
Ponder: Point Cloud Pre-training via Neural Rendering

Di Huang1,2 Sida Peng3 Tong He2,† Xiaowei Zhou3 Wanli Ouyang2

The University of Sydney1 Shanghai AI Laboratory2 Zhejiang University3

Abstract

We propose a novel approach to self-supervised learning
of point cloud representations by differentiable neural ren-
dering. Motivated by the fact that informative point cloud
features should be able to encode rich geometry and ap-
pearance cues and render realistic images, we train a point-
cloud encoder within a devised point-based neural renderer
by comparing the rendered images with real images on mas-
sive RGB-D data. The learned point-cloud encoder can be
easily integrated into various downstream tasks, including
not only high-level tasks like 3D detection and segmenta-
tion, but low-level tasks like 3D reconstruction and image
synthesis. Extensive experiments on various tasks demon-
strate the superiority of our approach compared to exist-
ing pre-training methods. The code will be released at
https://dihuangdh.github.io/ponder.

1. Introduction

We have witnessed the widespread success of supervised
learning in developing vision tasks, such as image classi-
fication [11, 17] and object detection [16, 42]. In contrast
to the 2D image domain, current 3D point cloud bench-
marks only maintain limited annotations, in terms of quan-
tity and diversity, due to the extremely high cost of labo-
rious labeling. Self-supervised learning (SSL) for point
cloud [7,18,20,22,25,31,36,40,47,52,55,58,60,61], con-
sequently, becomes one of the main driving forces and has
attracted increasing attention in the 3D research community.

Previous SSL methods for learning effective 3D rep-
resentation can be roughly categorized into two groups:
contrast-based [7, 18, 20, 22, 40, 52, 61] and completion-
based [25, 31, 36, 47, 55, 58, 60]. Contrast-based methods
are designed to maintain invariant representation under dif-
ferent transformations. To achieve this, informative sam-
ples are required. In the 2D image domain, the above
challenge is addressed by (1) introducing efficient posi-
tive/negative sampling methods, (2) using a large batch size
and storing representative samples, and (3) applying vari-

†denote corresponding author.
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Figure 1. This work proposes a novel point cloud pre-training
method via neural rendering, named Ponder. Ponder is directly
trained with RGB-D image supervision, and can be used for vari-
ous applications, e.g. 3D object detection, 3D semantic segmenta-
tion, 3d scene reconstruction, and image synthesis.

ous data augmentation policies. Inspired by these works,
many works [7, 18, 20, 22, 40, 52, 61] are proposed to learn
geometry-invariant features on 3D point cloud.

Completion-based methods are another line of research
for 3D SSL, which utilizes a pre-training task of recon-
structing the masked point cloud based on partial observa-
tions. By maintaining a high masking ratio, such a simple
task encourages the model to learn a holistic understand-
ing of the input beyond low-level statistics. Although the
masked autoencoders have been successfully applied for
SSL in images [14] and videos [12,46], it remains challeng-
ing and still in exploration due to the inherent irregularity
and sparsity of the point cloud data.

Different from the two groups of methods above, we pro-
pose point cloud pre-training via neural rendering (Pon-
der). Our motivation is that neural rendering, one of the
most amazing progress and domain-specific design in 3D
vision, can be leveraged to enforce the point cloud features
being able to encode rich geometry and appearance cues.
As illustrated in Figure 1, we address the task of learning
representative 3D features via point cloud rendering. To the
best of our knowledge, this is the first exploration of neural
rendering for pre-training 3D point cloud models. Specif-
ically, given one or a sequence of RGB-D images, we lift
them to 3D space and obtain a set of colored points. Points
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Figure 2. Different types of point cloud pre-training.

are then forwarded to a 3D encoder to learn the geome-
try and appearance of the scene via a neural representation.
Provided specific parameters of the camera and the neural
representation from the encoder, neural rendering is lever-
aged to render the RGB and depth images in a differentiable
way. The network is trained to minimize the difference be-
tween rendered and observed 2D images. In doing so, our
approach enjoys multiple advantages:

• Our method is able to learn effective point cloud rep-
resentation, which encodes rich geometry and appear-
ance clues by leveraging neural rendering.

• Our method can be flexibly integrated into various
tasks. For the first time, we validate the effectiveness
of the proposed pre-training method to low-level tasks
like surface reconstruction and image synthesis tasks.

• The proposed method can leverage rich RGB-D im-
ages for pre-training. The easier accessibility of the
RGB-D data enables the possibility of 3D pre-training
on a large amount of data.

We conduct comprehensive experiments on a host of tasks.
The consistent improvements demonstrate the effectiveness
of our proposed Ponder. Our approach can serve as a strong
alternative to contrast-based methods and completion-based
methods in 3D point cloud pre-training.

