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Abstract: Dense local stereo matching is traditionally based on initial cost evaluation using a simple 

metric followed by sophisticated support aggregation. There is a high potential of replacing these 

simple metrics by robust binary descriptors. However, the available studies focus on comparing 

descriptors for sparse matching rather than the dense case of extracting a descriptor per each pixel. 

Therefore, this paper studies the design decisions of well-established binary descriptors such as BRIEF 

(Binary Robust Independent Elementary Features), ORB (Oriented FAST and rotated BRIEF), BRISK 

(Binary Robust Invariant Scalable Keypoints) and FREAK (Fast Retina Keypoint) to decide their 

suitablility for the dense matching case. The results shows that support agregation is required for use 

with binary descriptors to handle edges in local dense matching. Also, BRIEF produced the smoothnest 

disparity map if geometric transformations is not present. Whereas, FREAK and BRISK achieved the 

least overall error percentage across all regions. The lastest Middlebury Stereo benchmark is utilized in 

the experiments. 
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Augmented Reality (AR) relies on understanding RGB images of the scene to guide the placement of 

the virtual content such as for medical applications [1].  Stereo matching, which resembles the human 

visual system in recovering depth from RGB images, is equally essential for AR [2], [3]. 

Stereo matching searches for the projections of the 3D point in two images taken of the same scene 

from different viewpoints. If the 3D point lies within the field of view of both cameras, disparity is 

calculated as the difference in the image-plane locations of these two projected pixels. The depth, which 

is the distance between the 3D point and the camera, can be recovered using the disparity and the 

camera parameters.  

Dense stereo matching, which is required for AR, searches for a correspondence of every pixel in the 

image resulting in a dense disparity map. Sparse matching, which is beneficial for other computer vision 

applications such as image stitching, is performed only for a set of pixels that are surrounded by salient 

features. In either case, the cost of matching two pixels can be computed using functions that assess 

their similarity. 

Dense stereo matching has been largely based on simple intensity-based metrics such as absolute 

intensity difference that assume brightness constancy. The intensities of very few pixels are involved in 

evaluating an initial matching cost [4]. Then, support is aggregated given the initial costs of neighboring 

pixels believed to belong to the same depth [5].  Intensity-based metrics are fast to be computed. 

However, they are recently getting replaced by invariant descriptors.  

Per-pixel SIFT (Scale Invariant Feature Transform [6]) descriptors are compared to evaluate pixels' 

similarity by He et. al. [7]. Dense matching can be performed by extracting a descriptor for each pixel 

[8] and comparing these robust descriptors to calculate the matching cost as illustrated by descriptor-

based stereo matching [5], [9], SIFT-flow [10], binary stereo matching [11], DAISY [12], [13]. 

Distribution-based descriptors , such as SIFT [6] and SURF (Speeded Up Robust Features [14]), have 

high computational complexity [15]. They encode gradient distributions extracted from the patch 

surrounding the pixel of interest as a real-valued vector. The binary descriptors, such as BRIEF [16] and 

FREAK [17] encode the patch's structure as a binary string.  

Binary descriptors are less invariant to geometric transformations. However, they can be more invariant 

to photometric transformations than SIFT and SURF [15]. Also, FREAK can be more robust against 

some geometric transformations than SIFT and SURF [18].  The binary descriptors are faster to be 

computed and compared making them more suitable for dense matching.  

Similarly, traditional dense matching weighs the contribution of each pixel to the aggregated cost using 

either real-valued or binary weights. Real-valued weighting requires higher processing and storage 

requirements but is believed to produce more accurate results than binary aggregation. Accordingly, 

Heinley et. al. [19] classify traditional methods into a higher memory demanding class than some binary 

descriptors and into the same class as distribution-based descriptors. 

Deep learning (DL) results in a recent performance leap. However, engineered descriptors are still 

necessary [20]. Training a supervised DL model requires intensive resources which is not the case with 

engineered descriptors [21]. The deployment environment can be different from the training dataset 

which requires re-training or online unsupervised adaptation [22]. RGB images may not be available to 

be fed to the deep neural network [23]. Furthermore, engineered descriptors can be used with machine 

and deep learning [24], [25]. 

The research conducted to test descriptors in dense matching is very limited, despite their increased 

utilization and potential to replace traditional matching metrics. Hence, this paper experimentally 

compares the dense disparity maps resulting from employing different binary descriptors in local dense 

matching context. We choose the most adopted and cited descriptors whose OpenCV implementations 
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are widely used. Also, this work was extended by further studying binary descriptors in dense matching 

[26], [27]. 

