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Abstract

AI agents today are mostly siloed — they either retrieve and reason over vast
amount of digital information and knowledge obtained online; or interact with the
physical world through embodied perception, planning and action — but rarely both.
This separation limits their ability to solve tasks that require integrated physical and
digital intelligence, such as cooking from online recipes, navigating with dynamic
map data, or interpreting real-world landmarks using web knowledge. We introduce
EMBODIED WEB AGENTS, a novel paradigm for AI agents that fluidly bridge
embodiment and web-scale reasoning. To operationalize this concept, we first
develop the EMBODIED WEB AGENTS task environments, a unified simulation
platform that tightly integrates realistic 3D indoor and outdoor environments with
functional web interfaces. Building upon this platform, we construct and release the
EMBODIED WEB AGENTS Benchmark, which encompasses a diverse suite of tasks
including cooking, navigation, shopping, tourism, and geolocation — all requiring
coordinated reasoning across physical and digital realms for systematic assessment
of cross-domain intelligence. Experimental results reveal significant performance
gaps between state-of-the-art AI systems and human capabilities, establishing both
challenges and opportunities at the intersection of embodied cognition and web-
scale knowledge access. All datasets, codes and websites are publicly available at
our project page https://embodied-web-agent.github.io/.

1 Introduction

Recently, we have seen the proliferation of web agents capable of retrieving information online [Shi
et al., 2017, Yao et al., 2022, Deng et al., 2023, Zhou et al., 2023, Koh et al., 2024] — yet they remain
confined to screens disembodied from the real world. Meanwhile, their physical counterparts —
robots and embodied systems — navigate the world but with limited access to the Internet. What if
the boundary between the digital and physical realms were shattered? What if web agents stepped
out of the browser, with keys to perceive and act in the real 3D physical world, while physical robots
autonomously tapped into the encyclopedic knowledge of the web? As illustrated in Figure 1, such
agents would not only assess the ingredients in your kitchen, search for matching recipes online,
shop for missing items, and cook your favorite dish for you; but also traverse historical landmarks,
interpret architectural styles using both their own perception and Wikipedia, leave personalized
reviews, and perhaps even return with a souvenir in hand. We, as humans, don’t compartmentalize
our intelligence into "physical-only" and "digital-only" modules — we fluidly move between realms.
What if contemporary AI agents could likewise achieve the best of both worlds?

Building such agents goes far beyond a mere combination of isolated web and embodied systems; it
presents a set of deeply intertwined challenges. The first is the perceptual grounding problem: how
can an agent link abstract digital instructions (e.g., "cook potato and egg until golden brown" as in
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Manhattan from 
MoMA to 
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Wait! It’s 
exactly the 

same! I’m in 
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…

Figure 1: Illustrative examples of our EMBODIED WEB AGENTS conceptual paradigm, tasks and
environments. Blue boxes and arrows indicate web interaction / switching to the web respectively.
Orange boxes and arrows indicates acting in / switching to the embodied environment. We omit most
intermediate actions due to the large number of interaction steps.

Figure 1 (b)) with the high-dimensional data streams of the physical world (e.g., visually recognizing
the transition of potatoes and eggs to a golden state through a series of embodied observations)?
Addressing this requires embodied perception, where agents actively interpret their surroundings
through movement, interaction, and multimodal sensing — continually acquiring feedback from
their environment and aligning these observations with digital instructions. The second challenge is
cross-domain planning: how should an agent decide when to shift between physical actions and digital
information retrieval, particularly when information from one domain contradicts or supplements the
other? For instance, the online map may suggest a path to visit Rockefeller Center, but real-world
observation may reveal that the center is closed due to a protest, demanding a dynamic reevaluation
of the agent’s plan. To navigate seamlessly between domains, agents must maintain a coherent and
persistent representation that bridges physical and digital contexts — recalling physical experiences
when operating online, and retrieving digital knowledge when acting in the world. Despite all these
challenges, there remains a surprising lack of research targeting this level of integrated intelligence —
both in terms of conceptual frameworks and benchmark development. As a result, progress in each
domain often unfolds in isolation, with limited cross-pollination between the two paradigms.

To this end, we introduce EMBODIED WEB AGENTS as a new conceptual paradigm of AI systems
that unify physical embodiment with web-scale knowledge access — capable of perceiving and
acting in the real world while reasoning over dynamic, unstructured information from the web. To
operationalize this concept, we first develop the EMBODIED WEB AGENTS task environments, a
unified simulation platform that integrates realistic 3D environments with interactive web interfaces.
This platform combines (1) indoor settings from AI2-THOR, (2) outdoor navigation in Google Earth,
and (3) web interfaces including Wikipedia, online stores, recipe websites, map services etc., enabling
agents to interact seamlessly with both physical and digital spaces. Building upon this environment,
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we construct the EMBODIED WEB AGENTS Benchmark, which encompasses approximately 1.5k
tasks across multiple domains, including: (1) cooking tasks where agents match physical ingredients
with online recipes; (2) navigation combining online maps with physical wayfinding; (3) shopping
requiring coordination between in-store actions and online options; (4) tourism connecting physical
landmarks with web information; and (5) geolocation determining position through embodied
exploration and online research. Together, these tasks systematically test an agent’s ability to bridge
embodied perception, action, and web-based reasoning across varied contexts.

We conduct comprehensive experiments on our proposed EMBODIED WEB AGENTS benchmark
using several state-of-the-art LLM agent baselines, including GPT, Gemini, Qwen, and Intern models.
Experimental results show that current LLM agents are far from satisfactory compared to human
performances. A detailed breakdown and analysis of error types and their percentage contributions to
task failures also reveal that current models predominantly struggle with cross-domain integration,
not isolated capabilities. For instance, these models encounter problems such as being trapped in a
single environment and unable to switch to the other domain, or the misalignment of web instructions
and embodied actions. This further strengthens our position that embodied web agency presents
unique challenges that cannot be studied through isolated physical or digital agents alone, as the key
difficulties emerge precisely at the intersection where these domains are intertwined.

