
Software-Defined Imaging:
A Survey

By SUREN JAYASURIYA , Member IEEE, ODRIKA IQBAL , VENKATESH KODUKULA , VICTOR TORRES,
ROBERT LIKAMWA, AND ANDREAS SPANIAS , Fellow IEEE

ABSTRACT | Huge advancements have been made over the

years in terms of modern image-sensing hardware and visual

computing algorithms (e.g., computer vision, image process-

ing, and computational photography). However, to this day,

there still exists a current gap between the hardware and

software design in an imaging system, which silos one research

domain from another. Bridging this gap is the key to unlock-

ing new visual computing capabilities for end applications in

commercial photography, industrial inspection, and robotics.

In this survey, we explore existing works in the literature

that can be leveraged to replace conventional hardware com-

ponents in an imaging system with software for enhanced

reconfigurability. As a result, the user can program the image

sensor in a way best suited to the end application. We refer

to this as software-defined imaging (SDI), where image sensor

behavior can be altered by the system software depending

on the user’s needs. The scope of our survey covers imag-

ing systems for single-image capture, multi-image, and burst

photography, as well as video. We review works related to

the sensor primitives, image signal processor (ISP) pipeline,

computer architecture, and operating system elements of the

SDI stack. Finally, we outline the infrastructure and resources

for SDI systems, and we also discuss possible future research

directions for the field.
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I. I N T R O D U C T I O N
Image sensing has become ubiquitous in modern society,
ranging from industrial uses in the workplace all the way
to personal entertainment through the sharing of photos
and videos via social media. Driven by the development of
CMOS image sensors in the 1990s and 2000s, image sens-
ing has become cheap, affordable, and, when integrated
with smartphones, extremely portable and easy to use.
Indeed, billions of photos are taken and uploaded on the
internet each day.

In accordance with the development of image sen-
sor technology, the rise of image processing, computer
vision, and computational photography has been similarly
meteoric. Advances in algorithms, including state-of-the-
art machine learning using deep neural networks, have
enabled high-fidelity visual computing. However, while
both image-sensing hardware and the software that imple-
ments and realizes the algorithms have grown exponen-
tially, there is still relatively little codesign between the two
domains. This is due to a number of factors: not only tech-
nical challenges of interfacing analog sensing components
with digital computation but also social and cultural chal-
lenges of different communities of researchers and indus-
tries communicating with one another across the stack.

For example, the traditional image sensor faces major
hurdles to allow for flexibility and reconfiguration in its
operating modes. A recent study showed that changing
image sensor resolution costs hundreds of milliseconds in
latency [1], and this was mostly due to software operating
system (OS) bottlenecks. Most image sensors have been
slow to expose knobs to the software developer, such as
resolution, exposure, and quantization; in contrast, most
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imaging and vision algorithms do not exploit these sensing
mechanisms efficiently and adaptively at runtime. This
leads to lost opportunities for improved reconfigurability
of imaging systems in practice.

To address these issues, an interdisciplinary community
of researchers and practitioners has embraced software-
defined imaging (SDI) to improve the technology of
visual computing systems. A software-defined image sen-
sor offers several dimensions of sensing configurability
along with system support and programming abstractions
to support application-specific needs. Hardware parame-
ters, such as exposure, resolution, and frame rate, are pro-
grammable in image sensors, and software-defined image
sensors exploit this programmability alongside software
algorithms to optimize certain imaging task metrics, such
as energy, latency, and task performance. This field has a
vertical-oriented mindset connecting knowledge of sensor
physics and electronics, analog and mixed-signal circuits,
digital systems and architectures, OSs and programming
languages, and end applications of computer vision and
computational photography.

In this article, we survey this emerging area of SDI,
and highlight key works across the hardware and software
stack in the literature. We point out how this area intersects
other popular areas of research including embedded com-
puter vision, deep learning, computational photography,
and digital hardware acceleration for imaging applications.
However, we also point out the unique nature of SDI
research, cross-cutting traditional boundaries to allow syn-
ergy among the stack.

In addition, we begin to discuss the growing issue of
how to quantify performance and evaluate quality in this
cross-disciplinary area. We survey existing metrics, tools,
and benchmarks that are open source and available to
the public. These tools can be used to help improve basic
research, generate training datasets for machine learn-
ing applications, and model/analyze system efficiency in
terms of latency and energy for the potential deployment
of solutions. We highlight how this public infrastructure
is distributed across the software–hardware stack from
application programming interfaces (APIs) to image signal
processors (ISPs) to hardware devices.

In the rest of this article, we dive deeply into the
literature in this field. In Section III, we introduce research
on programmable image sensors and their primary sensing
mechanisms, as well as the associated algorithms that
exploit these capabilities. In Section IV, we discuss how
raw data from the image sensor are converted to visual
images suitable for either human viewing or machine
vision. Section V discusses the intersection of deep learning
and SDI, which, in turn, motivates the various hardware
and software research to accelerate imaging applications in
Section VI. This includes works on hardware acceleration
for imaging tasks/pipelines, OS/runtime configurations to
enable flexibility, and languages and compilers to support
programming these sensors. Finally, in Section VII, we out-
line tools and datasets available for SDI to enable faster

research prototyping in this area. Section VIII wraps up
our outlook on the field and provides a look at the future
challenges and opportunities present in SDI.

II. W H Y S O F T W A R E - D E F I N E D
I M A G I N G ?
One of the major endeavors of this article is to coin
the phrase “SDI,” which we denote in this article by the
acronym SDI, as an umbrella term and concept, which
connects various strands of existing research. We do not
seek to be overly prescriptive or limiting in our definition
of SDI, but rather to coalesce around a common research
agenda while having the flexibility to allow for offshoots
and branches of interesting research potential. To help
draw motivation for SDI, we actually first look at the
research parallels in the communications community and
how this enabled successful applications and high impact
on those fields.

Software-defined radio (SDR) is now a mature field
within communications [2]. It was originally coined in the
1980s, but a bulk of the research came in the 1990s and
2000s along with the growth of the telecom industry. SDR
centers around the idea of a radio communication system
where traditional hardware components, such as filters,
mixers, filters, amplifiers, modulators/demodulators, and
detectors, are instead augmented or replaced with soft-
ware and embedded processing. This allows radio systems
to be flexible and reconfigurable and to maximize their
usage of the spectrum at beneficial tradeoff points for
system design. SDR has spurred a wide variety of work [3],
[4], [5], [6] and has been implemented in many modern
communication standards [7], [8].

Similarly, our idea of SDI centers around the idea of
the traditional hardware components and mechanisms of
image sensors being replaced or augmented by software
alternatives. The main reason for doing so is flexibility:
allowing sensors to adaptively change their sensing behav-
ior for new environments and application demands. For
SDI, we focus on key sensor primitives, such as region-
of-interest readout, exposure, frame rate, and quantiza-
tion, since these are all programmable and implemented
onboard the image sensor with dedicated hardware. SDI
research aims to design the hardware–software stack from
the sensor, ISP, compute architecture, and OS to allow for
reconfigurability and programmability for these primitives,
driven by the end applications. By doing so, we can actu-
ally achieve favorable tradeoffs between system efficiency
and application-specific task performance for imaging and
computer vision.

III. P R O G R A M M A B L E S E N S O R
M E C H A N I S M S
Since the invention of CCD and CMOS image sensors in the
late 20th century, there has been an increased emphasis
on programmability in their design to enable user flexi-
bility during capture. In this section, we will curate and
discuss research works that highlight the development
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of programmable camera sensors. In particular, we will
delve into detailed discussions on frame rate, exposure,
region of interest (ROI), and quantization, which are the
most widely configured parameters in the image sensor.
In addition to describing the hardware advances for these
sensor mechanisms, we will also examine algorithms that
exploit programmable sensor knobs for end-applications in
imaging and machine vision.

We note that we analyze imaging systems for a single
capture (e.g., conventional photography), multiframe or
burst photography (e.g., high dynamic range (HDR) mode
and panorama stitching), and video (e.g., continuous
shooting mode). We do not differentiate between these
modes throughout this article as modern systems typically
can perform capture in all of these modalities. However,
we do highlight when research has been designed and
targeted for a specific application in mind.