2. Related Work
Neural rendering. Neural Rendering is a type of render-
ing technology that uses neural networks to differentiablely
render images from 3D scene representation. NeRF [30] is
one of the representative neural rendering methods, which
represents the scene as the neural radiance field and renders
the images via volume rendering. Based on NeRF, there are
a series of works [4,33,34,41,49,50,56,57,59] trying to im-
prove the NeRF representation, including accelerate NeRF

training, boost the quality of geometry, and so on. Another
type of neural rendering leverages neural point clouds as
the scene representation. [2, 39] take points locations and
corresponding descriptors as input, rasterize the points with
z-buffer, and use a rendering network to get the final image.
Later work of PointNeRF [53] renders realistic images from
neural point cloud representation using a NeRF-like render-
ing process. Our work is inspired by the recent progress of
neural rendering.

Self-supervised learning in point clouds. Current meth-
ods can be roughly categorized into two categories:
contrast-based and completion-based. Inspired by the
works [6,15] from the 2D image domain, PointContrast [52]
is one of the pioneering works for 3D contrastive learn-
ing. Similarly, it encourages the network to learn invariant
3D representation under different transformations. Some
works [7,18,20,22,40,61] follow the pipeline by either de-
vising new sampling strategies to select informative pos-
itive/negative training pairs, or explore various types of
data augmentations. Another line of work is completion-
based [25, 31, 36, 55, 58, 60] methods, which get inspiration
from Masked Autoencoders [14]. PointMAE [36] proposes
restoring the masked points via a set-to-set Chamfer Dis-
tance. VoxelMAE [31] instead recovers the underlying ge-
ometry by distinguishing if the voxel contains points. An-
other work MaskPoint [25] pre-train point cloud encoder
by performing binary classification to check if a sampled
point is occupied. Later, IAE [55] proposes to pre-train
point cloud encoder by recovering continuous 3D geometry
in an implicit manner. Different from the above pipelines,
we propose a novel framework for point cloud pre-training
via neural rendering.

Multi-modal point cloud pre-training. Some recent
works explore the pre-training pipeline with multi-modality
data of 2D images and 3D point clouds. Pri3D [19] use 3D
point cloud and multi-view images to pre-train the 2D im-
age networks. CrossPoint [1] aligns the 2D image features
and 3D point cloud features through a contrastive learning
pipeline. [23] proposes a unified framework for exploring
the invariances with different input data formats, including
2D images and 3D point clouds.

Different from previous methods, most of which attempt
to align 2D images and 3D point clouds in the feature space,
our method proposes to connect 2D and 3D in the RGB-D
image domain via differentiable rendering.

3. Methods
An overview of our Ponder is presented in Figure 3. Pro-

vided the camera pose, 3D point clouds are obtained by pro-
jecting the RGB-D images back to 3D space (Section 3.1).
Then, we extract point-wise feature using a point cloud en-
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Figure 3. The pipeline of our point cloud pre-training via neural rendering (Ponder). Given multi-view RGB-D images, we first
construct the point cloud by back-projection, then use a point cloud encoder fp to extract per-point features E . E are organized to a 3D
feature volume (visualized as an image in this figure) by average pooling. Finally, the 3D feature volume is rendered to multi-view RGB-D
images via a differentiable neural rendering, which are compared with the original input multi-view RGB-D images as the supervision.
Point cloud encoder fp and color decoder fc are used for transfer learning.

coder (Section 3.2) and organize it to a 3D feature volume
(Section 3.3), which is used to reconstruct the neural scene
representation and render images in a differentiable manner
(Section 3.4).

3.1. Constructing point cloud from RGB-D images
The proposed method makes use of sequential RGB-

D images {(Ii, Di)}Ni=1, the camera intrinsic parameters
{Ki}Ni=1, and extrinsic poses {ξi}Ni=1 ∈ SE(3). N is the
input view number. SE(3) refers to the Special Euclidean
Group representing 3D rotations and translations. The cam-
era parameters can be easily obtained from SfM or SLAM.

We construct the point cloud X by back-projecting
RGB-D images to point clouds in a unified coordinate:

X =

N⋃
i

π−1(Ii, Di, ξi,Ki), (1)

where π−1 back-projects the RGB-D image to 3D world
space using camera poses. Note that different from pre-
vious methods which only consider the point location, our
method attributes each point with both point location and
RGB color. The details of π−1 are provided in the supple-
mentary material.

3.2. Point cloud encoder for feature extraction
Given the point cloud X constructed from RGB-D im-

ages, a point cloud encoder fp is used to extract per-point
feature embedding E :

E = fp(X ). (2)

The encoder fp pre-trained with the method mentioned in
the Section 3.4 serves as a good initialization for various
downstream tasks.

3.3. Building feature volume
Once the feature extraction is done, we map the point

embeddings E to a 3D sparse feature volume. To fill in the

empty space, we perform average pooling, followed by a
3D CNN, to aggregate features from the nearby points. The
dense 3D volume is denoted as V .

3.4. Pre-training with Neural Rendering
This section introduces how to reconstruct the implicit

scene representation and render images differentiablely. We
first give a brief introduction to neural scene representation,
then illustrate how to integrate it into our point cloud pre-
training pipeline. Last, we show the differentiable render-
ing formulation to render color and depth images from the
neural scene representation.

