
Solving Hierarchical Soft Constraints with an SMT Solver
Hiroshi Hosobe

Faculty of Computer and Information Sciences, Hosei University
3-7-2 Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan

hosobe@acm.org

ABSTRACT

Constraints allow the declarative specification of various

problems in many fields. In particular, constraint hierarchies that

enable soft constraints with hierarchical preferences are useful for

programming interactive graphical applications. However, it is

still difficult to handle constraint hierarchies with nonlinear

constraints. This paper proposes an algorithm for solving

constraint hierarchies possibly with nonlinear constraints. Instead

of directly solving a constraint hierarchy, it successively generates

and solves ordinary constraint problems by using an external SMT

solver. The results of our experiments show that the algorithm is

able to find accurate constraint hierarchy solutions.

CCS Concepts

• Theory of computation➝Constraint and logic

programming; • Mathematics of computing ➝Solvers

Keywords

Constraint solving; Soft constraint; Constraint hierarchy; SMT

1. INTRODUCTION
Constraints allow the declarative specification of various

problems in many fields such as artificial intelligence, software,

and computer-aided design. In particular, since constraints can

naturally express positional relationships among visual objects in

graphical applications, constraints have been studied in the fields

of user interfaces and computer graphics since its infancy [1] until

recently [2][3].

Soft constraints are important for constraint-based interactive

graphical applications. It is necessary to provide each visual

object with various constraints that represent, for example, its

possible positional range on a screen, its relative positional

relationship with other objects, and the dragging of it with a

mouse. Therefore, it is difficult for programmers to consistently

specify all constraints without using soft constraints.

Constraint hierarchies [4] are widely used as a theoretical

framework for soft constraints. In a constraint hierarchy, each

constraint is associated with a hierarchical preference called a

strength, and solutions are determined to satisfy as many strong

constraints as possible. There has been much research on

algorithms for solving constraint hierarchies for interactive

graphical applications. In particular, there are efficient algorithms

for solving constraint hierarchies consisting of linear constraints.

However, it is still difficult to handle constraint hierarchies with

nonlinear constraints.

In this paper, we propose an algorithm for solving constraint

hierarchies possibly with nonlinear constraints. Instead of directly

solving a constraint hierarchy, our algorithm successively

generates and solves ordinary constraint problems by using an

external SMT solver. The results of our experiments show that

the algorithm is able to find accurate constraint hierarchy

solutions based on the criterion called least-squares-better (LSB).

The rest of this paper is organized as follows. Section 2 describes

previous work related to the proposed algorithm. Next, Section 3

provides a brief introduction to constraint hierarchies and their

notations. Then Section 4 proposes our algorithm, and Section 5

gives its implementation. Section 6 presents the results of our

experiments, and Section 7 discusses the algorithm. Finally,

Section 8 provides conclusions and future work.

2. RELATED WORK
Most of early solvers for constraint hierarchies [5][6][7][8] treated

dataflow constraints by using a graph-theoretic approach.

Algorithms of this kind were limited in application domains

because of their insufficient ability to process simultaneous

constraints and inequality constraints.

Linear constraint solvers [9][10][11][12][13] appropriately

process simultaneous constraints and inequality constraints in

constraint hierarchies. In particular, Cassowary [9] is widely used

as an internal solver of Apple Auto Layout [14]. However, these

solvers are unable to treat nonlinear constraints including

geometric constraints.

To solve constraint hierarchies including nonlinear constraints,

approximate algorithms have been proposed [15][16][17]. For

example, Chorus [15] approximately finds layouts of geometric

objects that slightly differ from correct ones, usually by several

pixels on computer screens. In fact, solving the constraint

hierarchy consisting of and , it

obtains in a typical setting.

There are more accurate algorithms for solving constraint

hierarchies with nonlinear constraints, for example, based on

hierarchical least squares [18] and hierarchical Lagrange

multipliers [19]. However, to the author's knowledge, there are

still no solvers for constraint hierarchies with nonlinear

constraints that are used in practical applications.

