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Figure 1. We propose LIRF to reconstruct radiance fields of unseen scenes for novel view synthesis. Given that current generalizable
NeRF-like methods cast an infinitesimal ray to render a pixel at different scales, it causes excessive blurring and aliasing. Our method
instead reasons about 3D conical frustums defined by the neighbor rays through the neighbor pixels (as shown in (a)). Our LIRF outputs
the feature of any sample within the conical frustum in a continuous manner (as shown in (b)), which supports NeRF reconstruction at
arbitrary scales. Compared with the previous method, our method can be generalized to represent the same unseen scene at multiple
levels of details (as shown in (c)). Specifically, given a set of input views at a consistent image scale ×1, LIRF enables our method to
both preserve sharp details in close-up shots (anti-blurring as shown in ×2 and ×4 results) and correctly render the zoomed-out images
(anti-aliasing as shown in ×0.5 results).

Abstract

We propose LIRF (Local Implicit Ray Function), a gen-
eralizable neural rendering approach for novel view render-
ing. Current generalizable neural radiance fields (NeRF)
methods sample a scene with a single ray per pixel and may
therefore render blurred or aliased views when the input
views and rendered views capture scene content with dif-
ferent resolutions. To solve this problem, we propose LIRF
to aggregate the information from conical frustums to con-
struct a ray. Given 3D positions within conical frustums,
LIRF takes 3D coordinates and the features of conical frus-
tums as inputs and predicts a local volumetric radiance
field. Since the coordinates are continuous, LIRF renders
high-quality novel views at a continuously-valued scale via
volume rendering. Besides, we predict the visible weights
for each input view via transformer-based feature matching

*Work was done during an internship at Tencent AI Lab.
†Corresponding authors.

to improve the performance in occluded areas. Experimen-
tal results on real-world scenes validate that our method
outperforms state-of-the-art methods on novel view render-
ing of unseen scenes at arbitrary scales.

1. Introduction
Novel view synthesis has garnered recent attention with

compelling applications of neural rendering in virtual and
augmented reality. Different from image-based rendering
[6, 20, 33, 43, 75], Neural Radiance Fields (NeRF) [44] im-
plicitly represents the 3D scenes within multilayer percep-
trons (MLPs) by mapping coordinates to color and geom-
etry of scenes. To render a pixel, the ray projected to that
pixel is traced and the color of each sampled point along the
ray is accumulated based on volume rendering.

Despite NeRF and its variants having demonstrated re-
markable performance in providing immersive experiences
in various view synthesis tasks, their practical applications
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are constrained by the requirement of training from scratch
on each new scene, which is time-consuming. To overcome
this problem, many researches [10, 13, 30, 34, 38, 59, 65,
71] introduce image-based rendering techniques to NeRF,
which achieves generalization on unseen scenes. They take
into consideration the image features (from nearby views)
of a 3D point. The common motivation is to predict the
density and color of this point by matching the multi-view
features, which is similar to the stereo matching methods
[21,55,69] that find a surface point by checking the consis-
tency of multi-view features.

While these methods generalize well on new scenes
when the distance of input and testing views are roughly
constant from the scene (as in NeRF), they cannot prop-
erly deal with the less constrained settings such as differ-
ent resolutions or varying focal length and produce results
with blurring or aliasing artifacts. Since a single ray is cast
through each pixel whose size and shape are ignored, it’s
challenging to query the accurate feature of the target ray
from input images as shown in Fig. 2(a), and the model
learns an ambiguous result as shown in Fig. 2(b). Mip-
NeRF [3], a NeRF variant of per-scene optimization, pro-
poses an anti-aliasing design that models the ray through
a pixel as a cone and uses a 3D Gaussian to approximate
the sampled conical frustum (a cone cut perpendicular to its
axis) for volumetric representation. However, directly ex-
tending Mip-NeRF to a generalizable method is also chal-
lenging to extract the accurate features of the ray from input
images due to the subpixel precision. Consequently, an ef-
ficient solution is to supersample each pixel by marching
multiple rays according to its footprint, similar to the strat-
egy used in offline raytracing.

Our key insight is the local implicit ray function (LIRF)
that represents the feature aggregation of samples within ray
conical frustum in a continuous manner, as shown in Fig. 1.
Specifically, given any 3D sampled position within a con-
ical frustum, our LIRF outputs the aggregated feature by
taking the 3D coordinate of this position and the features of
vertices within the conical frustum as inputs (the vertices of
a conical frustum are defined with eight points (red points)
as shown in Fig. 1). The continuous sampled position al-
lows our method to arbitrarily upsample the rendered rays
and thus synthesize novel views of the same unseen scene
at multiple levels of detail (anti-blurring and anti-aliasing).
Furthermore, recent generalizable NeRF methods [30, 38]
introduce multi-view depth estimation to reduce the arti-
facts caused by occlusions, but it is computationally expen-
sive to construct the cost volume for each view. We instead
match local multi-view feature patches to estimate the vis-
ibility weights of each sample for anti-occlusion. Overall,
our main contributions are:

1. A new generalizable approach that renders pixels by
casting cones and outperforms existing methods on

Figure 2. Most generalizable variants of NeRF represent a ray
as a set of infinitesimal samples (shown here as dots) along that
ray and map these samples into input views to query image fea-
tures for volumetric representation prediction. However, this re-
sults in two drawbacks when training on multi-scale images with
less constrained settings: (a) Inaccurate features. The sampling
strategy which ignores the shape and size of each ray is difficult
to query accurate image features. (b) Ambiguous supervisions.
The same 3D position captured by cameras under different scales
results in different colors because these pixels are the integral of
regions with different shapes and sizes (shown here as trapezoids).
During the training, the network learns to map the same image fea-
tures (from the source view) to these different colors, which causes
ambiguous results.

novel view synthesis at multiple scales.

