transformation fields for
3d human mesh registration. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 7639–7648 (2021)

73. Wei, L., Huang, Q., Ceylan, D., Vouga, E., Li, H.: Dense human body correspon-
dences using convolutional networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 1544–1553 (2016)

74. Wei, X., Chen, Z., Fu, Y., Cui, Z., Zhang, Y.: Deep hybrid self-prior for full 3d
mesh generation. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 5805–5814 (2021)
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Supplementary Material

In this supplementary material, we provide implementation details, addi-
tional experimental results, visualization of the surface deformation within a
local part, additional qualitative results, and discussions about limitations and
future work of our approach.

1 Implementation Details

1.1 Network Architecture

Motion model We adapt the architecture of the IMNet [9] for our motion
model. As shown in Fig. 7 (a), the input is the concatenation of: the motion
code cm ∈ R128, 3D query point x ∈ R3 and normalized time value T ∈ R1. The
network is based on multi-layer perceptrons with the skip connection to copy
the input to concatenate with the output feature of the first 4 layers, each layer
has the nonlinear activation of LeakyReLU (α = 0.2) [43] except the last layer.
We follow LIG [30] to reduce the feature dimension of each hidden layer by 4
fold to obtain an efficient motion model. The output of our motion model is a
deformation vector x∗ ∈ R3 that transforms the given point to its position in
the space of the canonical frame, i.e. T = 0.
Canonical shape model The canonical shape model uses the auto-decoder
network proposed in DeepSDF [52], which is shown in Fig. 7 (b). The input is
the concatenation of the canonical shape code cs ∈ R128 and 3D query point
x ∈ R3, and the network predicts a signed distance value s ∈ R1 for the given
point. We reduce the number of hidden layers from 8 to 6 and the feature channels
from 512 to 256 for the efficiency. And following IGR [23], the softplus activation
(β = 100) and geometric initialization are also used.
Texture model The texture model is used to produce the colored results in
Fig. 1 and 5 of the main paper. We modify the decoder architecture proposed in
Texture Fields [50] for our 4D texture inference, and the architecture is shown
in Fig. 7 (c). The texture model is fed with the texture code ct ∈ R128 and the
concatenation of a 3D point x ∈ R3 and a normalized time value T ∈ R1, and
predicts the RGB values c ∈ R3 for the given point. There are five residual blocks
in the texture model network, each of which consists of two fully connected layers
with a skip connection from the input to the second layer. The input of each
block is summed up with the feature encoded from the texture code ct ∈ R128.

1.2 Local Part Coordinates

In this section, we introduce how to select part centers on SMPL meshes and
define the local coordinate system for each part.
Part center sampling Start from a template mesh of SMPL topology in the
rest-pose, we first uniformly sample a point set P (|P | = 100K) on its surface,
and then perform the following steps recurrently to maintain a set of the selected
part centers C: 1) randomly choose a point x from P ; 2) remove all the points
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Fig. 7. Detailed network architectures in our framework.

whose Euclidean distance from x is less than or equal to 0.5r from P , where
r = 5cm is the part radius we pre-defined; 3) add x to C. The loop terminates
when |P | = 0, and we finally obtain 2127 part centers.
Local coordinate frame Given a point ck on a triangle face as the part center,
we use the face normal as the up-axis a⃗k1 , the direction vector from point ck to a
vertex of the triangle as another axis a⃗k2

, and finally the last axis a⃗k3
= a⃗k1

×a⃗k2
.

The rotation matrix of part k is then define as Rk = [⃗ak1
, a⃗k2

, a⃗k3
]. Now, a 3D

point Pglo in the world coordinate frame can be transformed to P k
loc in the local

coordinate frame of part k with P k
loc = RT

k (Pglo − ck).