The key contributions of this paper can be summarized as follows.

• We introduce EMBODIED WEB AGENTS as a new conceptual paradigm for AI systems that
integrate embodiment with web-scale information access — formalizing a class of agents
capable of acting in the physical world while reasoning over unstructured digital content.

• We develop the EMBODIED WEB AGENTS task environments, a unified simulation platform
that tightly integrates realistic 3D environments with interactive web interfaces, enabling
agents to perform cross-domain tasks involving perception, action, and retrieval.

• We construct and release the EMBODIED WEB AGENTS Benchmark, which encompasses
a diverse suite of tasks across multiple domains including navigation, shopping, traveling,
cooking and geolocation.

• We conduct in-depth empirical analysis of state-of-the-art LLM agents on our benchmark,
revealing that our benchmark poses rigorous challenges for current LLM agents, and opens
up a challenging new direction and testbed for future agents with integrated intelligence.

2 Related Works

Web Agent Benchmarks Web agents are designed to navigate and interact with web environments
to complete tasks following user instruction. Initial web agent evaluation benchmarks such as
MiniWoB [Shi et al., 2017] and MiniWoB++ [Liu et al., 2018] introduce a suite of diverse web
navigation tasks on synthetic webpages. More recent benchmarks emphasize greater realism and
task diversity. WebShop [Yao et al., 2022] simulates an e-commerce platform with numbers of
products to evaluate agents’ ability to search and make purchases, while Mind2Web [Deng et al.,
2023] provides a diverse collection of open-ended tasks across hundreds of real websites to assess
general web navigation and interaction capabilities. Similarly, benchmarks like WebArena [Zhou
et al., 2023], WebVoyager [He et al., 2024], WebLINX [Lù et al., 2024], and VisualWebArena [Koh
et al., 2024] feature fully functional websites spanning multiple domains, enabling the evaluation of
agents on long-horizon tasks in realistic, diverse environments. Beyond pursuing more realistic test
environments, WorkArena [Drouin et al., 2024] requires agents to interact with enterprise software
and perform tasks demanding higher expertise and comprehension. In this work, we explore a distinct
yet important scenario where web browsing is integrated into the physical embodied world.

Embodied Environments and Benchmarks Recent developments in environments and benchmarks
have accelerated the research on embodied AI. Simulation platforms, such as AI2-THOR [Kolve
et al., 2017], Habitat [Manolis Savva* et al., 2019] and iGibson [Shen et al., 2021, Li et al., 2022],
enable agents to perform diverse interactive tasks in realistic indoor environments. Benchmarks like
ALFRED [Shridhar et al., 2020] and BEHAVIOR [Srivastava et al., 2021] provide a diverse suite
of indoor tasks for embodied agents, requiring instruction understanding, long-horizon planning
and manipulation in a closed environment. Additionally, Embodied Agent Inferface [Li et al.,
2024] formalizes decision processes for LLM-based embodied agents and introduces fine-grained
evaluation metrics for indoor embodied tasks. Efforts have also been made to extend the applicability
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Go to Penn Station from Time 
Square.When you approach the 
destination, you will see a building 
of art-deco style with a sign. When 
was this building built?

     Type [17]
 [Time Square] 

Type [19] 
[Penn Station] 

Instruction from the Web: 
To get to Penn Station from Times Square, 
follow these directions: 1. Start on 7th 
Avenue. 2. Continue for approximately 705 
meters. 3. Reach the destination 

Answer:
1929

Type [1] 
[New Yorker] 

Stop [The Wyndham 
New Yorker Hotel was 
built by Garment 
Center developer 
Mack Kanner and 
designed by Sugarman 
and Berger in art-deco 
style. It was 
announced in 1928, 
construction started in 
1929, and the hotel 
opened in 1930.]

Stop 
[Instruction]

Forward
Left
Forwardé

Arrive

Sign: New YorkerWhen was 
the New 
Yorker 
building 
built?

Click [8]

The building

Figure 2: An Exemplar Pipeline of completing a task in our EMBODIED WEB AGENTS dataset.
Blue boxes indicate web interaction. Orange boxes indicate embodied interaction. Boxes with
gradient colors indicate switching from one environment to the other.

of embodied agents to outdoor environments. A series of outdoor navigation benchmarks, such as
StreetLearn [Mirowski et al., 2018], TouchDown [Chen et al., 2019, Mehta et al., 2020], RUN [Paz-
Argaman and Tsarfaty, 2019], have been introduced to evaluate the ability of embodied agents on
vision-language navigation and spatial description resolution in urban street environments. More
outdoor related tasks such as geolocation prediction [Haas et al., 2023] and map understanding [Xing
et al., 2025] has also been proposed recently. In this work, we design a new benchmark encompassing
a diverse set of embodied tasks within both indoor and outdoor environments. Different from
previous works, our benchmark focuses on embodied tasks that require web access and interaction to
be completed, a realistic scenario that is challenging and neglected in existing benchmarks.

Cross-Modal Agent Systems Cross-modal agent systems integrating vision, language and other
modalities have been explored in both web and embodied environments. In web-based settings, He
et al. [2024] builds a web agent powered by a large multimodal model that interacts with real-world
websites following user instructions. Lin et al. [2024] develops ShowUI, an efficient vision-laguage-
action model for GUI agent. For embodied tasks, multimodal foundation models such as Gato [Reed
et al., 2022], PaLM-E [Driess et al., 2023] and 3D-LLM [Hong et al., 2023] have been developed to
provide generalist policies in real world. In this work, we explore a new dimension for modal fusion
in embodied agents, by integrating both embodied and web actions into one unified framework, to
enable agents to perform more complex and diverse tasks with real-world applications.

