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Abstract—In recent years, monocular depth estimation (MDE)
has gained significant progress in a data-driven learning fashion.
Previous methods can infer depth maps for specific domains
based on the paradigm of single-domain or joint-domain training
with mixed data. However, they suffer from low scalability
to new domains. In reality, target domains often dynamically
change or increase, raising the requirement of incremental
multi-domain/task learning. In this paper, we seek to enable
lifelong learning for MDE, which performs cross-domain depth
learning sequentially, to achieve high plasticity on a new domain
and maintain good stability on original domains. To overcome
significant domain gaps and enable scale-aware depth prediction,
we design a lightweight multi-head framework that consists of
a domain-shared encoder for feature extraction and domain-
specific predictors for metric depth estimation. Moreover, given
an input image, we propose an efficient predictor selection ap-
proach that automatically identifies the corresponding predictor
for depth inference. Through extensive numerical studies, we
show that the proposed method can achieve good efficiency,
stability, and plasticity, leading the benchmarks by 8% ∼ 15%.

Index Terms—Monocular depth estimation, lifelong learning,
cross-domain learning

I. INTRODUCTION

Acquiring scene depths real depth scale is an essential
requirement for real-world applications, e.g., SLAM [38],
self-driving [35], robot navigation [5], 3D reconstruction [9],
human-computer interaction [7], augmented reality [6], etc.
As a cost-effective solution to depth sensors, monocular depth
estimation (MDE) aims to infer depth maps from visual
images. MDE has gained great success by learning with
deep convolutional neural networks (CNNs) in a data-driven
fashion. In the early stage, traditional studies handled MDE
by training and testing on a single-domain [18], [8], [26], [2],
[16], [42], as shown in Fig. 1. (a).

However, learning-based methods have often been criticized
and questioned due to their poor generalizability for out-of-
distribution data. Despite the recent trend of tackling poor
generalizability by covering possible domains as much as
possible [29], [28], [41], [36], as seen in Fig. 1. (b), it is
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Fig. 1. Depth learning in the real world where the same color and different
colors denote the same and different models. Traditional approaches include
single-domain learning to train a domain-specific model as (a), and joint-
domain learning to obtain a domain-robust model as (b). We aim to learn a
model that can infer metric depth maps for multiple domains in a lifelong
learning manner as (c).

impossible to exhaust all possible patterns of data in the
real world. When there are some new patterns of data or
target domains, a pre-trained model has to be re-trained from
scratch, resulting in a tremendous waste of time and cost.
Inspired by human cognition, researchers have attempted to
empower CNNs with lifelong learning mechanisms which aim
to perform incremental learning on new domains or tasks with
the minimum increase over model complexity, training time,
and reuse of data on old tasks. This practice has already seen
promising results on image recognition [4], [31], [21], [1].

On the other hand, since there is a significant difference
between image recognition and MDE, it is largely unknown
how to enable lifelong learning for MDE (Fig. 1. (c)). Most
previous approaches [29], [28], [36] of multi-domain learning
choose only to infer relative depth maps to tackle domain
gaps. Besides, only a few studies [22], [20], [45] have tried
empowering MDE with lifelong learning, and none of them
can infer scale-aware depth maps. In this paper, we extensively
study this under-explored problem and provide some valuable
insights. We identify two major challenges of scale-ware
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TABLE I
COMPARISONS BETWEEN SEVERAL REPRESENTATIVE EXISTING WORKS AND OUR WORK.

Methods Lifelong learning Scare-aware Cross-domain learning strategy (Un)supervised learning
Virtual Normal v1 [42] 7 3 7 Supervised
Virtual Normal v2 [43] 7 7 Mixed data Supervised

DABC [23] 7 3 Mixed data Supervised
MiDas [29] 7 7 Mixed data Supervised

CoSelfDepth [20] 3 7 Mixed data Unsupervised
Ours 3 3 Sequential learning Supervised

MDE that causes catastrophic forgetting (forgetting learned
knowledge after updating a trained model on a new domain)
when performing lifelong learning, including

• Significant domain gap: both visual images and depth
images are significantly different across different do-
mains. Thus, a trained model transfers poorly between
two domains with significant differences in both visual
and depth images.

• Depth scale imbalance: scene depth scales are usually
domain-dependent and dominated by a specific range
such that model transfer between two domains of different
scales is ineffective.

To address the above issues, we propose a general frame-
work, Lifelong-MonoDepth for lifelong learning on MDE. We
consider MDE under natural circumstances where agents work
in complex real-world environments, including both indoor
and outdoor scenarios. Figure. 1 shows several samples of
images and depth maps from three different domains. As
seen, depth maps captured in the real world are significantly
different across domains; their quality and scales are domain-
dependent. Therefore, the model has to assemble multiple
prediction branches for multi-domain metric depth inference.
To this end, we present an uncertainty-aware framework that
consists of a domain-shared encoder and domain-specific
layers. For an input image of each domain, we predict not
only their depth map but also an uncertainty map to exclude
performance degradation caused by outliers inherently existing
in ground-truth depth maps captured by depth sensors. The
framework allows robust metric depth learning across multi-
domains.