A. ROI

The term ROI refers to the set of pixels within an image
frame, which describes the target object. Typically, ROIs
are defined in shape as rectangles on the image sensor
due to ease of readout. However, a general ROI could be
considered as any contiguous set of pixels that can be read
from an image sensor. For a rectangular ROI, if the top-left
corner pixel location of the object of interest is defined by
{x, y}, and the width and height of the object are given
by {w, h}, then the ROI is characterized by the vector
{x, y, w, h}.

Before we start discussing the existing literature on
ROI, let us first understand the principle of operation of
a traditional CMOS image sensor. CMOS image sensors
are built with a multitude of photodiodes with a small
amplifier associated with every pixel and columnwise cir-
cuitry enabling further amplification and analog-to-digital
conversion [9]. Photons impinging upon the photodiodes
are converted to charge carriers once they arrive at the
photoactive silicon region as per the photoelectric effect.
The resulting accumulated charge is read out utilizing the
amplifier (also called source follower) present at every
pixel. The pixel array is arranged spatially in a row–column
topology, and each row is read out at a time with every
column in the current row undergoing parallel readout.
In order to accommodate ROI readout (with sensor pix-
els outside of the ROI switched off), additional circuitry
is required in general. An example is the use of skip
logic [10], where the entire pixel array is divided into
smaller clusters of 32 × 32 pixels. These are configured
based on an external serial bit stream dictating which
pixels to read out in the vertical and horizontal frame
directions. The skipping pattern is scanned across the skip
blocks constituting the skip logic and flip-flop shift registers
where the status of the flip-flop determines whether the
scanning signal is to be fed to the current shift register or
the shift register of the succeeding block. In this way, only
the ROI is readout while discarding the irrelevant frame
information (see Fig. 1).

1) ROI Hardware: For conventional sensors, there has
been ongoing research in both hardware and software
programmability for ROIs. Some of the initial research pro-
posed arbitrary ROI functionality [11], [12]. In particular,
Dierickx et al. [11] looked at asynchronous spatiotemporal
variable pixel readout. A true randomly addressable CMOS
image sensor was proposed, wherein pixel readout could
be varied both in the spatial domain and the temporal
domain, i.e., any pixel located at any part of the image
frame could be addressed and read out at any instance
of time, depending on user needs [11]. In a similar vein,
a 2048 × 2048 active pixel sensor (APS) was designed
and fabricated with a nonintegrating direct pixel readout
architecture featuring logarithmic light-to-voltage conver-
sion [12]. This enabled random pixel accessibility spatially
and temporally.

Sensors have also utilized adaptive pixel resolution to
solve classical challenges with varying light. In normal
image sensors, low-light conditions commonly result in
underexposed and noisy images. In [13], an image sensor
design was presented that featured on-chip pixel resolution
variability for light-adaptive imaging. The proposed sensor
design was shown to enhance the signal-to-noise ratio
by summing the signals from neighboring pixels, thus
mitigating the effects of noise in low-light images. The
similar imaging technology was patented in 2000 that
enabled spatial resolution variability depending on the
light level [14]. These early works paved the way for
developing power-efficient ROI-capable camera sensors.

Beyond just adaptive resolution, researchers also real-
ized that ROIs can be leveraged for energy harvesting
within the CMOS sensor. The primary vehicle for realizing
an energy-harvesting scheme was the logarithmic response
pixel circuit. It differed from run-of-the-mill image sensors
in which their voltage changes as a logarithmic response
of the amount of light hitting upon their pixels, as opposed
to a linear response. In 2011, a CMOS image sensor
design was presented with reconfigurable resolution capa-
bilities [15], which exploited the logarithmic response
pixel architecture for the purposes of energy harvesting for
wireless imaging. In the proposed design, each pixel pho-
todiode can be toggled to enter into either photosensing
mode or energy-harvesting mode.

Finally, ROIs have been utilized to implement advanced
sensing schemes, such as spatially variant resolution
single-pixel imaging and compressed sensing. In lieu of
using millions of pixels, single-pixel cameras multiplex
incoming light measurements onto a single or few pixels
using a spatial light modulator [16], [17]. The frame-
work of compressed sensing allows single-pixel cameras
to take far fewer measurements of the scene compared
to conventional image sensors, and sparse optimization
or machine learning techniques reconstruct the full scene
in postprocessing [18]. Relevant to this article, the devel-
opment in ROI technology has enabled on-chip single-
pixel imaging without spatial light modulators [19], [20].
In [21], the problem of conventional cameras incurring
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Fig. 1. Sensor pixels are switched off via binning or skipping strategies as per the detected ROI. This assists in improving the latency and

energy efficiency by reducing the number of pixels to be read out. It also helps reduce the computation overhead associated with the ISP

pipeline as fewer pixel operations will be required for fewer pixels.

high processing costs in invisible wavelengths is addressed.
The proposed technique enables stable image recovery
by trading off the resolution of the non-ROI parts of the
image, allowing image reconstruction with sub-Nyquist
measurements. In a similar vein, a generalized assorted
pixel (GAP) camera sensor design was proposed by
Yasuma et al. [22], which allows controlling the trade-
off between the spatial resolution, spectral detail, and
dynamic range of an image postcapture. The complex array
of color filters results in undersampled image channels—
a similar problem to Shin et al. [21]—but the camera
is accompanied by a novel algorithm that enables stable
image recovery by suppressing aliasing effects.

2) ROI Selection Algorithms: Since the development of
the ROI, many ROI-based applications have generated a
lot of interest from the early 2000s. These applications
include ROI-based object tracking and detection for com-
puter vision and foveated imaging. Integration of these
algorithms with ROI camera sensors implies tremendous
power savings for both the camera readout and the
downstream image processing due to data reduction and
latency improvements. We highlight several ROI selec-
tion algorithms and how they opened up the avenue for
energy-efficient solutions to various imaging applications.

One of the main tasks for any ROI algorithm is determin-
ing the salient regions of the image to be extracted in the
ROI. In 2000, Hsung and Lun [23] advanced the ongoing
research on ROI extraction algorithms by discovering that
a wavelet-based ROI technique could be further improved
in terms of computational complexity by replacing it with

a simple interpolation method. It was also shown how the
wavelet theory can be leveraged to devise a good sampling
scheme. In 2002, Lin et al. [24] proposed an ROI detection
algorithm that took into account a different variant of the
traditional ROI camera sensor—one capable of reading
out irregular ROI shapes. The algorithm showed promis-
ing results in the context of low-light, complex imagery.
Furthermore, the algorithm fared well in instances where
there had been connected objects in an image and in cases
where an object had split into fragments.

Early ROI selection algorithms also utilized the Kalman
filter, which adapts its internal matrices and state vec-
tor according to external measurements [25], [26], [27],
[28]. In 2015, Zhang et al. [29] showed how to use
frequency and space domain features for localizing regions
of interest. The proposed algorithm is particularly effective
for high-resolution remote-sensing images. With grow-
ing interest in neural network solutions, several deep
learning-based object detection/tracking methods have
been developed which offer state-of-the-art ROI-ing capa-
bility [30], [31], [32], [33].

For energy-efficient ROI algorithms, recent research has
introduced the concept of adaptive subsampling where
image sensors can powergate or turn off pixels outside
of the ROI during readout to save power. Adaptive sub-
sampling defines an ROI that localizes the part of the
frame the user is interested in, and the pixels outside of
the ROI are deemed redundant and discarded. In 2019,
Mohan et al. [34] developed an algorithm that computed
the heat map of incoming image frames and used Otsu’s
threshold to hone in on the object of interest. Along
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the same lines, recent work leveraged a YOLO detec-
tor and a Kalman filter coupled together for predictive
ROI tracking [35] to facilitate adaptive subsampling, the
end goal being energy optimization via preemptive pixel
inactivation outside of the ROI. Extending on this work,
Iqbal et al. [36] showed that an efficient convolution oper-
ator (ECO) network coupled with the Kalman filter led
to superior performance when accelerated on an FGPA.
The work demonstrated how adaptive image sampling has
tremendous potential in reducing computational complex-
ity and processing speed.

ROI selection and extraction have been used widely
since the early 2000s. A 2001 study conducted by
Pietka et al. [37] showed an ROI extraction method
for assistng radiologists in bone age estimation.
A region-based segmentation algorithm was proposed by
Blasco et al. [38] in 2007 for the industrial problem of
detecting peel defects in citruses. This method exploited
the fact that, in ROI-based algorithms, the contrast
between different regions is of greater significance than
the color of each pixel to help detect defects.