Satisfiability modulo theories (SMT) [20] is gaining attention as a

general method for solving various kinds of constraints. Z3 [21]

is an example of an SMT solver. In this paper, we attempt to

utilize the general power of an SMT solver to solve constraint

hierarchies.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

ICCAE 2020, February 14–16, 2020, Sydney, NSW, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7678-5/20/02…$15.00

https://doi.org/10.1145/3384613.3384654

42

3. CONSTRAINT HIERARCHIES
We treat the problem of finding a single solution to a constraint

hierarchy including nonlinear constraints over real-number

domains, based on the solution criterion called least-squares-

better (LSB) [4]. In a constraint hierarchy, each constraint is

associated with a hierarchical preference called a strength. A

constraint hierarchy consists of a finite number of levels, where

the top level contains required (or hard) constraints that must

always be satisfied, and lower levels contain preferential (or soft)

constraints that can be relaxed. Strengths are often symbolically

represented as required, strong, medium, and weak. The LSB

solution set consists of the solutions obtained by successively

computing the least-squares sums of the errors of equal-strength

constraints from the strongest to the weakest.

We use the following notations. A strength is represented as an

integer between and some positive integer . Strength

indicates that the associated constraints are required, and non-zero

strengths indicate that the associated constraints are preferential;

intuitively, a strength represented as a larger integer means a

weaker preference. A constraint hierarchy is represented as

 (), where each indicates the multiset of

the constraints with strength . (Since a constraint hierarchy may

include multiple occurrences of the same constraints, a multiset is

used instead of an ordinary set.) The -th constraint at level of

 is represented as
 . The variables that appear in are

represented as a vector , each component of which indicates a

variable.

4. PROPOSED ALGORITHM
We propose an algorithm for finding LSB solutions to constraint

hierarchies by using an SMT solver. Instead of directly solving a

constraint hierarchy, our algorithm successively generates and

solves constraint problems. To solve such constraint problems,

we use an SMT solver. Note that the SMT solver needs to handle

neither soft constraints nor objective functions.

Our algorithm optimizes each level of a constraint hierarchy from

the strongest to the weakest. Consider, for instance, a constraint

hierarchy with three levels, required, strong, and weak.

Intuitively, the algorithm works as follows.

1. First, it solves the problem consisting of all the required

constraints. Since this is a simple constraint problem

without soft constraints and objective functions, it can be

handled with an SMT solver. If there is no solution, the

algorithm reports it (which is correct from the viewpoint of

the constraint hierarchy theory).

2. Next, it minimizes the objective function corresponding to

strong constraints while satisfying the required constraints.

For this purpose, it constructs the objective function by

summing the squares of the differences of the left- and right-

hand sides of the strong constraints. Also, it minimizes the

objective function by performing binary search for its

minimum value.

3. Finally, it minimizes the objective function corresponding to

weak constraints while satisfying the required constraints

and preserving the minimality of the objective function

corresponding to the strong constraints, in the same way as

the minimization step for the strong constraints.

Figure 1 presents the general description of the proposed

algorithm. It takes as input a constraint hierarchy with

variables . If it finds an LSB solution to , it returns a variable

assignment for that represents the solution; otherwise, it returns

an empty variable assignment. A variable assignment for is a

function from to real numbers; given a variable in , ()
represents the value of . Internally, the algorithm uses a

function “ ” that solves a constraint problem for , denoted

as (), for which it calls an external SMT solver. It also

uses a function “ ” that represents the error of a constraint in

two ways: when denoted as (
), the error of constraint

 is presented as a function of ; when denoted as

 (
 ()), the error of

 for variables whose values are

assigned by is computed as a real number. Typically, the error

of a constraint is computed as the absolute value of the difference

between its left- and right-hand sides (which is also called the

violation or residual of the constraint). The algorithm internally

uses a constant, very small positive real number to determine

whether the computed upper and lower bounds are close enough

during the binary search.

1: ()
2: if no such was found then

3: return empty assignment

4: end if

5:

6: for to do

7:

8: ∑ (
 ())

9: while do

10: (∑ (
)

)

11: (* +)
12: if such was found then

13:

14: ∑ (
 ())

15: else

16:

17: end if

18: end while

19: (∑ (
)

)

20: * +
21: end for

22: return

Figure 1: Algorithm for solving a constraint hierarchy with

variables .