The paper is organized as follows: section 2 reviews the main directions of descriptor evaluation 

studies. Section 3 compares the design decisions of well-established binary descriptors and summarizes 

the findings of sparse evaluations. The results and the conclusion are discussed in sections 4 and 5, 

respectively. 

 

2. Related Studies 

 

Many studies are aimed to test detector-descriptor combinations for sparse matching. The sparse 

matching evaluations are performed in two directions. The first type of studies compares descriptors in 

terms of invariance and accuracy over various general-purpose datasets. The second type of studies 

focuses on a certain application to determine which descriptor is more suitable to the application's 

requirements. Other studies compared descriptors for semi-dense matching in a keypoint grid. 

 

 

 

2.1. General-purpose sparse matching 

 

Alshazly et. al. [15] performed a very valuable evaluation of the invariance of the state-of-the-art binary 

descriptors. They studied detector-descriptor combinations on the CPU and compared binary descriptors 

to distribution-based descriptors. Işık et. al. [28] compared seven different detector-descriptor 

combinations. Heinly et al. [19] studied binary descriptors along with detector couplings and extended 

the evaluation to include all the categories of descriptor-based matching and patch matching. 

 

2.2. Sparse matching for a specific application 

 

Other studies focused on sparse matching for specific applications. Cīrulis et. al. studied the descriptors 

and detectors for pose detection and tracking of the marker surface on which the augmented content will 

be overlayed in AR [29]. Malekabadi et. al. [30] tested recent combinations for the specific task of 

matching sparse keypoints detected on a tree and reported the best combinations for this task. Figat et. 

al. [31] evaluated various combinations for the specific task of indoor recognition of objects. Peng [32] 

compared descriptors for embedded SLAM and concluded that SIFT is more robust but computational 

complex which makes binary descriptors more suitable to the task. Bansal et. al. [33] compared sparse 

SIFT, SURF and ORB for object recognition. 

 

2.3. Matching keypoints sampled from a grid 

 

Chatoux et. al. [18] proposed a general framework to test the invariance of descriptors on a grid rather 

than using different detectors. They extracted and matched descriptors on three different dense keypoint 

grids such that the grid’s density is inversely proportional to the keypoint size. The densest grid out of 

the three grids had 10-pixel spacing between the keypoints to be matched. Kayım [34] extracted 

descriptors from a pre-computed disparity map of the object according to a 4-pixel grid. The extracted 

descriptors are encoded to describe the disparity image itself for object class recognition. Kayım 

evaluated SIFT, PCA-SIFT, BRISK, and FREAK for this purpose. 
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The studies described in this section do not fully answer the research questions about the applicability 

of binary descriptors in the extreme case of dense matching by extracting a descriptor per-pixel.  

 

3. Comparing Binary Descriptors Design 

 

In this section, we analyze BRIEF, ORB, BRISK, FREAK and LATCH binary descriptors to assess 

their suitability for generating accurate dense disparity map. The motivation is that these light-weight 

descriptors are not thoroughly studied and compared in the case of dense matching, despite their 

increasing utilization, taking BRIEF as example [11], [35].  

The descriptor of a pixel is extracted from the patch centered around it by preselecting   pixel pairs 

surrounding the center of the patch. This arrangement is fixed for use to compute the descriptor of any 

pixel in the left or right images. Each pair of pixels is represented by a line in the following figure: 

 

 
1.a BRIEF 256 pairs [36] 

 
1.b ORB 256 pairs [19] 

 
1.c BRISK 512 pairs [37] 

 
1.d FREAK (two clusters each composed of 128 pairs) [17] 

Figure 1: Pixel Pairs 

The result of the binary test   utilizing the pixel pair         is calculated using the following 

equation [38] where   is the pair’s index that ranges from 1 to   and   is the intensity function: 
 

 ( )  {
   (  )    (  )
           

 ( 1 ) 

LATCH differs in pre-selecting   patch triplets rather than   pixel pairs to expand the spatial 

distribution of the samples. LATCH accordingly edits   to use Frobenious norm on a patch-triplet 

                 such that   is the triplet’s index that ranges from 1 to  .      ,      and      are the 

coordinates of anchor patch, and the first and second patches, respectively [39]. 
 