Closely tied to the notion of an ROI is foveated imag-
ing, an image processing technique wherein pixel reso-
lution varies spatially in a captured image frame. The
spatial variation is guided by one or more parts of the
image featuring the highest resolution, also known as
fixation points. These fixation points correspond to the
fovea (center of the eye’s retina). A 2015 work leveraged
foveated imaging for selecting visually interpretable ele-
ments from image frames using a network architecture
called BubbleNet [39]. This work is geared toward appli-
cations such as visual mining and discovery, and could
potentially be coupled with ROI-capable sensors for a
combined hardware–software solution. Foveated imaging
is also making a mark in the field of augmented reality
(AR) and virtual reality (VR). AR/VR applications involve
the integration of computer-generated artificial reality in
the real world (AR) or the generation of a completely
self-contained artificial reality (VR). Therefore, realistic
and plausible image rendering is of paramount impor-
tance for these applications, as well as computational and
energy efficiency to ensure satisfactory real-time perfor-
mance. Notable foveated rendering techniques have been
proposed in the past decade, which sacrifices resolution
in the peripheries to optimize the system efficiency [40],
[41], [42], [43], [44], [45]. Certain works also focus on
foveated rendering based on eye tracking [46], [47].

B. Exposure

Exposure refers to the period of time during which the
image sensor is allowed to be exposed to light. It is also
known as shutter speed since it quantifies the length of
time during which the shutter remains open during image
capture. The chosen exposure setting should provide an
optimal combination of the aperture dimension through
which the sensor gets exposed to light, the shutter speed,

and the ISO sensitivity (which determines how photosen-
sitive the medium is) [48].

Exposure control has been of interest to researchers
since the 1990s. Several HDR image sensors with exposure
control have been proposed over the years [49], [50].
Different exposure strategies are adopted for serving dif-
ferent purposes. A slower shutter speed or longer exposure
duration can be adopted to create the effect of blur in a
captured photograph of a fast-moving object, thus lending
a sense of movement in the still picture. Longer exposure
duration is also useful in low-light conditions when greater
light exposure is needed to compensate for the weak light
source. In contrast, a short exposure time can be adopted
when there is bright light or when the effect of blur is not
desired. Exposure types include rolling [51], global [52],
coded [53], two bucket [54], and so on.

Among these, coded imaging techniques, such as com-
pressed sensing [16], coded exposure [53], or coded aper-
tures [55], multiplex image measurements, and computa-
tionally recover the image. These techniques come with
a multitude of advantages. In particular, coded exposure
enables image deblurring while retaining high-frequency
spatial details (see Fig. 2). For instance, researchers have
utilized the coded exposure-based deblurring technique
to eliminate spatially variant blur in images [56], [57].
Coded exposure has also been used to break down the
tradeoff between the spatial and temporal resolution of
cameras. In a paper by Liu et al. [58], a coded exposure-
enabled camera was used to capture coded images, and
a video sequence was successfully reconstructed from an
individual coded image. Coded exposure has also found
application in robotic platforms [59]. Given the success of
coded exposure-based image recovery, researchers started
designing image sensors with on-chip coded exposure
capabilities [60], [61], [62], [63], [64], [65].

High-speed photography and optical flow-based applica-
tions require controlled temporal sampling. Programmable
rolling shutters capture and combine spatial and temporal
information [66] by controlling the readout timing and
exposure length of each pixel row. The proposed readout
architecture provides greater flexibility in sampling in the
time dimension. In 2016, a new type of display-camera
communication system called DisCo was proposed based
on a rolling shutter image sensor [67], which receives a
temporally modulated light signal as input and transforms
it into a spatial flicker pattern. With a global model of
the camera motion trajectory, motion deblurring has also
been achieved with a rolling shutter camera [68]. In 2012,
a novel rolling shutter camera-based barcode design was
presented, which enabled robust barcode scanning from
relatively long distances [69].

Primal-dual coding [70] is another coding scheme that
dictates which light paths are to affect the image. A primal-
dual coding video camera was presented by O’Toole and
Kutulakos [71], which assisted in visualizing various light
transport phenomena. In 2018, a new imaging tech-
nique called coded two-bucket (C2B) was proposed, which
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Fig. 2. Conventional exposure-induced blurring effects are difficult to remove as high-frequency information is lost during deblurring via

the deconvolution step. In contrast, software-defined coded exposure enables fairly accurate deblurring while preserving the high-frequency

details. (a) Short exposure. (b) Longer exposure. (c) Coded exposure. (d) Coded exposure-based deblurring.

features two buckets per pixel [54]. The incoming light
signal is modulated at the pixel-level based on which
bucket is triggered for integrating the signal.

C. Frame Rate/Readout

The frame rate is the temporal frequency at which image
frames are processed/appear on a display (see Fig. 3).
Hardware advances have been made over the years that
allow frame rate configurability in image sensors. One
line of research focuses on the fact that pixel sampling
can accommodate frame rate variation in the same image
sensor, improving energy efficiency and reducing off-chip
image processing computations. Researchers have been
interested in exploiting this since as far back as the 1990s.
For instance, CMOS APSs were utilized for positioning
signal processing circuitry on the imaging focal plane [72].
A cluster of digital shift registers could be configured by the
user, and this rendered the resolution of the sensor to be
user-dependent. The fully sampled frame rate was 30 Hz,
and it went up for lower image resolutions. This work
opened up the avenue for exploring image sensor designs,
wherein the functionalities include pixel sampling-based
frame rate programmability. In later years, Carnegie Mel-
lon University published a work on their low-power,
embedded computer vision platform [73]. The hardware
platform includes a video first-in–first-out (FIFO) queue,
which is crucial as it enables the camera to run at full
speed and dissociates the pixel clock from the CPU clock.
Since processing is dissociated from the pixel clock, the
pixel clock does not need to be set to the slowest possible
processing time. This enables higher frame rates. The work
should be of particular interest for applications featuring
surveillance/tracking of fast-moving objects. Other than
this, a coded rolling shutter-based readout architecture
was proposed by Gu et al. [66], which would allow the
user to have greater flexibility in temporal domain image
sampling. Works looking into scene information-based
frame rate adaptation were also coming out. In 2010,
a camera sensor was developed with sensor knobs that
allowed spatial–temporal resolution adaptation postimage

capture [74]. Scene information is considered while mak-
ing decisions regarding resolution control.

In 2017, a work came out addressing the problems asso-
ciated with continuous visual data processing on mobile
devices [75]. The need for continuous information pro-
cessing entails high computational complexity. To relieve
mobile devices of such an intensive workload, the com-
putational burden is offloaded to the cloud. A host of
low-power sensors is placed as “gatekeepers” to the pri-
mary imager. These sensors continuously supervise the
environmental stimuli. Only when incoming sensory data
indicate an activity of interest for a running application,
the primary imager is “woken up” to capture the image
that is then transmitted to the cloud.

Other than this, sensor readout designs have also been
proposed enabling both configurable SNR and configurable
frame rate [76].

Fig. 3. Software-defined frame rate control enables the user to

select higher frame rates whenever the situation calls for it (when

objects are moving very fast, for example). A higher frame rate basi-

cally means that we will be able to pack a greater number of frames

within a 1-s duration. The figure visualizes that a greater number of

frames are captured within the same duration at 60 frames/s than at

30 frames/s.
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Multiresolution solutions to motion-induced image blur-
ring have also been investigated. Researchers discovered
that implementing a multiresolution-capable sensor could
facilitate frame rate programmability when required. Case
in point—a spatial–temporal multiresolution image sensor
design—had been proposed in 2007 [77]. Fast-moving
objects filmed using low-frame-rate cameras may result in
blurry images. High-speed imaging is required for captur-
ing fast motion. However, it should be noted that high-
frame-rate cameras come with their own share of problems
such as large bandwidth requirements and high power
consumption. In the proposed framework [77], a high
frame rate is retained in the ROI localizing the fast-moving
object, and a low frame rate is employed for the static
background in the scene. The proposed CMOS sensor is
designed to generate spatial–temporal multiple-resolution
readouts utilizing two channels. One of the channels is
reserved for low-frame-rate data at the highest possible
resolution for static backgrounds, and the other channel is
dedicated to high-frame-rate data at low spatial resolution
for fast-moving objects in detected ROIs.

