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Integrating Both Parallax and Latency Compensation into
Video See-through Head-mounted Display

Atsushi Ishihara , Hiroyuki Aga , Yasuko Ishihara, Hirotake Ichikawa , Hidetaka Kaji , Koichi Kawasaki ,
Daita Kobayashi , Toshimi Kobayashi , Ken Nishida , Takumi Hamasaki , Hideto Mori , and Yuki Morikubo

Fig. 1: (a) Our head-mounted display prototype. (b) Results of view synthesis with disocclusion. (c) Results without disocclusion
(ours). (d) Results for composition without occlusion. (e) Results of occlusion (our method).

Abstract—This work introduces a perspective-corrected video see-through mixed-reality head-mounted display with edge-preserving
occlusion and low-latency capabilities. To realize the consistent spatial and temporal composition of a captured real world containing
virtual objects, we perform three essential tasks: 1) to reconstruct captured images so as to match the user’s view; 2) to occlude virtual
objects with nearer real objects, to provide users with correct depth cues; and 3) to reproject the virtual and captured scenes to be
matched and to keep up with users’ head motions. Captured image reconstruction and occlusion-mask generation require dense and
accurate depth maps. However, estimating these maps is computationally difficult, which results in longer latencies. To obtain an
acceptable balance between spatial consistency and low latency, we rapidly generated depth maps by focusing on edge smoothness
and disocclusion (instead of fully accurate maps), to shorten the processing time. Our algorithm refines edges via a hybrid method
involving infrared masks and color-guided filters, and it fills disocclusions using temporally cached depth maps. Our system combines
these algorithms in a two-phase temporal warping architecture based upon synchronized camera pairs and displays. The first phase
of warping is to reduce registration errors between the virtual and captured scenes. The second is to present virtual and captured
scenes that correspond with the user’s head motion. We implemented these methods on our wearable prototype and performed
end-to-end measurements of its accuracy and latency. We achieved an acceptable latency due to head motion (less than 4 ms) and
spatial accuracy (less than 0.1°in size and less than 0.3°in position) in our test environment. We anticipate that this work will help
improve the realism of mixed reality systems.

Index Terms—Video see-through, mixed reality, occlusion, latency compensation

1 INTRODUCTION

The mixed reality (MR) industry is rapidly expanding in fields such as
entertainment and education, and is expected to play an important role
in freeing users from spatial constraints by presenting virtual worlds in
front of them. There are two types of MR: optical see-through (OST)
and video see-through (VST). In OST, users see the real world directly
through transparent displays; in contrast, VST captures the world using
cameras mounted in front of the head-mounted display (HMD) and
projects it onto a display. Existing commercial OSTs suffer from a
narrow field of view and poor color reproducibility. VST can overcome
these limitations with wider-field-of-view cameras and displays.

As Xiao et al. [72] pointed out, because the position of the cameras
and users’ eyes are not identical, differences in size and position arise
between the objects captured and displayed on the HMD and those seen
with the users’ eyes. Moreover, because captured images are typically
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processed independently of virtual scene rendering, it is important
to compose them as temporally matching [25] and to reproject the
composed images such that they correspond with the user’s head motion,
to reduce latency [12]. When composing both captured and rendered
images, the depth information must be properly managed for correct
occlusion. Failure to do so results in a lack of depth cues and can cause
cybersickness.

Numerous image warping and view synthesis approaches have been
proposed to generate novel views from the originally captured ones.
Numerous occlusion methods have also been proposed, including depth-
and model-based approaches. However, these approaches are typically
computationally heavy (even with high-end processors), and dense and
accurate depth maps are often required, which increases the processing
time. Longer processing times tend to result in larger latencies.

In this study, we integrate both parallax and latency compensation
methods into a VST-HMD. To provide a spatially and temporally con-
sistent presentation, we propose 1) the perspective-corrected reconstruc-
tion of captured images, 2) the composition of virtual and reconstructed
scenes with edge-preserving occlusion, and 3) a latency compensation
scheme that composes virtual and reconstructed scenes with the same
timestamp and then deforms composed scenes to correspond to the
user’s head motions.

To reconstruct captured images, we reproject images captured by the
color camera to the user’s eye position, using depth maps. Reprojected
images exhibit disocclusion areas, attributable to positional differences
between the cameras and eyes. We fill these disocclusions using cached
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depth maps estimated in previous frames, instead of relying upon
computationally heavy inpainting procedures. Our method is not only
fast but also spatially correct because it is based upon observations (at
least in static scenes).

For occlusion, we refine the edges of the depth maps using both
infrared (IR) masks and color-guided filters. Our algorithms adopt the
layered depth image (LDI) [60] approach. We separate the layers into
foreground (more important for occlusion) and background (essential
for disocclusion filling).

For latency compensation, we propose a two-phase temporal warp-
ing method. In the first warp, we three-dimensionally reproject the
reconstructed scenes to temporally match the virtual ones. In the second
warp, we use two-dimensional warping to match the composed scenes
with the user’s head motions. Our system synchronizes the frame starts
of the stereo cameras and displays. A single timestamp generator is
used to provide matching timestamps.

We tested our method in a prototype experiment, in which users see
virtual objects in front of them and verify the size of those objects using
their hands. We performed end-to-end measurements of the accuracy
and latency.

Our technical contributions are as follows:
• LDI-based algorithms that offer perspective-corrected recon-

structed scenes and virtual and reconstructed scene composition
with edge-preserving occlusions

• A two-phase temporal warping architecture to ensure consistency
between the virtual and reconstructed scenes and between the
composed scenes and user head motions

• A wearable VST MR prototype implementation and end-to-end
assessment

In this paper, we first review the related approaches (Section 2).
After describing our system (Section 3), the algorithms (Section 4), and
the implementation (Section 5), we explain and discuss our measure-
ment procedure (Section 6). Finally (Section 7), we summarize our
contributions and discuss future work.

2 RELATED WORK

2.1 View Synthesis
The technique of creating a novel view from another is referred to as
“image-based rendering” [61] or “novel view synthesis” [56]. As a
representative example, the “view morphing” method has been pro-
posed to generate a new image from two input images, without using
depth information [59]. No black hole pixels remained after conversion;
however, the distances to objects in the converted image were incorrect.
Methods of creating new perspective images using depth information
are sometimes called “3D warping” or “depth-based” image rendering.

Warping is classified according to the direction of reference [9]. For-
ward warping is relatively lightweight but prone to artifacts. It converts
the source-perspective images into a destination viewpoint. Inverse
warping can reference the source images to generate a destination view-
point. Many forward warping methods have been proposed, including
the merging of multi-point inputs as point clouds [37], the genera-
tion of interpolated perspectives using video and depth inputs [63],
hole-filling using multi-perspective inputs [39], foreground silhouette
guides [9], geometric defect compensation [14], remote rendering im-
plementation [58], graphics processing unit (GPU) optimization [57],
and real-time processing in stand-alone HMDs [15]. Inverse warp-
ing [47, 49, 54] tends to take longer than forward warping because it
must search for the epipolar line, although it can eliminate holes in the
converted images.

LDIs divide an image into multiple layers [38,42]. These approaches
use inpainting to fill holes; however, they tend to take a long time to
process. “Texture-mapped models” [33, 34, 53] have been proposed, in
which multiple images are point-clouded to build a three-dimensional
model and paste textures. These models are reusable but often take
time to build.

In recent years, machine-learning methods have been proposed to
generate multiplane images from multiple input images [24, 71, 72]. In

addition, many neural radiance field-based methods have been proposed
to create free-viewpoint images, using multiple images as inputs [26,
27]. These approaches are computationally demanding to run in real
time.

2.2 Occlusion

Occlusion has been a subject of research since the 1990s; it can be
managed using either depth- or model-based methods [35].

