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ABSTRACT 

Constraints allow the declarative specification of various 

problems in many fields.  In particular, constraint hierarchies that 

enable soft constraints with hierarchical preferences are useful for 

programming interactive graphical applications.  However, it is 

still difficult to handle constraint hierarchies with nonlinear 

constraints.  This paper proposes an algorithm for solving 

constraint hierarchies possibly with nonlinear constraints.  Instead 

of directly solving a constraint hierarchy, it successively generates 

and solves ordinary constraint problems by using an external SMT 

solver.  The results of our experiments show that the algorithm is 

able to find accurate constraint hierarchy solutions.  

CCS Concepts 

• Theory of computation➝Constraint and logic 

programming; • Mathematics of computing ➝Solvers 
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1. INTRODUCTION 
Constraints allow the declarative specification of various 

problems in many fields such as artificial intelligence, software, 

and computer-aided design.  In particular, since constraints can 

naturally express positional relationships among visual objects in 

graphical applications, constraints have been studied in the fields 

of user interfaces and computer graphics since its infancy [1] until 

recently [2][3]. 

Soft constraints are important for constraint-based interactive 

graphical applications.  It is necessary to provide each visual 

object with various constraints that represent, for example, its 

possible positional range on a screen, its relative positional 

relationship with other objects, and the dragging of it with a 

mouse.  Therefore, it is difficult for programmers to consistently 

specify all constraints without using soft constraints. 

Constraint hierarchies [4] are widely used as a theoretical 

framework for soft constraints.  In a constraint hierarchy, each 

constraint is associated with a hierarchical preference called a 

strength, and solutions are determined to satisfy as many strong 

constraints as possible.  There has been much research on 

algorithms for solving constraint hierarchies for interactive 

graphical applications.  In particular, there are efficient algorithms 

for solving constraint hierarchies consisting of linear constraints.  

However, it is still difficult to handle constraint hierarchies with 

nonlinear constraints. 

In this paper, we propose an algorithm for solving constraint 

hierarchies possibly with nonlinear constraints.  Instead of directly 

solving a constraint hierarchy, our algorithm successively 

generates and solves ordinary constraint problems by using an 

external SMT solver.  The results of our experiments show that 

the algorithm is able to find accurate constraint hierarchy 

solutions based on the criterion called least-squares-better (LSB). 

The rest of this paper is organized as follows.  Section 2 describes 

previous work related to the proposed algorithm.  Next, Section 3 

provides a brief introduction to constraint hierarchies and their 

notations.  Then Section 4 proposes our algorithm, and Section 5 

gives its implementation.  Section 6 presents the results of our 

experiments, and Section 7 discusses the algorithm.  Finally, 

Section 8 provides conclusions and future work. 

2. RELATED WORK 
Most of early solvers for constraint hierarchies [5][6][7][8] treated 

dataflow constraints by using a graph-theoretic approach.  

Algorithms of this kind were limited in application domains 

because of their insufficient ability to process simultaneous 

constraints and inequality constraints. 

Linear constraint solvers [9][10][11][12][13] appropriately 

process simultaneous constraints and inequality constraints in 

constraint hierarchies.  In particular, Cassowary [9] is widely used 

as an internal solver of Apple Auto Layout [14].  However, these 

solvers are unable to treat nonlinear constraints including 

geometric constraints. 

To solve constraint hierarchies including nonlinear constraints, 

approximate algorithms have been proposed [15][16][17].  For 

example, Chorus [15] approximately finds layouts of geometric 

objects that slightly differ from correct ones, usually by several 

pixels on computer screens. In fact, solving the constraint 

hierarchy consisting of            and             , it 

obtains           in a typical setting. 

There are more accurate algorithms for solving constraint 

hierarchies with nonlinear constraints, for example, based on 

hierarchical least squares [18] and hierarchical Lagrange 

multipliers [19].  However, to the author's knowledge, there are 

still no solvers for constraint hierarchies with nonlinear 

constraints that are used in practical applications. 

Satisfiability modulo theories (SMT) [20] is gaining attention as a 

general method for solving various kinds of constraints.  Z3 [21] 

is an example of an SMT solver.  In this paper, we attempt to 

utilize the general power of an SMT solver to solve constraint 

hierarchies. 
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3. CONSTRAINT HIERARCHIES 
We treat the problem of finding a single solution to a constraint 

hierarchy including nonlinear constraints over real-number 

domains, based on the solution criterion called least-squares-

better (LSB) [4].  In a constraint hierarchy, each constraint is 

associated with a hierarchical preference called a strength.  A 

constraint hierarchy consists of a finite number of levels, where 

the top level contains required (or hard) constraints that must 

always be satisfied, and lower levels contain preferential (or soft) 

constraints that can be relaxed.  Strengths are often symbolically 

represented as required, strong, medium, and weak.  The LSB 

solution set consists of the solutions obtained by successively 

computing the least-squares sums of the errors of equal-strength 

constraints from the strongest to the weakest. 