2. A local implicit ray function that simplifies the repre-
sentation of conical frustums and enables continuous
supersampling of rays.

3. A transformer-based visibility weight estimation mod-
ule that alleviates the occlusion problem.

To evaluate our method, we construct extensive series of ex-
periments on real forward-facing scenes. Our experiments
show that trained on large amounts of multi-view data,
LIRF outperforms state-of-the-art generalizable NeRF-like
methods on novel views synthesis for unseen scenes.

2. Related Work
Image-based rendering. When the images for a scene are
captured densely, earlier lines of work directly interpolate
novel views from input views [20, 33] or render views by
weighted blending [6, 14]. More recently, researchers have
been focused on the issue of novel views synthesis from
sparse inputs. To map and blend the input images in a
novel target view, some methods [7, 45] use the proxy ge-
ometry obtained via structure-from-motion (SfM) or multi-
view stereo (MVS). Moreover, to improve the accuracy of
mapping and blending, some improved methods are pro-
posed for proxy geometry estimation [9, 25], optical flow
correction [16, 17] and deep blending [24, 50, 51]. Differ-
ently, some other methods directly reconstruct the texture of
mesh [15,26,61] or points cloud [1,42,48,53] for novel view
synthesis. However, the rendering quality by IBR methods
is directly affected by geometric inaccuracies of 3D recon-
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struction methods [28, 54], especially in low-textured or re-
flective regions.
Explicit volumetric representations. The other meth-
ods render high-quality novel views by constructing an ex-
plicit scene representation, such as voxel grids [31, 63] and
layered-depth images [47, 56], from captured images. For
example, Zhou et al [75]. represent a scene with a set of
depth-dependent images with transparency, which is called
multi-plane images (MPIs). Novel views can be directly
rendered from MPIs using alpha compositing. Recently,
MPI representation has been applied in many scenarios,
such as rendering novel views from multiple MPIs [43],
novel view synthesis from a single image [35, 62], vari-
ants as multi-sphere images [2,5], and 3D image generation
[68, 74]. Trained on a large multi-view dataset, MPI-based
methods can generalize well to unseen scenes and render
photo-realistic novel views fast. However, those methods
always render views within limited viewing volumes. Be-
sides, the volumetric representations explicitly decompose
a scene into extensive samples, which requires large mem-
ory to store them and limits the resolution of novel views.
Neural scene representations. Representing the geometry
and appearance of a scene with neural networks has been a
surge. Traditional methods explicitly represent scenes with
point clouds [53, 66], meshes [26, 61], or voxels [39, 57],
while neural scene representations implicitly encode the
scene with continuous coordinate-based functions such as
radiance fields [3, 44], signed distance fields [8, 19, 70], or
occupancy fields [41, 46]. NeRF [44] approximates a 3D
scene with an implicit function and has shown high-quality
view synthesis results. Mip-NeRF [3] reduces objection-
able aliasing artifacts and improves NeRF’s ability to repre-
sent scene details by casting a cone instead of a ray. While
NeRF has been expanded to many new scenarios [4, 11, 22,
27, 36, 40, 49, 58, 67, 72], most NeRF-like models take co-
ordinate as inputs, which restricts their ability to generalize
to unseen scenes. Recently, some generalizable NeRF-like
methods have been proposed [10,13,30,34,38,65,71]. Pix-
elNeRF [71], SRF [13], MINE [34] and MVSNeRF [10]
try to construct radiance fields on-the-fly from sparse input
views, while they struggle with complex scenes. To solve
occlusions, NeuRay [38] and GeoNeRF [30] estimate depth
using MVS methods [21, 69] and calculate the occlusion
masks from the estimated depth maps. However, it’s expen-
sive to construct cost volumes per source view to estimate
depth. While these generalizable methods have been capa-
ble of rendering novel views for unseen scenes, rendering
novel views by casting a single ray may produce renderings
that are aliased or blurred.

3. Method
Our goal is to predict volumetric radiance fields from

a set of multi-view images captured at a consistent image

scale (×1), and output novel views at continuous scales
(×0.5 ∼ ×4). Our proposed framework is presented in
Fig. 3, which is composed of five parts: 1) extracting 2D
feature maps from source images (Sec. 3.2), 2) obtaining
the image feature for the samples on target rays via local
implicit ray function (Sec. 3.3), 3) predicting the visibility
weights of each source view by matching feature patches
(Sec. 3.4), 4) aggregating local image features from differ-
ent source views and mapping them into colors and densi-
ties (Sec. 3.5), 5) rendering a target pixel via volume ren-
dering (Sec. 3.1).

3.1. Volume Rendering

We first briefly review the volume rendering in NeRF
[44]. NeRF implicitly encodes a scene as a continuous radi-
ance field. Given a ray r passing through the scene, NeRF
maps the 5D coordinates (3D for position, 2D for direc-
tion) of each sampled location into view-dependent color
and volume density via an MLP. To determine the pixel
color of the ray r, NeRF first obtains the colors and den-
sities of all samples on the ray r and then accumulates the
colors according to densities. The volume rendering thus is
defined by:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci,

Ti = exp

(
−

i−1∑
l=1

σlδl

)
,

(1)

where N is the number of samples along a ray with ascend-
ing depth values. The c and σ denote colors and densi-
ties, respectively. T denotes the accumulated transmittance.
The δ is the distance between adjacent samples. Following
IBRNet [65], we remove δ in volume rendering for a better
generalization. To render a novel view of unseen scenes,
we will introduce our proposed method to obtain colors and
densities from input images instead of coordinates.