 ( )  {
  ‖          ‖ 

 
  ‖          ‖ 
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For any binary descriptor, the descriptor of pixel   is the collective result of the   tests as shown by the 

following equation [38]: 
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    ( )  ∑    
 

   

 ( ) ( 3 ) 

A pixel   in the left image has potential correspondences    in the rectified right image that are left-

shifted. Therefore, the location of correspondences in the right image is          (   ) , where   is 

potential disparity value ranging from 0 to     .     (   ) is the cost of matching pixel   to pixel   . 

It equals the Hamming distance between their respective descriptors as shown by the following equation 

[38]: 
  

    (   )                  (   )  |    ( )         (  )| ( 4 ) 

Binary descriptors share the descriptor computation steps described above. However, they differ in 

certain aspects that we summarized in the following table: 

Table 1 Descriptores Comparison 

 BRIEF ORB BRISK FREAK LATCH 

Sampling  pairs triplets 

Sampling 

pattern 
no yes no 

Sampling 

algorithm 

random 

sampling using a 

Gaussian 

distribution 

unsupervised 

learning 

short pairs 

from the 

pattern 

learn from the 

pattern using 

ORB’s learning 

method 

supervised learning: triplets that 

best describes the patch given 

labeled data 

Pairs 

significance 
equal not equal equal 

Descriptor size 

(bits) 
256 256 512 512 256 (can be 512 bits [21]) 

Noise 

resistance 
pair-based Gaussian kernels 

triplet patch-based spatial 

distribution 

Overlapping  

Gaussian 

kernels 

random not allowed allowed 
 

doesn’t use Gaussian kernels 
Gaussian 

kernel size 
fixed adaptive 

Orientation 

none 

expected from a 

detector 

calculated by the descriptor expected from a detector 

Scale Expected from multi-AGAST 

detector 
none 

The following subsections briefly describe the similarities and differences summarized in Table 1. 

 

3.1. Sampling 
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The first difference is how each descriptor selects the samples (i.e., pairs or triplets) that best describe 

the patch. The result of a binary test of a certain pixel-pair  ,  (     ), is biased if tends to be the same 

in different patches.   can be modeled as a Bernoulli random variable whose highest variance is reached 

with equal probability of getting one or zero (i.e., low-bias). The randomness of BRIEF results in this 

desired high variance according to PCA analysis [40].  

BRIEF designers compared five methods including random points using a Gaussian distribution and 

sampling from a polar grid pattern. The recognition rate resulting of polar grid samples was slightly 

higher in the dataset with the greatest viewpoint change. In the remaining datasets, random points 

surpassed all the five methods and hence was adopted. 

A pattern describes the relative positions between the coordinates that can be selected, whereas 

descriptors that do not adopt a pattern such as ORB and LATCH can select any point in the patch.  The 

center of the pattern is the location of the pixel to be described and the pattern gets scaled according to 

the scale of patch. Like BRIEF’s polar grid pattern, FREAK (that mimics sensors positioning on the 

retina) and BRISK both adopt a pattern as shown in Figure 2 where allowed sample points (represented 

by dots) on both patterns form concentric circles (represented by yellow circles).  
 

 
2.a BRISK [41] 

 
2.b FREAK [17] 

Figure 2: Sampleing Pattern 

Also, uncorrelated pairs increase descriptiveness so that each test or pair introduces new information 

about the patch's content. ORB and FREAK employ unsupervised learning for selecting uncorrelated 

pairs with the highest variance. ORB allows selection of any pair while FREAK is limited by the 

pattern. BRISK chooses pairs from the pattern that satisfy a certain property (i.e., short pairs). The 

performance of these methods is dependent on the training dataset [31]. 

The choice of size (i.e., number of pairs or triplets),  , is arbitrary and is proportional to the accuracy 

requirements. Table 1 shows the size recommended by the designers. The discussed binary descriptors 

consider all the pairs to be of equal significance except for FREAK that mimics the human visual 

system by analyzing the peripheral pairs before the pairs near the center. The 512 pairs used by FREAK 

are composed of two clusters each with 128 pairs (i.e., coarse-to-fine structure). 

 

3.2. Gaussian Kernels 

 

Except for LATCH, all the discussed binary descriptors employ a Gaussian kernel around each sampled 

pixel in the pair for two reasons. First, providing robustness to noise that may affect either of the pixels 

in the pair. Second, aggregating support by weighting the contribution of the few neighboring pixels.  