Brief introduction of neural scene representation.
Neural scene representation aims to represent the scene ge-
ometry and appearance through a neural network. In this
paper, we use the Signed Distance Function (SDF), which
measures the distance between a query point and the sur-
face boundary, to represent the scene geometry implicitly.
SDF is capable of representing high-quality geometry de-
tails. For any query point of the scene, the neural network
takes points features as input and outputs the corresponding
SDF value and RGB value. In this way, the neural network
captures both the geometry and appearance information of
a specific scene. Following NeuS [49], the scene can be
reconstructed as:

s(p) = f̃s(p), c(p,d) = f̃c(p,d), (3)

where f̃s is the SDF decoder and f̃c is the RGB color de-
coder. f̃s takes point location p as input, and predicts the
SDF value s. f̃c takes point location p and viewing direc-
tion d as input, and outputs the RGB color value c. Both f̃s
and f̃c are implemented by simple MLP networks.

Neural scene representation from point cloud input in
Ponder. To predict a neural scene representation from the
input point cloud, we change the scene formulation to take



3D feature volume V as an additional input. Specifically,
given a 3D query point p and viewing direction d, the fea-
ture embedding V(p) can be extracted from the processed
feature volume V by trilinear interpolation. The scene is
then represented as:

s(p) = fs(p,V(p)), c(p,d) = fc(p,d,V(p)), (4)

where V is predicted by the point cloud encoder fp and en-
codes information of each scene. fs and fc are SDF and
RGB decoders shared for all scenes. Different from Equa-
tion (3), which is used for storing single-scene information
in the {f̃s, f̃c}, the formulation in Equation (4) includes an
extra input V(p) to facilitate representing the information
of multiple scenes.

Differentiable rendering. Given the dense 3D volume V
and viewing point, we use differentiable volume render-
ing to render the projected color images and depth images.
For each rendering ray with camera origin o and viewing
direction d, we sample a set of ray points {p(z)|p(z) =
o + zd, z ∈ [zn, zf ]} along the ray, where z denotes the
length of the ray. Note that o and d can be calculated from
paired camera parameters {(Ki, ξi)}. zn and zf denote
the near and far bounds of the ray. Different from previ-
ous methods [30, 49], we automatically determine {zn, zf}
by the ray intersection with the 3D feature volume box, us-
ing axis-aligned bounding boxes (AABB) algorithm. Then,
the ray color and depth value can be aggregated as:

Ĉ =

∫ zf

zn

ω(z)c(p(z),d)dz, (5)

D̂ =

∫ zf

zn

ω(z)zdz, (6)

where the Ĉ is the ray color and the D̂ is the ray depth.
We follow NeuS [49] to build an unbiased and occlusion-
awareness weight function w(z):

w(z) = T (z) · ρ(z). (7)

T (z) measures the accumulated transmittance from zn to z
and ρ(z) is the occupied density function which are defined
as:

T (z) = exp(−
∫ zf

zn

ρ(z)dz), (8)

ρ(z) = max

(−dΦh

dz (s(p(z)))

Φh(s(p(z)))
, 0

)
. (9)

Φh(x) is the Sigmoid function Φh(x) = (1 + e−hx)−1

where h−1 is treated as a trainable parameter, h−1 ap-
proaches to zero as the network training converges. In prac-
tice, we use a numerically approximated version by quadra-
ture. We make the decode networks {fs, fc} relatively
smaller than [30, 49] to accelerate the training process.

Projected Points Rendered Color Reference Color Rendered Depth Reference Depth

Figure 4. Rendered images by Ponder on the ScanNet validation
set. The projected point clouds are visualized in the first column.
Even though input point clouds are very sparse, our model is still
capable of rendering color and depth images similar to the refer-
ence images.

Rendered examples. The rendered color images and
depth images are shown in Figure 4. As shown in the fig-
ure, even though the input point cloud is pretty sparse, our
method is still capable of rendering color and depth images
similar to the reference image.

3.5. Pre-training loss

We leverage the input {Ii, Di} to supervise neural scene
representation reconstruction. The total loss function con-
tains five parts,

L = λcLc + λdLd + λeLe + λsLs + λfLf , (10)

which are loss functions responsible for color supervision
Lc, depth supervision Ld, Eikonal regularization Le, near-
surface SDF supervision Ls, and free space SDF supervi-
sion Lf . These loss functions are illustrated in the follow-
ing section.

Color and depth loss. Lc and Ld are the color loss and
depth loss, which measure consistency between the ren-
dered pixels and the ground-truth pixels. Assume that we
sample Nr rays for each image and Np points for each ray,
then the Lc and Ld can be written as:

Lc =
1

Nr

Nr∑
i

||Ĉ − C||22 (11)

Ld =
1

Nr

Nr∑
i

||D̂ −D||22, (12)

where C and D are the ground-truth color and depth re-
spectively for each ray, Ĉ and D̂ are their corresponding
rendered ones in Eq. (5) and Eq. (6).



