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Figure 1: Left to right: (1) An overview of a Foveally Rendered scene with three shading rates and (2) a detailed sample from a
frame rendered with different shading rates and QP values. The shading rates used in (1) are 1 shading pass per 1 pixel (within
green ellipse), per 2x2 pixels (between green and yellow ellipses), and per 4x4 samples (beyond yellow ellipse). In (2) the same
shading rates are used from right to left and encoded with (top to bottom) QPs: 0, 28, 38. QP=0 corresponds to lossless encoding,
QP 28 is a typical value used for encoding and QP=38 corresponds to the QP of the lowest quality region in our FVE scheme.

ABSTRACT
Humans have sharp central vision but low peripheral visual acuity.
Prior work has taken advantage of this phenomenon in two ways:
foveated rendering (FR) reduces the computational workload of
rendering by producing lower visual quality for peripheral regions
and foveated video encoding (FVE) reduces the bitrate of streamed
video through heavier compression of peripheral regions. Remote
rendering systems require both rendering and video encoding and
the two techniques can be combined to reduce both computing
and bandwidth consumption. We report early results from such a
combination with remote VR rendering. The results highlight that
FR causes large bitrate overhead when combined with normal video
encoding but combining it with FVE can mitigate it.
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1 INTRODUCTION
Interactive applications aiming for high quality visual experience,
such as AAA video games and Virtual Reality (VR) applications,
require powerful graphics hardware for real time rendering. To
avoid the need for local PC having a dedicated graphics card to
render graphics for these applications, remote rendering systems
for gaming [2, 7, 9, 22] and VR [3, 11, 13, 14] have emerged. They
offload (most) rendering tasks from client device to a remote server
and stream the rendered graphics in real time as encoded video to
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the client device. However, high quality video streaming in such a
system requires substantial amount of bandwidth.

Human visual system has spatially non-uniform acuity [24]:
sharp vision at the point of gaze and exponentially decreasing
acuity with angular eccentricity from that point. The phenomenon
is also called foveation. It can be leveraged to reduce both graphics
computing as well as bandwidth requirements in remote rendering.

Foveated rendering (FR) uses a spatial quality profile that aims
to match the visual acuity of the eye [5, 12, 16, 18, 19, 23]. The
scene is divided into multiple regions each of which is rendered
according to its angular eccentricity from the gaze point using, e.g.,
variable rate shading [19]. Foveated video encoding (FVE) applies
the same principle to encode video frames with a spatially varying
quality profile similarly aimed to match our visual acuity [1, 8, 10,
15, 20, 21, 25]. This can be done by, e.g., varying the quantization
of individual coding units (macroblocks in h.264) according to their
distance from the gaze point, reducing the resulting video bitrate
accordingly. We call this technique foveated quantization. With both
FR and FVE, the viewer gaze can be either predicted, reported in
real time by an eye-tracker, or a combination of the two.

In this paper, we present early results from combining FR and
FVE in a remote rendering system. While both methods have been
independently researched previously, we believe to be the first to
closely examine their interplay.

2 EXPERIMENTS
We ran experiments with different combinations of the techniques:
FR combined with normal video encoding (NVE), normal rendering
(NR) with FVE, FR with FVE, and as a baseline NR with NVE.

We simulated client gaze and controls programmatically and
instead of streaming the rendered video, saved it to disk at the server.
As user head motion, we simulated translation only and rotation
onlymotion and, in addition, replay a real user trace combining both
types of motion. In translation only mode, the player (and hence
the camera) was programmed to perform continuous rectilinear
translation. In rotation only mode, the player was programmed
to rotate along the vertical axis (yaw) continuously. Slow (5 m/s
for translation and 10 deg/s for rotation) and fast (10 m/s and 20
deg/s) motion were simulated in both modes. The point of gaze was
fixed to the center of the rendered frame in all experiments where
player moved. Additionally, we simulated situations where only the
gaze was shifting and scene was otherwise static and gaze fixation
duration was either short (500ms), long (5secs), or fixed (at center)
cases. The gaze locations were intuitively modelled as a bi-variate
Gaussian distribution centered around the center of the scene. In
each experiment, 3 minutes worth of video data was recorded.

We used a Unity-based remote rendering system in our experi-
ments with gaze data captured from the client and a server applica-
tion that allows configuring FR and/or FVE parameters. The scene
used was "ArchVizPRO Interior Vol.6" available in Unity Asset Store
containing 3D photo-realistic user explorable house (Fig 1).

FR was implemented using the variable rate shading feature
of Nvidia VRworks suite of APIs [17] and the Vive plugin [6]. It
allows setting different shading rates for different regions within a
frame and varying them across frames. It can improve performance
without reducing perceived quality. Samples with different shading

rates are shown in Figure 1. We used three level shading where
high quality (1 shading pass per pixel) region was fixed to a radius
of 1/8th of frame width, the transition quality (1 pass per 4 pixels)
region to a radius of 1/6th of frame width and the rest was set to
low quality (1 pass per 16 pixels).

To capture and encode rendered frames into video, we use a
modification of the 360 Capture SDK [4]. Framerate was set to 60
fps. FVE in the form of foveated quantization is implemented by
adjusting the underlying h.264 encoder’s quantization offsetQO for
each macroblock of a video frame. The method is the same as in [8].
We set the standard deviation of the 2-D Gaussian used to calculate
theQO to 1/8th of the frame width, and the maximum possibleQO
(QOmax ) to 10. In all experiments, the encoding scheme used was
Nvidia’s low latency preset and the rate control mode was constant
QP with QP = 28 as the baseline unless otherwise mentioned.

3 RESULTS
The top-right plot in Fig 1 shows the resulting frame sizes that
directly reflect the bandwidth demand. Interestingly, FR with NVE
produces up to 30% larger frames on average compared to NR and
NVE. The reason is that, even though there is less total visual in-
formation in a frame rendered with FR, the dissimilarity between
two successive frames rendered with FR increases compared to NR.
This means that inter-frame compression is less effective and the
size of the predicted frames increases. We obtain similar but more
pronounced results with experiments where only gaze shifts within
a static scene with FR nearly doubling the bandwidth demand com-
pared to normal rendering when FVE is not applied. Applying FVE
together with FR remedies the situation. However, in all experi-
ments we observe that NR+FVE yields smaller frames than FR+FVE,
which hints that it may be possible to design a scheme that produces
even smaller frames than the two independent methods combined.

The bottom-right plot in Fig 1 shows how structural similarity
index measure (SSIM) and frame size behave with different param-
eter settings. The results were calculated using a single static scene
rendered using NR, FR and encoded using FVE, NR with NVE being
the reference. As expected, SSIM decreases with increasingQOmax .
However, comparing the shapes of the SSIM and frame size curves
reveals an interesting tradeoff between them: most of the savings
in frame size can be obtained with small sacrifice in quality (e.g.,
using QOmax = 10). The results agree with those reported in [8]
where the authors used a similar FVE scheme.

4 CONCLUSION
This paper reports early results from combining foveated rendering
and video encoding in remote rendering systems. The results sug-
gest that foveated rendering combined with normal video encoding
may dramatically increase bandwidth consumption but applying
foveation also in video encoding mitigates the problem. As future
work, we plan to conduct user studies to better understand the
impact of the two techniques on visual experience and to explore
whether frame sizes can be further optimized with a tailored com-
bination of FR and FVE.
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