To further overcome catastrophic forgetting, we adopt a
regularization term that applies a knowledge distillation loss
as [24] and a replay loss term to mitigate the significant
domain gap. The framework dynamically grows a domain-
specific predictor when learning on a new domain. Then, the
domain-specific predictor will be learned with data from the
new domain; the other predictors trained on previous domains
will be regularized with depth consistency and uncertainty con-
sistency, as well as a replay loss. They complement each other
and collaborate well to improve the stability and plasticity of
lifelong depth learning.

We then consider how to dynamically select the correspond-
ing domain-specific predictor given an input image during
inference. We assume the input image belongs to one of the
target domains, and the key is how to identify that domain. As
the replay data is a small subset of each domain, we propose

to compare the distance between the image and each domain
in the feature space. Then, the closest domain is the one with
the minimum distance.

To validate the effectiveness of the proposed method, we
perform lifelong depth learning on three real-world datasets
with significant domain gaps. We show through experiments
that the proposed method can i) enable lifelong learning for
scare-aware depth estimation, ii) cope with significant domain
shift, and iii) infer a depth map in real time.

In summary, our contributions are:
• We present an efficient multi-head framework that enables

lifelong, cross-domain, and scare-aware monocular depth
learning. To our best knowledge, we are the first to
fulfill multi-domain metric depth estimation via lifelong
learning.

• We combine both prediction consistency regularization
and replay strategies to overcome catastrophic forgetting.
The former propose to apply both depth and uncertainty
consistency, and the latter keeps a small subset of old
domains and reuses them when learning on a new domain.

• We propose to automatically select the domain-specific
predictor for an image during inference based on the
minimum distance to mean features of each domain.

• We perform extensive experiments to demonstrate a
promising balance between the stability (remembering
old knowledge) and the plasticity (acquiring new knowl-
edge) of the proposed method.

The remainder of this paper is organized as follows. In
Sec. II, we discuss the necessary background and related
studies. We present the proposed lifelong depth learning
framework in Sec. III. We then provide extensive numerical
evaluations in Sec. IV and finally conclude our work in Sec. V.

II. RELATED WORKS

A. Monocular Depth Estimation

In recent years, monocular depth estimation has been formu-
lated in a data-driven fashion either by penalizing pixel-wise
loss between predicted depth maps and ground truth depth
maps in supervised learning [40], [18], [8], [25], [16], [17]
or complying with the geometry consistency of multi-views
in unsupervised learning [47], [35], [44], [19], [46], [37]. The
advantage of unsupervised approaches is they can learn from
videos and thus are easy to implement. However, their greatest
drawback is that they only estimate relative depth maps and are
highly limited for many applications, e.g., robot navigation.
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Fig. 2. The diagram of the proposed lifelong learning framework for multi-domain metric depth estimation. Di denotes i-th domain/task and fi denotes the
corresponding predictor for scale-aware depth estimation.

While there has been significant progress in learning spe-
cific data domains, previous methods face severe challenges
when deploying in real-world applications due to their poor
performance in robustness and generalization. A tendency
is to collect a large scale of data samples across various
domains and learns a domain-invariant model as observed
in recent works [29], [41], [28], [36], [43]. This solution is
rather straightforward and still costly. Furthermore, if some
new target domains appear, the model has to be learned
from scratch. Therefore, there is an urgent demand to develop
continual learning models as human vision systems.

In this paper, we study a continual learning paradigm
that enables extending a single model for MDE to multiple
domains sequentially. Compared to other methods of multi-
domain learning using mixed data training strategy, we only
reuse a few training data (less than 1%) from each of the old
domains. A few works also studied LL for unsupervised MDE
by using replay data. They perform cross-domain learning with
small domain gap [22] or pre-training with mixed domain
data [20]. We differ from them in two major aspects: i)
we perform scale-aware depth estimation, which is more
challenging than those methods in LL, and ii) we perform
cross-domain learning with a significant domain gap. We list
the comparisons between this work and existing works in
Table I.

B. Lifelong Learning

Lifelong learning (LL), also called incremental learning
or continual learning, has been an active topic in machine
learning. It aims to enable continual learning of a model
on new concepts/tasks/domains while preventing forgetting
the previously learned knowledge. Most existing works solve
LL on image recognition, and various approaches have been
proposed. In general, those methods can be categorized into
three types [4]: i) replay methods [30], [11] that store some
training samples for each of the previous tasks and reuse them
while learning a new task, ii) regularization-based methods
that prevents forgetting by imposing extra regularization in-
stead of storing training samples, such as LwF [24] using a
knowledge distillation loss on previous tasks or EWC [21]
enforcing an additional loss term to alleviate changing on

the weights important for previous tasks, and iii) parameter
isolation methods that fix trained parameters on old tasks
and employ extra network branches for training a new task
[33], [31]. It is worth mentioning that ExpertGate [1] assumes
there are multiple expert models corresponding to multi-tasks.
It proposed to learn domain-specific auto-decoder for each
domain and use the minimum image reconstruction error
to select the corresponding expert model. This method is
straightforward and memory inefficient. For parameter isola-
tion methods, the minimum increase of parameters is expected.