3 The EMBODIED WEB AGENT Task Environments

Inspired by Zhou et al. [2023], our environments are formalized as E = ⟨S,A,O, T ⟩, where S is
the combined physical-digital state space, A is the action space spanning both domains, and O is the
observation space comprising embodied input oet and web perception owt . The deterministic transition
function T : S ×A → S governs state evolution as agents select actions based on task specification,
observations, and history. Task completion is measured by reward function r(aT1 , s

T
1 ) evaluating

whether actions successfully fulfill intents like cooking dishes or reaching destinations.

Our task environments can be categorized into three parts: outdoor environment (3.1), indoor
environment (3.2) and web environment (3.3). We show an example of interacting with and switching
among the environments in Figure 2, as well as the action spaces of all environments in Table 1.
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3.1 Outdoor Environment

The outdoor environment is constructed by leveraging the Google Street View and Google Earth
API, which provides real-world, street-level observations captured by Google’s panoramic cameras.
To build the outdoor environment, we select four cities (i.e., New York, Boston, Philadelphia, and
Pittsburgh) with visually and structurally complex street layouts. Unlike synthetic or simulation-
based environments, the visual data provided by Google is inherently more natural, noisy, and
diverse, offering a more challenging and representative benchmark. Through API calls, we retrieve
observations associated with specific geographic coordinates. These include panoramic images or
standard-perspective images in cardinal directions. Alongside visual data, we also obtain: the GPS
coordinates of each point, the heading / directional metadata between connected points, and the
connectivity (adjacency) information across locations. With these elements, we construct a navigation
graph that underlies the outdoor environment. Formally, this environment can be described as an
undirected graph G = (V,E), where each node v ∈ V represents a specific GPS coordinate, each
edge e ∈ E encodes a connection between two coordinates, including heading and distance, and each
node is associated with four directional visual observations (north, east, south, west), represented
as standard field-of-view images. Agents interact with the outdoor environment by observing these
visual inputs, accessing the neighboring node set, and using heading information to reason about
spatial transitions. Given navigation instructions (e.g., derived from web-based directions), the agent
must determine which neighbor to move to at each step in order to reach a specified goal location,
completing the navigation task through step-by-step decision making. This design closely mirrors
real-world settings and introduces challenges that go beyond those posed by synthetic simulators.
Compared to environments with simplified or rendered visuals, our outdoor environment demands
stronger generalization and robustness from embodied agents, making it a more practical and realistic
testbed for evaluating agent systems in open-world scenarios.

3.2 Indoor Environment

The indoor task environment utilizes AI2-THOR [Kolve et al., 2017], a photorealistic 3D indoor
simulation platform. The environment provides highly accurate and interactive kitchen scenes
containing fresh ingredients, cooking equipment, storage containers, and kitchen appliances. Agents
can observe ingredient states, manipulate objects, and monitor cooking progress through visual
perception. Objects are tracked with properties and states, including boolean flags (e.g., isSliced,
isCooked), location information (e.g., parentReceptacles), and more, all of which dynamically
update as agents execute physical actions like chopping or mixing, instructed by online recipes. A
specialized state evaluator compares the current kitchen state against ideal target states, measuring
task completion by checking whether objects have achieved desired states and spatial arrangements.

Action Explanation
INDOOR ENVIRONMENT ACTIONS

Agent Movement
Teleport [obj] Teleport agent to a specific object
MoveAhead/Back/Left/Right Move agent in a cardinal direction

Object Interaction
PickupObject / PutObject [obj] Pick up or put held object

Object State Changes
OpenObject / CloseObject [obj] Open or close an object
SliceObject [obj] Slice an object
CookObject [obj] Cook an object

Environment Switching
switch_environment [msg] Switch between web/embodied

OUTDOOR ENVIRONMENT ACTIONS
Forward / Left / Right Move agent in outdoor environment

WEB ENVIRONMENT ACTIONS
Page Operation Actions

click [id] Click on an element with specific id
type [id] [content] [pr] Type content into field
scroll [direction] Scroll page up or down
hover [id] / press [key_comb] Hover or simulate key press

Tab Management & URL Navigation Actions
new_tab / close_tab / tab_focus Open, close or focus on a tab
goto [url] / go_back / forward Navigate to URL or go back/forward

Table 1: Action Spaces for All Environments

Figure 3: Importance of Different
Capabilities Across Tasks

Figure 4: Environments for Tasks
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3.3 Web Environment

The web environment consists of five functional websites, each supporting different aspects of agent
interaction across both indoor and outdoor scenarios. The websites are implemented with a React.js
frontend structured using modular components and state management, and a FastAPI backend that
exposes asynchronous RESTful APIs for data serving and user interaction. The homepage serves
as the central navigation hub, linking to all other task-specific websites and maintaining contextual
continuity across interactions. The recipe website we built allows users to browse, search, and
filter cooking recipes based on ingredients, dietary preferences, or cuisine types. The shopping
website built from scratch enables management of a shopping cart, ingredient lookup, and simulated
checkout processes. It facilitates task flows involving item selection, inventory reasoning, and
purchasing. We also adapt several websites from the WebArena benchmark [Zhou et al., 2023]. The
OpenStreetMap site offers an interactive map for location search, address lookup, and exploration
of geographic entities. The Wikipedia site presents richly interlinked encyclopedic content for
information-seeking, entity linking, and multi-hop reasoning across documents. These websites are
modified slightly to ensure smooth integration with the homepage. All websites are public and can be
reached via http://98.80.38.242:1220/. We also include more details and screenshots of the
web environment in the Supplementary Material.