3.2. Image Feature Extraction

Given a target viewpoint, we select a set of V nearby
source images and their corresponding camera poses as in-
puts. Our method relies on the local image features from
source images to produce target images. Usually, most
generalizable methods [38, 65] extract dense image fea-
tures from each source view by a U-Net [52] architecture
with ResNet [23]. Although U-Net and ResNet are widely
adopted in high-level computer vision tasks such as image
recognition and image segmentation, our rendering is based
on pixel-wise operations. The feature extraction network
is supposed to pay more attention to image details, so we
use an EDSR network [37] to extract image features. The
EDSR network removes unnecessary modules in conven-
tional residual networks, which makes the network more
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Figure 3. The overview of LIRF. To render a target image, a set of V neighboring source views are selected and the 2D feature map of
each source view is extracted via an EDSR network [37]. N points (yellow points) are sampled along a target ray, and the corresponding
conical frustum is represented with M vertices (red points). (a) For a sample on target ray at 3D position x, we obtain its feature z by
aggregating the features of the vertices and two latent codes (relative position ∆x = x−q and target scale s). (b) To deal with occlusions,
we also estimate the visibility weights of each source view. Visibility weights can be considered the probability of a sample being observed
by each source view. Taking the image features fw, source ray direction d and target scale s as inputs, our model outputs the visibility
weights in source views of sample x. (c) After obtaining the features z and corresponding visibility weights w, we aggregate them by a
transformer [64] module T2 which outputs two parts of features: one for the colors and the other for densities. Next, we explicitly blend
features t1′ and map them into colors c by an MLP Mc. As for features t2′, an AE network [30] aggregates their information along a ray
and an MLP Mσ maps the features to densities σ. (d) Finally, the color of target ray is rendered by volume rendering from the colors c
and densities σ. The mean squared error between the predicted color and ground truth color is calculated for optimization.

focused on detailed content. We modify the last layer in the
EDSR network to output two image features for the follow-
ing modules, with one image feature for the estimation of
visibility weights, and the other for the prediction of colors
and densities. Given a source image I , the image feature
extraction is formulated as:

(Fw,Fc) = EDSR(I), (2)

where Fw denotes the feature map for visibility weights and
Fc denotes the feature map for colors and densities.

3.3. Local Implicit Ray Function

In our method, a target ray is defined as the integral of
a conical volume. To consider the shape and size of the
volume viewed by each ray, we define the feature of each
sample along the ray by a continuous integration within the
corresponding conical frustum. Given the 3D position x
within the conical frustum, it’s feature z is defined as:

z =

∫
W (||∆xq||2)R(fq,∆xq) dq, (3)

where q denotes a 3D position within the conical frustum,
fq is the feature at position q, ∆xq = x − q denotes the

relative position between two points, and || · ||2 denotes the
Euclidean distance. W is a weights function that outputs
weights according to the distance ||∆xq||2. R is an MLP-
based function for the aggregation of features and positions.
Discrete representation. Considering the computation and
memory consumption, we cast four rays from the cone’s
footprint to discretely approximate the continuous conical
volume. Inspired by Plenoxels [18], a voxel-based represen-
tation, each conical frustum along the cone is represented
with 8 vertices, and the target ray passes through all conical
frustums, as shown in Fig. 4(b). Any samples within the
conical frustum can be obtained by trilinear interpolation,
which is similar to the sampling strategy of voxel-based rep-
resentation. Specifically, we project the vertices on the four
rays into the source views and query corresponding features
f c from feature maps Fc. For a sample at position x within
the corresponding conical frustum, its feature is defined as:

z =

M∑
j=1

W (||∆xj ||2)R(f cj ,∆xj),

W (||∆xj ||2) =
||∆xj ||2∑M
l=1 ||∆xl||2

,

(4)
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where M = 8 is the number of vertices used to represent
a conical frustum. f c is the image feature of the vertices
on the conical frustum. ∆x denotes the relative position
between the sample and the vertices within the conical frus-
tum.
Cone radius. A cone cast from the view origin and passing
through the image plane, the radius of the cone at the image
plane is called cone radius and parameterized as r. The cone
radius is affected by image resolutions and observation dis-
tances (being closer to objects means a larger scale). How-
ever, it is hard to know the observation distances before-
hand. Besides, since our testing scenes are captured using a
hand-held camera, the observation distance of novel views
and source views are slightly different. To adjust the cone
size accurately and conveniently, we don’t directly modify
the cone size only according to the relative image resolu-
tion. Instead, we set a maximum cone radius rm which is
the pixel width of the target image with the minimum reso-
lution, and a latent code is introduced to implicitly control
the size of a cone. Specifically, we first cast four rays pass-
ing through the four red points in the target image plane, as
shown in Fig. 4(a). For any target ray projecting within the
circle with radius rm, its features are aggregated from the
features of the four neighboring rays. Moreover, a scale-
dependent input s is additionally introduced to modify the
cone size, where s is the relative scale of a target image. We
reformulate Eq. (4) with the form:

z =

M∑
j=1

W (||∆xj ||2)R(f cj ,∆xj , s). (5)

In practice, the positional encoding strategy [44] is applied
on the relative position ∆x but not on relative scale s, since
we want the implicit function to learn more high-frequency
information of image feature and adjust the scale of render-
ings smoothly.

3.4. Visibility Weights Estimation

In this stage, we estimate the visibility weight that re-
veals the occlusions in each source view. Without any geo-
metric priors, it’s challenging to solve the occlusions thor-
oughly. As a compromise, we assume that the occluded
content appears in most source views. Our model estimates
the visibility weights of one source view by matching its
feature patch with the feature patches from other source
views. For the samples on a target ray, we obtain their fea-
ture patches fw from the image features Fw as shown in
Fig. 4(c). Apart from the feature patches, two latent codes
are introduced to improve the performance. To consider the
direction for each source ray, their directions d in target
camera coordinates are input. We do not use the global di-
rections of source rays in world coordinates, since different
scenes have different world coordinates and local directions
are more suitable for the generalization to unseen scenes.