However, it is largely unknown how to enable LL for
dense regression tasks, such as MDE. This work aims to
disclose the difficulties and provide solutions for LL on MDE.
Our method forces depth and uncertainty consistency on old
domains; thus belongs to the second type of methods. Besides,
as mentioned before, we also use few replay data to further
mitigate significant domain gaps.

III. METHOD

A. Multi-head Depth Prediction Framework

We follow most previous works in a practical setting that
assumes training data of previous tasks are unavailable when
learning a new task. Since the scene scale of depth is domain-
dependent, we design a framework with multi-head depth
predictors for domain-specific inference and a shared encoder
for feature extraction. Each predictor is learned to estimate
depth maps of a specific domain with a fixed depth range. A
visualization of our framework is given in Fig. 2 (a), where
the model is shown for learning three different domains. The
model starts from one depth predictor, i.e., f1, for learning in
D1 and extends its predictors dynamically and sequentially for
learning in domains D2 and D3.

Then, the problem is that such multi-head architecture will
significantly increase model complexity for learning in multi-
domains. To alleviate this issue, we introduce an extremely
lightweight design using only two convolutional layers for
depth prediction in each predictor. We take a compact pyramid
feature network [13] in which features extracted at each
scale from the encoder are fused and compressed to a small
fixed number; then, they are concatenated and inputted to the
predictors. In our framework, the shared encoder is built on
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TABLE II
NUMBER OF PARAMETERS OF THE FEATURE EXTRACTOR AND

DOMAIN-SPECIFIC PREDICTORS.

Module Parameters (M)
g 21.81
f1 0.21
f2 0.21
f3 0.21

a ResNet-34 [10] and has 21.81 parameters; each domain-
specific predictor has 0.21 parameters, respectively. In the
case of learning three domains, the framework yields over
97% shared parameters to promote computational efficiency.
A more detailed description of the framework is given in
Appendix A.

During inference, the framework needs to identify the
correct predictor for an input image. We propose an efficient
method for this purpose.

B. Lifelong Cross-Domain Depth Learning

1) Uncertainty-aware Knowledge Acquisition: Given a tar-
get domain Dt, where Dt = {xt, yt}, xt and yt denote images
and their corresponding depth maps, we can directly let the
model learn to estimate depth maps in the target domain.

Depth maps captured by sensors are usually sparse, suffer
from outliers, and miss valid information around object bound-
aries, as seen in Fig. 1. To eliminate the effect of outliers and
improve the robustness, we employ an uncertainty-aware loss
[12] as follows:

`ud =
∑

(exp−s
t

(ŷt − yt)2 + st) (1)

where ŷt is predicted depth maps from xt, st denotes pixel-
wise uncertainty maps estimated simultaneously with depth
maps, such that:

ŷt, st = ft(g(x
t)) (2)

Similar to the depth estimation layers, we also use the two
convolutional layers for uncertainty estimation, resulting in a
total of 0.21 M parameters for each domain-specific predictor.
Besides, the uncertainty estimation layers can be dropped
during inference for efficient computation.

2) Uncertainty-aware Knowledge Preservation: For learn-
ing on a new domain Dt+1, we accordingly add a new domain-
specific depth predictor ft+1 such that ŷt+1 = ft+1(g(x

t+1))
and learn its parameters with Eq. (1). However, this will shift
the parameters of the encoder, thus leading the estimation on
D1,2,...,t to malfunction, i.e., causing catastrophic forgetting.

As studied in [14], applying KD with out-of-distribution
data is able to distill the knowledge of a model learned on the
original domain for MDE. In our method, the trained model
on D1, ...,Dt serves as an expert teacher and provides desired
predictions on each domain. Formally, we let g and f1, ..., ft+1

denote the new encoder and domain-specific predictors while
performing lifelong learning on Dt+1, let g′ and f ′1, ..., f

′
t be

the old model learned on D1, ...,Dt. We apply regularization

on both depth consistency and uncertainty consistency on
Di, i ∈ {1, 2, ..., t} as follows:

`cons =
∑

(|ŷin − ŷio|+ |sin − sio|)

s.t. ŷin, s
i
n = fi(g(x

t+1))

ŷio, s
i
o = f ′i(g

′(xt+1))
(3)

where ŷin and ŷio denotes predicted depth images of Dt+1 with
the new model and old model, respectively; similarly, sin and
sio are predicted uncertainty with new model and old model.