With the advances made in the deep learning com-
munity, algorithms are being developed exploiting pro-
grammable frame rates in image sensors. In particu-
lar, research in adaptive frame rate-based online object
tracking has been gaining traction. On-the-go frame rate
adaptation resulted in optimized energy savings without
noticeable degradation in tracking precision in [78]. The
optimum frame rate depends on motion speed, and this
fact is leveraged in the study to improve energy savings
via temporal sampling. Further work in the area optimized
the frame rate by focusing on the energy consumption
tradeoff between image capturing and tracking [79]. In the
proposed method, scene information plays a role in picking
the required parameters. Slowfast networks came out in
2019, which feature a slow pathway operating at a lower
temporal resolution and a fast pathway operating at a
higher temporal resolution [80]. The networks have shown
promising results in video recognition tasks and have
tremendous potential if integrated into SDI systems.

D. Quantization

Image quantization entails the lossy compression of
visual data facilitating the relaxation of memory and band-
width constraints (see Fig. 4). The image data are repre-
sented in terms of bits, and a range of values is represented
by just one quantized state. Work in image quantization
algorithm development has been gaining momentum since
the 1980s. In 1982, a landmark work was published in
the field of image quantization [81]. The idea behind
this study was to procure high-fidelity color images with
small frame buffers. Color statistics were acquired from
the first frame, and a colormap was chosen. Original
pixels were then mapped to the nearest neighbor in the
chosen colormap. In the following decade, quantization
works featuring machine learning started making their

mark. A clever idea for image quantization was presented,
wherein a genetic algorithm was used in conjunction with
the c-means clustering algorithm [82]. The method was
particularly attractive as it was shown to converge to a
global optimum. In the meantime, researchers were also
invested in discovering ways to complement and fortify
existing image quantization techniques. In [83], a peer
group filtering (PGF) algorithm was proposed for image
denoising. In this work, each pixel value in a group was
substituted with the weighted peer representative average.
Local statistics received after running PGF are utilized
as weights in the quantization step to tone down colors
in detailed parts of the frame. In 2007, the problem
posed by the need for power-efficient hardware capable
of handling high data traffic was addressed [84]. The
adaptive quantization technique proposed in this article
integrated a hardware-friendly algorithm with a digital
CMOS image sensor. The quantization scheme involves
boundary adaptation together with an online quadrant tree
decomposition (QTD) processing. A later work presented a
single-chip CMOS imaging sensor capable of image acquisi-
tion, as well as storage and compression [85]. To facilitate
robust image compression, the authors exploited an adap-
tive quantization strategy based on online, least storage
QTD processing preceded by fast boundary adaptation rule
(FBAR), and differential pulse code modulation (DPCM).
The demand for power-efficient hardware in real-life visual
systems was also acknowledged in [86], where the pro-
posed solution for energy-efficiency optimization was to
tune the sensor quantization directly on the raw image for
an end application—in this case, visual simultaneous local-
ization and mapping (SLAM). Furthermore, the authors
show that their proposed gradient-based image quantiza-
tion scheme achieves high energy savings and high SLAM
accuracy. In [87], a hybrid image compression framework
based on vector quantization and DPCM was proposed as
an ideal candidate for on-chip image compression.

There also exists a lot of work in the literature relating to
hardware advancements in the field of image quantization.
One notable work featured a power and resource-efficient
hardware implementation of an image quantizer for
capsule endoscopy applications [88]. The architecture
is implemented using the CMOS 0.18-µm technology.
In addition, a power-efficient CMOS sensor was developed
that supports column-parallel single-slope/SAR (synthetic
aperture radar) quantization scheme [89]. The architec-
ture comprised of a 3-bit analog-to-digital converter (ADC)
and an 8-bit approximation register (SAR) ADC. The dis-
tinguishing feature of this architecture is the selection of
smaller SAR ADC reference voltages after the quantization
of the first three most significant bits (MSBs).

E. High Dynamic Range Imaging

In computer vision, the term dynamic range indicates
the change in intensity corresponding to the bright-
est detail in comparison to the darkest detail in an
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Fig. 4. Software-defined adaptive quantization allows the user

to switch from a higher bit depth to a lower bit depth and vice

versa depending on the situation. This figure shows the two different

quantization representations of the same image. Lower bit depth

representation introduces artifacts in the image, which may not be a

problem for certain end applications and, therefore, can be adopted

to optimize the overall energy efficiency of the system.

image. The dynamic range of a CCD or CMOS sensor
is the ratio of the maximum measurable signal and the
noise floor [90]. Human visual systems have a very
high-luminance dynamic range, thus allowing humans to
perceive a great degree of contrast in a real-life scene.
However, conventional image sensors are typically lim-
ited to 8-bit image channels, and the display devices are
likewise constricted to a very small dynamic range, thus
rendering the captured images unable to mimic the results
that would have been obtained with human eyesight,
as the digital images fail to capture the real-life brightness
changes in the scene. HDR imaging technology has been
developed over the years to circumvent the problem of a
limited dynamic range of camera sensors. HDR imaging
systems result in images of similar dynamic range and
color to scenes observed by human eyes. As such, it has
widespread applications in robotics, medical imaging,
security, computer gaming, digital cinema/photography,
and so on.

Over the years, researchers have innovated the existing
image sensor designs to enable sensor-level HDR imaging.
Changing the linear response of sensor pixels to logarith-
mic response has been shown to be an effective way of
rendering HDR images [91], [92], [93], [94], [95], [96],
[97]. Dynamic range programmability provides scope for
improving the latency and energy efficiency of the overall
imaging system. Keeping this in mind, we would like to
point out that CMOS image sensors with linear-logarithmic
hybrid pixel response with tunable dynamic range have
already been proposed [98], [99]. Not only that, pro-
grammable pixel response has also been implemented in a
digital pixel sensor along with dynamic range programma-
bility in [100].

Single-shot HDR imaging is also of paramount
importance as it significantly reduces the processing

time owing to the input data being just a single image.
In addition, it also ensures that there are no motion-
induced ghosting artifacts that cannot be guaranteed in
multiple-exposure multishot HDR images [101], [102],
[103]. As such, research in HDR image acquisition with a
single shot has been gaining momentum. In [104], a deep
optical-based HDR imaging approach was proposed, where
the encoder is modeled by the point spread function of the
leans and the decoder is parameterized by a convolutional
neural network (CNN). Similarly, other works of research
are available in the literature, which performs single-shot
HDR imaging [105], [106], [107], [108]. Very recently,
a novel algorithm has been proposed for rendering
single-shot HDR images by exploiting quantization noise
information [109].

Zhao et al. [110] came out with a special kind of
single-exposure HDR imaging sensor called a modulo cam-
era. The sensor is able to receive unbounded radiance
levels by retaining only the least significant bits as opposed
to going into saturation mode. An unwrapping algorithm
is employed to recover high radiance levels from a single
modulus image. Modulo camera-based research is gaining
traction in the vision community [111], [112].

IV. I S P P I P E L I N E S
In Section III, we showed how recent research has enabled
image sensors to configure the raw pixel values coming
off the image sensor based on resolution/ROI, exposure,
quantization, and frame rate. However, before these data
can be usable, the traditional pipeline for processing
images known as the image sensor processor (also called
ISP) or ISP is employed. In this section, we describe the
basics of the ISP and then proceed to show how SDI
research has modified, augmented, and, in some extreme
cases, removed the ISP to realize more flexibility and per-
formance gains. Note that we will not highlight research
that aims to make traditional ISPs better in their image
quality, but rather look at work that reconceptualizes the
ISP for the SDI paradigm.

A. ISP Pipeline Basics

The ISP unit processes the RAW data coming from the
sensor to produce a complete image, typically in JPEG
or PNG format. ISPs contain a series of signal processing
stages that are designed to make the images appealing
to human vision (see Fig. 5). While the precise stages of
an ISP pipeline vary and are typically proprietary to the
manufacturer, we describe a typical set of stages in the
following.