4 The EMBODIED WEB AGENTS Benchmark Construction

In this section, we describe how we construct our EMBODIED WEB AGENTS benchmark. We will
cover 5 domains of tasks: Navigation, Shopping, Traveling, Cooking and Geolocation. We show
examples of the tasks in Figure 1, and a full pipeline of completing a task in Figure 2. Figure 3
summarizes the required level of each capability for successful task completion across domains, and
Figure 4 shows which environments are utilized in different tasks.

Navigation Building upon the Outdoor Environment described in § 3.1, our navigation tasks evaluate
an agent’s spatial reasoning ability to reach destinations based on web-sourced directions. We use the
OpenStreetMap website in § 3.3 to ensure reproducibility and consistent web interaction. To create
diverse navigation scenarios, we prompt GPT-4o-mini to generate geographic coordinates across the
aforementioned cities. These coordinates serve as either the start or end points of a task, and the
graph structure centered around each point can be developed using our outdoor environment. During
the prompting process, we also generate initial task instructions tied to the obtained coordinates.
After identifying start or end points, we locate the corresponding counterparts using node adjacency
relationships in the outdoor graph, forming a path within the environment. For evaluation purposes,
we compute the shortest path using Dijkstra’s algorithm as our ground-truth trajectory.

Navigation tasks require bidirectional interaction between web and embodied domains. The agent
must input origin and destination into the map website to obtain directions, then ground these
instructions in the embodied environment through turning actions and movements. Our benchmark
includes 144 navigation tasks, each requiring both web interaction and embodied navigation. Since
VLM-generated locations may have connectivity issues or misalignments with actual map data, we
conduct human verification for all tasks to ensure their correctness and validity.

Shopping In real life, when buying products, we typically compare prices online, decide where
to purchase based on pricing and store location information, place an order online, and then visit
a physical store for pickup. Our shopping tasks evaluate the agent’s ability to handle both online
shopping and embodied environment interactions. The agent must place orders through our self-
hosted shopping website dicussed in § 3.3 (http://98.80.38.242:1207/), obtain store locations,
and navigate in the outdoor environment to the correct store for pickup using the directions by
OpenStreetMap; alternatively, it may also first navigate to a store and then place the order online.

In our benchmark, we simulate four stores located in distinct areas of Manhattan, New York. Our
website lists a variety of items with product names, images, prices, and store information including
distance and store name. The agent needs to weigh both the price of the item and the store’s location
to make an optimal decision, ultimately grounding web information into the embodied environment
and navigating to the store for the selected item. To generate diverse scenarios, we design multiple
templates with different items and user intents, which are listed in detail in our Supplementary
Material. We also test the agent’s ability to retrieve information across multiple browser tabs—e.g.,
requiring the agent to complete a purchase, return to the homepage, switch to a map website, and
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search for directions before embodied navigation. Some complex tasks require multiple rounds of web
interaction and physical navigation within a single shopping scenario, testing agents’ multi-source
integration and sequential planning abilities. In total, our dataset contains 216 shopping tasks.

Traveling Inspired by how people consult web resources while traveling to navigate the physical
world more effectively, we include traveling as a primary benchmark task. Using our custom-built
outdoor environment and a pipeline similar to navigation tasks, we prompt a VLM to generate
starting points, destinations, and initial task instructions, which we then refine into detailed, context-
appropriate versions. Unlike pure navigation tasks that focus on following map directions and
resolving map-reality inconsistencies, traveling tasks emphasize richer interaction between web
resources and the embodied environment. For instance, when an agent encounters a significant
landmark during navigation, as shown in Figure 1 (a) when it runs into a Gothic building, it may
query Wikipedia to retrieve relevant information about that location. The agent is also expected to
explore different architectural styles or historical landmarks, and ground Wikipedia descriptions
to physical observations (e.g., grounding the text descriptions of appearances of a Gothic building
to the actual observation of the building). Web interactions in traveling tasks extend beyond map
reading to include diverse informative sites, creating scenarios with multiple intertwined interactions
between digital and physical domains. Our benchmark includes 110 traveling tasks, each requiring
fluid movement between embodied navigation and web-based information retrieval.

Cooking As described in § 3.2, we use AI2-THOR as our indoor environment. To generate embodied
cooking tasks for execution, we begin by identifying all ingredients available in the AI2-THOR
kitchen scenes. We then manually search online for recipes that include these ingredients. Since
online recipes are often noisy and may not align with the constraints of the AI2-THOR environment,
we use Claude to refine them. Claude is guided by a predefined set of allowable agent actions in
AI2-THOR environment to ensure the resulting recipes are executable. To increase task difficulty,
we introduce confounders for most of the recipes by including pairs of recipes with the same name
but differing in difficulty level, dietary type, ingredients used, or required cooking equipment. The
users can filter out recipes based on these constraints by filter bars below the search bar (as in
http://98.80.38.242:1206/). The next step is to curate a set of tasks based on collected recipes.
For each scene, we retrieve recipes that match the available ingredients. The task instruction asks the
agent to cook the corresponding dish. When a confounder exists for a given recipe, we introduce
additional constraints — e.g., “Diet type is vegetarian,” “Use a tomato,” — to disambiguate between
recipe variants. If an ingredient does not exist in the scene, the agent is expected to go online to
shop for it. The cooking tasks evaluate the agent’s capability to perform long-trajectory planning in
the indoor environment, and continuously check if the states match with the web instruction in the
process. Our benchmark contains in total 911 cooking tasks. An exemplar task is in Figure 1 (b).