3) Replay for Memory Enhancement: If images from Dt+1

lie in the same distribution as images from Di, i.e., P(xi) ==
P(xt+1), Eq.(3) will be fully effective for preserving knowl-
edge on Di. Otherwise, its performance tends to degrade due
to the domain gap. Therefore, there is a risk that the model will
significantly deteriorate its performance on previous domains
because of a significant domain shift between Dt+1 and Di

where i ∈ {1, 2, ..., t}.
To handle this issue, we take a replay strategy as many

classical lifelong learning methods [30], [11], which is more
consistent with human cognition by periodically and repeat-
edly reviewing historical data. We randomly preserve limited
training data (500 images) of each of the previous domains and
replay them for learning on new domains. Then, the replay loss
is formulated as:

`replay = `ud(ŷ
i, yi) (4)

Then, the loss for incremental learning on Dt+1 can be written
as:

L =

t∑
i=1

λi
(
`cons(ŷ

i
n, s

i
n, ŷ

i
o, s

i
o) + `replay(ŷ

i, yi)
)

+`ud(ŷ
t+1, yt+1)

(5)

where λ is a vector and λt denotes the weight coefficient
for domain Dt. The first and the second loss term in Eq.(5)
alleviate knowledge forgetting on domains D1 to Dt, the third
loss term in Eq.(5) promotes learning knowledge on the new
target domain Dt+1.

C. Online Cross-Domain Depth Inference

After incremental learning on D1 to Dt, ideally, the model
is able to correctly estimate a depth map ŷ from any image
x sampled from Di, i ∈ {1, 2, ..., t}. A practical challenge is
how to identify the domain of xi and accordingly select the
corresponding predictor fi automatically during inference.

To address this problem, we propose to identify the min-
imum distance between a given image and each domain in
the feature space. Since we preserve a small subset of each
domain, we can obtain the mean features of each domain
approximated with these replay data, that is:

µi =
k∑

k=1

g(xik) (6)
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Algorithm 1 Lifelong-MonoDepth: Training
Input: Dt+1: new target domain;

N t = {g′, f ′1, ..., f ′t}: old model;
λt: weight coefficients;
P = {P1, ...,Pt}: replay sets;

Output: N t+1 = {g, f1, ..., ft+1}: new model;
1: Freeze N t;
2: for j = 1 to iterations do

. % knowledge acquisition from new domain %
3: Set gradients of N t+1 to 0;
4: Select a batch (xt+1, yt+1) from Dt+1;
5: Get predictions ŷt=1, st+1 ← ft+1(g(x

t+1));
6: Compute uncertainty-aware depth loss `ud by Eq.(1);

. % knowledge preservation for old domains %
7: for i = 1 to t do
8: Get consistency loss `cons by Eq.(3);
9: Select a batch (xi, yi) from Pi;

10: Compute replay loss `replay by Eq.(4);
11: end for
12: Get the total loss L = `ud+λ

i
∑t

i=1(`cons+`replay);
13: Backpropagate L;
14: Update N t+1;
15: end for

Algorithm 2 Lifelong-MonoDepth: Inference
Input: N t = {g, f1, ..., ft}: learned model on D1 to Dt;

µ = {µ1, ..., µt}: domain-specific mean features;
x: an image from any domain Di, i ∈ {1, ..., t};

Output: ŷ: a depth map;
1: Compute intermediate features by g(x);
2: for i = 1 to t do
3: Compute the distance di between g(x) and µi;
4: end for
5: Select predictor fi ← argmin di;
6: Output depth map ŷ ← fi(g(x));

where xik is k-th image of the replay set of the domain Di, µi

is the mean features of Di calculated by the replay set. Then,
identifying fi can be formulated as:

fi ← argmin
i

di

s.t. di = ‖g(x)− ui‖2
(7)

where ‖ · ‖2 denotes the `2 norm.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We evaluate our method on three benchmark
datasets, including two indoor and one outdoor dataset. The
details are given as follows.

a) NYU-v2 [34]: The NYU-v2 dataset is one of the
most commonly used benchmarks for indoor depth estimation.
NYU-v2 has 464 indoor scenes captured by Microsoft Kinect
with an original resolution of 640 × 480. Among them, 249
scenes are used for training, and the rest 215 scenes are used
for testing. We use the pre-processed data by [16], [15] with

TABLE III
DETAILS OF THE RGBD DATASETS USED IN THE EXPERIMENTS.

Dataset Depth range (m)
Training Test

scenarios / images scenarios / images
NYU-v2 0 ∼ 10 249 / 50688 215 / 654
KITTI 0 ∼ 80 138 / 85898 18 / 1000

ScanNet 0 ∼ 6 1513 / 50473 100 / 17607

about 50,000 RGBD pairs. Following previous studies, we
resize the images to 320×240 pixels and then crop their central
parts of 304×228 pixels as inputs. For testing, we use the
official small subset of 654 RGBD pairs.

b) KITTI [39]: : This outdoor dataset, collected by car-
mounted cameras and a LIDAR sensor, was also widely
used as a benchmark in previous studies of MDE. We use
the official KITTI depth prediction dataset with the official
split of scenes for training and validation. The training and
validation set has 138 and 18 driving sequences, respectively.
The resolution is about 1216 × 352 for most images. We
randomly crop a patch with 480× 320 resolution for training
and use the original resolution for testing.

c) ScanNet [3]: ScanNet is a large-scale indoor RGBD
dataset that contains 2.5 million RGBD images. We randomly
and uniformly select a subset of approximately 50,000 samples
from the training splits of 1513 scenes for training and evaluate
the models on the test set of another 100 scenes with 17K
RGB pairs. The resolution of RGB images is 1296 × 968. We
apply image resizing and cropping as utilized on the NYU-v2
dataset.