1) Denoising: For RAW images, four sources of noise are
dominant during sensing: shot noise, due to the physics
of light sensing; dark current and quantization noise from
the ADCs, and read noise from the readout electronics.
Much research has gone into denoising algorithms, such
as BM3D [113] and nonlocal means [114], to improve
image SNR without blurring important high-frequency
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Fig. 5. Typical ISP pipeline that processes mosaiced raw images and converts them to usable images in the RGB color space. A typical ISP

pipeline will first perform demosaicing followed by denoising and white balancing. Color correction, gamma correction, and tone mapping

will, finally, afford the user the desired RGB image.

image features, such as edges and textures. Denoising can
be computationally expensive with up to 95% of resources
in a highly optimized software pipeline [115]. Algorithm
performance is particularly challenged in low-light scenar-
ios where the shot noise can dominate other noise sources.

2) Demosaicing: The ISP transforms the RAW image
into a conventional three-channel color image. Each pixel
in the RAW image contains either red, green, or blue
data arranged in the commonly used Bayer filter array.
To fill the other two missing color values at each pixel,
demosaicing interpolates this data for each pixel from
neighboring pixels. Simple interpolation algorithms, such
as nearest-neighbor or averaging, lead to blurry edges and
other artifacts, so more advanced demosaicing algorithms
use gradient-based information at each pixel to help pre-
serve sharp edge details.

3) Color Transformations and Gamut Mapping: Color
transformation stages translate the image into a color
space that is visually pleasing. These transformations are
local, per-pixel operations, given by a 3 × 3 matrix multi-
plication. The first transformations are color mapping and
white balancing. Color mapping reduces the intensity of
the green channel to match that of blue and red, and
includes modifications for artistic effect. White balancing
converts the image’s color temperature to match that of
the lighting in the scene. The matrix values for these
transformations are typically chosen specifically by each
camera manufacturer for esthetic effects.

Gamut mapping processes color values captured outside
of a display’s acceptable color range into acceptable color
values. Gamut mapping is a nonlinear, per-pixel operation.
Sometimes, images are transformed into non-RGB color
spaces, such as YUV or HSV [116].

4) Tone Mapping: Tone mapping is a nonlinear, per-
pixel function with multiple responsibilities. It compresses
the image’s dynamic range and applies additional esthetic
effects. Typically, this process results in an esthetically
pleasing visual contrast for an image, making the dark
areas brighter, while not overexposing or saturating the
bright areas. One type of global tone mapping called
gamma compression transforms the luminance of a pixel
p (in YUV space). However, most modern ISPs use more
computationally expensive, local tone mapping based on
contrast or gradient-domain methods to enhance image
quality, specifically for high dynamic range scenes, such as
outdoors and bright lighting.

5) Compression: The final stage of most ISP pipelines
is image compression to help reduce storage and trans-
mission requirements for the image data. The most com-
mon image compression standard is JPEG, which uses the
discrete cosine transform quantization to exploit signal
sparsity in high-frequency space. Other algorithms, such as
JPEG 2000, use the wavelet transform, but the idea is the
same: allocate more stage to low-frequency information
and omit high-frequency information to sacrifice detail for
space efficiency. This compression algorithm is typically
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physically instantiated as a codec that forms a dedicated
block of logic on the ISP.

B. Programmable ISPs

One of the main research thrusts in SDI is to allow
the ISP stages to become programmable, thus enabling
flexibility in the images being computed by the vision
system. While there has been a lot of work on enhanc-
ing the ISP pipeline for improved visual quality includ-
ing neural network-based improvements [117], [118],
we will highlight works that enable better programma-
bility and flexibility for vertically oriented imaging tasks.
However, we will focus on algorithmic advances in this
section, while software and infrastructure development,
such as open-source camera pipelines, will be discussed in
Section VI.

One of the key breakthroughs in ISPs was the realization
that a unified optimization framework can be used instead
of the different stages described earlier. In FlexISP, the
authors propose this optimization and show improvements
over classical algorithms for each of the stages [115]. Fur-
thering this work, they show that these optimizations are
known as proximal algorithms and design a programming
language framework for easily writing algorithms [119].

New research has aimed to optimize application-specific
quality and performance metrics with hardware-in-the-
loop ISP pipelines. In [120], a covariance matrix adapta-
tion evolution strategy (CMA-ES) is proposed to minimize
a multiobjective optimization problem that encodes met-
rics for the downstream vision or imaging application. This
optimization was shown to achieve superior performance
than manual tuning or other automated ISP parameter
optimizations. However, occasionally developers do not
get access to the ISP hardware, as vendors typically only
give a black-box abstraction of the ISP with parameter
values as simple register values with ranges to the end
user. To address this problem, recent work has introduced
differentiable mapping between the parameter configura-
tion space and evaluation metrics, using a CNN in an end-
to-end fashion with imaging hardware in-the-loop [121].
This allows even black-box image processing pipelines to
be efficiently optimized, reducing design time from months
to hours. This pipeline is validated on experimental data
for real-time display applications, object detection, and
extreme low-light imaging.

C. Reduced ISP Pipelines

Beyond making ISPs more programmable, the other
trend has been to reduce the computational processing of
ISPs, in particular, for machine vision applications, where
esthetic visual quality is not the main priority. This work
aims to design minimal or even ISP-free camera pipelines
to allow for improved latency, energy efficiency, and low-
ered system complexity.

One key paper in this area did extensive studies of
the effects of different ISP stages for a suite of computer

vision tasks [122]. The authors discovered that most of
the color transforms were largely not influential for the
end task performance and identified three main stages of
the ISP: demosaicing, denoising, and gamma compression.
Gamma compression was a surprising result, as it turned
out that enhancing the local contrast of the images helped
improve feature extraction and detection that computer
vision tasks rely on for their processing. Following these
insights, the authors propose a new ISP-free pipeline by
subsuming these key stages directly into the mixed-signal
image sensor itself and showed that they could potentially
save 75% of energy by doing so [122].

Special attention has focused on obviating the need for
demosaicing in machine vision tasks. Zhou et al. [123]
observed that image gradient operations common to most
vision feature extraction, such as SIFT, can be adapted to
the RAW Bayer pattern, eliminating the need for demo-
saicing. Binary features [124], edge detection [125], and
even scale-invariant feature transform/speeded up robust
features (SIFT/SURF) [126] have been successfully imple-
mented on Bayer images. From these studies, it has become
clear that the need for high-quality demosaicing and color
transformations is not critical for certain computer vision
task performances. Indeed, many machine vision cameras
utilize monochrome CMOS image sensors in this same line
of reasoning.

Similarly, the extent to which vision algorithms need
image denoising has been a topic of research in the com-
munity. Liu et al. [127] demonstrated that image denois-
ing could help overcome performance degradation due to
noise for semantic segmentation and image classification.
Borkar and Karam [128] showed that deep CNNs can
be particularly vulnerable to noise due to training and
overfitting issues, and require modifications to be resilient
at inference time. However, more recent work leveraging
state-of-the-art neural radiance fields has shown robust-
ness to noisy images, even outperforming 3-D recon-
struction methods that utilized denoising for low-light
images [129]. Furthermore, several papers are optimized
directly on RAW images without explicit denoising [130],
[131], [132], as described later in this section. As a result,
there does not seem to be a clear consensus in the research
literature on the necessity for image denoising for com-
puter vision tasks.

The observations made by Buckler et al. [122] on the
importance of gamma compression (which is a type of
global tone mapping) for feature extraction have been
corroborated by other researchers. Hansen et al. [133]
confirmed that tone mapping was critical for image classifi-
cation, especially for HDR images. Lu and Murmann [134]
posited embedding gamma compression directly into the
image sensor itself through log-gradients and show that
this can potentially yield superior energy efficiency for
vision tasks.

Finally, there have been several research studies for
optimizing vision applications on RAW data directly.
For instance, object detection, in particular, has shown
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advances by adapting the algorithms to work on RAW
data directly [130], enabled by the release of the PAS-
CALRAW database from Stanford University [135]. Recent
work has claimed superior performance on RAW images
using learnable layers to adapt to this data directly [131].
Zhang et al. [132] skip the ISP directly for their his-
togram of gradient-based object detector. In addition,
Christie et al. [86] showed the usefulness of RAW images
for visual SLAM algorithms. RAW images have even been
shown to be robust to adversarial or security attacks that
can alter deep learning performance [136].