Geolocation Geolocation is a classic computer vision task Hays and Efros [2008], where models
predict geographic coordinates of given images. Instead of treating it purely as a conventional vision
problem, we reinterpret it based on its inherent characteristics as an embodied geolocation task.
Inspired by the design of GeoGuessr, we move away from the single-image input setting and treat
the model as an agent situated in an embodied environment. The agent is allowed to explore the
outdoor environment we construct and ultimately output its estimated location. During exploration,
the agent interprets storefront texts, visual cues, and street-view observations while accessing web
information when needed to supplement its observations. The agent explores these environments
freely, performing web interactions when additional information is needed. The task concludes
when the agent has either 1) explored all possible positions or 2) collected sufficient information to
confidently predict its location. This framework unifies embodied navigation, web-based reasoning,
and visual grounding into a cohesive geolocation task. Our data collection is adapted from Huang
et al. [2025], focusing on examples from existing geolocation datasets where models typically fail.
We select coordinates where we hypothesize web information may improve prediction accuracy, then
construct environments centered on these points using Google API. Geolocation evaluates the visual
grounding ability of agents. An example is shown in Figure 1 (c). We collect 142 such data.

5 Experiments

In this section, we first introduce baseline LLM agents (§ 5.1) and evaluation metrics (§ 5.2) we
use for experiments. We then perform result analysis (§ 5.3) on our EMBODIED WEB AGENTS
benchmark. We group the results of Navigation, Shopping and Traveling together as they are all
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related to outdoor planning. Please refer to the Supplementary Material for more experimental results,
experimental setup, LLM prompts, qualitative examples and error cases, as well as more analyses.

5.1 Baseline LLM Agents

We evaluate four LLMs as our baseline agents: GPT-4o, Gemini 2.0 Flash, Qwen-VL-Plus, and
InternVL2.5-latest. GPT-4o is OpenAI’s state-of-the-art multimodal model with strong performance
in visual reasoning and real-time interaction. Gemini 2.0 Flash, by Google DeepMind, is optimized
for speed and efficiency while maintaining robust vision-language capabilities. Qwen-VL-Plus,
from Alibaba’s DAMO Academy, offers fine-grained image-text understanding. InternVL2.5-latest,
developed by Shanghai AI Lab, excels in spatial and semantic reasoning.

5.2 Evaluation Metrics

To comprehensively assess agent performance across physical and digital domains, we employ four
evaluation metrics for outdoor planning and cooking: Overall Accuracy measures the success of
complete cross-domain task execution, requiring both successful web task completion (reaching
the terminal web state) and fulfillment in the embodied environment, representing holistic task
completion that necessitates seamless integration of both domains; Web-only Accuracy evaluates the
ability to successfully complete the web portion of a task, such as reaching the final step of a recipe,
isolating digital domain independent of physical execution; Embodied-only Accuracy assesses an
agent’s ability to achieve all required physical state conditions in the embodied environment, such as
properly slicing ingredients, or navigating to a desired place, measuring physical domain proficiency;
and Overall Completion Rate represents the proportion of task progress achieved, indicating how
much of the required state conditions have been fulfilled relative to the total task objectives.

5.3 Result Analysis

Task / Metric GPT Gemini Qwen Intern Human

O
ut

do
or

Ta
sk

s

Navigation

Overall Accuracy 34.72 30.56 15.97 13.19 90.28
Overall Completion Rate 52.08 48.96 36.81 26.04 91.32

Web-only Accuracy 69.44 67.36 57.64 38.89 92.36
Embodied-only Accuracy 48.61 46.53 31.25 23.61 90.97

Shopping

Overall Accuracy 25.46 23.61 13.89 10.65 92.59
Overall Completion Rate 31.94 30.56 18.52 14.35 93.52

Web-only Accuracy 39.35 37.50 23.15 17.13 93.06
Embodied-only Accuracy 34.26 32.41 17.59 12.96 93.98

Traveling

Overall Accuracy 30.91 25.45 11.82 9.09 91.82
Overall Completion Rate 50.91 48.18 34.55 20.91 93.64

Web-only Accuracy 57.27 53.64 41.82 25.45 94.55
Embodied-only Accuracy 47.27 44.55 29.09 19.09 92.73

Table 2: Model Performance Across Different Outdoor Tasks. There is a huge performance gap
between LLM agents’ performances and human performances.

Metric Vision Text HumanGPT Gemini Qwen Intern GPT Gemini Qwen Intern
Overall Acc 5.4 4.1 0.6 0.0 6.4 5.8 1.5 0.4 77.08

Completion Rate 40.26 35.62 15.91 9.73 39.16 38.92 17.20 10.02 85.37
Web Acc 59.71 47.74 28.65 10.64 57.08 62.23 35.89 15.58 100

Embodied Acc 8.7 6.1 2.2 0.9 10.5 8.2 4.1 1.3 77.08

Table 3: Model Performance for Cooking Task. The models achieve inferior overall accuracies.

Outdoor Planning For outdoor planning, we use GPT-4o-mini alongside Gemini 2.0 Flash, Qwen-
VL-Plus, and InternVL2.5-latest to evaluate performance across navigation, shopping, and traveling
tasks (Table 2). For web observation, we follow the setting of VisualWebArena. We observe
that: 1) GPT-4o-mini consistently leads across all metrics, with the highest accuracy in navigation
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(34.72%), shopping (25.46%), and traveling (30.91%), though still well below human performance.
Gemini follows closely behind, while Qwen and Intern lag behind. 2) Web-only accuracy exceeds
embodied-only accuracy for all outdoor tasks, suggesting models handle digital information more
effectively than physical navigation. 3) Generally, completion rates are satisfactory, while overall
accuracies are very low across all tasks. This indicates models can execute parts of complex tasks but
struggle with consistent cross-domain reasoning over longer sequences. 4) From task perspective,
shopping and traveling involve richer interactions between the embodied environment and the web
than navigation, and each task spans longer steps. As a result, the overall accuracy for shopping and
traveling is noticeably lower than for navigation. This highlights the difficulty of cross-environment
tasks, particularly those that are lengthy and involve multiple steps, for current models.