2) Implementation Details: We train the model for 20
epochs using the Adam optimizer with an initial learning rate
of 0.0001 for each dataset and reduce it to 50% for every
five epochs. While learning on Dt+1, the hyper-parameters λi

for preventing forgetting on Di are set to 10 for the indoor
dataset and 100 for the outdoor dataset for all experiments
throughout the paper. We trained models with a batch size
of 8 in all the experiments using PyTorch [27]. For the sake
of fair comparison, we train with the uncertainty-aware loss
function for all baseline methods. Notably, as depth scare is
significantly different across domains, as seen in Table III, we
apply a scale-invariant operation to depth maps in the loss
function by dividing the median depth value of ground truth
to exclude potential disturbance.

For evaluation, we use the most popular three measures,
including RMSE, REL, and δ1. The first is a scale-aware
measure, and the latter two are scale-invariant.

3) Baselines: Since no previous methods have been pro-
posed for lifelong metric depth learning, we consider different
learning strategies as baselines for our method as follows.

Single-Domain Training (SDT): is the standard learning
protocol for single domain depth learning, i.e., training and
evaluating on the same dataset. The performance of SDT
provides an upper bound that we aim to reach.

Joint-Domain Training (JDT): randomly selects a batch
from each domain and then mixes data to perform joint
learning.
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TABLE IV
QUANTITATIVE COMPARISONS BETWEEN EXISTING METHODS AND THE PROPOSED METHOD IN WHICH & DENOTES DATA MIXING AND→ DENOTES
SEQUENTIAL ORDER FOR LIFELONG LEARNING. NOTE THAT WE SPECIFY THE CORRECT DOMAIN-SPECIFIC PREDICTOR FOR EACH INPUT IMAGE. ∗

DENOTES RESULTS TAKEN FROM [20].

NYU-v2 KITTI Average
Method RMSE REL δ1 RMSE REL δ1 RMSE REL δ1

SDT 0.532 0.130 0.836 3.286 0.070 0.939 1.909 0.100 0.888
JDT (NYU-v2 & KITTI) 0.581 0.151 0.803 3.658 0.086 0.911 2.120 0.119 0.857

Comoda∗ [22] (NYU-v2 & KITTI → KITTI) 0.673 0.191 0.706 6.249 0.158 0.769 3.461 0.175 0.738
CoSelfDepth∗ [20] (NYU-v2 & KITTI → KITTI) 0.626 0.187 0.728 5.809 0.154 0.784 3.218 0.171 0.756

FT (NYU-v2 → KITTI) 1.133 0.328 0.451 3.655 0.079 0.918 2.394 0.204 0.685
FAL (NYU-v2 → KITTI) 0.532 0.130 0.836 8.946 0.252 0.600 4.739 0.191 0.718
EWC (NYU-v2 → KITTI) 1.007 0.251 0.475 4.550 0.100 0.876 2.779 0.176 0.676
Ours (NYU-v2 → KITTI) 0.622 0.162 0.768 3.829 0.081 0.910 2.226 0.122 0.839
FT (KITTI → NYU-v2) 0.555 0.137 0.820 13.22 0.450 0.179 6.888 0.294 0.500

FAL (KITTI → NYU-v2) 0.991 0.318 0.523 3.286 0.070 0.939 2.139 0.194 0.731
EWC (KITTI → NYU-v2) 0.650 0.173 0.755 7.178 0.243 0.573 3.914 0.208 0.664
Ours (KITTI → NYU-v2) 0.567 0.142 0.812 5.060 0.136 0.813 2.814 0.139 0.813

(a) Images

(b) Ground
Truths

(c) FT

(d) FAL

(e) EWC

(f) Ours

Fig. 3. Qualitative comparison of depth maps predicted by different methods in the learning order of NYU-v2 → KITTI.

Fine-tuning (FT): is a common baseline for lifelong learn-
ing. We also compare it in experiments.

Freezing And Learning (FAL): is a parameter isolation
strategy. It freezes old model parameters including g, f1, ..., ft,
and only updates new model parameters, i.e., ft+1 while
learning on Dt+1.

Elastic Weight Consolidation [21] (EWC): is a classical
method for lifelong learning. It overcomes catastrophic for-
getting by discouraging modifying weights important for old
tasks.