Figure 4. Method details of LIRF. The x denotes the position of a
sample, q denotes the position of a vertex, and d denotes the direc-
tion of a source ray. (a) The rays projecting at target image plane.
The size of target image is normalized. (b) A cone is represented
with four rays (solid lines, only two are drawn) and a conical frus-
tum is represented with eight vertices (red points). A target ray
passes through the cone (dotted line). (c) The feature patches for
visibility weights are obtained by warping samples on the target
ray to feature maps.

To consider the scale of the target image, we also introduce
the target scale s. We define the feature concatenation of all
inputs as:

t0 = MLP(fw ∥ d ∥ s), (6)

where ∥ denotes the concatenation operation and MLP de-
notes a two-layer MLP used to reduce the channels of fea-
tures. Positional encoding [44] is applied on directions d.

Next, a self-attention transformer [64] module T1 is used
to fully match these aggregated feature t0 and output new
features for visibility weights. Formally, this stage is writ-
ten as:

t0
′ = T1(t0). (7)

We then map the new feature t0
′ into visibility weights w

by an MLP Mw,

w = Mw(t0
′). (8)

3.5. Color and Density Prediction

After obtaining the local image features z and the visibil-
ity weights w, the colors and densities can be predicted. We
aggregate the features and visibility weights to features t1.
Besides, the weighted mean and weighted variance of fea-
tures z over all source views are calculated based on visibil-
ity weights w. The mean and variance are then aggregated
into features t2. This process is defined as:

t1 = MLP(z ∥ w),

t2 = MLP(mean(z, w) ∥ var(z, w)).
(9)

t1 could be considered as the color information from source
views, while t2 could be considered as the measure of im-
age feature consistency. The densities are predicted by
checking the feature consistency, since local image features
from different source views are usually consistent when the
sample is on the object surface [38].
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Next, the two features are fed into a self-attention trans-
former T2 for fully information aggregation,

(t1
′, t2

′) = T2(t1, t2). (10)

The feature t1
′ and t2

′ now have combined the infor-
mation from the the local image features and visibility
weights. Similar to most generalizable NeRF-like meth-
ods [30,38,65], the density is estimated by an auto-encoder-
style network [30] AE which aggregates information along
a ray, and an MLP Mσ that maps features to densities,

σ = Mσ

(
AE(t2

′)
)
. (11)

As for colors, we further explicitly blend the features t1′

according to the visibility weights, and then an MLP Mc

are used for color prediction,

c = Mc

(
V∑

k=1

(t1
′
,kwk)

)
. (12)

Once the densities and colors of the samples on target rays
are predicted, the final colors of target rays are rendered via
volume rendering (Eq. (1)).

3.6. Loss Function

We minimize the mean squared error between our pre-
dicted colors and ground truth colors for optimization:

L=
∑
r∈Ω

∥Ĉ(r)− C(r)∥22, (13)

where Ω is a set of camera rays at target position. Ĉ and
C are the predicted colors and ground truth colors, respec-
tively.

4. Experiments

4.1. Implementation Details

To render a target view, we select nearby source views
using V = 8 during both training and testing. M = 8 ver-
tices are used to represent a conical frustum. The cone ra-
dius rm is set to the pixel width of the target image with the
minimum resolution. We directly sample N = 128 points
on a ray instead of using the coarse-to-fine sampling [44].
The extracted image feature maps have 32 channels and
their size is the same as the original image size. The size
of feature patches used for visibility weights is set to 7× 7.
We train the generalizable LIRF for 250k iterations. The
training batch size of rays is set to 512. We use Adam opti-
mizer [32] with a learning rate of 5× 10−4 that decays ex-
ponentially along with the optimization. We train our model
on eight V100 GPUs, which takes about two days.

4.2. Datasets

Our model is trained on three real datasets: real DTU
multi-view dataset [29] and two real forward-facing datasets
from LLFF [43] and IBRNet [65]. All 190 scenes (35
scenes from LLFF, 67 scenes from IBRNet and 88 scenes
from DTU dataset) are used for training. Eight unseen
scenes from the LLFF dataset are used for testing. During
the multi-scale training, the resolutions of all input views
are consistent, while the resolution of each target view is
randomly selected from 1 to 4 times the input resolution.
When training our model on single-scale datasets, the image
resolutions of input and target images are the same. During
testing, the resolution of input views is 504×378. We eval-
uate our model by rendering novel views at multiple scales:
×0.5, ×1, ×2 and ×4 (×0.5 denotes 0.5 times the resolu-
tion of input views, and so on).

4.3. Results

We evaluate our model on LLFF testing scenes and com-
pare it against three state-of-the-art generalizable methods:
IBRNet [65], NeuRay [38] and GeoNeRF [30]. For quan-
titative evaluations, we report three error metrics, PSNR,
SSIM and LPIPS [73]. Following prior work [3, 60], we
also summarize all three error metrics into an “average”
error metric by calculating the geometric mean of MSE=
10−PSNR/10,

√
1− SSIM, and LPIPS, which provides an

easier comparison.
Multi-scale novel views. The performance of our method
on rendering multi-scale novel views can be seen in Tab. 1.
and Fig. 5. As shown in Tab. 1, our method outperforms
baseline methods on all four scales. Though our model
isn’t trained on ×0.5 scale, it also can render low-scale
views by explicitly modifying the cone radius rm accord-
ing to the pixel size at ×0.5 scale. In contrast, the baselines
fail to render view at a lower scale due to the aliasing arti-
facts (shown as the ×0.5 results by IBRNet in Fig. 1(c)).
We notice that the baselines produce relatively better re-
sults on rendering novel views at an up-scale after training
on multi-scale datasets. On the other hand, they produce
worse results on low-scale (×0.5 and ×1) compared with
their released models, since baselines have difficulty con-
verging well when supervisions have different image scales,
as discussed in Fig. 2 (b). Besides, our dataset contains
fewer training scenes (about 15% of the training scenes used
by IBRNet or NeuRay). The qualitative comparisons are
shown in Fig. 5. It can be seen that the improvements pro-
duced by our method are most visually apparent in chal-
lenging cases such as small or thin structures. Besides, our
renderings have fewer blurring artifacts and are closer to the
ground truth.
Single-scale novel views. We also train our model on the
single-scale dataset to evaluate our ability on novel view
synthesis. The quantitative results are shown in Tab. 2. One
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Figure 5. Qualitative comparisons on real forward-facing scenes. The cropped regions of two scenes are rendered at different scales (×0.5,
×1,×2 and ×4). SSIM averaged over all novel views for each scale are provided at the lower right of images.