In conclusion, reducing or eliminating the ISP pipeline
can lead to improved task efficiency for given applications.
In particular, the focus on object detection, motivated
by autonomous vehicles and navigation, has shown that
the full ISP pipeline is unnecessary and can be modified
without loss of performance. However, most of the work
in this field is empirical in nature as it is difficult to
prove when a certain ISP task, such as denoising or tone
mapping, is essential for a given application.

V. D E E P L E A R N I N G A N D S D I
Modern applications in computer vision leverage recent
advances in machine learning, particularly deep learning,
which has revolutionized that field [137]. CNNs utilize a
series of convolutional layers combined with nonlinearities
and pooling/downsampling functions to extract features
from images, and these networks are trained in either fully,
semi-, or self-supervised fashion depending on the appli-
cation. CNNs have become state-of-the-art for image and
video classification, semantic segmentation, object detec-
tion and tracking, and even low-level tasks, such as image
reconstruction, denoising, and processing. Thus, most SDI
systems are now targeted for deep learning applications
where their processed images are utilized by CNNs (or
other variants of neural networks) for downstream tasks.

As a result, deep learning has also impacted SDI
research in a variety of ways. In particular, deep learn-
ing has been used to augment or even replace the ISP
pipeline, as described throughout Section IV. Differen-
tiable ISP pipelines have been proposed to tune various ISP
stages [117], [121], [138], [139]. The key is differentia-
bility: making the end-to-end pipeline differentiable from
image capture to vision task allow for joint optimization
and the backpropagation of gradient information to update
network layers. This differentiability has even extended
to the realm of optical computing, allowing the codesign
of optics and sensors with deep learning networks [104],
[140], [141], [142].

However, the advances of deep learning have come
at a significant cost with higher energy and power con-
sumption. Deep neural networks can have millions of
trainable parameters with hundreds of layers. Training
these networks has been shown to have a huge energy
and compute cost [143], but, surprisingly for deployed
systems, inference costs dominate [144]. These costs have
a direct impact on the field of SDI. While a primary focus

for SDI has been on reconfigurability and enabling new
sensing functionality, there has been an emerging interest
to reduce the overall energy and compute costs for vision
systems. For computer hardware, the main focus has been
to transition from power-hungry graphics processing units
(GPUs) to custom-designed hardware for neural network
acceleration (see the survey paper by Sze et al. [145] for an
overview of the field). In addition, the tiny machine learn-
ing (TinyML) community has grown to develop technology
and solutions for low-power neural network performance
on embedded microcontrollers and other distributed plat-
forms [146], [147].

Another main limitation of deep learning with respect
to SDI is the necessity of large amounts of training
data for supervised learning, which is the dominant
paradigm in deep learning to-date. While there exists large
image and video datasets, including ImageNet [148] and
YouTube-8M [149], corresponding RAW data for analyzing
SDI are more difficult to store in large volumes. Further-
more, deep learning methods are subject to overfitting on
their training data [150], and thus, testing a deep learning
algorithm for data collected under different environments
or camera parameters can yield domain mismatch and
errors, as shown by Liu et al. [151]. However, as deep
learning algorithms appear to be the main infrastruc-
ture behind modern computer vision, it is clear that SDI
research must adapt to these limitations and be optimized
for neural networks. In Section VI, we discuss hardware
acceleration and software, many of which are targeted
at deep learning processing. Furthermore, in Section VII,
we outline a series of simulation and analysis frameworks
that can make training and testing of deep learning algo-
rithms potentially easier for SDI.

VI. H A R D W A R E A C C E L E R AT I O N A N D
S O F T W A R E
The key to SDI is programmability, which allows sen-
sors to adaptively change their sensing behavior to meet
application demands. To that end, we discuss, in this
section, works that explore different hardware and soft-
ware abstractions that enable the programmability and
reconfigurability of different sensor primitives in the visual
computing pipeline.

A. Hardware Acceleration

Here, we discuss works that propose domain-specific
hardware accelerators from academia and industry for effi-
cient image processing and computer vision. While some
chips provide fixed functionality, others provide the ability
to program the vision model and also adapt the vision
model to suit different data flows. In addition to vision
chips, we also discuss other hardware chips that enable
computational photography use cases.

With CNNs becoming popular due to their superior
task accuracy, different researchers proposed optimization
techniques and design innovations for efficient and per-
formant CNN inference. Specifically, researchers proposed
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Fig. 6. Rhythmic encoder decimates the incoming pixel stream

from the camera and encodes only region-specified pixels into

memory. The rhythmic decoder decodes the pixels for use with

the vision algorithms. The runtime sits on top of these hardware

extensions and coordinates with the vision applications to govern the

encoder/decoder operation [152].

domain-specific accelerators with efficient dataflows to
minimize the data movements across memory interfaces.

Eyeriss-v1 [153] proposes row-stationary dataflow that
exploits local data reuse of filter weights and feature map
activations in high-dimensional convolutions and also min-
imizes the data movement of partial sum accumulations.
Even though the Eyeriss architecture provisions sufficient
local memory for storing intermediate results, it still relies
on DRAM to store most of the weights. Efficient inference
engine (EIE) [154] eliminates the dependence on DRAM
by having sufficiently large local SRAM and storing weights
in that structure. It does so through deep compression
for weights by pruning the redundant connections in the
network and also by having multiple connections sharing
the same weight.

Meanwhile, researchers proposed hardware implemen-
tations with support for reduced computing precision
toward higher throughput and energy efficiency. Envi-
sion proposes dynamic-voltage-accuracy-frequency scal-
ing (DVAFS) that not only reduces switching activity for
low-precision computations by masking a configurable
number of multiply-and-accumulate (MAC) units but also
reuses the inactive arithmetic cells at reduced preci-
sion [155]. Thinker [156] uses bit-width adaptive comput-
ing, on-demand array partitioning, and memory-gathering
techniques to substantially reduce redundant memory
accesses. UNPU [157] has an architecture that reuses input
feature maps and implements variable weight bit precision
from 1 to 16 b for energy-efficiency.

Eyeriss-v2 [158] builds on top of the above works and
specifically focuses on supporting diverse filter shapes and
compressed domain processing for compact and sparse
DNNs. This is achieved by introducing a highly flexible
on-chip network that can adapt to different amounts of
data reuse and bandwidth requirements of different data
types. By doing so, Eyeriss-v2 can support a wide variety
of compact and sparse DNN models, thereby improving the
performance and energy efficiency of CNN inference. Com-
plementary to Eyeriss-v2 and other works, more recently,
Tianjic [159] and Simba [160] propose a decentralized

hardware architecture where multiple cores communicate
with each other through message passing over intercon-
nects, without the need of global off-chip memory.

While CNN accelerators solely focus on optimizing data
flows through maximal data reuse within a single compo-
nent in the pipeline, there are other architecture works that
deploy hardware–software techniques to reuse computa-
tion across different components in the vision pipeline.
Euphrates [161] reuses the motion vector information
from the ISP to extrapolate bounding box results for object
detection to avoid extraneous vision processing on certain
frames. EVA2 [162] exploits temporal redundancy between
frames and uses the activation motion compensation tech-
nique to approximate the CNN result. ASV [163] applies
stereo-specific algorithmic and computational optimiza-
tions to increase the performance with a minimum error
rate.

More recently, rhythmic pixel regions (see Fig. 6) inte-
grate a scalable hardware interface that selectively discards
pixels before the camera pixel stream enters DRAM [152].
The hardware interface is augmented with a software run-
time that runs on top of vision applications. The software
runtime allows developers to flexibly specify region labels
with independent spatiotemporal resolutions. Together
these hardware and software interfaces result in significant
memory traffic reduction, thereby enabling the energy
efficiency of visual computing systems.

In parallel to academic chips, the industry came up with
programmable vision processing units, popularly known
as neural processing units (NPUs), for accelerating vision
applications. Apple integrated an NPU inside their recent
line of iPhones, which is used in conjunction with built-
in 3-D sensors, primarily for the FaceID use case, i.e.,
unlocking the phone using the user’s face.1,2 Recently,
NPUs have been more broadly used to run other vision
tasks, such as semantic segmentation. Along similar lines,
Google integrated an edge tensor processing unit (TPU)
inside their recent Pixel smartphone, which can be pro-
grammed to execute a wide variety of vision tasks. Sam-
sung3 and Qualcomm4 integrated NPUs for similar use
cases in their recent Exynos and SnapDragon chipsets,
respectively. Finally, Intel came up with Myriad2 VPU5 that
is aimed at other edge use cases, such as drone navigation,
instead of smartphone-based vision.