1.3 Other Details

Point sampling The query points used for training and test-time optimization
come from three sources: 1) surface; 2) near surface space; 3) free space in the
bounding box. During training, we sample M = 10000 surface points on the
ground truth mesh, while at the test time, the points are randomly chosen from
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the input point cloud. Given the on-surface points, we obtain the near surface
points by adding a displacement vector sampled from a Gaussian distribution
N (0, 0.01) to each on-surface point. And M/8 free space points are uniformly
sampled within the human bounding box. We compute the initial bounding box
with the inner body mesh, and pad 10cm on each axis as the sampling region.

Auto-decoding During the test time, we use the trained model to fit complete
or partial point clouds via the auto-decoding manner [52] (main paper Sec. 3.4).
Specifically, we fix the parameters of the local implicit network and optimize
the latent codes with back-propagation by minimizing the objective function
introduced in Sec. 3.3 of the main paper. We initialize the latent codes for
each local part with the random vectors sampled from a Gaussian distribution
N(0, 0.01) and use the Adam optimizer [34] with learning rate 1e−3 to perform
backward optimization for 3000 iterations. We use the same objective function
and loss weights as training (Sec. 3.3 of the main paper). The optimization
process takes around 15min for each sequence of L = 17 frames on a single
GeForce RTX 2080Ti GPU card.

Mesh postprocessing As mentioned in the main paper (Sec. 3.4), the original
extracted mesh of our method contains interior back-faces and some tiny floating
components in the outside. This possibly because that for the off-surface points,
the Eikonal term [23] only constrains the L2-norm of their gradients rather than
specific SDF values, which may confuse the prediction of gradient direction on
the points that far from the part centers. We remove these artifacts by using the
post-processing algorithm introduced in LIG [30]. Specifically, we first compute
the centroid and surface normal for each face of the original mesh reconstructed
by the network, and find its k nearest points on the input point cloud to calculate
the mean normal consistency as the normal alignment score. Then a Laplacian
kernel is used to smooth the normal alignment score, all faces with the score
below a certain normal alignment threshold n and disconnected components
with area below a are discarded. We used the same postprocessing parameters
as LIG, except that we only preserve the most biggest connected component
rather than use the area threshold a as we focus on reconstructing single object.

Mesh surface extraction Different from LIG [30], which only evaluates the
occupied grid cells and assumes all empty ones to be “exterior” space to extract
the isosurface, we construct a SDF volume and evaluate every grid point with our
local implicit function, ensuring to reconstruct the outer surface not covered by
any local parts defined on the inner body mesh. Similar to the strategy illustrated
in the main paper Sec. 3.3, we evaluate a given point with n parts that covered
it (n = 32 in the surface extraction process), and get the final prediction via
average-pooling. And if not covered by any parts, n nearest parts are used. To
make the inference more efficient, instead of cubic volume used in previous work
[45,52], we resort to a rectangular volume that defined as the bounding box of
inner body mesh with 10cm padding on each axis. It takes around 15s to extract
a mesh of resolution 256.
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2 Additional Experimental Results

2.1 Non-Rigid Fusion

Real-world performance To further demonstrate the value of our method
in the actual application scenario, we perform extended evaluation on the real
data. Specifically, we capture a human motion depth sequence with a static
Azure Kinect sensor, and use our model pre-trained on 100 sequences to conduct
non-rigid reconstruction based on the point cloud from raw depth images (note
that the background is filtered out). The qualitative results are shown in Fig.
8, DynamicFusion produces fine-grained surface details on cloth but contains
noisy (body edge) and incomplete (face, arms and legs) areas. In contrast, our
model recovers smoother and more complete geometry with plausible temporal
deformation thanks to the local 4D formulation. We use part radius r = 10cm for
more stable results. Note that the experiments in here and Sec. 4.3 of the main
paper, we only reconstruct the partial surface observed by the static camera in
the time span, which cannot be quantitatively evaluated, thus we only show the
qualitative comparisons.