Cooking For cooking, we implement two distinct approaches: vision-based and text-based. Our
vision-based implementation draws inspiration from VisualWebArena, utilizing screenshot images
of websites enhanced with Set-of-Marks (SoM) annotations that highlight interactive elements. For
embodied observations, we provide first-person visual perspectives from the agent’s viewpoint within
the AI2-THOR environment. The text-based implementation follows WebArena’s methodology,
representing web content through accessibility trees that capture the semantic structure of websites
in textual form. For embodied observations, we extract structured scene graphs directly from AI2-
THOR, providing explicit object relationships and states. We use Qwen-PLUS and InternLM-latest
for Qwen and Intern models without vision.

Table 3 presents performance metrics for various models on the cooking task, comparing vision-
based and text-based approaches against human performance. A substantial performance gap exists
between AI models and humans, with the best model (text-based GPT-4o) achieving only 6.4%
overall accuracy compared to humans’ 77.08%. Text-based models using structured scene graphs
consistently outperform their vision-based counterparts using first-person views, suggesting current
models struggle to ground visual observations effectively in cooking contexts. GPT-4o and Gemini-
2.0-Flash demonstrate substantially stronger performance than Qwen-VL-Plus/Qwen-PLUS and
InternVL/InternLM across both modalities. Notably, similar to outdoor performances, all models
perform significantly better on web-only tasks compared to embodied-only tasks, revealing that
while current models can navigate recipe websites effectively, they struggle with physical execution
requiring object manipulation and state tracking. Despite low overall accuracy, models achieve
moderate completion rates, indicating partial task success but failure in full cross-domain integration.

Geolocation For geolocation tasks, we benchmark against FairLocator [Huang et al., 2025], a study
analyzing VLM performance on GeoGuessr using Google Street View images. As shown in Table
4, the embodied web agent, capable of active exploration and web information access, significantly
outperforms the passive baseline, particularly in identifying finer-grained locations like cities and
streets. We observe consistent improvements across all models when moving from the baseline to
embodied setting, suggesting the performance gains are model-agnostic. Interestingly, we also find
that even when the retrieved Wikipedia search results are noisy or uninformative, the act of querying
itself often helps the agent reason more confidently. This indicates that formulating search queries
may serve as a form of self-supervision. This substantial improvement underscores the potential of
integrating embodied and web domains to enhance performance across numerous real-world tasks,
warranting further investigation.

5.4 Error Analysis

Figure 5 presents a detailed breakdown of error types and their percentages that contribute to task
failures in cooking tasks when using GPT-4o. Our analysis reveals that the primary challenges in
embodied web agents lie not in isolated capabilities, but in their integration. While embodied errors
(14.6%) and web errors (8.0%) occur, cross-domain errors (66.6%) overwhelmingly dominate the
failure landscape — confirming that the critical bottleneck emerges at the intersection where physical
and digital domains meet. The most prevalent failure pattern involves agents becoming trapped in
single-domain cycles. In 23.6% of failures, agents get stuck in the embodied environment, repeatedly
executing irrelevant physical actions without returning to the web for the next step. Similarly, in
13.2% of cases, agents remain fixed in web environments, endlessly clicking "next" through recipe
pages without initiating cooking actions. In addition, agents often switch between environments
without meaningful action (16.7%) or suffer from instruction-action misalignments (11.8%), such
as slicing lettuce when a recipe instructs "slice the apple". Web interaction failures manifest as
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Setting / Model Continent Country City Street All

G
eo

lo
ca

tio
n FairLocator

GPT-4o-mini 90.85 81.69 73.24 1.41 1.41
Gemini-2.0-Flash 93.66 85.92 78.17 0.70 0.70
Qwen-VL-Plus 76.06 58.45 45.07 0.70 0.00

InternVL2.5-Latest 77.46 62.68 52.11 1.41 1.41
Embodied Web Agent

GPT-4o-mini 97.18 90.85 85.21 3.52 3.52
Gemini-2.0-Flash 97.18 94.37 85.21 4.23 4.23
Qwen-VL-Plus 80.28 69.01 49.30 0.00 0.00

InternVL2.5-Latest 93.62 77.30 57.45 2.13 1.42

Table 4: Model performance for geolocation task. All models performed much better when
predicting after interactively exploring the environment and querying the web than just using static
images.

agents getting stuck in page loops (3.1%) or performing identical actions repeatedly (4.3%). In the
embodied domain, agents fail to navigate to interactable objects (5.2%) or execute repeated actions
(4.5%). These isolated domain errors are far less frequent than cross-domain integration failures,
explaining why LLM agents achieve only 6.4% overall accuracy despite moderate performance on
single-domain tasks. This confirms that embodied web agency presents unique challenges requiring
focused research on mechanisms that bridge physical and digital reasoning.

6 Conclusion

0 5 10 15 20 25 30
Percentage (%)

Not navigating to interactable objects
Repeated embodied actions

Embodied action parsing error
Interacting with non-existing objects

Repeated web actions
Stuck in page loop

Web action parsing error
Stuck in embodied environment

Switching without action
Stuck in web environment

Instruction-action misalignment
Instruction-visual misalignment

5.2%

4.5%

3.7%

1.2%

4.3%

3.1%

0.6%

23.7%

16.7%

13.2%

11.8%

1.2%

Error Analysis in Embodied Web Agents

Embodied Errors
Web Errors
Cross-Domain Errors

Figure 5: Error Analysis for Cooking Tasks. We can
see that the majority of errors are cross-domain errors.