In recent years, domain-specific hardware accelerators
have been proposed to accelerate not only vision tasks but
also imaging tasks. Specifically, for computational photog-
raphy, Google integrated Pixel Visual Core into their Pixel
smartphone product line.6 This chip tightly interacts with
the camera and configures the camera parameters, such as

1https://github.com/hollance/neural-engine
2https://support.apple.com/en-us/HT208108
3https://www.samsung.com/global/galaxy/galaxy-z-fold4/
4https://www.qualcomm.com/products/smartphones/mobile-a
5https://www.intel.com/content/www/us/en/products/details/

processors/movidius-vpu.html
6https://en.wikipedia.org/wiki/Pixel_Visual_Core
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exposure for use cases, such as HDR imaging. Samsung’s
smartphones also have a similar imaging core inside their
Exynos chipset for computational photography use cases.

B. OS/Runtime Configurations

Here, we discuss the works that provide APIs for
low-level control of mobile/embedded camera parameters
and frameworks that enable seamless reconfiguration of
camera parameters.

The FrankenCamera API provides full control to the
programmer over different camera settings for each
frame [164]. Specifically, FrankenCamera enables develop-
ers to capture a stream of camera images with fine-grained
precision control. There are four key elements in FCam
API: 1) shots; 2) sensors; 3) frames; and 4) devices.
A shot bundles different camera parameters, such as gain,
exposure, resolution, and frame rate, which completely
describes the capture and postprocessing of a single image.
The sensor is responsible for managing the entire pipeline.
It takes a shot and pushes that to the request queue to
capture a single image Alternatively, it can also capture
a burst of shots. The sensor produces frames that can
be retrieved using getFrame method from a queue of
pending frames. Finally, devices help control the lens focus
and flash settings to control the brightness of the scene.
FCam also allows access to supplemental statistics such as
histograms from ISP if available.

Android Camera2 API uses similar concepts as FCam
for camera control on mobile devices.7 As a next step to
FCam, the Khronos group proposed the OpenKCam API
standard with an aim to provide even more fine-grained
control to developers on the entire capture pipeline [165].
OpenKCam offers controllability on different components
in the capture pipeline. It provides control to change the
color filter array (CFA) on the sensor side, whereas it
provides control over focus distance, aperture, and focal
length on the lens side. Along similar lines, on the flash
side, it offers control over the flash duration activity,
whereas it offers control over the resolution, ROI extrac-
tion, quality, and format on the output side. It also helps
tune different knobs in the ISP, such as demosaicing quality,
denoising quality, gamma correction, and color-space con-
version. Finally, it also offers control over multiple sensors
where there will be one master sensor controlling other
sensors.

Meanwhile, there are also commercial image sensors
with APIs for multi-ROI support [166]. However, due to
hardware restrictions, these APIs allow the developer to
configure only 16 ROIs, thereby limiting their flexibility.
Furthermore, these APIs typically do not allow the ROIs
to overlap and force the ROIs to be aligned in the same
column. While a few tens of ROIs could be sufficient for
simple tasks, such as face detection, tasks such as visual
SLAM need several hundreds of ROIs for task fidelity.

7https://developer.android.com/reference/android/hardware/camera2/
package-summary

In addition to low-level camera control APIs, there
are frameworks that enable seamless reconfiguration of
camera parameters. In particular, reconfiguring camera
parameters, such as spatial resolution, incurs a significant
amount of latency up to a few hundred milliseconds,
thereby affecting pipeline performance. This is because the
existing pipeline needs to undergo several sequential steps,
such as flushing the existing frames, allocating memory to
new frames, and starting the pipeline afresh. The Banner
framework [1] avoids these time-consuming steps by allo-
cating memory for the highest possible resolution so that
any resolution image can be stored in that location. On top
of that, Banner modifies the existing V4L2 framework to
let it read only the actual resolution size number of pixels
from memory whenever it needs to service request from a
vision application.

C. Programming Languages and Compilers

In addition to domain-specific accelerators and domain-
specific runtimes, researchers proposed domain-specific
languages/compilers for building flexible and efficient
imaging pipelines.

Rigel [167] is a framework that allows developers
to express image processing pipelines in Lua program-
ming language and compiles them into highly efficient
hardware descriptions, which can be mapped onto an
FPGA with minimal buffering. While there are a lot of
high-level synthesis tools, they can work for lightweight
image-processing tasks with the same amount of data flow-
ing in and out of the pipeline components Rigel instead
supports sophisticated vision tasks, such as feature extrac-
tion, which entails different input and output data rates in
different pipeline components.

Darkroom [168] extends Rigel to support any hardware
target. That is, Darkroom can compile high-level image
processing code into line-buffered hardware pipelines for
FPGA/application-specific integrated circuit (ASIC)/CPU
targets. Darkroom has a simple programming model with
different abstractions defined to express different image
processing operations, such as convolution. Darkroom ana-
lyzes the code and comes up with a suitable scheduling
policy to eliminate any pipeline hazards.

Meanwhile, Khronos came up with an OpenVX standard,
which is an open standard API targeted at low-power
and real-time embedded vision.8 OpenVX lets developers
express vision applications as a graph of image processing
operations called nodes. These nodes can be mapped on
any processing unit and can be coded in any programming
language. Furthermore, these nodes could be fused to
eliminate memory transfers, and processing can be tiled to
keep data entirely in local memory for optimizing power
and performance.

Halide [169] is a domain-specific language that allows
developers to specify an algorithm along with a com-
posable schedule for high-performance implementations.

8https://www.khronos.org/registry/OpenVX
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Fig. 7. (a) Simple 3 × 3 box filter implementation using Halide [169].

(b) Compilation flow [170]. Blue circles are new. Green rectangles are

unchanged/existing Halide compilation passes. Yellow hexagons are

the inputs and outputs of the compiler.

Halide’s compiler then stochastically searches over the
space of schedules to find an optimal one for achieving
high performance. It also takes into account different
tradeoffs between locality and parallelism before generat-
ing hardware code. For instance, as shown in Fig. 7(a),
a 3 × 3 unnormalized box filter can be simply expressed as
a chain of two functions in x, y using Halide, without any
extra data structures.

Manually specifying schedules for image processing
pipelines could be cumbersome for nonexpert developers.
To that end, Mullapudi et al. [171] proposed an algorithm
that automatically generates high-performance schedules
for Halide programs. The algorithm builds on top of
function bounds analysis that is already present in the
Halide compiler to automatically determine the right set
of locality and parallelism-based program transformations.

To further reduce developer burden, more automation
has been done in recent years through the deployment
of differential programming principles and through the
development of highly efficient libraries. Li et al. [172]
extended Halide with reverse mode automatic differen-
tiation to automatically optimize gradient computations
for different programs, thereby reducing programmer bur-
den. More recently Ahmad et al. [173] proposed DEXTER
that automatically translates image processing libraries to
Halide. Specifically, DEXTER parses a C++-based image
processing function into a directed acyclic graph (DAG) of
smaller stages, infers the semantics of each stage in the
DAG expressed in a high-level IR, and, finally, compiles IR
into executable Halide code.

VII. P U B L I C R E S E A R C H
I N F R A S T R U C T U R E
In this section, we discuss some of the available research
tools that aid in the implementation of software-defined
algorithms. Since vertically oriented solutions are rare
and typically proprietary in the industry, researchers must
cobble together various simulators, tools, and hardware to
implement their solutions. As such, it is difficult to unify
these tools under a common analysis framework, so we
instead list them out thematically.

A. Camera APIs and Sensor Modeling

Several camera APIs have been discussed in
Section VI, including the FrankenCamera API [164]
and OpenKCam [165]. They provide control over different
camera parameters; however, the number and type of
camera parameters accessible are dependent on the
camera manufacturer. In Table 1, we show the modifiable
parameters from the FrankenCam API implemented on the
N900 camera. The FCam API is available as open source.9

Unfortunately, there is a dearth of available camera APIs
that are user-friendly for research purposes, and more
public toolkits should be released with documentation to
investigate how to reconfigure image sensors.