In depth-based methods, occlusion is handled using an estimated
depth map. Methods using multi-view stereo inputs [26] and structured
light [18, 32, 44, 69] have been proposed. Structured light approaches
focus on closing the gaps generated by the different layouts of IR pro-
jectors and cameras. The results of these methods strongly depend on
the quality of the depth maps. Methods for estimating the depth from a
monocular camera image (including machine learning methods) have
been proposed [19, 20, 43]. Methods that use multiple image sensor
inputs have also been proposed [28, 40], as well as depth estimation
methods based upon the continuity of a time series [13, 29]. Depth
estimation methods that use image sensor inputs and sparse depths are
known as depth completion. Sparse depths are generally generated
from image sensor inputs or the outputs of other sensors [17,23,36,45].
Model-based methods can be further sub-classified. Virtual phantom
methods use a hand model derived from hand pose estimation and
tracking results. One representative method used the estimation results
of an off-the-shelf optical hand tracking module [22, 70]. Hand pose
estimation methods can fail when an object is being held in the hand.
Other techniques include foreground–background separation [67] , fore-
ground–background separation using color as a cue [1,64], and methods
combining segmentation and tracking [65]. All these approaches either
rely upon depth sensors or are computationally heavy.

2.3 Warping

Latency compensation via post-render warping resembles view syn-
thesis in that it produces a novel view from other view images. Many
methods can deform a rendered result into an image, to reduce the
delay and/or rendering load. Several classical approaches have been
proposed [48, 50]. Since the mid-2000s, many methods have been
proposed [11, 52, 55, 66, 74]. All these compensation methods neglect
the consistency between the virtual scene and captured image. Efforts
have been made to develop low-latency VST [5]; however, consis-
tency with virtual scenes has been neglected. These approaches are too
computationally demanding to run in real time.

Techniques for matching captured images with virtual scene delays
have been proposed [7, 25, 41] . Freiwald et al. [25] proposed a method
of warping (instead of buffering) captured images to ensure temporal
consistency with virtual scenes. In addition, asynchronous timewarp
[51] installed in the HMD has been applied to the captured image and
virtual scene to reduce delay. However, this approach warps only with
orientation and does not use a translation component.

2.4 Acceptable Latency

In VR, latency due to head motion can lead to cybersickness and poor
realism [62]; ideally, latency should be less than 17–20 ms [3,12,21,46].

In contrast to VR, where the field of view is completely covered,
optical see-through MR allows the real world (and deviations therefrom)
to be directly observed. Blate et al. [10] used a tracking system with a
reduced latency of 28 µs and found that the perceived limit of deviation
was ~1 ms.

However, certain delays cannot be compensated for by warping
according to head motion (e.g., the movements of others or users’
hands captured in VST images). This is sometimes referred to as
“capture-to-display” latency [16] or latency due to scene motion [41],
and its acceptable value is undetermined. For example, Attig et al. [6]
argued that latencies of less than 100 ms for shape and texture changes
in the object do not affect interactions. Gruen et al. [30] measured
the capture-to-display latency of several commercial VST-HMDs and
reported it to be between 50 and 60 ms.
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Fig. 2: Block diagram of our system.

3 SYSTEM OVERVIEW

3.1 Aims and Requirements
We developed a VST-HMD prototype to explore new MR values (be-
sides the features). We focus on presenting a correct depth cue within
users’ personal space via a VST-HMD, because intuitive hand-eye co-
ordination is necessary in an MR space. Therefore, we designed our
system to achieve this under the following three requirements:

• Wearable form factor: The VST-HMD should be small and
lightweight enough to be worn by users as they walk around
within a room (at least 3 × 3 m). The HMD can be tethered like
PC-based VR HMDs, however, no other equipment fixed to the
room should be needed as the entire system must be moved from
room to room.

• Low-latency: The latency of the VST-HMD should be sufficiently
short to prevent cybersickness.

• Made of COTS: The VST-HMD should consist of a commercial
off-the-shelf module (except for the near-eye display module,
which consists of a display panel and optics). We accepted the
display’s dimension and refresh rate as given conditions for the
system design due to availability.

3.2 Major Blocks
Before describing our approach, we explain the terminology and func-
tions of the seven major blocks in our VST-HMD system, as shown
in Figure 2. The tracker block estimates the head pose by applying
the visual–inertial odometry method to data obtained from cameras
and an inertial measurement unit (IMU). The capture block captures a
real scene in front of the HMD using color and depth image sensors.
The reconstruction block estimates the scene depth from the captured
images and integrates it into the reconstructed scene (i.e., an internal 3D
representation). The renderer block renders virtual objects (as viewed
from the tracked head pose) as virtual scene images. The composite
block composes the virtual and reconstructed scenes in the composed
image. The warper block applies image warping to the composed im-
age, to match the head motions and correct the distortion of the display
optics. The display block presents a warped image of the user’s eyes,
using near-eye display panels and optics.

3.3 Our Approach
In this section, we describe our primary approach. As discussed in
Section 2, most view synthesis and occlusion approaches are computa-
tionally heavy; meanwhile, low latency is an indispensable requirement
in MR.

We establish acceptable latency as the main condition to be main-
tained when considering our algorithm. As described in Section 2.4,
two types of latencies are possible: latency due to head motion and
latency due to scene motion. VST includes two types of latency due
to head motion: one arises between virtual and reconstructed scenes,
for which we set the acceptable latency to 2 ms (because it is visible
and easy to notice); the other describes the scene’s latency to (actually
invisible) real scenes, which should be less than 17 ms, according to
previous studies. We set the acceptable latency due to scene motion as
50–60 ms (a relatively poor sensitivity), following studies by Attig et
al. [6] and Gruen et al. [30] .

Our approach is composed of two key ideas:

1. to reconstruct captured images within acceptable latencies due to
scene motion

2. to compensate for the latency due to head motion

Reconstruction of Captured Images To maintain capture-to-
display latency due to scene motion, lightweight reconstruction algo-
rithms of an acceptable quality are required. Rather than improving the
quality of the entire depth map, we focus on edge refinement and disoc-
clusion filling. Our reconstruction method divides the captured images
into foreground and background images. We define the foreground
region as personal space. Users’ hands and the objects held by them
move around as occluders. The edges of occluders affect the occlusion
results. We employed a hybrid method using IR masks and color-guided
filters to refine the edges. We assumed that the background region was
a static environment and rapidly filled the disocclusion with cached
depth maps accumulated from past frames.

Latency Compensation For latency due to head motion, we used
two different types of warping algorithms: (1) three-dimensional warp-
ing in the composition block, to reduce registration errors between
captured and virtual scenes (because users are sensitive to this error)
and (2) two-dimensional warping, to reduce errors between the com-
posed scenes when the captured and virtual scenes are combined and
corresponded to head motions (this error is minor compared to that
between captured and virtual scenes). Moreover, the processing time of
the warping block should fall within a certain time limit (the threshold
for judder-free frame updates). This block compensates for latency and
interpolates frames using the last composed block.

3.4 Timing Budget
Here, we detail the timing budget of our system, which includes the
frame rate and processing time. As mentioned in Section 3.1, we
implemented a given display panel with an 80 Hz refresh rate.

We established the timing budget as below, based upon our display
panel’s specifications and an acceptable latency due to scene motion.
A frame interval of 12.5 ms was applied for the capture component
(i.e., from the center of exposure to until the completed transfer of
the captured image), the rendering component (i.e., to render virtual
scenes), and the combined reconstruction and compositor component
(i.e., to reconstruct captured images and composite the reconstructed
and virtual scenes, including edge refinement and disocclusion filling).
The capture component was run at 80 Hz. Rendering, reconstruction,
and composite components were processed sequentially, and this series
ran at 40 Hz. We created a warper component that ran at 80 Hz to
interpolate frames and compensate for the latency. Because our system
involves line-scanning displays and rolling shutter cameras for capture,
pixels are processed from top to bottom. Even though the processed
timing differed between the top and bottom pixels, we considered the
timing of pixels in a certain line in both the captured and displayed
images to be roughly the same within a frame. As a result, the latency
due to scene motion was at least 50 ms and at most 62.5 (in cases of
interpolated frames) in the absence of frame drops.

4 PROPOSED PIPELINE

4.1 Definitions
Here, we define the common terms and notations used in following
sections.

Device X on our HMD prototype (shown in Figure 3) can refer to
the left and right sides of the tracker, color, and depth stereo cameras,
respectively, denoted as sl and sr, cl and cr, or dl and dr. X can also
refer to the eye-box center of the left or right side of the binocular
display, which can be treated as a quasi-device and is denoted as el or
er. The left or right side of each stereo camera or the eye-box of the
display defines its own frame of reference. When we do not need to
distinguish between the left and right sides of these devices, s, c, d, or
e can be used in isolation.