Loss for SDF regularization. Le is the widely used
Eikonal loss [13] for SDF regularization:

Le =
1

NrNp

Nr,Np∑
i,j

(|∇s(pi,j)| − 1)2, (13)

where ∇s(pi,j) denotes the gradient of SDF s at location
pi,j . Since SDF is a distance measure, Le encourages this
distance to have a unit norm gradient at the query point.

Near-surface and free space loss for SDF. To stabilize
the training and improve the reconstruction performance,
similar to iSDF [35] and GO-Surf [48], we add additional
approximate SDF supervision to help the SDF estimation.
Specifically, for near-surface points, the difference between
rendered depth and ground-truth depth can be viewed as the
pseudo-SDF ground-truth supervision; for points far from
the surface, a free space loss is used to regularize the irreg-
ular SDF value additionally. To calculate the approximate
SDF supervision, we first define an indicator b(z) for each
sampled ray point with ray length z and corresponding GT
depth D:

b(z) = D − z. (14)

b(z) can be viewed as the approximate SDF value, which is
credible only when b(z) is small. Let t be a human-defined
threshold, which is set as 0.05 in this paper. For sampled ray
points that satisfy b(z) ≤ t, we leverage the near-surface
SDF loss to constrain the SDF prediction s(zi,j):

Ls =
1

NrNp

Nr,Np∑
i,j

|s(zi,j)− b(zi,j)|. (15)

For the remaining sampled ray points, we use a free space
loss:

Lf =
1

NrNp

Nr,Np∑
i,j

max(0, e−α·s(zi,j)−1, s(zi,j)−b(zi,j)),

(16)
where α is set as 5 following the same with [35, 48]. Note
that due to the noisy depth images, we only apply Ls and
Lf on the rays that have valid depth values.

In our experiments, we follow a similar loss of weight
with GO-Surf [48], which sets λc as 10.0, λd as 1.0, λs as
10.0, and λf as 1.0. We observe that the Eikonal term in
our method can easily lead to over-smooth reconstructions,
thus we use a small weight of 0.01 for the Eikonal loss.

4. Experiments
4.1. Pre-training
Datasets. We use ScanNet [10] RGB-D images as our
pre-training data. ScanNet is a widely used real-world in-
door dataset, which contains more than 1500 indoor scenes.

Each scene is carefully scanned by an RGB-D camera, lead-
ing to about 2.5 million RGB-D frames in total. We follow
the same train/val split with VoteNet [38].

Data preparation. During pre-training, a mini-batch of
batch size 8 includes point clouds from 8 scenes. The point
cloud of a scene, serving as the input of the point cloud en-
coder in our approach, is back-projected from the 5 RGB-D
frames of the video for the scene with an interval of 20. The
5 frames are also used as the supervision of the network.

Data augmentation. We augment the point cloud by ran-
dom sampling, normalization, and random masking. First,
we randomly down-sample the point cloud to 20,000 points.
Then, the point cloud is normalized into a 3D unit cube. Fi-
nally, we apply the same masking strategy as used in Mask
Point [25]. Specifically, we use FPS to split the point cloud
into 2,048 groups, each group containing 64 points, then
mask the point groups with a mask ratio of 90%.

Implementation details. We train the proposed pipeline
for 100 epochs using an AdamW optimizer [29] with a
weight decay of 0.05. The learning rate is initialized as 1e-
4 with Exponential scheduling. For the rendering process,
we randomly choose 128 rays for each image and sample
128 points for each ray. More implementation details can
be found in the supplementary materials.

4.2. Transfer Learning
In contrast to previous methods, our approach is able to

encode rich geometry and appearance cues into the point
cloud representations via neural rendering. These strengths
make it flexible to be applied to various tasks, including not
only 3D semantic segmentation and 3D detection tasks but
also low-level surface reconstruction and image synthesis.

4.2.1 High-level 3D Tasks

3D object detection. For transfer learning on 3D ob-
ject detection task, we use VoteNet [38] as the baseline.
VoteNet leverage a voting mechanism to generate object
centers, which are used for 3D bounding box proposals.
Two datasets are applied to verify the effectiveness of our
method: ScanNet [10] and SUN RGB-D [44]. Differ-
ent from ScanNet, which contains fully reconstructed 3D
scenes, SUN RGB-D is a single-view RGB-D dataset with
3D bounding box annotations. It has 10,335 RGB-D images
for 37 object categories. For pre-training, we use Point-
Net++ as the point cloud encoder fp, which is identical to
the backbone used in VoteNet. We pre-train the point cloud
encoder on the ScanNet dataset and transfer the weight as
the VoteNet initialization. Following [38], we use average
precision with 3D detection IoU threshold 0.25 and thresh-
old 0.5 as the evaluation metrics.