We use the following notations.  A strength is represented as an 

integer between   and some positive integer  .  Strength   

indicates that the associated constraints are required, and non-zero 

strengths indicate that the associated constraints are preferential; 

intuitively, a strength represented as a larger integer   means a 

weaker preference.  A constraint hierarchy is represented as 

    (             ), where each    indicates the multiset of 

the constraints with strength  .  (Since a constraint hierarchy may 

include multiple occurrences of the same constraints, a multiset is 

used instead of an ordinary set.)  The  -th constraint at level   of 

  is represented as   
 .  The variables that appear in   are 

represented as a vector  , each component    of which indicates a 

variable. 

4. PROPOSED ALGORITHM 
We propose an algorithm for finding LSB solutions to constraint 

hierarchies by using an SMT solver.  Instead of directly solving a 

constraint hierarchy, our algorithm successively generates and 

solves constraint problems.  To solve such constraint problems, 

we use an SMT solver.  Note that the SMT solver needs to handle 

neither soft constraints nor objective functions. 

Our algorithm optimizes each level of a constraint hierarchy from 

the strongest to the weakest.  Consider, for instance, a constraint 

hierarchy with three levels, required, strong, and weak.  

Intuitively, the algorithm works as follows. 

1. First, it solves the problem consisting of all the required 

constraints.  Since this is a simple constraint problem 

without soft constraints and objective functions, it can be 

handled with an SMT solver.  If there is no solution, the 

algorithm reports it (which is correct from the viewpoint of 

the constraint hierarchy theory). 

2. Next, it minimizes the objective function corresponding to 

strong constraints while satisfying the required constraints.  

For this purpose, it constructs the objective function by 

summing the squares of the differences of the left- and right-

hand sides of the strong constraints.  Also, it minimizes the 

objective function by performing binary search for its 

minimum value. 

3. Finally, it minimizes the objective function corresponding to 

weak constraints while satisfying the required constraints 

and preserving the minimality of the objective function 

corresponding to the strong constraints, in the same way as 

the minimization step for the strong constraints. 

Figure 1 presents the general description of the proposed 

algorithm.  It takes as input a constraint hierarchy   with 

variables  .  If it finds an LSB solution to  , it returns a variable 

assignment for   that represents the solution; otherwise, it returns 

an empty variable assignment.  A variable assignment   for   is a 

function from   to real numbers; given a variable    in  ,  (  ) 
represents the value of   .  Internally, the algorithm uses a 

function “     ” that solves a constraint problem   for  , denoted 

as      (   ), for which it calls an external SMT solver.  It also 

uses a function “     ” that represents the error of a constraint in 

two ways: when denoted as      (  
   ), the error of constraint 

  
  is presented as a function of  ; when denoted as 

     (  
   ( )), the error of   

  for variables   whose values are 

assigned by   is computed as a real number.  Typically, the error 

of a constraint is computed as the absolute value of the difference 

between its left- and right-hand sides (which is also called the 

violation or residual of the constraint).  The algorithm internally 

uses a constant, very small positive real number   to determine 

whether the computed upper and lower bounds are close enough 

during the binary search. 

1:        (    ) 
2: if no such   was found then 

3:     return empty assignment 

4: end if 

5:      

6: for     to   do 

7:            

8:         ∑      (  
   ( ))

 

  
    

 

9:     while            do 

10:           (∑      (  
   )

 

  
    

 
        

 
) 

11:                 (  * +  ) 
12:         if such    was found then 

13:                  

14:                 ∑      (  
   ( ))

 

  
    

 

15:         else 

16:                  
        

 
 

17:         end if 

18:     end while 

19:       (∑      (  
   )

 

  
    

    ) 

20:         * + 
21: end for 

22: return   

Figure 1: Algorithm for solving a constraint hierarchy   with 

variables  . 

The algorithm works as follows.  First, it processes the required 

constraints at lines 1 to 4.  Next, it processes the preferential 

constraints from the strongest to the weakest at lines 5 to 21.  

Inside the “for” loop from line 6, it processes the constraints with 

particular strength  .  At lines 7 to 18, it computes the upper 

bound     of the least-squares sum of the errors of the constraints 

with strength   by binary search.  After this, it generates a new 

constraint at line 19 that limits the least-squares sum by the 

computed upper bound, and preserves it at line 20 for later 

computation.  Finally, it returns a variable assignment as a 

solution at line 22. 