The transformation matrix BTA represents the transformation of a
point from frame of reference A to frame of reference B. It has the form[
R t
0 1

]
where R is a 3×3 matrix that represents the rotation, and t is
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Fig. 3: Components of our prototype.
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Fig. 4: Processing timeline.

a 3×1 vector that represents the translation. In addition to the frame of
reference formed by device X, we can also use a stationary frame of
reference, often referred to as the world frame, denoted as w.

The pose of device X, denoted as VX , refers to its orientation and
position relative to a reference frame, which can be represented using
a transformation matrix with rotation component R and translation
component t. The rotation component describes the orientation of
device X, while the translation component describes its position.

The projection matrix of device X, which can be either a camera
or the eye-box of the display, is denoted as PX , which has the form[
K 0
0 1

]
where K is a 3×3 matrix that represents the intrinsic matrix

defined in the pinhole camera model.
The time tY,Z denotes the time to start the processing of Y in frame

index Z. The processing Y can refer to capturing, rendering, warping,
or presenting, and is denoted as g,r,w, or p, respectively, as shown in
Figure 4. The frame index Z can be i, j, or k for capturing, rendering,
or presenting, respectively, as the frame intervals or phases for these
processes are different.

The color, IR intensity, or depth image can be represented by func-
tions C, L, or D, respectively, which map normalized pixel coordinates
(x,y) to pixel values that represent color c, IR intensity l, or depth d.
In the depth image, a pixel with a depth value of zero signifies a lack of
corresponding points, even though the depth image represents a point
cloud.

Note that the image referred to here is typically a stereo pair of
images. Unless stated otherwise, the left and right images are processed
independently by image operators.

The time series of images generated periodically is denoted with its
frame index. (e.g., the series of color images captured at tg,i is denoted
as Cg,i)

The image is associated with the view, which is a combination of
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Fig. 5: Predicted head pose on rendering and on warping.

the projection matrix PX and the pose VX [tY,Z ] of the device used to
generate it. For example, the color image captured by the color camera
is associated with the view (Pc,Vc[tg,i]), which is denoted concisely as
Ci = (Pc,Vc[tg,i]).

When the color image C and the depth image D are associated with
the same view, the tuple (CX,DX) can be denoted as BX .

The reprojection operator converts the depth image DA in view at
the time A = (PA,VA) to another depth image DB in view at the time
B = (PB,VB). It is denoted as DB = BQA(DA) where DA and DB are
depth images, and BHA is the reprojection matrix that maps points in
DA to corresponding points in DB.

This mapping can be represented as pb = BHA ·pa where pa =
(x,y,z,1) and pb = (x′,y′,z′,w′) are vectors, and BHA = PB ·VB ·
V −1

A ·P−1
A . When (x,y) are the coordinates of a point in the depth

image DA, z is a depth value at that point DA(x,y). When (x′/w′,y′/w′)
are the coordinates of a point in the depth image DB, z′/w′ is a depth
value at that point DB(x

′/w′,y′/w′).

4.2 Tracker
The tracker block estimates the pose of device X at the current time
t0 and also predicts the pose at a future time t by extrapolating the
estimated results until now. These poses are denoted as V̂X [t0] and
V̂X (t|t0), respectively.

To do this, the tracker block first estimates or predicts the camera
pose V̂sl using inputs from the stereo cameras sl and sr and the IMU,
using a visual-inertial odometry (VIO) method similar to that described
in [4]. Then, the estimated or predicted camera poses are converted to
the pose of device X using the pre-calibrated transform matrix XTsl .

4.3 Renderer
The renderer block generates a color and depth image, denoted as
(Cv, j,Dv, j), by rendering a virtual scene from the eye space in the
predicted eye pose at the time to start rendering next frame.

This view is denoted as R j = (Pe, V̂e(tr, j+1|tr, j)), and the generated
color and depth images of the j-th frame can be represented as Bv, j =
(Cv, j,Dv, j).

4.4 Capture
This block captures a real scene in front of the HMD using two types
of cameras. A pair of color cameras is used to capture the visible
image and a pair of IR cameras with an IR dot projector are applied
for depth sensing (referred to as a depth camera) . All cameras start
their exposures at the same time, although the exposure duration differs
between the color and IR cameras.

Raw images taken by the stereo color camera are developed and
stereo-rectified. The processed result is denoted as the grabbed color
image Cg,i viewed from Ci = (Pc,Vc[tg,i]).

When the stereo IR camera starts its exposure, the IR dot projector
is triggered to flash . The emitted IR dot patterns are reflected on a real-
world surface and grabbed via a stereo IR camera. These raw images
are developed and stereo-rectified. The processed result of the i-th
frame is the IR intensity image, Lg,i viewed from Di = (Pd ,Vd [tg,i]).
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Fig. 6: Reconstruction pipeline.

4.5 Reconstruction

The reconstruction block consists of four sub-blocks. Figure 6 presents
an overview of the pipeline from capture to reconstruction. The details
of each sub-block are described as follows:

4.5.1 Depth Estimation

The depth estimation sub-block estimates the depth maps from the
captured stereo IR image Lg,i; it involves two steps: stereo matching
and hole filling.

Stereo Matching Our system uses libSGM [2] (a GPU-accelerated
implementation of a semi-global matching algorithm [35]), because its
processing time is sufficiently short (3 ms per frame in our system),
and its recall is sufficiently high if a random IR dot pattern is projected
on the real surface. This step creates a base depth map Ds,i from the
captured IR image Lg,i.

Hole Filling We configured the emission intensity of the IR dot
projector to cover a measurement range of up to 6 m; this constraint is
a result of our testing environments.

However, the side effects of IR emission make it too strong for
closer surfaces, and the reflected dot patterns are saturated on the IR
intensity image. The stereo-matching algorithm cannot function for
such saturated regions.

A hole-filling operator fh is introduced to improve these regions, by
replacing the hole with the closest successful stereo-matched pixel in
the neighborhood, N (p) is a set of pixel coordinates neighbor to the
coordinate p that satisfy the conditions Ds,i(p)> 0 and Lg,i(p)< ksat
(as shown in Figure 7). This process can be represented as:

fh(p) =

{
Ds,i(q

′) ifDs,i(p) = 0orLg,i(p)< ksat

Ds,i(p) otherwise

where Ds,i and Lg,i are short hands of Ds,i[Di] and Lg,i[Di] respectively.
p,q′ are 2D pixel coordinates on the base depth map Ds,i and the IR
intensity image Li

g. q′ is the closest successful stereo-matched neighbor
to p, which is argmin

q∈N (p)
|p−q| .

Fig. 7: Hole filling result: (left) IR intensity image, (center) depth map
before hole filling, and (right) depth map after hole filling.

4.5.2 Layer Separation

This sub-block layer separation splits the hole-filled depth image Dh,i
into a foreground layer depth image D f ,i and background layer depth
image Db,i .

The basic concept is to compare the depths of each pixel in the depth
map between the current and previous frames. If the current pixel
is closer (further away) than the previous one, it should be classified
as the foreground (background) layer, because it indicates the arrival
(removal) of an occluder.

However, the depth map for the previous frame cannot be directly
compared because it is viewed from the previous camera pose. There-
fore, we reproject the depth map from the previous camera pose
Di−1 = (Pd ,Vd [tg,i−1]) to the current one Di = (Pd ,Vd [tg,i]) before
comparison, as follows:

Dh,i−1[Di] = DiQDi−1(Dh,i−1[Di−1])

Then, we apply the current and reprojected previous depth images,
Dh,i[Di] and Dh,i−1[Di] respectively, to the split layer (SL) operator, and
it returns a tuple of the foreground and background layers of the depth
map (D f ,i[Di],Db,i[Di]) . The operator fs can be defined as follows:

fs(p) =




(di,di−1) (di −di−1 <−kth)

(0,αdi +(1−α)di−1) (|di −di−1|< kth)

(0,di) otherwise

where di and di−1 are depth values at point p = (x,y) in depth maps
Dh,i[Di] and Dh,i−1[Di], respectively. kth is a threshold value to split,
and α is a weight to blend current and previous depth values.

It is important to note that the depth of the region occluded by the
foreground layer in the background layer is preserved, as we assume
that the background layer is mostly stable and its depth remains un-
changed during occlusion.