Method Detection Pre-training Pre-training Pre-training ScanNet SUN RGB-D
Model Type Data Epochs AP50 ↑ AP25 ↑ AP50 ↑ AP25 ↑

3DETR [32] 3DETR - - - 37.5 62.7 30.3 58.0
Point-BERT [58] 3DETR Completion 3D Model 300 38.3 61.0 - -
MaskPoint [25] 3DETR Completion Depth 300 40.6 63.4 - -

VoteNet [38] VoteNet - - - 33.5 58.6 32.9 57.7
STRL [20] VoteNet Contrast Depth 100 38.4 59.5 35.0 58.2

RandomRooms [40] VoteNet Contrast Synthesis 300 36.2 61.3 35.4 59.2
PointContrast [52] VoteNet Contrast 3D Model - 38.0 59.2 34.8 57.5
PC-FractalDB [54] VoteNet Contrast Synthesis - 38.3 61.9 33.9 59.4
DepthContrast [61] VoteNet Contrast Depth 1000 39.1 62.1 35.4 60.4

IAE [55] VoteNet Completion 3D Model 1000 39.8 61.5 36.0 60.4

Ponder VoteNet Rendering Depth 100 40.9 64.2 36.1 60.3
Ponder VoteNet Rendering Color & Depth 100 41.0 63.6 36.6 61.0

Table 1. 3D object detection AP25 and AP50 on ScanNet and SUN RGB-D. VoteNet [38] and 3DETR [32] are two baseline 3D object de-
tection models. The DepthContrast [61] and Point-BERT [58] results are adopted from IAE [55] and MaskPoint [25]. Ponder outperforms
both VoteNet-based and 3DETR-based point cloud pre-training methods with fewer training epochs.

The 3D detection results are shown in Table 1. Our
method improves the baseline of VoteNet without pre-
training by a large margin, boosting AP50 by 7.5% and
3.7% for ScanNet and SUN RGB-D, respectively. IAE [55]
is a pre-training method that represents the inherent 3D ge-
ometry in a continuous manner. Our learned point cloud
representation achieves higher accuracy because it is able
to recover both the geometry and appearance of the scene.
The AP50 and AP25 of our method are higher than that of
IAE by 1.2% and 2.1% on ScanNet, respectively. Mask-
Point [25] is another method aiming to learn a continuous
surface by classifying if the query point is occupied. How-
ever, its performance can be constrained due to the noisy
labeling of the query point occupancy value. As presented
in Table 1, even with an inferior backbone (PointNet++ vs
3DETR), our method is able to achieve better accuracy with
fewer pre-training epochs.

3D semantic segmentation. 3D semantic segmentation
is another fundamental scene understanding task. Follow-
ing [43,47,55], we choose DGCNN [51] as our baseline for
a fair comparison. DGCNN applies a dynamic graph CNN
as the backbone. For pre-training, we use DGCNN as the
point cloud encoder fp, and pre-train the model on ScanNet.
We validate the effectiveness of our method by transfer-
ring the weights to Stanford Large-Scale3D Indoor Spaces
(S3DIS) [3] dataset, which is an indoor 3D understanding
dataset containing 6 large-scale indoor scenes with point se-
mantic annotations. Following the same setting of [51], we
use the overall accuracy (OA) mean IoU(mIoU) on points
as the evaluation metric, and report the average evaluation
results across six folds.

Table 2 shows the quantitative results. Compared with
the DGCNN baseline, the proposed method boost the seg-

mentation performance by a large margin, boosting OA
and mIoU for 2.1% and 5%, respectively. Jigsaw and
OcCo use ShapeNet as the pre-train dataset. Although
they get improvements compared with the baseline, the
limited scale of training data constrains the transferring
ability. IAE achieves significant improvements by lever-
aging the large-scale dataset and an implicit reconstruc-
tion manner. Compared with IAE, the proposed approach
achieves a higher semantic segmentation performance with
the DGCNN backbone (+0.3% for OA and +0.4% for
mIoU). Besides, IAE requires a large amount of 3D mesh
for supervision. Our approach, in contrast, only requires
RGB-D images as the supervision, which is much cheaper
and easy to fetch.

4.2.2 Low-level 3D Tasks

Low-level 3D tasks like scene reconstruction and image
synthesis are getting increasing attention due to their wide
applications. However, most of them are trained from
scratch. How to pre-train a model with a good initialization
is desperately needed. We are the first pre-training work to
demonstrate a strong transferring ability to such low-level
3D tasks.

3D scene reconstruction. 3D scene reconstruction task
aims to recover the scene geometry, e.g. mesh, from
the point cloud input. We choose ConvONet [37] as the
baseline model, whose architecture are widely adopted
in [9, 26, 56]. Following the same setting as ConvONet, we
conduct experiments on the Synthetic Indoor Scene Dataset
(SISD) [37], which is a synthetic dataset and contains 5000
scenes with multiple ShapeNet [5] objects. We pre-train the
PointNet encoder, which is the same as the original Con-



Method OA↑ mIoU↑
DGCNN [51] 84.1 56.1
Jigsaw [43] 84.4 56.6
OcCo [47] 85.1 58.5
IAE [55] 85.9 60.7

Ponder 86.2 61.1

Table 2. 3D semantic segmentation OA
and mIoU on S3DIS dataset with DGCNN
model. Ponder outperforms previous state-of-
the-art models.