Table 1. Quantitative comparisons of LIRF and its ablations against IBRNet [65], NeuRay [38] and GeoNeRF [30] on LLFF multi-scale
testing dataset. Metrics are averaged over all scenes. ∗ denotes training on the same multi-scale training set as our method.

PSNR↑ SSIM↑ LPIPS↓
Avg.↓×0.5 ×1 ×2 ×4 ×0.5 ×1 ×2 ×4 ×0.5 ×1 ×2 ×4

IBRNet 25.06 25.28 23.18 22.15 0.866 0.840 0.731 0.669 0.108 0.160 0.299 0.442 0.079
NeuRay 24.80 25.17 23.10 22.08 0.859 0.837 0.729 0.667 0.107 0.157 0.294 0.434 0.080
GeoNeRF 24.89 25.74 23.43 22.27 0.864 0.864 0.753 0.679 0.108 0.136 0.274 0.421 0.076
IBRNet* 22.96 23.62 22.33 21.51 0.816 0.813 0.723 0.665 0.140 0.178 0.307 0.444 0.090
NeuRay* 22.79 22.40 21.23 20.61 0.794 0.733 0.646 0.622 0.172 0.262 0.382 0.493 0.107
GeoNeRF* 23.39 25.08 23.81 22.69 0.821 0.859 0.784 0.708 0.138 0.134 0.255 0.401 0.077
Ours 26.75 25.93 24.58 23.79 0.905 0.877 0.816 0.760 0.100 0.124 0.227 0.373 0.063
Ours (single ray) 25.38 25.72 24.27 23.43 0.881 0.871 0.794 0.723 0.135 0.132 0.254 0.392 0.069
Ours w/o scale 26.81 25.90 24.52 23.72 0.904 0.873 0.807 0.749 0.098 0.128 0.235 0.374 0.064
Ours w/o position 25.95 25.72 24.36 23.56 0.882 0.869 0.803 0.741 0.127 0.136 0.242 0.373 0.067
Ours w/o patch 26.85 25.95 24.56 23.76 0.906 0.877 0.813 0.756 0.097 0.127 0.231 0.367 0.064
Ours w/o direction 26.35 25.36 24.10 23.38 0.899 0.864 0.799 0.744 0.103 0.137 0.242 0.373 0.067
Ours w/o vis. weights 25.90 25.11 23.91 23.19 0.888 0.856 0.792 0.737 0.118 0.148 0.250 0.378 0.070
Ours (U-Net feat.) 26.00 25.10 23.43 22.77 0.887 0.853 0.761 0.706 0.116 0.151 0.298 0.427 0.075

can see that training on the single-scale dataset does not re-
duce our performance on rendering novel views at ×1 scale,
and even improves our results on PSNR and SSIM metrics.
Figure 6 presents the visualized comparisons on cropped
regions. Although training on the single-scale dataset, our
method shows a visual improvement on the challenging ob-
jects, such as the thin leaves.

Visibility weights. To demonstrate the effectiveness of our

method in dealing with occlusions, we visualize the esti-
mated visibility weights. As shown in Fig. 7, region A is oc-
cluded in source view 1, so it has smaller visibility weights
in region A. Conversely, region A is visible in source view
2, while region B is occluded. Therefore, the visibility
weights of source view 2 have larger values at region A
and smaller values at region B. With visibility weights es-
timation, our method correctly renders the scene content at
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Figure 6. Qualitative comparisons on single-scale novel view syn-
thesis. Though trained on the single-scale dataset, Ours′ still out-
performs baselines. SSIM averaged over all novel views are pro-
vided at lower right.

Table 2. Quantitative comparisons of LIRF trained on single-scale
dataset against baseline methods on rendering novel view at ×1
scale. “Ours′” denotes our method training on single-scale dataset,
while “Ours” denotes our method training on multi-scale dataset.

IBRNet NeuRay GeoNeRF Ours′ Ours
PSNR↑ 25.28 25.17 25.74 26.30 25.93
SSIM↑ 0.840 0.837 0.864 0.878 0.877
LPIPS↓ 0.160 0.157 0.136 0.128 0.124

regions A and B.