4.5.3 Edge Refinement

This edge refinement sub-block creates color and depth images of the
foreground layer with plausible edges, using the depth image of the
foreground layer D f ,i[Di], the captured color image Cg,i[Ci], and the IR
image from the depth camera Lg,i[Di].

The estimated and hole-filled depth map tends to dilate the occluder’s
edge regions because regions around the edge of the curved surface
exhibit blind spots that cannot be observed from one of the stereo
depth cameras; this causes stereo-matching failures. As a result, the
foreground depth map appears dilated.

Therefore, we introduced two methods to refine the edges: IR-
intensity based masking and color-guided filtering.

Masking by IR intensity The IR dot projector is a type of spotlight,
and its radiance decreases with respect to the distance to the real-world
surface. Therefore, some of this distance information is reflected in
each pixel value of the IR image captured by the depth camera.

This is not sufficient to use as a depth map, but we can exploit it
to improve the falsely dilated edge regions by intersecting it with the
mask, which is generated from the IR depth camera image using the
pre-configured threshold.

Therefore, we introduce masking operator fm that takes the fore-
ground depth image D f ,i[Di] and IR intensity image Lg,i[Di] as inputs
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and generates the masked foreground depth map D f m,i[Di] , which can
be represented as follows:

fm(p) =


D f ,i(p) (Lg,i(p)< kth)

0 otherwise

where p= (x,y) is a point in the image, D f ,i(p) is the depth value at
point p, and Lg,i(p) is the IR intensity value at point p . The threshold
value kth is a constant that determines when the operator returns the
depth value or zero.

We tuned the masking threshold to distinguish objects inside the
personal distance [31] (mostly the users’ hands or arms) from static
backgrounds.

Depth contour refinement with color guide The depth contour
refinement filter is used to improve misalignments or jagged edges
between the depth and color images that result from reprojection errors
and differences in image resolution. The process can be described as
follows:

Firstly, the masked foreground depth image D f m,i[Di] is reprojected
to the same view of the color camera, as follows:

D f m,i[Ci] = CiQDi(D f m,i[Di])

Now, we have the color and depth images (Cg,i[Ci],D f m,i[Ci]) as
viewed from the same color camera pose, and we denote this tuple
as B f m,i[Ci] .

Secondly, the depth contour refinement filter, denoted as fr, is ap-
plied to this tuple, producing a refined tuple of the foreground depth
and color images.

B f r,i[Ci] = fr(B f m,i[Ci])

Thirdly, the color image is masked with the refined foreground depth
image to extract the background color image (this image operation is
denoted as fe):

Cbe,i[Ci] = fe(Cg,i[Ci],D f r,i[Ci])

Fourthly, the refined tuple of the foreground depth and color images
is reprojected to the view matched with the renderer. This process can
be represented as:

B f r,i[R j] = R jQCi(B f r,i[Ci])

where D f m,i[Ci] is the masked foreground depth map reprojected to
the color camera view, Cf r,i[Ci] is the refined foreground color image,
Cbr,i[Ci] is the background color image, B f r,i[R j] is the refined tuple
of the foreground depth and color images.

The depth contour refinement filter fr takes a tuple of the color and
depth images as input, denoted as (Cf m,D f m), and the resulting tuple
of color and depth images. It can be represented as follows:

fr(p) =


(C̄ f m(p), D̄ f m(p)) if|Cf m(p)−C̄ f m(p)|< kth
(Cf m(p),D f m(p)) otherwise

where p= (x,y) is a point in these images.
For a set of pixels N (p) that are neighbors of pixel p , the av-

erage color and the average depth of the neighbors are denoted as
C̄ f m(p) and D̄ f m(p) respectively, and they can be represented as:

1
|N (p)| ∑q∈N (p)Cf m(q),

1
|N (p)| ∑q∈N (p) D f m(q) The threshold value

kth is a constant that determines when the operator replaces the depth
value with the average depth of the neighbors.

The filter fe can be defined as follows:

fe(p) =


0 (D f r,i(p)> 0)
Cg,i(p) otherwise

where Cg,i is a color image to be masked, D f r,i is a depth image used
as a mask, and p= (x,y) is a point in these images.

Some of the results with and without the filter are shown in Figure 8.

Fig. 8: Edge refinement results (left: before refinement; right: after
refinement).

4.5.4 Disocclusion Filling
This sub-block takes the background depth map Db,i[Di] and color
image Cbe,i[Ci], as inputs, and fills the occluded region with the fore-
ground layer, using the previous background color and depth images,
and generates the color and depth images at the same view with the ren-
derer, which is denoted as Bbd,i[R j] . This process can be represented
as follows:

Firstly, the background layer depth image Db,i[Di] is reprojected to
the view matched with the color camera via

Db,i[Ci] = CiQDi(Db,i[Di])

Now, we have the color and depth images (Cbe,i[Ci],Db,i[Ci]) as viewed
from the same color camera pose, and we denote this tuple as Bbe,i[Ci].

Secondly, this color and depth images are reprojected to the view
matched with the renderer, as follows:

Bbe,i[R j] = R jQDi(Bbe,i[Ci])

Thirdly, the color and depth images filled by the disocclusion filter
in the previous frame, denoted as Bbe,i−1[Ci−1] , are reprojected to the
current eye space for disocclusion, as follows:

Bbd,i−1[R j] = CiQCi−1(Bbd,i−1[R j−1])

Finally, the occluded region at the background layer color depth
image in the current frame Bbe,i[R j] is filled with the corresponding
pixels in the previous frame Bbe,i−1[R j] by the disocclusion filter,
denoted as fd , as follows:

Bbd,i[R j] = fd(Bbe,i[R j],Bbd,i−1[R j])

The disocclusion filter fd takes the color and depth images in the
current frame and the reprojected previous frame as inputs, denoted as
Cc, Dc, Cp, and Dp, respectively, and returns a tuple of the color and
depth images, denoted as Co and Do. It can be represented as follows:

Do(p) =





αDc(p)+(1−α)Dp(p) if Dc(p),Dp(p)> 0
Dc(p) else if Dp(p) = 0
Dp(p) otherwise

Co(p) =


Cc(p) if Dc(p)> 0
Cp(p) otherwise

where p = (x,y) is a pixel coordinate, Dc(p), Dp(p), and Do(p) are
depth values at point p in depth images Dc, Dp, and Do, respectively.
Cc(p), Cp(p), and Co(p) are color values at point p in color images Cc,
Cp, and Co, respectively.

It is important to note that the depth value for a given pixel in the
current and previous frames is averaged, if both values are available,
because we assume that the background layer is mostly stable, and its
depth remains unchanged over the frame interval.

4.6 Composition
This block composes the color and depth images of the reconstructed
foreground B f r,i[R j], the reconstructed background Bbd,i[R j], and the
rendered virtual scenes Bv, j[R j]. Occlusion between the virtual and
reconstructed scenes is realized by depth testing between input images.
The resulting composition is denoted as Cm, j[R j].
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4.7 Warper
This warper block applies image warping (referred to as “temporal
warping”) to the composed scene Cm, j[R j], to correct the prediction
error of the user’s head pose used at rendering Ve(tr, j+1|tr, j) with the
latest one predicted just before display scanning Ve(tp,k|tw,k) . And
this warper corrects the distortion produced by the display optics. The
warped results are sent to the display panel.

Temporal warping is a type of inverse warping in which the source
image Cm, j[R j] is assumed to be located on a plane (a “stabilization
plane”) but its destination plane is twisted by user head movements as
the display scans from top to bottom.

This twisted destination mesh is formed by independently reproject-
ing the upper and lower corners of the composed scene. The upper
left and right corners of the composed scene are re-projected to the
eye space as viewed from the predicted eye pose at the start of display
scanning Ve(tp,k|tw,k) . The lower left and right corners are reprojected
to the eye space as viewed from the predicted eye pose at the end of
display scanning Ve(tp,k+1|tw,k) , as shown in Figure 8.

5 IMPLEMENTATION

In this section, we describe the implementation of our method. We
implemented this approach in a wearable prototype HMD that allowed
the wearer to walk around a space of ~3 × 3 m. Figure 9 shows a block
diagram of the prototype system. To keep the HMD lightweight, heavy
processing tasks (e.g., reconstruction and rendering) were handled by
a desktop PC connected to the device. Data collected from sensors
mounted on the front of the HMD prototype were sent to the desktop
PC, where they were processed to generate an image and returned to
the prototype for display.