5. IMPLEMENTATION 
We implemented the proposed algorithm in Python 3.7.3 by using 

version 4.8.7 of the Z3 SMT solver [21].  Its application 

programming interface is similar to that of Z3.  It provides a class 

named ch.Solver that implements the proposed algorithm.  As 

shown in an example program in Figure 2, required and 
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preferential constraints can be added to an instance of 

ch.Solver, and a solution is computed by calling the solve 

method of ch.Solver.  The current implementation internally 

uses        for the binary search in the algorithm. 

import z3 

import ch 

solver = ch.Solver() 

x = z3.Real('x') 

y = z3.Real('y') 

solver.add(y >= x * x) 

solver.add(x >= -1) 

solver.add_strong(x == -2) 

solver.add_weak(y == -1) 

solution = solver.solve() 

Figure 2: Example program for solving a constraint hierarchy 

with our implementation of the proposed algorithm. 

6. EXPERIMENTS 
In this section, we show the results of the three experiments that 

we conducted to evaluate the proposed algorithm. 

6.1 Linear Constraints 
For the first experiment, we use the following constraint hierarchy 

that consists of five linear constraints: 

            
           

            
          
         

 

Among the constraint hierarchies that we present in this paper, 

this is the simplest in the sense of kinds of constraints.  It 

simplifies the example given in [19] by using two linear inequality 

constraints instead of a nonlinear inequality constraint. 

Theoretically, there is only one LSB solution (   )  (    ) to 

this constraint hierarchy, which is illustrated in Figure 3.  Any 

solution must be inside or on the border of the yellow region 

formed by the three required constraints.  To maximally satisfy 

           , which is the next strongest, it must satisfy 

    .  To maximally satisfy          , the solution 
(   )  (    ) is uniquely determined. 

 

Figure 3: Constraint hierarchy consisting of linear constraints. 

The program that solves this constraint hierarchy with our 

implementation of the proposed algorithm is given in Figure 4(a).  

Its execution obtained (   )  ( 
        

        
  ) , which is very 

close to the theoretical LSB solution (    ).  The average time of 

ten executions of the solution computation was 0.326 seconds on 

a 1.6 GHz Core i5-8250U processor running Windows 10. 

import z3 

import ch 

solver = ch.Solver() 

x = z3.Real('x') 

y = z3.Real('y') 

solver.add(y >= -x) 

solver.add(y >= x) 

solver.add(x >= -1) 

solver.add_strong(x == -2) 

solver.add_weak(y == -1) 

solution = solver.solve() 

(a) 

import z3 

solver = z3.Optimize() 

x = z3.Real('x') 

y = z3.Real('y') 

solver.add(y >= -x) 

solver.add(y >= x) 

solver.add(x >= -1) 

solver.add_soft(x == -2, 10) 

solver.add_soft(y == -1, 1) 

solver.check() 

solution = solver.model() 

(b) 

import z3 

solver = z3.Optimize() 

x = z3.Real('x') 

y = z3.Real('y') 

solver.add(y >= -x) 

solver.add(y >= x) 

solver.add(x >= -1) 

e1 = z3.Real('e1') 

solver.add(x == -2 + e1) 

e2 = z3.Real('e2') 

solver.add(y == -1 + e2) 

solver.minimize(10 * e1 * e1 + e2 * e2) 

solver.check() 

solution = solver.model() 

(c) 

Figure 4: Programs for solving a constraint hierarchy with (a) 

the proposed algorithm, (b) a simple use of Z3, and (c) 

another simple use of Z3. 

For comparison, we show the results of executing two other 

programs based on simple uses of the Z3 SMT solver.  One 

program adopts Z3's soft constraint facility by using the 

z3.Optimize class and its add_soft method, as shown in 

Figure 4(b).  The other adopts Z3's optimization facility by using 

z3.Optimize and its  minimize method, as shown in Figure 

4(c).  The executions of both programs obtained (   )  (   ), 
which is far from the theoretical LSB solution (    )  to the 

given constraint hierarchy.  These results suggest that such simple 

uses of Z3 are not usable to constraint hierarchies. 
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6.2 Nonlinear and Linear Constraints 
For the second experiment, we use the following constraint 

hierarchy that consists of one nonlinear and three linear 

constraints: 

            

            
          

         

 

This was taken from [19] (where the two inequality constraints 

were represented as equations by introducing slack variables).  It 

is a more complex version of the constraint hierarchy shown in 

Subsection 6.1; it uses a nonlinear constraint      instead of 

two linear constraints      and    . 

It has only one theoretical LSB solution (   )  (    ), which 

is illustrated in Figure 5.  How the solution is determined can be 

understood in the same way as that of the constraint hierarchy in 

Subsection 6.1. 