Among baseline methods, SDT and JDT use a single-head
network to demonstrate the upper bound of single-domain
learning and multi-domain learning. The other methods adopt

the same multi-head framework as our method. We also com-
pare two existing methods of lifelong depth learning, including
Comoda [22] and CoSelfDepth [20]. These two methods are
proposed for unsupervised depth learning and use data replay
to avoid catastrophic forgetting. Note that the original Comoda
targets outdoor autonomous driving scenes with small domain
gaps and the code of CoSelfDepth is not publicly available. We
take results implemented in CoSelfDepth [20] for reference in
which experiments on NYU-v2 and KITTI are performed.

B. Results of Stability and Plasticity
1) Results on Two Domains: We first conduct experiments

on two domains, including NYU-v2 and KITTI, the domain
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TABLE V
THE AVERAGE ACCURACY OF LIFELONG DEPTH LEARNING ON ALL THREE

DOMAINS WITH ALL SIX DIFFERENT LEARNING ORDERS.

Learning order RMSE REL δ1

KITTI → NYU-v2 → ScanNet) 3.314 0.181 0.694
KITTI → ScanNet → NYU-v2) 2.871 0.173 0.729
NYU-v2 → KITTI → ScanNet) 2.263 0.145 0.780
ScanNet → KITTI → NYU-v2) 2.075 0.146 0.774
NYU-v2 → ScanNet → KITTI) 1.716 0.145 0.779
ScanNet → NYU-v2 → KITTI) 1.644 0.146 0.782

Average 2.314 0.156 0.756

gap between which is significant. We compare the proposed
method against all baseline approaches. Since the learning
order has a large impact on the results of each domain, we
perform experiments in the order of both NYU-v2 → KITTI
and KITTI → NYU-v2. The old domain is NYU-v2 and the
new domain is KITTI for the former and reversely for the
latter. Notably, FT and FAL inherently yield the best plasticity
and stability due to their training strategy. Therefore, we also
compute the average accuracy on the two datasets for better
quantifying the trade-off between stability and plasticity.

The results are given in Table IV. No doubt, SDT and JDT
gained the best and second-best performance, respectively. For
results of cross-domain learning, although FT obtained the best
accuracy on the new domain, it would yield extremely poor
performance on the old domain, showing the worst result of
mean accuracy. EWC can be seen as an improved method of
FT that tackles this problem by employing an additional reg-
ularization term. We observe that EWC demonstrates slightly
low performance than FT on the new domain, whereas it
gained much better performance on the old domain, thus
achieving better average accuracy. In contrast, FAL does not
suffer from catastrophic forgetting at the cost of sacrificing
the plasticity on a new domain. As a result, our method
achieves promising results for both the old and the new
domain. Although it slightly underperforms FAL in stability
showing the second-best performance on the old domain,
we gained the best average accuracy for all three measures,
e.g., outperforming FT, FAL, and EWC in δ1 by 15.4%,
12.1%, 13.6% on NYU-v2 and 31.3%, 8.2%, 14.9% on KITTI,
respectively.

The results of Comoda [22] and CoSelfDepth [20] are taken
from [20]. Note that the implementations are different from
ours. Thus, we mark them in ∗. These two methods used half
of the training data from NYU-v2 and KITTI for pre-training
and then performed incremental learning with the other half
of the data. Hence, they suffer marginally from large domain
shifts. Nevertheless, our approach demonstrates clearly better
performance than the two methods.

Figure. 3 shows qualitative comparisons between our
method and baseline approaches. It is seen that FT predicted
good depth maps on KTTI; however, it failed on NYU-v2. FAL
inferred the best depth maps on NYU-v2, on the other hand,
failed on KITTI. Both EWC and our method could produce
perceptually correct depth maps and our method yield more
accurate predictions on NYU-v2.

(a) KITTI → NYU-v2 → ScanNet (b) KITTI → ScanNet → NYU-v2

(c) NYU-v2 → KITTI → ScanNet (d) ScanNet → KITTI → NYU-v2

(e) NYU-v2 → ScanNet → KITTI (f) ScanNet → NYU-v2 → KITTI

Fig. 4. The δ1 accuracy on three domains for different learning orders.

2) Results on Three Domains: We then perform experi-
ments on all three domains. In this case, the first learned
domain will suffer from more long-term forgetting. As both
NYU-v2 and ScanNet are composed of indoor scenes, the
domain gap between them is small; on the other hand, they
have a tremendous domain gap from KITTI. Thus, the domain
order performing incremental learning also affects the final
performance. For a fair evaluation, we conduct experiments
for all possible combinations. Totally there are six different
combinations regards to learning order. We take a standard
evaluation protocol for lifelong learning that computes the
mean accuracy over multi-domains.

We report the mean δ1 accuracy in Table V. As seen,
ScanNet→ NYU-v2→ KITTI demonstrates the best accuracy,
whereas KITTI → NYU-v2 → ScanNet shows the worst
performance. Also, KITTI → ScanNet → NYU-v2 leads to
penultimate accuracy. It is not surprising since learning on
KITTI would cause the model to forget the domain for a longer
time.