Sensors and Projectors The prototype had three stereo camera
pairs. The first was for VIO; it consisted of global shutter image sensors
(each with a 640 × 480 resolution) and a lens with an IR cut filter. The
second was for depth estimation; it consisted of global shutter image
sensors (each with a 1440 × 1080 resolution) and a lens with an IR
bandpass filter. We used this camera pair for depth measurement at a
resolution of 720 × 540 in the binning mode. The third was for video
see-through capture; it consisted of rolling shutter image sensors (each
with a 4056 × 3044 resolution). We used this camera pair for video
see-through at a 2028 × 1522 resolution in the binning mode. All
camera sensors were operated at 80 Hz.

To add feature points in texture-less areas, the prototype featured
two IR dot projectors; these were placed side-by-side at an angle to
the main optical axis, to obtain a wider field of view (FoV); it emitted
15372 dots in a H93° × V70° FoV.

For VIO, our prototype also featured a gyro sensor running at 1600
Hz and an accelerometer sensor that ran at 1100 Hz but was up-sampled
to 1600 Hz.

We used three stereo cameras to obtain the best results for each
objective. For example, the baseline of the stereo camera pair for VIO
was wider than that for the depth estimation. Before use, the position of
each stereo camera and display was measured and calibrated via image
processing.

Displays The prototype was equipped with a near-eye display
system using a Fresnel lens at H99° × V105° FoV. It used an organic
light emitting diode display panels with a resolution of 1920 × 1920 per
eye; these were line scanning displays that ran at 80 Hz. All cameras
and displays were synchronized with the vertical sync signal, to obtain
the corresponding images from different cameras and display them.

HMD Controls The prototype was equipped with a field pro-
grammable gate array (FPGA) board Xilinx KU5P to control the sensors
and displays. All cameras and displays were synchronized with the
vertical sync signal, to obtain corresponding images from different
cameras and display them. The cameras and IMUs signals were times-
tamped by the FPGA and transferred to the PC. This timestamp was
generated using the same clock source.

This FPGA board also handled the data transfer, which proceeded
via a multi-fibre push-on cable between the prototype and PC. The data
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Fig. 10: Setup for measuring perspective correctness.

transfer rate was 5.84 Gbps from the HMD to the PC, and 14.16 Gbps
from the PC to the HMD.

PC as processing box The PC connected to the prototype was
equipped with an AMD Ryzen Threadripper 3970X central processing
unit (CPU), NVIDIA Geforce RTX 3090 Graphics board, and Xilinx
VU9P FPGA board. All image processing was executed on a CPU
or GPU using DirectX12 or compute unified device architecture. The
generated result was sent from the GPU and relayed via the FPGA
board to the prototype through the MPO cable.

6 EXPERIMENTS

6.1 Test Environments

We assume that our test environments are indoor office rooms, which
have an area of ~3 × 3 m. Although our prototype works in typical
office rooms with white walls, we used a black curtain or gray panels on
some regions of the walls, to avoid strong IR reflection and subsequent
inaccurate depth estimations.

6.2 Perspective-correctness

We measured the perspective correctness of the reconstructed scene.
The experimental setup is illustrated in Figure 10. A circular grid was
placed in front of our prototype as an object of known size. A circular
grid is often used to calibrate cameras. We placed our observation
camera (UI-3480CP-M-GL [86]) at the position of the user’s eye. This
position is where the circular grid can be most clearly seen through the
display from the observation camera. We marked these positions to
ensure that the cameras are placed in the same position each time. The
position of the observation camera and those of the video see-though
cameras were calibrated in advance.

The experiment comprised two steps: 1) The prototype captured the
circular grid and displayed it. The observation camera then captured
the display of the prototype. 2) We removed the prototype so that the
observation camera could capture the circle grid directly, to obtain
ground truth images. We compared the results of Steps 1 and 2. We
binarized captured images and detected circles from them using the
“findContour” function of OpenCV [85], and we calculated the center
of each circle. We compared the absolute and relative positions of the
centers of the captured images.
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Fig. 11: Circle grid as seen by observation camera with and without
prototype. The circular grid was placed (left) 60 cm and (right) 180 cm
from the prototype.

Fig. 12: Accuracy measurement results: (upper) position errors from
circle centers to ground truth, which are errors in position; (lower)
distance errors between circles and ground truth, which are errors in
size.

These steps were performed ten times under different positions of the
circular grid and at different distances (Figure 11). We also compared
the results of our method with a two-dimensional scaling of the captured
images at each distance. For example, images were two-dimensionally
scaled to fit the sizes of objects at 60 cm, and the sizes of objects at other
distances were incorrect. As shown in Figure 12, the two-dimensional
scaling results were resembled the ground truth at only one certain
distance, whereas ours resembled the ground truth at any distance (less
than 0.3° in position and less than 0.1° in size).

6.3 Occlusion
We measured the accuracy of the proposed occlusion algorithm. We
recorded three different occlusion scenarios: (a) the back of a hand,
(b) the palm of a hand, and (c) a note and pen held by hands. We took
five different frames for each scene, each with different poses for the
foreground objects. In each frame, we manually created a reference
mask. We made our prototype render a blue square and compared the
occlusion results of our algorithm against those of the reference masks.
We adopted the commonly used precision and recall metrics [8] [68].
The following values are all averaged over five frames: The precision
of Scene (a) was 0.9645 and the recall was 0.9836. The precision of
Scene (b) was 0.9427, and the recall was 0.9938. The precision of
Scene (c) was 0.9185, and the recall was 0.95 (Figure 13).

We also observed scenes in which the users pretended to hold a
virtual camera. Although our occlusion masks occluded fingers in
more distant areas whilst retaining fingers in nearer ones, there were
noticeable artifacts.

To understand how the color contrast between foreground objects

Fig. 13: Occlusion by (a) palm of hand, (b) back of hand, (c) hand-held
note and pen. Scenes (d), (e), and (f) show a user holding a virtual
camera. White arrows indicate artifacts.

Fig. 14: Occlusions results for two different backgrounds.

and background scenes affected the result, we measured the accuracy of
occlusion under two different backgrounds: bright and dark. We used a
mannequin hand as the foreground occluder. The prototype rendered
virtual objects as dilated shapes of foreground objects. We measured
the precision and accuracy by increasing the pixels from the edges in a
stepwise fashion. When the contrast was low, the precision remained
low because our color-guided filters tended to fail. The results are
shown in Figure 14.

6.4 Latency Due to Head Motion
In this section, we describe how we measure the latency due to head
motion. Figure 15 shows our setup. Two cameras (Ximea MC031MG-
SY@240fps [73]) were used: (a) captures the real-world image. (b)
captures the display of the HMD prototype. (a) and (b) were syn-
chronized and calibrated with each other in advance. We attached the
prototype to a vibration generator that could vibrate from -5° to 5° at 1
Hz. In the figure, (c) denotes an indicator placed in front of the proto-
type in the real world, (d) shows an indicator captured and displayed
by the prototype, and (e) shows an indicator rendered according to the
prototype’s self-pose estimation.

While (c) is set at the center of (a)’s field of view, either (d) or (e) is
also set at the center of (b)’s field of view. (a) and (b) captures multiple

Fig. 15: Latency measurement setup.
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Fig. 16: Indicator trajectories.

Reconstruction and composition Processing time (ms)
Depth estimation 3.10
Edge refinement filter 2.08
Disocclusion and composition 2.06
Other filters 4.11
Warper Processing time (ms)
Two-dimensional warping 0.36

Table 1: Processing time for each block.

images as the vibrator moves. When comparing VST image and real
world, (d) is set as a target for the camera (b), (e) is set as a target when
comparing rendered scene and real world.

We detected the center of each circle and calculated RMSE of hori-
zontal position of both (a) and the target. Latency is defined as follows:

latency = argmin
∆t

√
1
n ∑n

t=1(P̂(t +∆t)−P(t))2

Here, P and P̂ represent functions return the horizontal position of
both (a) and the target respectively, and t is a timestamp. By varying
the offset, ∆t, between -100 ms and 100 ms, we found that it can
be used to minimize the value of RMSE. We therefore regard it as
the latency. Since the resolution of the offset is limited by the frame
rate of the observation camera, if there is a minimum RMSE between
certain timestamps A and B, a more accurate offset is calculated by
interpolating a virtual timestamp. The results are shown in Figure 16,
where the x-axis denotes time and the y-axis denotes position. The
delay of the reconstructed scenes compared to the real scenes was 3.3
ms and that of the virtual scenes compared to the real ones was 1.8 ms.
Comparing these in each frame of the observation camera, the average
delay of the captured image from the virtual scenes was 1.9 ms.