4.4. Ablation Studies

Ablation studies are shown in Tab. 1 to investigate the
individual contribution of key modules of our model. (a)
For “single ray”, we modify our model to render a pixel
from a single ray instead of a cone and keep everything else
the same. Compared with our full model, the performance
by “single ray” is reduced on all four testing scales, espe-
cially on the ×0.5 scale and ×4 scale, which demonstrates
the contribution of our local implicit ray function for ren-
dering multi-scale novel views. (b) For “w/o scale”, we
remove the scale s in Eq. (5) and Eq. (6). It reduces our
model’s ability to modify our implicit ray function accord-
ing to the scale of target views. (c) For “w/o position”, the
relative position ∆x in Eq. (5) is removed, which prevents
our implicit ray function from perceiving the relative 3D po-
sition between a sample and the vertices of conical frustum.
(d) For “w/o patch”, the size of the feature patches used to
predict visibility weights is set to 1 × 1. This reduces our
performance on rendering novel views with higher scales
while improving our model on rendering ×0.5 novel views.
When testing on different scales, the patch size is set to
7 × 7, which may be too large to render views at ×0.5
scale. (e) For “w/o direction”, we remove the direction d
in Eq. (6). Without considering the direction of source rays,
our model produces worse results on all testing scales. (f)
For “w/o vis. weights”, we remove the visibility weights
estimation module. Without visibility weights, our model
fails to solve the occlusions, which significantly reduces our

Figure 7. Visualizations of visibility weights (only two source
views are presented). Our model accurately estimates the invisible
regions for source views. For example, region A is occluded in
source view 1, thus the visibility weights at this region are “dark”.

performance. (g) For “U-Net feat.”, the image feature maps
are extracted by the U-Net of IBRNet [65]. We can see that
our performance is reduced a lot. Most recent generaliz-
able methods focus on the framework design of predicting
color and densities from image features. Actually, the im-
age feature extraction network is also important, affecting
the quality of novel views from the source.

5. Conclusion
We have proposed a novel method for novel view syn-

thesis of unseen scenes. Our method not only renders novel
views with fewer blurring artifacts, but also produces novel
views at arbitrary scales, even at higher scales than input
views. The core of our method is the local implicit ray
function that constructs each target ray by aggregating the
information of a cone. Besides, our method also estimates
the visibility weights to mitigate the occlusion problem.
Compared with prior works, our method performs better on
novel view synthesis of unseen scenes. Our code and mod-
els will be released to the research community to facilitate
reproducible research.
Limitations. Rendering novel views of unseen scenes is
a challenging task. Similar to most image-based render-
ing methods, our method renders novel views from selected
local input views, which causes two problems. First, our
method can’t render the regions occluded in all input views.
Second, since selected input views vary with the novel view
position, compared with NeRF, our method is weak in view
consistency. Moreover, our method renders a pixel by cast-
ing four rays to approximate a cone, which increases the
computational cost. Finally, though our method can miti-
gate the artifacts caused by occlusions, it fails in some chal-
lenging scenes. To solve this, a possible choice is introduc-
ing geometric priors.
Acknowledgements. The work was supported by NSFC
under Grant 62031023.
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Supplemental Materials

A. Additional Implementation Details

A.1. Network Details

Our feature extraction network (EDSR [37]) is based on
the implementation from this URL (https://github.
com/sanghyun-son/EDSR-PyTorch). The tail mod-
ule of the EDSR network is removed, and two convolutional
layers are added at the tail. The one outputs the feature
maps for visibility weights, while the other one outputs the
features maps for colors and densities. The implementation
AE network is from GeoNeRF [30]. The ray function R is
a three-layer MLP with 32 channels for each linear layer.
Both networks Mw and Mσ are a two-layer MLP with
32 channels. The network Mc is a three-layer MLP with
32 channels. The transformer module T1 contains a single
multi-head self-attention layer with the number of heads set
to 4, while T2 contains four multi-head self-attention lay-
ers with the number of heads set to 4. The “MLP” used to
reduce feature channels is a two-layer MLP and the num-
ber of channels is set to 32. For all MLP-based networks,
ELU is used between each of two adjacent linear layers as
the non-linear activation function. In our experiments, all
networks are trained from scratch. Our code and model will
be made available.

A.2. Dataset Details

We train our model on three real datasets: the real DTU
multi-view dataset [29] and two real forward-facing datasets
from LLFF [43] and IBRNet [65]. All 190 scenes (35
scenes from LLFF dataset, 67 scenes from IBRNet dataset
and 88 scenes from DTU dataset) are used for training. We
exclude the views with incorrect exposure from the DTU
dataset as done in pixelNeRF [71]. Eight unseen scenes
from LLFF dataset are used as our testing scenes. During
the multi-scale training, the resolutions of all input views
are consistent (252 × 189 for LLFF and IBRNet datasets,
200 × 150 for DTU dataset), while the resolution of each
target view is randomly selected from 1 to 4 times the in-
put resolution (from 252 × 189 to 1008 × 756 for LLFF
and IBRNet datasets, from 200 × 150 to 800 × 600 for
DTU dataset). When training our model on single-scale
datasets, the image resolutions of input and target images
are the same (504 × 378). During testing, the resolution of
input views is 504×378. We evaluate our model on render-
ing novel views at multiple scales: ×0.5, ×1, ×2 and ×4
(×0.5 denotes 0.5 times the resolution of input views, and
so on). During the dataset preprocessing, we use bicubic
interpolation to downsample high resolution images.

Table 3. Fine-tuning results of our method and state-of-the-art
methods. We fine-tune our pretrained model on each scene for
10k iterations with resolution of 1008 × 756. The resolution of
testing views is also set to 1008× 756.

PSNR↑ SSIM↑ LPIPS↓
NeRF [44] 26.50 0.811 0.250
IBRNet [65] 26.73 0.851 0.175
NeuRay [38] 27.06 0.850 0.172
GeoNeRF [30] 26.58 0.856 0.162
Ours(10k) 26.85 0.865 0.159

B. Additional Experiments
B.1. Fine-tuning

Although our approach focuses on generalizations to un-
seen scenes, we also fine-turn our pre-trained model on each
testing scene for comparison against previous methods. We
follow the setting of IBRNet [65] and train our model on
each of the eight testing scenes for 10k iterations. The
resolution of images used for training and testing is set to
1008× 756. Note that the multi-view images used for fine-
tuning are single-scale. The results are reported in Tab. 3.