Subtracting two different Gaussian Kernels (i.e., difference of Gaussian) yields an approximation of 

Laplacian of Gaussian which equals the second derivative. Instead, a binary descriptor takes only the 

sign of the second derivative resulting in robustness to illumination changes. 
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The choice of kernel size depends on the descriptor which is fixed for BRIEF and ORB.  BRISK and 

FREAK varies the size with respect to the distance between the sample point and the center as shown in 

Figure 3, where the size of the kernel applied to a sample point is represented by the radius of the red 

circle centered around it. 

This way the peripheral samples are characterized by lower resolution and the foveal samples are 

characterized by higher resolution with high acuity. Also, the kernels of FREAK are designed to overlap 

to mimic the overlapping receptive fields of the retinal ganglion cells. 

 

 
3.a BRISK [41]  

 
3.b FREAK [17] 

Figure 3: Gaussian Kernels 

On the other hand, LATCH’s methodology is based on combining more pixels from different spatial 

locations rather than using Gaussian kernels because blurring compromises high frequency information. 

This triplet-sampling methodology makes LATCH more computationally complex than the other binary 

descriptors [18]. 

 

3.3. Invariance 

 

Geometric invariance is dependent on the quality of the detected orientation or scale. To identify key-

points' scale, FAST (Features from Accelerated Segment Test [42]) was supplemented by pyramid 

scheme [43]. ORB then reinforced FAST with non-maximal suppression within each pyramid level [40] 

which didn't prevent duplicates resulting in inferiority to scale changes [15], [19]. Therefore, BRISK 

applied the suppression between the levels resulting in a high degree of scale invariance [19]. 

Subsequently, BRISK is more time consuming than ORB [31]. FREAK and BRISK become more 

invariant to scale changes by increasing the key point size [18]. 

At the other end of the spectrum, BRIEF is the least costly and the least computationally complex [19] 

amongst the descriptors mentioned in this discussion with no dependence on a specific detector as 

shown by Table 1. BRIEF was not designed with the aim of outperforming the invariance of 

distribution-based descriptors but to speed up matching. Also, rotation invariance is inherently present 

in BRIEF if the camera orientation is known from IMU sensors attached to it. 

Geometric invariance is generally required for sparse matching following a detection step. Table 1 shows 

whether the description algorithm expects pre-calculated orientation or scale information from the 

detector. Also, descriptors' invariance is generally dependent on the application. Alshazly et. al. [15] 

used Oxford dataset [44] to evaluate descriptors invariance. They found that BRISK is the most pure-

scale and pure-rotation invariant binary descriptor and ORB is indeed inferior to pure-scale changes. In 

the same study to evaluate combined rotation-scale invariance, ORB performed better than BRISK in 

the structured scene (i.e., Boat dataset) and BRISK performed better in the textured scene (i.e., Bark 

dataset) shown in Figure 4. 
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Figure 4: Combined Rotation-Scale Dataset 

 

It is worthy to note that invariance usually comes with decreased matching quality by decreasing the 

descriptor's discriminative power [14], [45], [46]. Although sophisticated geometric invariant 

descriptors can better handle matching against rotated/scaled images, BRIEF performs is more invariant 

to radiometric changes in the absence of geometric transformations [15].  

 

4. Results 

 

This study is concerned with the applicability of sparse binary descriptors in dense matching. 

Middlebury benchmark is used under WSL (Windows Subsystem for Linux). Middlebury dataset [47] 

provides near dense ground truth, and it is the standard in dense matching literature. Our platform runs 

Visual Studio 2017 on an Intel i7-9750H processor with 16 GB of RAM. 

OpenCV 4.1.1 is used to compute a descriptor for every pixel in the image by passing a pre-filled 

keypoints array to the compute method. Instead of using a detector, the pre-filled array carries all the 

pixels in the image whose scale is set to one. A single octave is used for all descriptors except for 

FREAK for which octaves parameter is set zero because the disparity map and the error ratio are much 

better than setting it to one. Also, the normalization option is disabled for all descriptors. The 

unrequired normalization reduces FREAk’s accuracy. Apart from this, the default parameters and the 

sequential implementations of the descriptors are not altered. Padding is applied to the input images and 

different border and patch sizes are handled. 