6.5 Latency Due to Scene Motion
In this section, we describe how we measured the latency due to scene
motion. We used an LED array that counted every 1 ms. We placed
this in front of our prototype and captured both the real LED and
that displayed in our prototype, using two time-synchronized cameras
(Ximea MC031MG-SY@240fps [73] ). We compared the two methods
by detecting a timestamp from the LED lighting pattern. The latency
varied as 50–60 ms, with an average of 56 ms.

6.6 Performance
We measured the processing time per frame for the proposed algorithm.
The results are shown in Table 1. The processing time for reconstruction
and composition was ~12 ms, and the warper’s processing time was
0.36 ms.

6.7 Discussion
In this section, we discuss the system configuration. For edge refine-
ment, we combined IR masks and color-guided filters, as previously
described. Without IR masks, it typically takes more than 50 ms to
refine edges to the same quality as our setup. Without color-guided
filters, the shapes of the depth maps featured jagged edges and ap-
peared smaller than they should. The filter application depended on
the use case. In our test environments, the combination of IR masks
and color-guided filters produced reasonable proposals, even though

the color-guided filters impoverished the result when the color contrast
of the foreground and background were low.

For view synthesis, we stored only one frame to fill the disocclusion,
instead of storing a series of past frames. This is because the surround-
ings continued to change, and reprojection errors accumulated. The
pre-reconstruction method can be chosen if the environment is limited
and static. For warping, we compensated for the latency of the head-
motion related components in captured images (~50–60 ms). However,
the latency because of scene motion remained the same. This may
be too long for the applications requiring faster responses (e.g., when
users physically play instruments). However, as defined in Section 3,
50–60 ms may be acceptable for even standard physical contact (e.g.,
grasping a mug or taking notes).

7 CONCLUSION AND FUTURE WORK

We introduced an approach to show captured and virtual scenes in a spa-
tially and temporally consistent manner whilst also reducing the delays
caused by user head motions. We proposed novel LDI-based algorithms
that realized lightweight reconstruction and edge-preserving occlusion
management when combining virtual and reconstructed scenes. To re-
duce the latency due to head motion, we designed a two-phase warping
architecture that included virtual and reconstructed scenes in the same
timestamp and deformed them to keep up with the user’s head poses.
We implemented our approach on a wearable prototype and measured
its accuracy and latency. We achieved an acceptable latency due to
head motion of less than 4 ms. We also achieved a spatial accuracy
of less than 0.1° (in size) and less than 0.3° (in position) in our test
environments.

Although we achieved acceptable results in our test environments,
the depth estimation results remain inaccurate in scenes where the color
contrast between the foreground and background is low. Shiny walls
also reflect IR lights and result in inaccurate occlusion. We believe
that we can further improve our approach by utilizing sensors with
high environmental robustness and/or combining sensors with different
environmental characteristics. We need to address the latency of scene
motion when warping, and also need other depth cues (e.g., focus
cues), especially for interactions within a personal space. Moreover, for
lighter and smaller form factors, it is necessary to dramatically reduce
the processing load, which is a challenging task. We hope that our
approach will help improve the quality and efficiency of mixed and
augmented reality systems.

REFERENCES

[1] A. F. Abate, F. Narducci, and S. Ricciardi. An Image Based Approach
to Hand Occlusions in Mixed Reality Environments. In D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, A. Kobsa, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, D. Terzopoulos,
D. Tygar, G. Weikum, R. Shumaker, and S. Lackey, eds., Virtual, Aug-
mented and Mixed Reality. Designing and Developing Virtual and Aug-
mented Environments, vol. 8525, pp. 319–328. Springer International
Publishing, Cham, 2014. Series Title: Lecture Notes in Computer Science.
doi: 10.1007/978-3-319-07458-0_30 2

[2] adaskit Team. libSGM. https://github.com/fixstars/libSGM, Feb.
2016. 5

[3] B. D. Adelstein, T. G. Lee, and S. R. Ellis. Head Tracking Latency in
Virtual Environments: Psychophysics and a Model. Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, 47(20):2083–
2087, Oct. 2003. doi: 10.1177/154193120304702001

[4] H. Aga, A. Ishihara, K. Kawasaki, M. Nishibe, S. Kohara, T. Ohara,
and M. Fukuchi. Latency Compensation for Optical See-Through Head-
Mounted with Scanned Display. SID Symposium Digest of Technical
Papers, 50(1):330–333, June 2019. doi: 10.1002/sdtp.12923 4

[5] T. Ai. FPGA design & implementation of a very-low-latency video-see-
through (VLLV) head-mount display (HMD) system for mixed reality
(MR) applications. In Proceedings of the 15th ACM SIGGRAPH Con-
ference on Virtual-Reality Continuum and Its Applications in Industry
- Volume 1, pp. 39–42. ACM, Zhuhai China, Dec. 2016. doi: 10.1145/
3013971.3014020 2

[6] C. Attig, N. Rauh, T. Franke, and J. F. Krems. System Latency Guide-
lines Then and Now – Is Zero Latency Really Considered Necessary? In

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 07,2023 at 02:05:13 UTC from IEEE Xplore.  Restrictions apply. 



2835ishihara ET AL.: Integrating Both Parallax and Latency Compensation into Video...

D. Harris, ed., Engineering Psychology and Cognitive Ergonomics: Cog-
nition and Design, vol. 10276, pp. 3–14. Springer International Publishing,
Cham, 2017. Series Title: Lecture Notes in Computer Science. doi: 10.
1007/978-3-319-58475-1_1 2, 3

[7] M. Bajura and U. Neumann. Dynamic registration correction in video-
based augmented reality systems. IEEE Computer Graphics and Applica-
tions, 15(5):52–60, Sept. 1995. doi: 10.1109/38.403828 2

[8] C. Battisti, S. Messelodi, and F. Poiesi. Seamless Bare-Hand Interaction
in Mixed Reality. In 2018 IEEE International Symposium on Mixed and
Augmented Reality Adjunct (ISMAR-Adjunct), pp. 198–203. IEEE, Munich,
Germany, Oct. 2018. doi: 10.1109/ISMAR-Adjunct.2018.00066 8

[9] M. Bauer. Image-based rendering for real-time applications. p. 7. 2
[10] A. Blate, M. Whitton, M. Singh, G. Welch, A. State, T. Whit-

ted, and H. Fuchs. Implementation and Evaluation of a 50 kHz,
$28\mu\mathrm{s}$ Motion-to-Pose Latency Head Tracking Instrument.
IEEE Transactions on Visualization and Computer Graphics, 25(5):1970–
1980, May 2019. doi: 10.1109/TVCG.2019.2899233 2

[11] H. Bowles, K. Mitchell, R. W. Sumner, J. Moore, and M. Gross. Iterative
Image Warping. Computer Graphics Forum, 31(2pt1):237–246, May 2012.
doi: 10.1111/j.1467-8659.2012.03002.x 2

[12] J. Carmack. Latency Mitigation Strategies. https://web.archive.
org/web/20130225013015/http://www.altdevblogaday.com/
2013/02/22/latency-mitigation-strategies/, Feb. 2013. 1, 2

[13] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova. Depth Prediction
without the Sensors: Leveraging Structure for Unsupervised Learning
from Monocular Videos. Proceedings of the AAAI Conference on Artificial
Intelligence, 33:8001–8008, July 2019. doi: 10.1609/aaai.v33i01.33018001
2

[14] G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis. Depth
synthesis and local warps for plausible image-based navigation. ACM
Transactions on Graphics, 32(3):1–12, June 2013. doi: 10.1145/2487228.
2487238 2

[15] G. Chaurasia, A. Nieuwoudt, A.-E. Ichim, R. Szeliski, and A. Sorkine-
Hornung. Passthrough+: Real-time Stereoscopic View Synthesis for
Mobile Mixed Reality. 3(1):17. 2