Figure. 4 gives a more detailed visualization of performance
evolution. It is observed in Fig. 4 (a) that the performance
on KITTI in KITTI → NYU-v2 → ScanNet degraded signifi-
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(a) Images

(b) Ground
Truths

(f)
Estimated

depth

(f)
Estimated
uncertainty

NYU-v2 KITTI ScanNet
Fig. 5. Qualitative comparison of depth and uncertainty maps predicted by our method in the learning order of NYU-v2 → KITTI → ScanNet.

cantly compared to other methods. The results agree well with
our expectations that we should lastly learn KITTI at best.
Overall, Fig. 4 (c) demonstrates the best trade-off between
stability and plasticity as the variance of δ1 among the three
domains is small.

We also provide qualitative results in Fig. 5. As seen, our
approach can accurately infer uncertainty maps for the images
of the corresponding domain. Generally, high uncertainty is
around missing points, far regions, and object boundaries. We
will quantify the effects of uncertainty estimation in ablation
studies.

C. Results of Online Predictor Selection

Online predictor selection is a relatively practical require-
ment. Since there are multiple depth predictors, given an input
image, the model must automatically identify its domain and
select the correct branch to infer a depth map. Therefore,
we conduct experiments to validate the effectiveness of the
proposed predictor selection method for the trained framework
varying the learning order. The results are given in Table VI in
which Domain Prior denotes the results of pre-specifying the
corresponding predictor for input images. It provides an upper
bound to our predictor selection method. As seen, for results of
lifelong learning on two domains, i.e., NYU-v2→ KITTI and
KITTI → NYU-v2, our predictor selection method demon-
strates a 100% success rate. For results on three domains,
our method still attained 100% success rate for KITTI while
yielding a slight accuracy drop (within 4%) for NYU-v2 or
ScanNet. We consider the miss between NYU-v2 and ScanNet
reasonable as they contain some similar indoor images. It can
be better observed in Fig. 6, which shows the number of
categorized images on test sets of the three domains. Fig. 6 (a)

(a) NYU-v2→ KITTI→ ScanNet (b) KITTI→ NYU-v2→ ScanNet

Fig. 6. Results of the number of categorized images on test sets of the three
domains.

and (b) show results of Ours (NYU-v2→ KITTI→ ScanNet)
and Ours (KITTI → NYU-v2 → ScanNet), respectively. It
is seen that our predictor selection method could identify
data from KITTI without misclassification. Although there are
some misclassified images between NYU-v2 and ScanNet, as
we discussed above, the depth maps can still be accurately
inferred due to the small domain gap. Therefore, the accuracy
drop is slight and acceptable. Besides, as shown in Table VI,
the accuracy could be improved sometimes.

We also provide the computational efficiency of the pro-
posed method. We use a computer with Intel(R) Xeon(R)
Gold 6230 CPU and a GeForce RTX 2080 Ti GPU card. We
calculate the GPU time by running the model for an input
image 10000 times and calculate the mean time. Table VII
shows the results for the three domains. As seen, our predictor
selection module spends only 2.7 ms more time for NYU-v2
and ScanNet, and 0.5 ms for KITTI, respectively, demonstrat-
ing superior efficiency.



9

TABLE VI
THE δ1 ACCURACY OF LIFELONG DEPTH LEARNING ON ALL THREE DOMAINS WHERE DOMAIN PRIOR DENOTES RESULTS OF MANUALLY SPECIFY

DOMAIN-SPECIFIC PREDICTOR FOR INPUT IMAGES. ON THE CONTRARY, OUR PREDICTOR SELECTION AUTOMATICALLY CHOOSES THE PREDICTOR BASED
ON THE MINIMUM FEATURE DISTANCE.

Domain Prior Our Predictor Selection Accuracy Drop
Learning order NYU-v2 KITTI ScanNet NYU-v2 KITTI ScanNet NYU-v2 KITTI ScanNet

Ours (NYU-v2 → KITTI ) 0.768 0.910 - 0.768 0.910 - 0% 0% -
Ours (KITTI → NYU-v2 ) 0.812 0.813 - 0.812 0.813 - 0% 0% -

Ours (NYU-v2 → KITTI → ScanNet) 0.774 0.815 0.751 0.769 0.815 0.748 0.5% ↓ 0% 0.3% ↓
Ours (ScanNet → KITTI → NYU-v2) 0.837 0.830 0.655 0.805 0.830 0.667 3.2% ↓ 0% 0.2% ↑
Ours (KITTI → NYU-v2 → ScanNet) 0.794 0.502 0.784 0.794 0.502 0.764 0% 0% 2% ↓
Ours (KITTI → ScanNet → NYU-v2) 0.809 0.732 0.645 0.770 0.732 0.651 3.9%↓ 0% 0.6% ↑
Ours (ScanNet → NYU-v2 → KITTI) 0.806 0.909 0.630 0.780 0.909 0.639 2.6%↓ 0% 0.9% ↑
Ours (NYU-v2 → ScanNet → KITTI) 0.747 0.898 0.693 0.751 0.898 0.672 0.4% ↑ 0% 2.1%↓

TABLE VII
RESULTS OF COMPUTATIONAL EFFICIENCY.