The algorithm works as follows. First, it processes the required

constraints at lines 1 to 4. Next, it processes the preferential

constraints from the strongest to the weakest at lines 5 to 21.

Inside the “for” loop from line 6, it processes the constraints with

particular strength . At lines 7 to 18, it computes the upper

bound of the least-squares sum of the errors of the constraints

with strength by binary search. After this, it generates a new

constraint at line 19 that limits the least-squares sum by the

computed upper bound, and preserves it at line 20 for later

computation. Finally, it returns a variable assignment as a

solution at line 22.

5. IMPLEMENTATION
We implemented the proposed algorithm in Python 3.7.3 by using

version 4.8.7 of the Z3 SMT solver [21]. Its application

programming interface is similar to that of Z3. It provides a class

named ch.Solver that implements the proposed algorithm. As

shown in an example program in Figure 2, required and

43

preferential constraints can be added to an instance of

ch.Solver, and a solution is computed by calling the solve

method of ch.Solver. The current implementation internally

uses for the binary search in the algorithm.

import z3

import ch

solver = ch.Solver()

x = z3.Real('x')

y = z3.Real('y')

solver.add(y >= x * x)

solver.add(x >= -1)

solver.add_strong(x == -2)

solver.add_weak(y == -1)

solution = solver.solve()

Figure 2: Example program for solving a constraint hierarchy

with our implementation of the proposed algorithm.

6. EXPERIMENTS
In this section, we show the results of the three experiments that

we conducted to evaluate the proposed algorithm.

6.1 Linear Constraints
For the first experiment, we use the following constraint hierarchy

that consists of five linear constraints:

Among the constraint hierarchies that we present in this paper,

this is the simplest in the sense of kinds of constraints. It

simplifies the example given in [19] by using two linear inequality

constraints instead of a nonlinear inequality constraint.

Theoretically, there is only one LSB solution () () to

this constraint hierarchy, which is illustrated in Figure 3. Any

solution must be inside or on the border of the yellow region

formed by the three required constraints. To maximally satisfy

 , which is the next strongest, it must satisfy

 . To maximally satisfy , the solution
() () is uniquely determined.

Figure 3: Constraint hierarchy consisting of linear constraints.

The program that solves this constraint hierarchy with our

implementation of the proposed algorithm is given in Figure 4(a).

Its execution obtained () (

) , which is very

close to the theoretical LSB solution (). The average time of

ten executions of the solution computation was 0.326 seconds on

a 1.6 GHz Core i5-8250U processor running Windows 10.

import z3

import ch

solver = ch.Solver()

x = z3.Real('x')

y = z3.Real('y')

solver.add(y >= -x)

solver.add(y >= x)

solver.add(x >= -1)

solver.add_strong(x == -2)

solver.add_weak(y == -1)

solution = solver.solve()

(a)

import z3

solver = z3.Optimize()

x = z3.Real('x')

y = z3.Real('y')

solver.add(y >= -x)

solver.add(y >= x)

solver.add(x >= -1)

solver.add_soft(x == -2, 10)

solver.add_soft(y == -1, 1)

solver.check()

solution = solver.model()

(b)

import z3

solver = z3.Optimize()

x = z3.Real('x')

y = z3.Real('y')

solver.add(y >= -x)

solver.add(y >= x)

solver.add(x >= -1)

e1 = z3.Real('e1')

solver.add(x == -2 + e1)

e2 = z3.Real('e2')

solver.add(y == -1 + e2)

solver.minimize(10 * e1 * e1 + e2 * e2)

solver.check()

solution = solver.model()

(c)

Figure 4: Programs for solving a constraint hierarchy with (a)

the proposed algorithm, (b) a simple use of Z3, and (c)

another simple use of Z3.

For comparison, we show the results of executing two other

programs based on simple uses of the Z3 SMT solver. One

program adopts Z3's soft constraint facility by using the

z3.Optimize class and its add_soft method, as shown in

Figure 4(b). The other adopts Z3's optimization facility by using

z3.Optimize and its minimize method, as shown in Figure

4(c). The executions of both programs obtained () (),
which is far from the theoretical LSB solution () to the

given constraint hierarchy. These results suggest that such simple

uses of Z3 are not usable to constraint hierarchies.