Fig. 8. Monocular depth fusion on the real-world depth captures. The depth images
are captured with a static Azure Kinect sensor. The first row shows the point cloud
from raw depth captures. Our method is capable to recover the plausible geometry
with detailed surface deformation, e.g. clothing wrinkles in the zoomed in part, in such
challenging scenario.

Comparisons with DoubleFusion Qualitative results are shown in Fig. 9.
We add the same SMPL body mesh used in LoRD into DoubleFusion as body
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prior, which generally makes the fusion reliable, but it still struggles with aligning
finer motion. Also, there are some missing parts, e.g. arm or leg, caused by fitting
error. In contrast, LoRD employs a temporal model to provide global geometry
consistency between frames, which is more robust to fitting error.

Fig. 9. Qualitative comparisons with DoubleFusion. We choose two examples and uni-
formly sample 5 out of 17 frames for visualization.

Moving monocular camera In addition to the static camera, we also conduct
non-rigid depth fusion in the setting of a moving monocular camera, that is, a
person performing some motions during a time span with a depth camera rotat-
ing around him concurrently. In this case, the observation of each time step is
still partial, but almost every body part can be observed during the time span.
Our goal is to compensate each frame based on the geometry information ob-
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served in other frames. Specifically, given a dynamic mesh sequence of L = 17
frames, we make the camera rotates around the up-axis (Y-axis in our setup)
and render a 512×512 depth image every 360/17 degrees. In this experiment, we
assume the camera poses are known, and use the same 10 novel sequences chosen
in the generalizable 4D reconstruction task for evaluation. We choose PTF [72],
NPMs [51] and CAPE [42] as our baseline. For PTF, we input the partial point
cloud to the pretrained single-view model, and obtain the reconstructions with
feed-forward fashoin. And for NPMs and CAPE, we use the auto-decoding man-
ner to optimize the latent codes in their formulation based on each frame partial
observation. Note that we provide the ground truth SMPL pose to CAPE, and
only optimize the cloth latent code. All these methods are working in the frame-
wise manner to produce the sequence results. The quantitative results in Tab. 3
show that our LoRD representation outperforms all the baseline methods by a
large margin. The qualitative comparisons are shown in Fig. 14. Thanks to the
local 4D representation, the proposed method achieves high-quality completion
results, and produces the detailed geometry and plausible temporal deformation
in the invisible areas, while PTF and NPMs fail to hallucinate accurate geom-
etry from partial observations as they do not utilize the temporal information,
and CAPE cannot model the high-fidelity surface details.

Table 3. Quantitative comparisons on monocular depth fusion with a moving camera.
Our method outperforms all the baseline methods by a large margin.

Ch.-L2 ↓ Normal ↓ F-Score ↑

PTF [72] 37.936 0.810 0.145
NPMs [51] 0.981 1.933 0.429
CAPE [42] 1.010 0.356 0.377
Ours 0.395 0.226 0.750

2.2 Interpolation of Latent Codes

Like many other local implicit representations, our model does not have a com-
pact global latent space to sample from, so the representation ability is often
measured by the capability of fitting observations, validated in Sec 4.1 of main
paper. Nevertheless, we can still interpolate between two human sequences by
interpolating representation between the corresponding local parts (as shown
in Fig. 10). We first linearly interpolating cs and SMPL poses showing smooth
change between two subjects. Then we interpolate cm, cs and per frame SMPL
pose jointly to show the representation ability of motion space, since the local
deformation is related to global motion. Note that the texture model is optimized
per sequence without continuous latent space.
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Fig. 10. We choose two sequences (Source and Target) to perform interpolation of
latent codes. “Shape Interp.” means we interpolate latent shape codes and SMPL
poses of the first frames to show the evolution of shape. “Joint Interp.” indicates we
interpolate shape code, motion code and per frame pose jointly. The decimal values
denote the interpolation coefficients
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2.3 Ablation Study

Effect of sequence length L The key novel capability of our model is to rep-
resent the temporal deformation of 3D shape, so that setting L = 1 makes this
infeasible, and our model degenerates to framewise method LIG [30] and thus
achieves similar performance. Additionally, we test different L on instance-level
reconstruction from sparse points task and show the results in Tab. 4. Note
that longer sequence demands stronger network capacity while more geometry
information can be exchanged between frames through our motion model. The
results show that LoRD is able to work with different sequence lengths. We
choose L = 17 following 4D-CR [28] during training to learn our 4D represen-
tation. For longer sequence during test-time, we can utilize the sliding window
strategy similar to HMMR [32] to recurrently recover the whole sequence.