The latest version of Middlebury dataset is used. The suffixes E, L, P appended to the dataset name 

indicate exposure changes, illumination changes and perfect rectification, respectively. The disparity 

maps resulting from running each descriptor without normalization according to the above-mentioned 

description on Middlebury trainingQ dataset are shown in Table 2. The first column indicates the dataset 

name and each of the following columns represents a certain descriptor. Also, Table 2 reports the time in 

seconds consumed to extract all the descriptors of the two images and the percentage of pixels whose 

disparity error exceeds 1 pixel.  

The first value of time and accuracy measurements are recorded for the displayed disparity map which 

is associated with the best performance. We performed other experiment with different invariance and 

octaves parameters and reported the measurements without displaying the map for FREAK and 

LATCH. The first value is the measurement without invariance and the second value is with invariance 

enabled. The third value of FREAK is obtained by setting number of octaves to 1 which increases the 

used patch size. 

 
Table 2 Resulting Dispairty maps 

 BRIEF (256 bits) ORB (256 bits) BRISK (512 bits) FREAK (512 bits) LATCH (256 bits) 
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time: 1.38 

bad (1.0): 35.97 

 

 
time: 1.01 

bad (1.0): 33.97 

 

 
time: 5.63 

bad (1.0): 27.35 

 

 
time: 2.03/3.73/2.19 

bad (1.0): 

29.29/36.64/ 35.97 

 
time: 25.64/26.36 

bad (1.0): 

42.52/41.53 

A
rt

L
 

 
time: 0.39 

bad (1.0): 64.54 

 

 
time: 0.25 

bad (1.0): 49.78 

 

 
time: 1.63 

bad (1.0): 51.91 

 

 
time: 0.58/1.06/0.61 

bad (1.0): 

43.77/56.69/57.62 

 
time:  9.6/7.14 

bad (1.0): 

71.08/70.04 

Ja
d

ep
la

n
t 

 
time: 1.25 

bad (1.0): 61.9 

 

 
time: 0.77 

bad (1.0): 56.37 

 

 
time: 5.22 

bad (1.0): 50.58 

 

 
time: 1.91/3.58/1.97 

bad (1.0): 

49.33/58.40/62.41 

 
time:  46.99/24.33 

bad (1.0): 

72.37/71.47 
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o
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time: 1.39 

bad (1.0): 38.58 

 

 
time: 0.84 

bad (1.0): 33.16 

 

 
time: 5.91 

bad (1.0): 25.31 

 

 
time: 2.06/3.92/2.22 
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23.54/31.13/33.36 

 
time:  49.69/27.05 

bad (1.0): 

47.86/46.69 
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y
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time: 1.39 

bad (1.0): 39.72 

 

 
time: 0.84 

bad (1.0): 34.44 

 

 
time: 5.91 

bad (1.0): 25.97 

 

 
time: 2.11/3.92/2.28 

bad (1.0): 

23.87/33.73/34.65 

 
time:  49.22/27.09 

bad (1.0): 

48.97/47.70 

P
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n
o

 

 
time: 1.30 

bad (1.0): 53.49 

 

 
time: 0.80 

bad (1.0): 46.63 

 

 
time: 5.47 

bad (1.0): 34.06 

 

 
time: 2.06/3.61/2.08 

bad (1.0): 

36.02/42.59/47.42 

 
time:  42.66/25.02 

bad (1.0): 

63.43/62.19 



133  H.I.F Ibrahim et al. 

 

P
ia

n
o

L
 

 
time: 1.30 

bad (1.0): 79.2 

 

 
time: 0.80 

bad (1.0): 68.83  

 

 
time: 5.47 

bad (1.0): 68.38 

 

 
time: 1.95/4.05/2.08 
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63.03/72.93/72.58 
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80.58/80.10 
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time: 2.05/3.77/2.14 
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29.44/37.74/38.47 

 
time: 26.55/26.19 
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51.31/50.25 
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time: 1.28 

bad (1.0): 48.05 

 

 
time: 0.80 

bad (1.0): 46.63  

 

 
time: 5.36 

bad (1.0): 42.1 

 

 
time: 1.91/3.52/2.30 
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38.67/45.84/46.01 

 
time:  42.64 /24.45 

bad (1.0): 

57.12/56.32 
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time: 1.22 

bad (1.0): 52.38 

 

 
time: 0.75 

bad (1.0): 45.34 

 

 
time: 5.05 

bad (1.0): 38.97 

 

 
time: 1.84/3.36/2.03 

bad (1.0): 