[16] H. Chen, C. Wei, M. Song, M.-T. Sun, and K. Lau. Capture-to-display de-
lay measurement for visual communication applications. APSIPA Transac-
tions on Signal and Information Processing, 4(1), 2015. doi: 10.1017/ATSIP
.2015.21 2

[17] Z. Chen, V. Badrinarayanan, G. Drozdov, and A. Rabinovich. Estimating
Depth from RGB and Sparse Sensing. In V. Ferrari, M. Hebert, C. Smin-
chisescu, and Y. Weiss, eds., Computer Vision – ECCV 2018, vol. 11208,
pp. 176–192. Springer International Publishing, Cham, 2018. Series Title:
Lecture Notes in Computer Science. doi: 10.1007/978-3-030-01225-0_11 2

[18] C. Du, Y.-L. Chen, M. Ye, and L. Ren. Edge Snapping-Based Depth
Enhancement for Dynamic Occlusion Handling in Augmented Reality. In
2016 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 54–62. IEEE, Merida, Yucatan, Mexico, Sept. 2016. doi: 10.
1109/ISMAR.2016.17 2

[19] D. Eigen and R. Fergus. Predicting Depth, Surface Normals and Semantic
Labels with a Common Multi-scale Convolutional Architecture. In 2015
IEEE International Conference on Computer Vision (ICCV), pp. 2650–
2658. IEEE, Santiago, Chile, Dec. 2015. doi: 10.1109/ICCV.2015.304 2

[20] D. Eigen, C. Puhrsch, and R. Fergus. Depth Map Prediction from a Single
Image using a Multi-Scale Deep Network, June 2014. arXiv:1406.2283
[cs]. doi: 10.48550/arXiv.1406.2283 2

[21] S. R. Ellis, M. J. Young, B. D. Adelstein, and S. M. Ehrlich. Discrimination
of Changes of Latency during Voluntary Hand Movement of Virtual Ob-
jects. Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, 43(22):1182–1186, Sept. 1999. doi: 10.1177/154193129904302203
2

[22] Q. Feng, H. P. H. Shum, and S. Morishima. Resolving occlusion for 3D
object manipulation with hands in mixed reality. In Proceedings of the
24th ACM Symposium on Virtual Reality Software and Technology, pp.
1–2. ACM, Tokyo Japan, Nov. 2018. doi: 10.1145/3281505.3283390

[23] D. Ferstl, C. Reinbacher, R. Ranftl, M. Ruether, and H. Bischof. Image
Guided Depth Upsampling Using Anisotropic Total Generalized Variation.
In 2013 IEEE International Conference on Computer Vision, pp. 993–1000.
IEEE, Sydney, Australia, Dec. 2013. doi: 10.1109/ICCV.2013.127 2

[24] J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. Overbeck,
N. Snavely, and R. Tucker. DeepView: View Synthesis With Learned
Gradient Descent. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2362–2371. IEEE, Long Beach, CA,

USA, June 2019. doi: 10.1109/CVPR.2019.00247
[25] J. P. Freiwald, N. Katzakis, and F. Steinicke. Camera time warp: compen-

sating latency in video see-through head-mounted-displays for reduced
cybersickness effects. In Proceedings of the 24th ACM Symposium on
Virtual Reality Software and Technology, pp. 1–7. ACM, Tokyo Japan,
Nov. 2018. doi: 10.1145/3281505.3281521 1, 2

[26] C. Gao, A. Saraf, J. Kopf, and J.-B. Huang. Dynamic View Synthesis from
Dynamic Monocular Video. In 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 5692–5701. IEEE, Montreal, QC, Canada,
Oct. 2021. doi: 10.1109/ICCV48922.2021.00566 2

[27] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin. Fast-
NeRF: High-Fidelity Neural Rendering at 200FPS. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 14326–14335.
IEEE, Montreal, QC, Canada, Oct. 2021. doi: 10.1109/ICCV48922.2021.
01408 2

[28] C. Godard, O. M. Aodha, and G. J. Brostow. Unsupervised Monocular
Depth Estimation with Left-Right Consistency. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 6602–6611.
IEEE, Honolulu, HI, July 2017. doi: 10.1109/CVPR.2017.699

[29] A. Gordon, H. Li, R. Jonschkowski, and A. Angelova. Depth From Videos
in the Wild: Unsupervised Monocular Depth Learning From Unknown
Cameras. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 8976–8985. IEEE, Seoul, Korea (South), Oct. 2019.
doi: 10.1109/ICCV.2019.00907

[30] R. Gruen, E. Ofek, A. Steed, R. Gal, M. Sinclair, and M. Gonzalez-Franco.
Measuring System Visual Latency through Cognitive Latency on Video
See-Through AR devices. 2020 IEEE Conference on Virtual Reality and
3D User Interfaces (VR), pp. 791–799, 2020. doi: 10.1109/VR46266.2020.
1580498468656 2, 3

[31] E. T. Hall. The hidden dimension. Anchor Books, New York, 1990. 6
[32] A. K. Hebborn, N. Hohner, and S. Muller. Occlusion Matting: Realistic

Occlusion Handling for Augmented Reality Applications. In 2017 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), pp.
62–71. IEEE, Nantes, Oct. 2017. doi: 10.1109/ISMAR.2017.23 2

[33] P. Hedman, S. Alsisan, R. Szeliski, and J. Kopf. Casual 3D photography.
ACM Transactions on Graphics, 36(6):1–15, Nov. 2017. doi: 10.1145/
3130800.3130828 2

[34] P. Hedman and J. Kopf. Instant 3D photography. ACM Transactions on
Graphics, 37(4):1–12, Aug. 2018. doi: 10.1145/3197517.3201384

[35] H. Hirschmuller. Stereo Processing by Semiglobal Matching and Mu-
tual Information. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(2):328–341, Feb. 2008. doi: 10.1109/TPAMI.2007.1166 5

[36] A. Holynski and J. Kopf. Fast depth densification for occlusion-aware
augmented reality. ACM Transactions on Graphics, 37(6):1–11, Dec. 2018.
doi: 10.1145/3272127.3275083

[37] A. Hornung and L. Kobbelt. Interactive Pixel-Accurate Free Viewpoint
Rendering from Images with Silhouette Aware Sampling. Computer
Graphics Forum, 28(8):2090–2103, Dec. 2009. doi: 10.1111/j.1467-8659.
2009.01416.x 2

[38] V. Jantet, C. Guillemot, and L. Morin. Object-based Layered Depth Images
for improved virtual view synthesis in rate-constrained context. In 2011
18th IEEE International Conference on Image Processing, pp. 125–128.
IEEE, Brussels, Belgium, Sept. 2011. doi: 10.1109/ICIP.2011.6115662 2

[39] Ji-Youn Choi, Sae-Woon Ryu, Hong-Chang Shin, and Jong-Il Park. Real-
time view synthesis system with multi-texture structure of GPU. In 2010
Digest of Technical Papers International Conference on Consumer Elec-
tronics (ICCE), pp. 171–172. IEEE, Las Vegas, NV, Jan. 2010. doi: 10.
1109/ICCE.2010.5418768 2

[40] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy,
A. Bachrach, and A. Bry. End-to-End Learning of Geometry and Context
for Deep Stereo Regression. In 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 66–75. IEEE, Venice, Oct. 2017. doi: 10.
1109/ICCV.2017.17 2

[41] P. Kim, J. Orlosky, and K. Kiyokawa. AR Timewarping: A Temporal Syn-
chronization Framework for Real-Time Sensor Fusion in Head-Mounted
Displays. Proceedings of the 9th Augmented Human International Confer-
ence, 2018. doi: 10.1145/3174910.3174919 2

[42] J. Kopf, K. Matzen, S. Alsisan, O. Quigley, F. Ge, Y. Chong, J. Patterson,
J.-M. Frahm, S. Wu, M. Yu, P. Zhang, Z. He, P. Vajda, A. Saraf, and
M. Cohen. One shot 3D photography. ACM Transactions on Graphics,
39(4), Aug. 2020. doi: 10.1145/3386569.3392420

[43] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab. Deeper
Depth Prediction with Fully Convolutional Residual Networks. In 2016

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 07,2023 at 02:05:13 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 5, MAY 20232836

Fourth International Conference on 3D Vision (3DV), pp. 239–248. IEEE,
Stanford, CA, Oct. 2016. doi: 10.1109/3DV.2016.32