Table 4. Evaluations of LoRD on different sequence lengths.

L Ch.-L2 ↓ Normal ↓ F-Score ↑

5 0.175 0.160 0.914
10 0.207 0.176 0.880
17 0.192 0.158 0.945
20 0.159 0.173 0.875
30 0.389 0.221 0.718

Generalization Besides the results shown in Sec. 4.2 of the main paper, we
also choose 10 sequences from our training set, and get the performance (Ch.-
L2=0.317, Normal=0.170, F-Score=0.926) on 4D reconstruction task. The re-
sults are in general comparable with the performance on testing set (last row of
Fig. 6 (a, II) in the main paper), which reflects that thanks to the local part
formulation, our model has strong generalization ability with the prior of lo-
cal surface deformation learned from the training sequences. We further verify
this by training our model on even 1 motion sequence of 17 frames, which also
can produce the high-quality reconstructions on novel sequences. We show the
qualitative results in Sec. 4.2 of Supp. Mat.
Comparison with only test-time training In Fig. 11, we show the loss curves
of optimization w/ and w/o pretraining. It can be seen that the pretraining
helps optimization converge faster and more stable. By taking about 50 mins
per sequence, optimizing from scratch obtains slightly better performance than
optimizing with pretraining.

3 Local Surface Visualization

Our LoRD representation aims to use a local part-level network to model the
detailed temporal deformation of surface patches. To show this, we visualize
the temporal deformation of a local patch in Fig. 12. Specifically, we choose a
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Fig. 11. Loss curves during optimization w/ and w/o pretraining.

point cloud sequence of 17 frames, each of which has 10K points, and perform
auto-decoding to optimize the latent codes of each local part. After that, we
select a part and extract the surface patch with the local implicit network (main
paper Sec. 3.2) conditioned on its latent codes. We show the temporal deforma-
tion of this local patch under the global (above) and local (below) coordinate
frames respectively. It can be seen that the temporal changing within the local
part is smooth and coherent, and our method successfully models the detailed
deformation, e.g. changing of the clothing wrinkle.

4 Qualitative Results

4.1 4D Reconstruction

Shape quality Fig. 15, 16 and 18 are the extended figures of Fig. 5 in the
main paper, which show more qualitative comparisons with the SoTA methods
on 4D reconstruction from sparse points. And Fig. 19 shows some additional
reconstruction results of our model trained on 100 sequences.
Textured results We show more textured results in Fig. 13. We choose raw
scan mesh sequences from CAPE dataset (containing holes and noises) and use
our pretrained LoRD model in this experiment. The results above are obtained
with colored sparse point clouds sampled from the scan meshes as input. And
the results below are obtained from the rendered RGB-D sequences.

4.2 Ablation study

Imperfect body tracking Fig. 17 (before refining) shows some challenging
cases that LoRD produces artifacts with inaccurate body tracking. We provide
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Fig. 12. We select a local part and visualize the surface patch within it. The results
above show the temporal deformation of this patch (green) under the global coordinate
frame, while below under the local coordinate frame.

the reconstructions after refining that demonstrate the effectiveness of our inner
body refining method. For each example, we stack the ground truth clothed
mesh (green) together with the initialized inner body mesh (gray) on the left
to reflect the inaccurate estimation, and show the reconstructions on the right.
The results show our refining process successfully corrects the noisy inner body,
which facilitates the reconstruction.