Similarly, modeling sensor energy, such as the cost of
reading out a set of pixels or how much energy a column
ADC consumes, is difficult for researchers to ascertain.
This is due to the varying design varieties and proprietary
details that go into commercial imaging systems. Simple
models have assumed per-pixel energy consumption based
on available sensor specifications [134], [152], [174] or
per-frame [175] and image sensor quantization energy
consumption based on the ADC detection levels [86],
[122]. An open-source sensor modeling tool has been pro-
vided by Iqbal et al. [36], where power efficiency has been
modeled for a conventional mobile system based on num-
bers curated by Kodukula et al. [152]. The tool enables
on-the-fly digital reconfiguration of sensor mechanisms,
such as ROI, quantization, and noise, and computes sensor
power consumption based on the aforementioned energy
model, wherein the SoC-DRAM communication unit, stor-
age, and computation per MAC are assigned per-pixel
energy consumption numbers reflecting real-world data.
This tool serves as an energy optimization framework

9http://fcam.garage.maemo.org/

Table 1 Example of Modifiable Parameters on FrankenCam API
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that determines optimal sensor configuration for energy-
efficiency maximization.

B. ISP Simulators

The Image Systems Engineering Toolbox (ISET) for
Cameras is one of the most comprehensive toolkits for
assessing the quality of images, including handling consis-
tent radiometric units for physical accuracy [176], [177].
ISET has a wide user base (500+ people) working across
24 different countries. The toolflow incorporates an exten-
sible and open-source ISP pipeline for proper visualization
of images. The simulated ISP processor includes several
conventional techniques enabling basic camera function-
ality. Some of these techniques are estimating missing
RGB values (demosaicing) and mapping RGB values to an
internal color space for encoding and display (color balanc-
ing, color rendering, and color conversion). The proposed
simulator also accommodates the inclusion of proprietary
image-processing algorithms and facilitates the assessment
of these algorithms under varying imaging conditions and
sensor types. This simulator can be found open source10

and integrations with physics-based rendering engines.11

For a more simplified ISP pipeline, OpenISP is an
accessible version that contains a few tuning functions
for hardware configuration and is suitable for teach-
ing purposes [178]. The simulated ISP pipeline pro-
cesses RAW images with various modules, including black
level compensation, CFA interpolation, edge enhancement,
hue/saturation/control, and brightness/contrast control.
In contrast, to forward ISP simulators, such as ISET and
OpenISP, Kim et al. [179] introduced a reversible ISP
pipeline that takes processed JPEG or PNG images and
converts them back to RAW images with minimal error.
This is useful for scenarios where one does not have access
to the RAW images or their metadata. This pipeline was
later expanded to include both forward and reversible ISP
operations by Buckler et al. [122], and both the reversible
pipeline12 and the expanded pipeline13 are publicly avail-
able. Recently, a reversible ISP pipeline by Xing et al. [180]
leveraged a differentiable JPEG compression simulator for
superior performance.14

C. FPGA Acceleration

Field-programmable gate arrays (FPGAs) are semicon-
ductor devices designed around configurable logic blocks.
Their reconfigurable architecture provides higher flexibil-
ity than custom-designed ASICs while improving energy
and area efficiency over a traditional microprocessor. Sim-
ilar to ASICs, FPGAs are programmed using hardware
description languages (HDL) that describe the structure
and behavior of the desired electronic circuit. In the past,

10https://github.com/ISET/isetcam
11https://github.com/ISET/iset3d/wiki
12https://github.com/mbuckler/ReversiblePipeline
13https://github.com/cucapra/approx-vision
14Code available here: https://github.com/yzxing87/Invertible-ISP

Fig. 8. Example of FPGA implementation flow using HLS tools

presented in [36].

the implementation of algorithms on an FPGA required
the knowledge of HDL, such as Verilog or VHDL. How-
ever, high-level synthesis (HLS) tools have been devel-
oped in order to allow the deployment of algorithms
by using high-level programming languages. In [181],
an exhaustive list of current and abandoned FPGA HLS
tools is presented. Some of these HLS tools have developed
libraries and plugins specifically designed to accelerate
custom vision tasks and applications. One example of these
libraries is the ones provided by Xilinx. Vitis AI allows the
acceleration of neural networks on Xilinx FPGAs, while the
Vitis Vision library provides optimized kernels based on
OpenCV.

Iqbal et al. [36] introduced an HLS toolflow for acceler-
ating an object tracking algorithm that uses adaptive sub-
sampling. Fig. 8 shows an example of their implementation
flow using HLS tools. This flow allows developers to deploy
algorithms on Xilinx platforms while using familiar pro-
gramming languages, such as C++ and Python, and high-
level domain-specific frameworks, such as TensorFlow and
OpenCV. Vitis takes advantage of the OpenCL standard to
generate application kernels using an array of accelerated
libraries. These kernels are hosted on an ARM or x86-based
processor, which communicates via a PCIe port with the
device, a physical collection of hardware resources onto
which the kernels are executed. The Xilinx Runtime Library
(XRT) is responsible for the communication between the
application code and the application kernels during run-
time. In this example, an evaluation board (ZCU102) that
contains two ARM processors and a ZYNQ UltraScale+

MPSoC FPGA is shown. This pipeline is available as open
source.15

D. Energy Estimation for Deep Learning
Accelerators

For many SDI researchers, it is critical to model not only
the sensing cost but also the computing cost for the end
application. While this is very task-dependent, researchers
have introduced several tools to estimate the hardware
cost for accelerating vision workloads, particularly those
of CNNs and deep learning. Yang et al. [182], [183] intro-
duced energy modeling for deep neural networks based
on their layers and sparsity, whose method is available for
use on their website.16 This modeling work was further
extended to hardware accelerators [184].17 However,

15https://github.com/oiqbal95/fpga_adaptive_tracking
16https://energyestimation.mit.edu./
17Tool available here: http://accelergy.mit.edu/
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we caution readers that all these tools are design and
technology-dependent, and further design and modeling
are needed to determine the energy costs for one’s own
solution.

VIII. C O N C L U S I O N
In this article, we show how the field of SDI has advanced
over the past several decades. Unique to this body of
literature is the combined emphasis on hardware–software
codesign, where computer hardware and sensors are
built alongside the accompanying software and algorithms
that control them. This is also the main reason for the
interdisciplinary nature of the field, requiring knowl-
edge spanning optics and image sensing physics [9],
[185], computer engineering and architecture [186], pro-
gramming languages [187], OSs, and machine learn-
ing/computer vision [137], [188] to fully leverage these
vertically integrated imaging platforms.

For recent research, there has been a plethora of
new papers appearing in major conferences and journals,
including IEEE Computer Vision and Pattern Recognition
(CVPR) Conference, International Conference on Com-
putational Photography (ICCP), IEEE TRANSACTIONS ON

COMPUTATIONAL IMAGING (TCI), Siggraph, Mobisys, Inter-
national Symposium on Computer Architecture (ISCA),
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), and many more. Beyond
research, there has been the adoption of standards and
consortiums, such as OpenVX and Khronos group, aiming
to standardize development for these image-sensing inter-
faces. Finally, organizations such as TinyML help champion
machine learning and computer vision at the edge, which
will leverage SDI research significantly in the industry and
commercial sectors. We encourage readers to seek out

these resources and organizations to further engage with
this growing field.

There are many exciting avenues for new research for
SDI, particularly as machine learning and computing on
the edge become more prevalent in our sensing devices.
For instance, the rise of machine learning has allowed
for hardware–software codesign for end-to-end systems,
including systems that optimize both the optics and back-
end algorithms for enhanced performance [174], [189].
New sensors are still emerging every year in the industry.
Event-based cameras [190] are offering attractive tradeoffs
in terms of energy consumption and frame rate/latency,
in exchange for sparsely sampling the visual scene and
still achieving remarkable performance on end vision tasks,
such as SLAM, HDR, and object detection. Quanta image
sensors using jot pixels are able to achieve single photon
sensing with Mpixel resolutions (1.1-µm-pixel pitch) and
1000+ fps frame rates [191] and have been started to be
proposed for imaging applications [192].

In conclusion, we identify the opportunity for a research
community to coalesce around SDI, build infrastructure
and support for pursuing the advancement of science and
technology, and realize applications in the commercial
industry and other sectors. We hope that this survey article
provides a suitable foundation of knowledge with which
the reader can explore further and deeper pertaining to
their own interests.
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