[44] T. Luo, Z. Liu, Z. Pan, and M. Zhang. A Virtual-real Occlusion Method
Based on GPU Acceleration for MR. 2019 IEEE Conference on Virtual
Reality and 3D User Interfaces (VR), pp. 1068–1069, 2019. doi: 10.1109/
VR.2019.8797811

[45] F. Ma and S. Karaman. Sparse-to-Dense: Depth Prediction from Sparse
Depth Samples and a Single Image. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 4796–4803. IEEE, Brisbane,
QLD, May 2018. doi: 10.1109/ICRA.2018.8460184 2

[46] K. Mania, B. D. Adelstein, S. R. Ellis, and M. I. Hill. Perceptual sensitivity
to head tracking latency in virtual environments with varying degrees
of scene complexity. In Proceedings of the 1st Symposium on Applied
perception in graphics and visualization - APGV ’04, p. 39. ACM Press,
Los Angeles, California, 2004. doi: 10.1145/1012551.1012559 2

[47] R. W. Marcato. Optimizing an Inverse Warper. p. 51. 2
[48] T. Mazuryk and M. Gervautz. Two-step Prediction and Image Deflection

for Exact Head Tracking in Virtual Environments. Computer Graphics
Forum, 14(3):29–41, Aug. 1995. doi: 10.1111/j.1467-8659.1995.cgf143_0029
.x 2

[49] J. L. McMillan. An image-based approach to three-dimensional computer
graphics. p. 206, 1997. 2

[50] L. McMillan and G. Bishop. Head-tracked stereoscopic display using
image warping. pp. 21–30. San Jose, CA, Mar. 1995. doi: 10.1117/12.
205865

[51] A. Michael. Asynchronous Timewarp Examined. https://developer.
oculus.com/blog/asynchronous-timewarp-examined/, Mar.
2015. 2

[52] M. Misiak, A. Fuhrmann, and M. E. Latoschik. Impostor-based Rendering
Acceleration for Virtual, Augmented, and Mixed Reality. In Proceedings
of the 27th ACM Symposium on Virtual Reality Software and Technology,
pp. 1–10. ACM, Osaka Japan, Dec. 2021. doi: 10.1145/3489849.3489865

[53] Y. Nakashima, F. Okura, N. Kawai, r. Kimura, H. Kawasaki, K. Ikeuchi,
and A. Blanco. Realtime Novel View Synthesis with Eigen-Texture Re-
gression. In Procedings of the British Machine Vision Conference 2017,
p. 83. British Machine Vision Association, London, UK, 2017. doi: 10.
5244/C.31.83 2

[54] P. Ndjiki-Nya, M. Koppel, D. Doshkov, H. Lakshman, P. Merkle,
K. Muller, and T. Wiegand. Depth Image-Based Rendering With Ad-
vanced Texture Synthesis for 3-D Video. IEEE Transactions on Multime-
dia, 13(3):453–465, June 2011. doi: 10.1109/TMM.2011.2128862

[55] D. Nehab, P. V. Sander, J. Lawrence, N. Tatarchuk, and J. R. Isidoro.
Accelerating Real-Time Shading with Reverse Reprojection Caching. p. 11.
doi: 10.2312/EGGH/EGGH07/025-036 2

[56] S. Niklaus. Novel View Synthesis in Time and Space. Technical report,
Feb. 2020. doi: 10.15760/etd.7294 2

[57] J. Ogniewski. High-Quality Real-Time Depth-Image-Based-Rendering.
p. 8, 2017. 2

[58] B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, and H.-P. Seidel.
Proxy-guided Image-based Rendering for Mobile Devices. Computer
Graphics Forum, 35(7):353–362, Oct. 2016. doi: 10.1111/cgf.13032 2

[59] S. M. Seitz and C. R. Dyer. View morphing. In Proceedings of the
23rd annual conference on Computer graphics and interactive techniques
- SIGGRAPH ’96, pp. 21–30. ACM Press, Not Known, 1996. doi: 10.
1145/237170.237196 2

[60] J. Shade, S. Gortler, L.-w. He, and R. Szeliski. Layered depth images. In
Proceedings of the 25th annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’98, pp. 231–242. ACM Press, Not
Known, 1998. doi: 10.1145/280814.280882 2

[61] H. Shum and S. B. Kang. Review of image-based rendering techniques.
p. 2. Perth, Australia, May 2000. doi: 10.1117/12.386541 2

[62] J.-P. Stauffert, F. Niebling, and M. E. Latoschik. Latency and Cyber-
sickness: Impact, Causes, and Measures. A Review. Frontiers in Virtual
Reality, 1:582204, Nov. 2020. doi: 10.3389/frvir.2020.582204 2

[63] W. Sun, L. Xu, O. C. Au, S. H. Chui, and C. W. Kwok. An overview of
free viewpoint Depth-Image-Based Rendering (DIBR). p. 8. 2

[64] X. Tang, X. Hu, C.-W. Fu, and D. Cohen-Or. GrabAR: Occlusion-aware
Grabbing Virtual Objects in AR. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology, pp. 697–708.
ACM, Virtual Event USA, Oct. 2020. doi: 10.1145/3379337.3415835

[65] Y. Tian, T. Guan, and C. Wang. Real-Time Occlusion Handling in
Augmented Reality Based on an Object Tracking Approach. Sensors,
10(4):2885–2900, Mar. 2010. doi: 10.3390/s100402885 2

[66] J. M. P. van Waveren. The asynchronous time warp for virtual reality
on consumer hardware. In Proceedings of the 22nd ACM Conference
on Virtual Reality Software and Technology, pp. 37–46. ACM, Munich
Germany, Nov. 2016. doi: 10.1145/2993369.2993375 2

[67] J. Ventura and T. Hollerer. Online environment model estimation for
augmented reality. In 2009 8th IEEE International Symposium on Mixed
and Augmented Reality, pp. 103–106. IEEE, Orlando, FL, USA, Oct. 2009.
doi: 10.1109/ISMAR.2009.5336493 2

[68] G. P. Visa and P. Salembier. Precision-Recall-Classification Evaluation
Framework: Application to Depth Estimation on Single Images. In
D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds., Computer Vision –
ECCV 2014, vol. 8689, pp. 648–662. Springer International Publishing,
Cham, 2014. Series Title: Lecture Notes in Computer Science. doi: 10.
1007/978-3-319-10590-1_42 8

[69] D. R. Walton and A. Steed. Accurate real-time occlusion for mixed reality.
In Proceedings of the 23rd ACM Symposium on Virtual Reality Software
and Technology, pp. 1–10. ACM, Gothenburg Sweden, Nov. 2017. doi: 10.
1145/3139131.3139153 2

[70] F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler. Analysis of
the Accuracy and Robustness of the Leap Motion Controller. Sensors,
13(5):6380–6393, May 2013. doi: 10.3390/s130506380 2

[71] S. Wizadwongsa, P. Phongthawee, J. Yenphraphai, and S. Suwajanakorn.
NeX: Real-time View Synthesis with Neural Basis Expansion. In 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8530–8539. IEEE, Nashville, TN, USA, June 2021. doi:
10.1109/CVPR46437.2021.00843 2

[72] L. Xiao, S. Nouri, J. Hegland, A. G. Garcia, and D. Lanman. Neural-
Passthrough: Learned Real-Time View Synthesis for VR. In Special
Interest Group on Computer Graphics and Interactive Techniques Confer-
ence Proceedings, pp. 1–9. ACM, Vancouver BC Canada, Aug. 2022. doi:
10.1145/3528233.3530701 1, 2

[73] Ximea. MC031MG-SY Specifications. https://www.ximea.com/en/
products/usb-31-gen-1-with-sony-cmos-xic/mc031mg-sy. 8,
9

[74] L. Yang, Y.-C. Tse, P. V. Sander, J. Lawrence, D. Nehab, H. Hoppe,
and C. L. Wilkins. Image-based bidirectional scene reprojection. In
Proceedings of the 2011 SIGGRAPH Asia Conference on - SA ’11, p. 1.
ACM Press, Hong Kong, China, 2011. doi: 10.1145/2024156.2024184 2

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 07,2023 at 02:05:13 UTC from IEEE Xplore.  Restrictions apply. 