44

6.2 Nonlinear and Linear Constraints
For the second experiment, we use the following constraint

hierarchy that consists of one nonlinear and three linear

constraints:

This was taken from [19] (where the two inequality constraints

were represented as equations by introducing slack variables). It

is a more complex version of the constraint hierarchy shown in

Subsection 6.1; it uses a nonlinear constraint instead of

two linear constraints and .

It has only one theoretical LSB solution () (), which

is illustrated in Figure 5. How the solution is determined can be

understood in the same way as that of the constraint hierarchy in

Subsection 6.1.

Figure 5: Constraint hierarchy consisting of a nonlinear

constraint and linear constraints.

The program that solves this constraint hierarchy with the

proposed algorithm is given in Figure 2. The execution of the

program obtained () (), which is exactly the same as

the theoretical LSB solution. The average time of ten executions

of the solution computation was 0.259 seconds.

6.3 Graphical Constraints
For the third experiment, we use a problem of graphical layout

that consists of two constraint hierarchies. This problem was

taken from [18]. It first treats the following constraint hierarchy:

Next, it treats the following constraint hierarchy:

 √

 √

This problem indicates a typical use of strong and weak

constraints in interactive graphical applications. It assumes a

situation where a point () that is constrained to be on a circle

is moved by a user. As shown in Figure 6(a), the first constraint

hierarchy obtains the initial position of the point in such a way

that it will be as close to () (which can be regarded as the

default position) as possible. The theoretical LSB solution to this

constraint hierarchy is () (√ √)
() . After this, the second constraint hierarchy

modifies the position of the point, as shown in Figure 6(b), in such

a way that it will be as close to () (which indicates the

position to which the user tries to move the point) as possible

while still trying to satisfy the weak preference for its closeness to

the previous position (√ √) (which can be regarded

as the revised default position). The theoretical LSB solution to

this constraint hierarchy is () ().

(a)

(b)

Figure 6: Constraint hierarchies consisting of graphical

constraints for (a) an initial layout and (b) a modified layout.

The execution of the program for solving the first constraint

hierarchy obtained () (

) ,

which is very close to the theoretical LSB solution (

45

√ √). The average time of ten executions of the solution

computation was 0.304 seconds. The execution of the program

for solving the second constraint hierarchy obtained ()
() , which is exactly the same as the theoretical LSB

solution. The average time of ten executions of the solution

computation was 0.835 seconds.

7. DISCUSSION
The results of the experiments presented in this paper showed that

the proposed algorithm was accurate in computing solutions to

constraint hierarchies. As described in Section 2, it is difficult for

approximate methods to obtain such accurate solutions. The

characteristic of the proposed algorithm when compared with

other accurate methods is its simplicity. Although hierarchical

least squares [18] is accurate, its algorithm is complex and is

difficult to implement. Also, although the method of hierarchical

Lagrange multipliers [19] is simpler than hierarchical least

squares, its algorithm is still more complex than the proposed

algorithm. We achieved the simplicity of the proposed algorithm

by utilizing the general power of an SMT solver.

A primary problem with the proposed algorithm is its inefficiency.

The experiment presented in Subsection 6.3 treated a typical use

of preferential constraints in interactive graphical applications. In

this experiment, the implementation of the proposed algorithm

solved the first constraint hierarchy in 0.304 seconds and the

second one in 0.835 seconds. Although solving the first hierarchy

in such a length of time usually is acceptable, solving the second

one in nearly one second can be a problem. This is because the

second one represents a constraint hierarchy that repeatedly

appears while a user is moving an object in an interactive

graphical application. For such an application to be practical, the

used constraint solver should solve such a hierarchy at most in 0.1

seconds. Therefore, the current implementation of the proposed

algorithm has not yet achieved sufficient efficiency.

We treated LSB as the solution criterion for constraint hierarchies.

Although LSB was used by previous arithmetic constraint

hierarchy solvers [11][13][15][16][18][19], it is not an only

solution criterion. In particular, weighted-sum-better (WSB) and

locally-error-better (LEB) (which is less restrictive than WSB)

also were used by previous solvers that handled linear and

dataflow constraints including inequalities [7][9][10][12].