Local part size Fig. 20 shows the reconstruction results of different part radii.
We can observe that the part size slightly affects the quality of reconstructions,
the over-small (r = 3cm) part produces some artifacts around body and hands
and the reconstructed surface is under-smooth, whereas the larger parts (r =
8cm&r = 10cm) tend to recover overly smooth results for some frequency details
such as clothing wrinkles and fingers.

Generalization As mentioned in the main paper Sec. 3.3, the training of our
LoRD representation is very data-efficient. We show the results of our model
trained on 100 sequences (Fig. 5, 6 (b) in the main paper and Fig. 18, 19 in the
Supp. Mat). Additionally, we train our model on one motion sequence of length
L = 17 from the training set, then test on the novel sequences, and show the
qualitative results in Fig. 21. As shown, our model trained on even one sequence
still gains generalization ability and produces the high-fidelity reconstructions,
which demonstrates the generalization power of our local 4D representation.
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5 Limitations and Future work

The proposed LoRD representation shows the powerful capability and achieves
the state-of-the-art performance on various tasks. Now we discuss a few limita-
tions of our method which also points to the future directions.

First, we now rely on the SMPL body model to temporally track local parts,
though existing methods can produce accurate body in many cases, it is still
challenging to work in the complex real scenario. Extending our representation
to cooperate with more general tracking methods such as scene flow, deformation
graph, would make our method stronger and capable of modeling non-human
objects, e.g. animals.

Second, the current experiments mainly focus on 4D reconstruction from
2.5/3D data, e.g. sparse point clouds, RGB-D. Combining the recent neural
rendering techniques [46,70,76] with our LoRD representation to support 4D
reconstruction from pure RGB videos would be a promising future direction.

Third, we currently use a unified part radius in our formulation. However,
different body parts contain various levels of detail, which may be suitable to
model by different sizes of parts. Defining the part radii according to the body
part label would be one solution.

We believe that the proposed representation could potentially be a building
block for various applications, e.g. Metaverse, Robotics, animation, and provides
some insights for future research directions.
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Fig. 13. More textured results achieved by our method. Note that the results below
are obtained from RGB-D inputs, we only show color images for visualization.
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Fig. 14. Qualitative results on monocular depth fusion with a moving camera. The
reconstructed sequences have L = 17 frames, and we uniformly choose 5 frame for
visualization. We assume a moving camera that rotates around the performer, and
render a depth image every 360/17 degrees. The partial point clouds are obtained by
back-projecting the depth images with the camera intrinsics, and rotate according to
the known camera extrinsics.
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Fig. 15. 4D reconstruction from sparse points (instance-level) (1).
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Fig. 16. 4D reconstruction from sparse points (instance-level) (2). The reconstructed
sequences have L = 17 frames, and we uniformly choose 5 frame for visualization. We
zoom in the first frame to show the surface details clearer.

Fig. 17. Effectiveness of the inner body refining. We show the inner body and the re-
constructed meshes before (left) and after (right) our inner body refining process. Note
that we stack the ground truth clothed mesh (green) with the inner body estimation
(gray) to show the inaccurate parts.
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Fig. 18. 4D reconstruction from sparse points (generalization). The reconstructed se-
quences have L = 17 frames, and we uniformly choose 5 frame for visualization.
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Fig. 19. 4D reconstruction from sparse points (generalization). Here we show more
qualitative results achieved by our model trained on 100 sequences. The reconstructed
sequences have L = 17 frames, and we uniformly choose 5 frame for visualization.
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Fig. 20. Effect of the part radius. Different sizes of local parts affect the reconstruction
performance but not very heavily. We choose part radius r = 5cm in our experiments
as it in general produces better results.
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Fig. 21. Qualitative results from our model trained on only 1 motion sequence of length
L = 17, which show that our LoRD representation can learn local deformation prior
from very few data and generalize to novel sequences with high-quality geometry and
temporal deformation.
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