Method Encoder IoU↑ Normal Consistency↑ F-Score↑
ConvONet [37] PointNet 84.9 0.915 0.964

Ponder PointNet 85.7 0.917 0.965
ConvONet PointNet++ 77.8 0.887 0.906

Ponder PointNet++ 80.2 0.893 0.920

Table 3. 3D scene reconstruction IoU, NC, and F-Score on SISD dataset with
PointNet and PointNet++ model. For both PointNet and PointNet++,
Ponder is able to boost the reconstruction performance.

Figure 5. Comparison of image synthesis from point clouds.
Compared with training from scratch, our Ponder model is able to
converge faster and achieve better image synthesis results.

vONet implementation, and test the reconstruction quality
on the SISD dataset. Additionally, to compare with another
self-supervised learning method IAE [55], we add extra ex-
periments using VoteNet-style PointNet++ as the encoder
of ConvONet. Following [37], we use Volumetric IoU, Nor-
mal Consistency, and F-Score [45] with the threshold value
of 1% as the evaluation metrics.

The results are shown in Table 3. Compared to the
baseline ConvONet model with PointNet, the proposed ap-
proach is able to improve the reconstruction quality (+0.8%
for IoU). By replacing the encoder of ConvONet from
PointNet to PointNet++, ours is able to achieve more accu-
racy improvement (+2.4% for IoU and +0.014 for F-Score).
Our method also gets better reconstruction results than IAE.
Check our supplementary materials for more details.

Image synthesis from point clouds. We also validate the
effectiveness of our method on another low-level task of im-
age synthesis from point clouds. We use Point-NeRF [53]
as the baseline. Point-NeRF uses neural 3D point clouds
with associated neural features to render images. It can be
used both for a generalizable setting for various scenes and a
single-scene fitting setting. In our experiments, we mainly
focus on the generalizable setting of Point-NeRF. We re-

Supervision ScanNet SUN RGB-D

Depth 40.9 36.1
Color 40.5 35.8

Color+RGB 41.0 36.6

Table 4. Ablation study for supervision type. 3D detection AP50

on ScanNet and SUN RGB-D. Combining color supervision and
depth supervision can lead to better detection performance than
using a single type of supervision.

place the 2D image features of Point-NeRF with point fea-
tures extracted by a DGCNN network. Following the same
setting with PointNeRF, we use DTU [21] as the evaluation
dataset. DTU dataset is a multiple-view stereo dataset con-
taining 80 scenes with paired images and camera poses. We
transfer both the DGCNN encoder and color decoder as the
weight initialization of Point-NeRF. We use PSNR as the
metric for synthesized image quality evaluation.

The results are shown in Figure 5. By leveraging the pre-
trained weights of our method, the image synthesis model is
able to converge faster with fewer training steps and achieve
better final image quality than training from scratch.

4.3. Ablation study

In this section, we do two ablation experiments. First,
we show the effectiveness of using different 2D supervi-
sion. Then, we test how the view number affects the final
performance. For both experiments, we use the 3D object
detection task as the transfer learning task.

Influence on Rendering Targets. The rendering part of
our method contains two items: RGB color image and depth
image. We study the influence of each item with the trans-
ferring task of 3D detection. The results are presented in Ta-
ble 4. Combining depth and color images for reconstruction
shows the best detection results. In addition, using depth re-
construction presents better performance than color recon-
struction for 3D detection.
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Figure 6. Direct applications of Ponder on the ScanNet validation set. The proposed Ponder model can be directly used for various
applications, such as 3D reconstruction and image synthesis. The input point clouds are drawn as spheres for better clarity.

Number of input RGB-D view. Our method utilizes N
RGB-D images, where N is the input view number. We
study the influence of N and conduct experiments on 3D
detection, as shown in Table 5. Using multi-view super-
vision helps to reduce single-view ambiguity. Similar ob-
servations are also found in the multi-view reconstruction
task [27]. Compared with the single view, multiple views
achieve higher accuracy, boosting AP50 by 0.9% and 1.2%
for ScanNet and Sun RGB-D datasets, respectively.

4.4. Other applications
In previous sections, we show that the proposed pipeline

can be used for transfer learning. In this section, we show
that the pre-trained model from our pipeline Ponder itself
can also be directly used for surface reconstruction and im-
age synthesis from sparse point clouds.

3D reconstruction from sparse point clouds. The
learned model has the capability to recover the scene sur-
face from sparse point clouds. Specifically, after learning
the neural scene representation, we query the SDF value in
the 3D space and leverage the Marching Cubes [28] to ex-
tract the surface. We show the reconstruction results in Fig-
ure 6. The results show that even though the input is sparse
point clouds from complex scenes, our method is able to
recover high-fidelity meshes.