In this paper, we introduced EMBODIED
WEB AGENTS, a new paradigm for AI
research that bridges the artificial divide
between physical and digital intelligence.
Through our comprehensive benchmark
spanning cooking, navigation, shopping,
tourism, and geolocation tasks, we demon-
strate that current AI systems face signif-
icant challenges in fluidly integrating em-
bodied perception with web-based infor-
mation retrieval. These findings establish
a foundation for future research in inte-
grated intelligence systems, highlighting
the need for developing AI agents that can
seamlessly traverse physical and digital
worlds. A limitation is our reliance on
simulated agents, which may not fully cap-
ture the complexity and unpredictability of
physical-digital interactions of real robots.
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A Contribution Statement

Yining Hong is responsible for coming up with the idea; overall organization of the team (meetings;
pointing out research directions; divison of responsibilities; reaching out to potential collaborators
etc.); all the data, codes and experiments of indoor cooking; the majority of paper writing; creating
demo videos.

Rui Sun implemented interactions between the outdoor environment and the web, made corrections
to the environment, collected data for outdoor tasks (i.e., navigation, traveling, and shopping), and
validated the data collection process. Rui also wrote part of the paper about outdoor tasks. He also
wrote detailed instructions for implementing the Geolocation tasks for Maxine and Alexander.

Bingxuan Li took care of designing and implementing all the web environments used in this paper.
Bingxuan also made the showcase website of this paper, and wrote the web development part of the
paper.

Xingcheng Yao built the basic outdoor environment using the Google Street View API, which lays a
good foundation for further development. Xingcheng also wrote part 2 and part 3 of related works.

Maxine Wu and Alexander Chien were responsible for the entire Geolocation section. Maxine
implemented the baseline pipeline, contributed to the design of evaluation metrics, performed error
analysis, and created the demo videos. Alexander implemented and contributed to the design of the
embodied environment and the web interaction system for the final pipeline, curated the dataset, and
wrote the corresponding sections of the paper. Maxine also adjusted the pipeline to support different
models. Both authors performed experiments in both the baseline and the embodied settings.

Da Yin came up with first-step instructions of the Geolocation task. He also wrote the web agent part
of the related works.

Yingnian Wu, Zhecan James Wang and Kai-Wei Chang took the advising roles. Specifically, Prof.
Wu provided initial insights on agent planning. Zhecan James Wang helped sort out the meeting notes
and discussion results into documents; provided ideas on task design; helped coordination among
people. Prof. Chang scheduled biweekly meetings with the team, gave valuable advice and pointed
out valuable research directions, as well as helped polish the paper.

B Broader Impacts

Our EMBODIED WEB AGENTS research presents both opportunities and challenges for society. On
the positive side, agents that bridge physical and digital domains could enhance accessibility for
individuals with mobility limitations, support contextualized learning environments, and improve
emergency response through integrated information access. However, several risks warrant atten-
tion. First, these agents may exhibit "dual-domain hallucination," where errors propagate across
physical and digital realms, compounding misinformation. Second, systems that connect physical
environments with web platforms introduce novel privacy concerns beyond those in either domain
alone.

To mitigate these concerns, our benchmark provides transparent evaluation protocols that can identify
cross-domain errors. We designed our environments as simulations that don’t interact with real-
world systems, limiting immediate risks while providing valuable research insights. By releasing
our benchmark to the research community, we aim to encourage the development of more robust
embodied web agents with improved error detection mechanisms before deployment in real-world
settings.

C Dataset Statistics

In Figure 6, we show the detailed distribution of all tasks. In Figure 7, we show more statistics of the
indoor cooking task, including the number of ingredients the task takes, the number of recipe steps as
well as the distribution of diet types and difficulty levels.
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Figure 6: Task, scene and web distributions of our data

Figure 7: More data statistics of the indoor setting
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D More Details about Data Collection

D.1 Outdoor Data Collection

Task intents and templates. To better organize and summarize task intents, we’ve designed a set of
task templates. Each template corresponds to several specific tasks. Below is an overview of these
task templates.

Templates for Outdoor Tasks

Navigation:
* Show me the fastest route from {origin} to {destination}.
* Plot a walking path from {origin} to {destination}, avoiding highways.
* Starting at {origin}, guide me step-by-step to {destination}.
* If I leave {origin} right now, what’s the quickest way to reach {destination}?
* ...

Shopping:
* Add all the items with {{quality}} on this page into my cart.
* Add something like the {{item}} to my shopping cart.
* Buy me a {{product}} with {{detail}}.
* Can you add {{item}} {{condition}} to my wishlist?
* How many calories are in {{item}} and {{secondary_item}}? I need to select a lower one.
* What size of {{item}} should I buy if {{condition}}?
* ...

Wikipedia:
* Search for "{query}" and tell me more about it.
* I would like to know more about "{query}".
* Look up "{query}".
* Provide me more information about "{query}".
* ...

In these templates, the placeholders in {} will be replaced with actual content. For example, "Show
me the fastest route from {origin} to {destination}" might become "Show me the fastest route from
the Penn Station to Times Square".

Task and location generation. Although we have a list of templates for task intents, we still need to
prompt the VLM to generate the initial task intent. Along with the task intent, since our dataset is
a combination of embodied and web task, we also need to generate the location from our outdoor
environment then we can proceed to the next step. The prompt to generate task and location can be
seen in Section F.1.

Annotation Tool. To better support data annotation and visualization, we designed and built our
own annotation tool shown as Figure 8. Having this graphical interface makes manual inspection
and correction much simpler. Moreover, because our tasks involve outdoor navigation, we frequently
need to visualize trajectories on a map, which lets us view the results in a very intuitive way. We can
also directly update the data by using the annotation tool. When we modify the data, we save the
changes made in the annotation tool’s interface directly to the backend JSON file.