 

Figure 5: Constraint hierarchy consisting of a nonlinear 

constraint and linear constraints. 

The program that solves this constraint hierarchy with the 

proposed algorithm is given in Figure 2.  The execution of the 

program obtained (   )  (    ), which is exactly the same as 

the theoretical LSB solution.  The average time of ten executions 

of the solution computation was 0.259 seconds. 

6.3 Graphical Constraints 
For the third experiment, we use a problem of graphical layout 

that consists of two constraint hierarchies.  This problem was 

taken from [18].  It first treats the following constraint hierarchy: 

                  

         
          

 

Next, it treats the following constraint hierarchy: 

                  

           
           

          √  

          √  

 

This problem indicates a typical use of strong and weak 

constraints in interactive graphical applications.  It assumes a 

situation where a point (   ) that is constrained to be on a circle 

is moved by a user.  As shown in Figure 6(a), the first constraint 

hierarchy obtains the initial position of the point in such a way 

that it will be as close to (       ) (which can be regarded as the 

default position) as possible.  The theoretical LSB solution to this 

constraint hierarchy is (   )  (    √      √ )  
(           ) .  After this, the second constraint hierarchy 

modifies the position of the point, as shown in Figure 6(b), in such 

a way that it will be as close to (       ) (which indicates the 

position to which the user tries to move the point) as possible 

while still trying to satisfy the weak preference for its closeness to 

the previous position (    √      √ ) (which can be regarded 

as the revised default position).  The theoretical LSB solution to 

this constraint hierarchy is (   )  (      ). 

 
(a) 

 
(b) 

Figure 6: Constraint hierarchies consisting of graphical 

constraints for (a) an initial layout and (b) a modified layout. 

The execution of the program for solving the first constraint 

hierarchy obtained (   )  (
                 

               
              ) , 

which is very close to the theoretical LSB solution (    
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√      √ ).  The average time of ten executions of the solution 

computation was 0.304 seconds.  The execution of the program 

for solving the second constraint hierarchy obtained (   )  
(      ) , which is exactly the same as the theoretical LSB 

solution.  The average time of ten executions of the solution 

computation was 0.835 seconds. 

7. DISCUSSION 
The results of the experiments presented in this paper showed that 

the proposed algorithm was accurate in computing solutions to 

constraint hierarchies.  As described in Section 2, it is difficult for 

approximate methods to obtain such accurate solutions.  The 

characteristic of the proposed algorithm when compared with 

other accurate methods is its simplicity.  Although hierarchical 

least squares [18] is accurate, its algorithm is complex and is 

difficult to implement.  Also, although the method of hierarchical 

Lagrange multipliers [19] is simpler than hierarchical least 

squares, its algorithm is still more complex than the proposed 

algorithm.  We achieved the simplicity of the proposed algorithm 

by utilizing the general power of an SMT solver. 

A primary problem with the proposed algorithm is its inefficiency.  

The experiment presented in Subsection 6.3 treated a typical use 

of preferential constraints in interactive graphical applications.  In 

this experiment, the implementation of the proposed algorithm 

solved the first constraint hierarchy in 0.304 seconds and the 

second one in 0.835 seconds.  Although solving the first hierarchy 

in such a length of time usually is acceptable, solving the second 

one in nearly one second can be a problem.  This is because the 

second one represents a constraint hierarchy that repeatedly 

appears while a user is moving an object in an interactive 

graphical application.  For such an application to be practical, the 

used constraint solver should solve such a hierarchy at most in 0.1 

seconds.  Therefore, the current implementation of the proposed 

algorithm has not yet achieved sufficient efficiency. 

We treated LSB as the solution criterion for constraint hierarchies.  

Although LSB was used by previous arithmetic constraint 

hierarchy solvers [11][13][15][16][18][19], it is not an only 

solution criterion.  In particular, weighted-sum-better (WSB) and 

locally-error-better (LEB) (which is less restrictive than WSB) 

also were used by previous solvers that handled linear and 

dataflow constraints including inequalities [7][9][10][12].  

However, it is unclear whether these criteria are useful for 

nonlinear arithmetic constraints. 

8. CONCLUSIONS AND FUTURE WORK 
In this paper, we proposed an algorithm for solving constraint 

hierarchies possibly with nonlinear constraints by using an SMT 

solver.  The results of the experiments showed that the algorithm 

was able to find accurate constraint hierarchy solutions. 

Our future work includes the development of interactive 

applications using the proposed algorithm and the examination of 

its practical utility.  Also, it is necessary to improve the efficiency 

of the proposed algorithm. 
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