Image synthesis from sparse point clouds. Another in-
teresting experiment to explore is that our pipeline is able
to render realistic images from sparse point cloud input. As
shown in Figure 6, our method is able to recover similar
color images with the ground truth. Also, the recovered

depth may even look better compared with the ground-truth
depth image which has irregular values.

View number ScanNet SUN RGB-D

1 view 40.1 35.4
3 views 40.8 36.0

5 views 41.0 36.6

Table 5. Ablation study for view number. 3D detection AP50

on ScanNet and SUN RGB-D. Using multi-view supervision for
point cloud pre-training can achieve better performance.

5. Conclusion
In this paper, we show that differentiable neural render-

ing is a powerful tool for point cloud representation learn-
ing. The proposed pre-training pipeline, Ponder, is able to
encode rich geometry and appearance cues into the point
cloud representation via neural rendering. For the first time,
our model can be transferred to not only high-level 3D per-
ception tasks but also 3D low-level tasks, like 3D recon-
struction and image synthesis from point clouds. Also, the
learned Ponder model can be directly used for 3D recon-
struction and image synthesis from sparse point clouds.

Several directions could be explored in future works.
First, there are various types of neural rendering, which
could also be leveraged for point cloud representation learn-
ing. Second, other 3D domain-specific designs could be
integrated into point cloud pre-training pipelines. Third,
exploring the proposed pre-training pipeline Ponder on a
larger dataset and more downstream tasks is also a potential
research direction.
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Ponder: Point Cloud Pre-training via Neural Rendering

Supplementary Material

A. Implementation Details
In this section, we give more implementation details of

our Ponder model. Our code will be released upon ac-
ceptance.

A.1. Pre-training Details
3D feature volume. In our experiments, we build a hi-
erarchical feature volume V with a resolution of [16, 32,
64]. Building a 3D hierarchical feature volume has been
wildly used for recovering detailed 3D geometry, e.g. [8,9].
After processing the 3D feature volume with a 3D CNN,
we use trilinear interpolation to get the feature of the query
point p, denoted as V(p). We use the drop-in replacement
of grid sampler from [48] to accelerate the training.

Ray sampling strategy. Similar to [30, 49], we sample
twice for each rendering ray. First, we uniformly sample
coarse points between the near bound zn and far bound zf .
Then, we use importance sampling with the coarse proba-
bility estimation to sample fine points. Folowing [49], the
coarse probability is calculated based on Φh(s). By this
sampling strategy, our method can automatically determine
sample locations and can collect more points near the sur-
face, which makes the training process more efficient.

Back projection Here we give details of the back projec-
tion function π−1 to get point clouds from depth images.
Let K be camera intrinsic parameters, ξ = [R|t] be camera
extrinsic parameters, where R is the rotation matrix and t is
the translation matrix. Xuv is the projected point location
and Xw is the point location in the 3D world coordinate.
Then, according to the pinhole camera model:

sXuv = K(RXw + t), (17)

where s is the depth value. After expanding the Xuv and
Xw:

s

uv
1

 = K(R

XY
Z

+ t). (18)

Then, the 3D point location can be calculated as follows:XY
Z

 = R−1(K−1s

uv
1

− t) (19)

The above Equation 19 is the back-projection equation π−1

used in this paper.

Training Time. The Ponder model is trained with 8
NVIDIA A100 GPUs for 96 hours.

A.2. Transfer Learning Details

3D scene reconstruction. ConvONet [37] reconstructs
scene geometry from the point cloud input. It follows a
two-step manner, which first encodes the point cloud into
a 3D feature volume or multiple feature planes, then de-
codes the occupancy probability for each query point. To
test the transfer learning ability of our point cloud encoder,
we directly replace the point cloud encoder of ConvONet,
without any other modification. We choose the highest per-
forming configuration of ConvONet as the baseline setting,
which uses a 3D feature volume with a resolution of 64.
For the training of ConvONet, we follow the same training
setting as the released code1.

Image synthesis from point clouds. Point-NeRF [53]
renders images from neural point cloud representation. It
first generates neural point clouds from multi-view images,
then uses point-based volume rendering to synthesize im-
ages. To transfer the learned network weight to the Point-
NeRF pipeline, we 1) replace the 2D image feature back-
bone with a pre-trained point cloud encoder to get the neural
point cloud features, 2) replace the color decoder by a pre-
trained color decoder, 3) keep the other Point-NeRF module
untouched. Since a large amount of point cloud is hard to
be directly processed by the point cloud encoder, we down-
sample the point cloud to 1%, which will decrease the ren-
dering quality but help reduce the GPU memory require-
ments. We report the PSNR results of the unmasked region
as the evaluation metric, which is directly adopted from the
original codebase2. For training Point-NeRF, we follow the
same setting as Point-NeRF.

B. Supplementary Experiments
B.1. Ablation Study

1https://github.com/autonomousvision/convolutional occupancy networks
2https://github.com/Xharlie/pointnerf



Mask ratio ScanNet SUN RGB-D

0% 40.7 37.3

25% 40.7 36.2
50% 40.3 36.9
75% 41.7 37.0
90% 41.0 36.6

Table 6. Ablation study for mask ratio. 3D detection AP50 on
ScanNet and SUN RGB-D.