B.2. Comparisons with Two-stage Methods

To further evaluate our method on rendering novel views
at high scales (×2 and ×4), we try to compare our method
with two-stage methods. We first render novel views at ×1
scale via three baselines and then upsample the novel views
via bicubic interpolation and a single-image super resolu-
tion method, LIIF [12]. The results are presented in Tab. 5.
It shows the superiority of our model on rendering novel
views at high scales with respect to the two-stage methods,
though they introduce external data priors.

B.3. Number of Source Views

To investigate the robustness of our model to the num-
ber of source views, our model is tested on unseen scenes
with different numbers of source views (4, 6, 8, and 10).
The quantitative results are shown in Tab. 4. The results
show that our model produces competitive results when the
number of source views is set to 6, 8, and 10. The model
produces the best results when setting the number of source
views to 8, since our model is trained with 8 source views.
However, the performance of our method reduces a lot when
the source views are sparse (4 views), since it is challeng-
ing to estimate visibility weights by matching sparse local
image features.

B.4. Number of Vertices

We represent a conical frustum using several vertices.
The results with different numbers of vertices are shown in
Tab. 5. Using more vertices, our performance improves, but
the rendering time increases too. Considering computing
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Table 4. Quantitative comparisons of varying the number of source views on LLFF real forward-facing scenes.

PSNR↑ SSIM↑ LPIPS↓
Avg.↓×0.5 ×1 ×2 ×4 ×0.5 ×1 ×2 ×4 ×0.5 ×1 ×2 ×4

4 views 24.80 24.03 22.93 22.31 0.864 0.825 0.761 0.711 0.134 0.168 0.269 0.403 0.080
6 views 26.11 25.51 24.24 23.50 0.893 0.866 0.804 0.750 0.106 0.131 0.233 0.377 0.066
8 views 26.75 25.93 24.58 23.79 0.905 0.877 0.816 0.760 0.100 0.124 0.227 0.373 0.063
10 views 26.46 25.91 24.56 23.78 0.900 0.877 0.815 0.760 0.101 0.126 0.231 0.376 0.064

Table 5. Quantitative comparisons of our LIRF against two-staget
methods on rendering novel view at higher scales (×2 and ×4).
We upsample low resolution novel views via bicubic interpolation
(BI) or LIIF [12]. “M” denotes the number of vertices used to
represent a conical frustum.

PSNR↑ SSIM↑ LPIPS↓ Avg. ↓×2 ×4 ×2 ×4 ×2 ×4
IBRNet-BI 23.50 22.85 0.740 0.691 0.307 0.438 0.099
IBRNet-LIIF 23.80 23.11 0.760 0.712 0.278 0.421 0.093
NeuRay-BI 23.44 22.79 0.738 0.689 0.305 0.437 0.099
NeuRay-LIIF 23.70 23.02 0.757 0.709 0.276 0.419 0.094
GeoNeRF-BI 23.89 23.19 0.765 0.708 0.282 0.420 0.093
GeoNeRF-LIIF 24.26 23.53 0.788 0.733 0.251 0.400 0.087
Ours (M=4) 23.91 23.15 0.789 0.741 0.248 0.398 0.089
Ours (M=8) 24.58 23.79 0.816 0.760 0.227 0.373 0.081
Ours (M=10) 24.93 23.95 0.838 0.784 0.218 0.366 0.077

Figure 8. The qualitative results of our model without visibility
weights. Ours denotes our full model.

burdens and inspired by the voxel-based volume rendering,
we use M = 8 vertices to approximate a conical frustum.
The samples within the conical frustum can be calculated
by our implicit ray function.

B.5. Comparisons of Rendering Time

LIRF (45s for rendering an image with ×1 scale ) is
about three times slower than IBRnet ( 15s for rendering
an image with ×1 scale ). However, once the conical frus-
tums are constructed, we directly infer rays from the conical
frustums to render multi-scale views. Compared with base-
lines on rendering multi-scale views, we save the time of
querying features from feature maps, especially on render-
ing high resolution views.

C. Additional Results

C.1. Qualitative Results for Ablation Studies

As shown in Tab. 6, three ablations (Ours(single ray),
Ours w/o vis. weights and Ours(U-Net feat.)) mainly affect
the performance of our LIRF. To further investigate their
contributions to our model, the qualitative results are shown
in Figs. 8, 10 and 11.
Ours w/o vis. weights. We remove the visibility weights
estimation module to evaluate the impact of the visibility
weights. Figure 8 shows the performance of our model
without visibility weights. Our method produces render-
ings with ghosting artifacts on the boundary of objects due
to occlusions.
Ours (single ray). To investigate the contribution of our
local implicit ray function, we render a pixel from a single
ray instead of conical frustums. The results are presented
in Fig. 10. One can see that our model (single ray) pro-
duces renderings that are excessively aliased when render-
ing novel views at ×0.5 scale. Besides, our model (single
ray) produces renderings containing artifacts at thin struc-
tures when rendering novel views at ×2 scale.
Ours (U-Net feat.). Moreover, the feature extraction net-
work is also important to our method, especially on ren-
dering novel views at high scales. We therefore extract 2D
image features via the U-Net in IBRNet [65]. Our model
with the U-Net is trained from scratch on our multi-scale
dataset. The rendered testing views are presented in Fig. 11.
Our model produces renderings with more blurred artifacts
when the image features are extracted by the U-Net.