Datasets Resolution
GPU [ms] w/o

predictor
selection

GPU [ms] w
predictor
selection

NYU-v2 304 × 228 8.2 10.9
ScanNet 304 × 228 8.2 10.9
KITTI 1216 × 352 28.0 28.5

D. Ablation Study

We perform several ablation studies to analyze our method
better. For simplicity, we conduct experiments on two do-
mains. We take ours (NYU-v2 → KITTI) as the base method
and remove some critical operations, including data replay, un-
certainty consistency, and scale-invariant operation, for com-
parison. The results are given in Table VIII.

Without uncertainty estimation: the uncertainty is used in
the uncertainty-aware loss Eq.(1) and consistency loss Eq.(3).
We remove the uncertainty estimation module to evaluate the
performance. As a result, we observe performance degradation
both on NYU-v2 and KITTI.

Without data replay: data replay is used to enhance the
stability of the model. The results without replay demonstrate
0.3% and 2% accuracy drop on KITTI and NYU-v2, respec-
tively. It indicates that replay is more important in improving
stability.

Without uncertainty consistency: The uncertainty consis-
tency is applied along with depth consistency in the original
method to prevent forgetting. As shown, without uncertainty
consistency, the performance further degrades mainly for the
old domain, even though we observe a slight improvement for
the new domain.

With a different backbone network: We replace the
ResNet-34 based encoder with MobileNet-v2 [32]. It gives
us a more lightweight network with only 1.99 M parameters.
The δ1 accuracy is 0.733 and 0.901 for NYU-v2 and KITTI,
respectively, and the mean accuracy reaches 0.817, which still
outperforms other baseline methods built on large networks.

TABLE VIII
RESULTS OF ABLATION STUDIES.

Method NYU-v2 KITTI Average
Ours (NYU-v2 → KITTI) 0.768 0.910 0.839
w/o uncertainty estimation 0.740 0.857 0.799

w/o `replay 0.749 0.907 0.828
w/o `replay and uncertainty consistency 0.700 0.913 0.807

E. Summary

• The proposed multi-head lifelong depth learning frame-
work, i.e., Lifelong-MonoDepth, can estimate depth maps
with the absolute scale from multi-domains even though
there exist significant domain gaps.

• Lifelong-MonoDepth attains a good balance between sta-
bility and plasticity on real-world datasets. It generally
outperforms baseline methods by around 8% ∼ 15%.

• Lifelong-MonoDepth can automatically identify the
domain-specific predictor during inference, showing sat-
isfactory accuracy and efficiency.

• The learning order of domains has an essential effect on
lifelong depth learning. For example, learning in NYU-
v2→ ScanNet→ KITTI substantially outperforms KITTI
→ NYU-v2 → ScanNet in average accuracy over multi-
domains. Generally, learning in an indoor → outdoor
order contributes to better performance. In practice, the
learning order should be decided according to the specific
applications.

V. CONCLUSION

We present a novel lifelong learning framework for multi-
domain metric depth estimation, namely Lifelong-MonoDepth.
We argue that the major challenges are i) large domain
gaps and ii) depth scale imbalance, which cause catastrophic
forgetting in lifelong learning. We then propose an efficient
multi-head network composed of a domain-shared encoder and
domain-specific predictors. Such multi-head predictors enable
estimate depth maps with different scales and mitigate domain
shift. To alleviate catastrophic forgetting, we propose a novel
strategy that applies both depth and uncertainty consistency to



10

avoid knowledge forgetting and uses replay regularization to
improve stability further.

We conduct extensive numerical studies to demonstrate the
effectiveness of our method. We show that our approach
outperforms all baseline methods by a good margin. We also
provide the effects of varying the learning order of multiple
domains. During inference, we propose to calculate the dis-
tance between an image and each domain; then, the minimum
distance corresponds to the domain-specific predictor to infer
a depth map.

For the first time, we are able to enable scale-aware depth
prediction across multi-domains with significant domain gaps
in lifelong learning. Potential applications of our method
include visual navigation, obstacle avoidance, 3D perception.
We hope our method can inspire more future explorations on
lifelong depth learning.
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APPENDIX

The detailed framework is given in Fig. 7 where Res1, 2,
3, and 4 denote four residual blocks in ResNet-34, conv d1
and conv d2 are two convolutional layers with 5×5 kernel
for depth estimation; similarly, conv u1 and conv u2 are
two layers with 5×5 kernel for uncertainty estimation, MFF
[13] denotes a multi-feature fusion module. For feature maps
extracted at each scale, they are first reduced in the channel to
only 16 channels and up-sampled to the large size. Thus, the
extracted feature maps by MFF only yield 64 channels. Then,
they are outputted to the domain-specific predictor for depth
prediction.
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