Resolution ScanNet SUN RGB-D

16 40.7 36.6

16+32+64 41.0 36.6

Table 7. Ablation study for feature volume resolution.
3D detection AP50 on ScanNet and SUN RGB-D.

Method IoU↑ Normal Consistency↑ F-Score↑
ConvOcc [37] 0.778 0.887 0.906

IAE [55] 0.757 0.887 0.910
Ours 0.802 0.893 0.920

Table 8. 3D scene reconstruction IoU, NC, and F-Score on SISD
dataset with PointNet++ model.

Influence on mask ratio. In this paper, we use random
masking as one type of point cloud augmentation. We ap-
ply the same mask ratio as MaskPoint [25]. Here, we give
additional experimental results to show the influence of us-
ing different mask ratios in Table 6. For the mask ratio of
0%, we do not apply any mask strategy to the input point
cloud.

3D feature volume resolution. As mentioned in Section
A, Ponder build a 3D feature volume with a resolution of
[16, 32, 64], which is inspired by the recent progress of
multi-resolution in 3D reconstruction. However, building
such a 3D feature volume with large resolutions requires
heavy GPU memory usage. We conduct experiments in Ta-
ble 7 to test the performance with a smaller resolution. As
shown in the table, even with a small resolution, Ponder
is still able to achieve comparable accuracy, demonstrating
the robustness to the feature volume resolution.

B.2. Transfer Learning
3D scene reconstruction As mentioned in the paper, we
transfer the learned PointNet++ model of IAE to the 3D
reconstruction task. The results are shown in Table 8. Com-
pared with the ConvONet baseline, the IAE pre-trained
model gets a better F-Score with 0.004 but gets worse re-
sults on the IoU metric. Our method, on the other hand,

Figure 7. Label efficiency training. We show the 3d object de-
tection experiment results using limited downstream data. Our
pretrained model is capable of achieving better performance than
training from scratch using the same percentage of data or requires
fewer data to get the same detection accuracy.

gets a better reconstruction performance than both the Con-
vONet and IAE.

Label Efficiency Training. We also do experiments to
show the performance of our method with limited label-
ing for the downstream task. Specifically, we test the la-
bel efficiency training on the 3D object detection task for
ScanNet. Following the same setting with IAE [55], we
use 20%, 40%, 60%, and 80% of ground truth annotations.
The results are shown in Figure 7. We show constantly im-
proved results over training from scratch, especially when
only 20% of the data is available.

Color information for downstream tasks. Different
from previous works, since our pre-training model uses a
colored point cloud as the input, we also use color informa-
tion for the downstream tasks. Results are shown in Table
9. Using color as an additional point feature can help the
VoteNet baseline achieve better performance on the SUN
RGB-D dataset, but get little improvement on the ScanNet
dataset. This shows that directly concatenating point posi-
tions and colors as point features shows limited robustness
to application scenarios. By leveraging the proposed Pon-
der pre-training method, the network is well initialized to
handle the point position and color features, and achieve
better detection accuracy.

More comparisons on 3D detection. More detection ac-
curacy comparisons are given in Table 9. Even using an in-
ferior backbone, our Ponder model is able to achieve simi-
lar detection accuracy with 9 in ScanNet and better accuracy
in SUN RGB-D.



Method Detection Pre-training Pre-training Pre-training ScanNet SUN RGB-D
Model Type Data Epochs AP50 ↑ AP25 ↑ AP50 ↑ AP25 ↑

VoteNet* VoteNet* - - - 37.6 60.0 33.3 58.4
DPCo [24] VoteNet* Contrast Depth 120 41.5 64.2 35.6 59.8
IPCo [24] VoteNet* Contrast Color & Depth 120 40.9 63.9 35.5 60.2

VoteNet (w color) VoteNet - - - 33.4 58.8 34.3 58.3
Ponder VoteNet Rendering Depth 100 40.9 64.2 36.1 60.3
Ponder VoteNet Rendering Color & Depth 100 41.0 63.6 36.6 61.0

Table 9. 3D object detection AP25 and AP50 on ScanNet and SUN RGB-D. * means a different but stronger version of VoteNet.

B.3. More application examples
As mentioned in the paper, the pre-trained Ponder model

can be directly used for surface reconstruction and image
synthesis tasks. We give more application examples in Fig-
ure 8 and Figure 9.



Input Point Cloud Reconstruction Image Synthesis Depth SynthesisProjected Point Cloud

Figure 8. More results of application examples of Ponder on the ScanNet validation set (part 1). The input point clouds are drawn as
spheres for better clarity.



Input Point Cloud Reconstruction Image Synthesis Depth SynthesisProjected Point Cloud

Figure 9. More results of application examples of Ponder on the ScanNet validation set (part 2). The input point clouds are drawn as
spheres for better clarity.
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