C.2. A Failure Case

As discussed in the limitations, though the visibility
weights can mitigate the artifacts caused by occlusions, they
fail in some challenging scenes such as the orchids scene.
Figure 9 shows a failure example on the orchids scene.
The multi-view images of this scene are captured sparsely,
which is challenging for our model to estimate the accu-
rate visibility weights. The baselines also struggle with this
challenging scene, such as the renderings by IBRNet [65]
with blurred artifacts. After fine-tuning on this scene for
10k iterations, our model produces results with fewer arti-
facts on the boundary of objects.
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Figure 9. A failure example on orchids scene. Our model fails to
predict the geometry on the boundaries of flowers due to occlu-
sions. The renderings by IBRNet [65] also contain blurred arti-
facts. After fine-tuning on this scene for 10k iterations, our model
produces results with fewer artifacts

C.3. Per-Scene Results

To evaluate our approach compared to previous methods
on each individual scene, per-scene results on the eight test-
ing scenes are presented in Tab. 6. We report the arithmetic
mean of each metric averaged over the four testing scales
used for testing. Our method yields a significant improve-
ment in three error metrics across most scenes.
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Figure 10. The qualitative results of our model that renders a pixel from a single ray. The top row shows the novel views rendered at ×0.5
scale. Our model (single ray) produces aliased novel view. The bottom row shows the novel views rendered at ×2 scale. Our model (single
ray) produces novel view with artifacts at thin structures.

Figure 11. The qualitative results of our model that extracts image features via the U-Net in IBRNet [65]. Our model (U-Net feat.) produces
novel views with more blurred artifacts when the image features are extracted by the U-Net.
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Table 6. Per scene quantitative comparisons of our LIRF and its ablations against IBRNet [65], NeuRay [38] and GeoNeRF [30] on
LLFF [43] multi-scale testing dataset. Metrics are averaged over four testing scales (×0.5, ×1, ×2 and ×4). ∗ denotes training on the
same multi-scale training set as our method.

Average PSNR↑
fern flower fortress horns leaves orchids room trex

IBRNet 23.40 25.80 28.12 24.78 19.69 19.20 27.49 22.89
NeuRay 23.21 25.89 28.18 24.78 19.48 18.87 27.09 22.81
GeoNeRF 23.73 26.35 28.88 25.19 19.75 19.81 27.02 21.91
IBRNet* 22.38 24.61 26.32 23.68 18.48 18.07 25.49 21.80
NeuRay* 21.26 23.56 25.43 22.45 17.89 17.50 25.12 20.84
GeoNeRF* 23.55 26.21 28.17 24.92 19.89 19.50 26.24 21.47
Ours 25.21 26.77 29.07 26.59 21.59 19.39 28.59 24.91
Ours w/o scale 25.05 26.63 29.25 26.56 21.33 19.28 28.75 25.06
Ours w/o patch 25.18 26.64 29.17 26.47 21.47 19.44 28.72 25.16
Ours w/o position 24.78 26.69 28.18 26.16 20.97 19.33 28.42 24.64
Ours w/o direction 24.60 26.31 28.34 25.65 20.86 19.22 28.66 24.73
Ours w/o vis. weights 24.72 25.95 27.92 25.50 20.66 18.98 27.75 24.75
Ours (U-Net feat.) 24.21 26.03 28.67 25.33 20.44 19.14 27.12 23.67
Ours (single ray) 24.49 26.60 28.11 25.78 20.83 19.28 28.07 24.41

Average SSIM↑
fern flower fortress horns leaves orchids room trex

IBRNet 0.741 0.836 0.832 0.805 0.678 0.629 0.899 0.794
NeuRay 0.739 0.836 0.833 0.808 0.668 0.617 0.896 0.790
GeoNeRF 0.768 0.847 0.844 0.825 0.683 0.659 0.897 0.795
IBRNet* 0.717 0.820 0.801 0.790 0.650 0.593 0.877 0.786
NeuRay* 0.675 0.761 0.723 0.733 0.568 0.531 0.862 0.735
GeoNeRF* 0.774 0.852 0.833 0.829 0.704 0.655 0.893 0.802
Ours 0.825 0.870 0.897 0.876 0.787 0.666 0.924 0.872
Ours w/o scale 0.817 0.865 0.896 0.870 0.776 0.656 0.921 0.866
Ours w/o patch 0.821 0.867 0.898 0.875 0.782 0.668 0.923 0.870
Ours w/o position 0.806 0.858 0.882 0.863 0.761 0.652 0.913 0.856
Ours w/o direction 0.806 0.861 0.891 0.864 0.756 0.651 0.920 0.864
Ours w/o vis. weights 0.807 0.849 0.886 0.853 0.748 0.635 0.910 0.860
Ours (U-Net feat.) 0.777 0.849 0.858 0.831 0.728 0.642 0.898 0.829
Ours (single ray) 0.799 0.856 0.873 0.849 0.757 0.651 0.904 0.851

Average LPIPS↓
fern flower fortress horns leaves orchids room trex

IBRNet 0.282 0.201 0.195 0.252 0.285 0.316 0.214 0.272
NeuRay 0.282 0.191 0.189 0.246 0.293 0.311 0.206 0.265
GeoNeRF 0.251 0.187 0.170 0.226 0.283 0.287 0.207 0.267
IBRNet* 0.297 0.208 0.221 0.263 0.297 0.339 0.235 0.279
NeuRay* 0.359 0.269 0.296 0.336 0.369 0.395 0.262 0.331
GeoNeRF* 0.245 0.176 0.181 0.224 0.264 0.288 0.212 0.265
Ours 0.217 0.174 0.152 0.191 0.219 0.288 0.190 0.219
Ours w/o scale 0.223 0.177 0.149 0.193 0.226 0.296 0.188 0.220
Ours w/o patch 0.221 0.175 0.149 0.187 0.222 0.289 0.185 0.216
Ours w/o position 0.234 0.181 0.165 0.199 0.254 0.311 0.188 0.223
Ours w/o direction 0.231 0.182 0.153 0.196 0.233 0.303 0.187 0.223
Ours w/o vis. weights 0.233 0.193 0.162 0.209 0.247 0.320 0.199 0.225
Ours (U-Net feat.) 0.266 0.199 0.200 0.246 0.269 0.313 0.227 0.263
Ours (single ray) 0.240 0.188 0.181 0.214 0.257 0.318 0.200 0.229
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