However, it is unclear whether these criteria are useful for

nonlinear arithmetic constraints.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed an algorithm for solving constraint

hierarchies possibly with nonlinear constraints by using an SMT

solver. The results of the experiments showed that the algorithm

was able to find accurate constraint hierarchy solutions.

Our future work includes the development of interactive

applications using the proposed algorithm and the examination of

its practical utility. Also, it is necessary to improve the efficiency

of the proposed algorithm.

9. ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant Number

JP15KK0016.

10. REFERENCES
[1] I.E. Sutherland. Sketchpad: A man-machine graphical

communication system. In Proc. AFIPS Spring Joint Conf.,

pages 329–346, 1963.

[2] C. Zeidler, C. Lutteroth, W. Stuerzlinger, and G. Weber. The

Auckland layout editor: An improved GUI layout

specification process. In Proc. ACM UIST, pages 343–352,

2013.

[3] Y. Jiang, R. Du, C. Lutteroth, and W. Stuerzlinger. ORC

layout: Adaptive GUI layout with OR-constraints. In Proc.

ACM CHI, number 413, pages 1–12, 2019.

[4] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint

hierarchies. Lisp Symbolic Comput., 5(3):223–270, 1992.

[5] B.N. Freeman-Benson, J. Maloney, and A. Borning. An

incremental constraint solver. Comm. ACM, 33(1):54–63,

1990.

[6] H. Hosobe, K. Miyashita, S. Takahashi, S. Matsuoka, and A.

Yonezawa. Locally simultaneous constraint satisfaction. In

Proc. PPCP Workshop, volume 874 of LNCS, pages 51–62,

1994.

[7] A. Borning, R. Anderson, and B. Freeman-Benson. Indigo:

A local propagation algorithm for inequality constraints. In

Proc. ACM UIST, pages 129–136, 1996.

[8] B. Vander Zanden. An incremental algorithm for satisfying

hierarchies of multi-way dataflow constraints. ACM Trans.

Prog. Lang. Syst., 18(1):30–72, 1996.

[9] H. Hosobe. A scalable linear constraint solver for user

interface construction. In Proc. CP, volume 1894 of LNCS,

pages 218–232, 2000.

[10] G.J. Badros, A. Borning, and P.J. Stuckey. The Cassowary

linear arithmetic constraint solving algorithm. ACM Trans.

Comput.-Human Interact., 8(4):267–306, 2001.

[11] K. Marriott and S.S. Chok. QOCA: A constraint solving

toolkit for interactive graphical applications. Constraints,

7(3–4):229–254, 2002.

[12] H. Hosobe. A simplex-based scalable linear constraint solver

for user interface applications. In Proc. IEEE ICTAI, pages

793–798, 2011.

[13] N. Jamil, D. Needell, J. Müller, C. Lutteroth, and G. Weber.

Kaczmarz algorithm with soft constraints for user interface

layout. In Proc. IEEE ICTAI, pages 818–824, 2013.

[14] Apple Inc. Auto Layout Guide. 2011.

[15] H. Hosobe. A modular geometric constraint solver for user

interface applications. In Proc. ACM UIST, pages 91–100,

2001.

[16] H. Hosobe. A geometric constraint library for 3D graphical

applications. In Proc. Smart Graphics, pages 94–101. ACM,

2002.

[17] N. Hurst, K. Marriott, and P. Moulder. Dynamic

approximation of complex graphical constraints by linear

constraints. In Proc. ACM UIST, pages 191–200, 2002.

[18] H. Hosobe. Hierarchical nonlinear constraint satisfaction. In

Proc. ACM SAC, pages 16–20, 2004.

[19] H. Hosobe. A hierarchical method for solving soft nonlinear

constraints. In Proc. SCSE, volume 62 of Procedia CS, pages

378–384, 2015.

[20] D. Monniaux. A survey of satisfiability modulo theory. In

Proc. CASC, volume 9890 of LNCS, pages 401–425, 2016.

[21] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In

Proc. TACAS, volume 4963 of LNCS, pages 337–340, 2008.

46