34.97/47.72/49.92 

 
time: 23.31/23.17 

bad (1.0): 

66.16/65.37 
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P
 

 
time: 1.22 

bad (1.0): 51.09 

 

 
time: 0.75 

bad (1.0): 43.82 

 

 
time: 5.09 

bad (1.0): 36.58 

 

 
time: 1.86/3.36/1.95 

bad (1.0): 

31.5/45.04/47.55 

 
time:  46.39/23.17 

bad (1.0): 

65.71/64.98 
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y
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time: 1.36 

bad (1.0): 39.03 

 

 
time: 0.83 

bad (1.0): 34.93 

 

 
time: 5.66 

bad (1.0): 28.83 

 

 
time: 2.03/3.73/2.27 

bad (1.0): 

30.87/38.16/38.68 

 
time:  46.62 /26.14 

bad (1.0): 

47.05/45.81 
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time: 1.42 

bad (1.0): 52.17 

 

 
time: 0.86 

bad (1.0): 53.09 

 

 
time: 5.80 

bad (1.0): 45.93 

 

 
time: 2.14/3.81/2.28 
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49.27/53.15/54.02 

 
time:  49.22/27.41 

bad (1.0): 

55.95/55.35 

T
ed

d
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time: 0.66 

bad (1.0): 30.11 

 

 
time: 0.41 

bad (1.0): 26.55 

 

 
time: 2.75 

bad (1.0): 21.43 

 

 
time: 1.00/1.8/1.03 

bad (1.0): 

21.15/27.89/29.59 

 
time:  54.59/12.56 

bad (1.0): 

37.20/36.25 

V
in
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e 

 
time: 1.31 

bad (1.0): 55.12 

 

 
time: 0.80 

bad (1.0): 52.8 

 

 
time: 5.53 

bad (1.0): 47.56 

 

 
time: 2.00/3.69/2.11 

bad (1.0): 

46.5/52.67/52.17 

 
time:  46.36 /25.63 

bad (1.0): 

65.68/64.54 

 

The Middlebury dataset provides images of challenging scenes. However, the Middlebury benchmark 

lacks metrics to quantitatively assess the important aspects of a disparity map such as smoothness of 

planar surfaces [48]. Instead, the Middlebury benchmark provides a number, bad 1.0, that counts 

mismatches over all the regions of the map. This value doesn’t indicate the smoothness of the surfaces 

nor the preciseness near edges which are required for many applications such as AR. We observed that 

the error within a planar surface is minimal with the use of BRIEF. Figure 5 and Figure 6 show the color-

coded disparity maps of Adirondack and Teddy datasets, respectively. 

 

 
5.a BRIEF 

 
5.b ORB 

 
5.c FREAK 
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5.d BRISK 5.e LATCH 

 

Figure 5: Color-Coded Disparity Maps of Adirondack Dataset 

 

 
 

 
5.a BRIEF 

 
5.b ORB 

 
5.c FREAK 

 

 
5.d BRISK 

 
5.e LATCH 

 

Figure 6: Color-Coded Disparity Maps of Teddy Dataset 
  

 

5. Conclusion  

 

The results demonstrate inaccuracy near the edges in the disparity maps of all the descriptors. This 

problem is caused by utilizing pairs belonging to a different disparity level than the pixel to be matched. 

Therefore, aggregation is required for all binary descriptors and a hybrid metric can also be utilized to 

account for the information loss that may result from binary aggregation.  

BRIEF produced the smoothest disparity map, and it suffered the most from edge fattening. The 

disparity map resulting from BRISK is noisy. However, BRISK excelled in preserving edges which 

indicates that the descriptor used a smaller patch. Enabling unrequired scale and orientation 

normalization options on FREAK resulted in increasing the error.  
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The overall error percentage does not reflect important characteristics such as smoothness of planar 

surfaces in which BRIEF excelled. This study would be greatly enhanced if the required masks were 

available to employ quantitative analysis on challenging regions such as edges and planar surfaces [48]. 

FREAK and BRISK achieved the least over all error. The ascending ordering of OpenCV 4.4.1 

implementations according to the running time is BRISK, FREAK, BRIEF then ORB. However, 

parallel implementations can further speed up the descriptor [26]. On the other hand, Heinly et. al. [19] 

reported that BRIEF is faster than ORB and BRISK. We conclude that different implementations result 

in different the running time. We plan to extend this study by including other binary descriptors. 
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