D.2 Geolocation Data Collection

Dataset Curation. The dataset we present is composed of samples from the Breadth dataset of
FairLocator. We randomly sample 142 locations and manually review each to ensure they are
reasonable—meaning they contain enough visual cues for a model to make a prediction.

Image Observations. To collect image observations, we use the Google Street View API to obtain
views at our ground-truth coordinates. To support exploration in our embodied pipeline, we also
query nearby "adjacent" viewpoints—defined as nodes within one edge in the Street View panorama
graph, typically corresponding to a small translation from the initial location. For this reason, during
sampling, we also exclude locations without adjacent viewpoints.
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Figure 8: Annotation tool. Here is the annotation tool interface. It features three map windows side
by side: one visualizes the coordinate points within the outdoor environment, the second shows
the ground-truth outdoor navigation path, and the third displays the agent’s actual trajectory after
navigation. Beyond simply visualizing points, you can directly edit the annotation JSON right in
this interface. We load the JSON’s contents into the front end; once human verification is complete,
any needed edits can be applied by clicking "Update Task Annotation", which pushes your changes
back into the backend JSON file. This gives you both a clear visual overview and a streamlined
labeling-and-verification workflow.

Website Queries. We utilize VisualWebArena to do the website queries. Since the VisualWebArena
environment requires configuration files specific to each query or intent, we dynamically generate a
new configuration file each time the agent creates a new search prompt. We do not use predetermined
configuration files, as we want to evaluate the agent’s ability to use visual cues and identify its own
knowledge gaps. Thus, the queries and configurations for each run are random and unique to the
model in some sense. We also stipulate that queries should be styled simplistically and be optimized
for Wikipedia searches since we only allow the model to access the Wikipedia site within our web
environment. We concatenate these queries and their results in a context cache to feed to the agent
during confidence estimations and the final prediction.

E Qualitative Examples

E.1 Outdoor Planning

The outdoor planning consists of three core subtask types, that are navigation, traveling, and shopping.
Here, we present four illustrative examples for navigation error, traveling success, shopping error,
and shopping success.

In Figure 9, the agent misinterprets complex map directions and moves in the wrong direction within
the outdoor environment, ultimately causing the navigation task to fail. This highlights the agent’s
current limitations and biases when reading, processing, and grounding intricate routing information
in the real world.

In Figure 10, it is a representative traveling task that the agent correctly processes the directions,
reaches the designated location. Then, since the location is a point of interest, the agent queries
Wikipedia and retrieves the correct information. This case demonstrates how the agent seamlessly
integrates information from both web sources and the embodied environment to complete the entire
traveling workflow.
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In Figure 11, the agent fails to understand the function of certain web elements and, based on its
vision-language input, does not ground its decision to the correct action (clicking versus typing). This
failure exposes areas for improvement in the agent’s action grounding capabilities, especially for
web interactions. It also reveals weaknesses in its visual grounding when the clickable target is not
visually salient.

In Figure 12, the agent successfully navigates to the correct store, processes the online shopping
interface, and ultimately selects and purchases the right product. This success case illustrates the
agent’s ability to coordinate web-derived information with real-world movement to complete the full
shopping task.

Together, these examples vividly illustrate the challenges and progress in grounding web information
within embodied tasks across navigation, traveling, and shopping scenarios.

Tell me how to get to Stauton Avenue, 

Bellevue from Gay Lane, Bellevue. 

Provide me with the directions.

Type [16] [Gay Lane, Bellevue] where [16]

Type [18] [Stauton Avenue, Bellevue] where [18]

The directions for getting to Stauton Avenue, 

Bellevue from Gay Lane, Bellevue are: 

1. Start on Gay Lane. 

2. Turn left onto Kendall Avenue. 

3. Turn left onto Woodlawn Avenue. 

4. Turn right onto Stauton Avenue. 

5. Reach destination.

Navigation Result

Ground Truth Trajectory

Outdoor Environment

Figure 9: Navigation error. The agent’s failure to correctly understand the directions from the map
website led to navigation errors in the outdoor environment.

E.2 Indoor Cooking

We show a full example of carrying out a cooking task following web instructions in Figure 17 and
18. As we can see, the model needs to perform multi-step iterative reasoning between the web side
and embodied side to complete a complex cooking task. In Figure 19, we show a failure case. It fails
because: 1) action grounding error. The web instruction is to slice apple and bread. However, it also
tries to crack the egg. 2) Stuck in the embodied side and cannot go back to the web side. When it
fails to crack an egg, it starts to perform random actions in the embodied environment without trying
to go back to the web environment.

E.3 Geolocation

Figure 13 illustrates a step-by-step example of the embodied geolocation pipeline. We begin with
images from the initial standpoint—one image facing each of the four cardinal directions. The agent
uses these observations to generate a web query, formulated in the style of a Wikipedia search. This
query is executed using the VisualWebArena environment and the resulting web page content is
retrieved. Both the image observations and the web search results are then passed to the agent’s
confidence estimation module, which assesses whether the current context is sufficient for making an
accurate geolocation prediction. In this example, the agent initially determines that it lacks sufficient
confidence. It then chooses to move to another nearby adjacent standpoint, gathers new image
observations, and re-evaluates its confidence. Upon receiving the additional context, the agent is
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Search for the best route from President‘s 

House to Market Street, Society Hill. 

Provide me with the directions.

Type [16] [President‘s House] 

where [16]

Type [18] [Market Street, Society Hill] 

where [18]

Start on Market Street. 

Reach destination.

Navigation Result

Ground Truth Trajectory

Outdoor Environment

Type [1] [Independence National 

Historical Park] where [1]

Click [8] where [8]

The Independence National Historical 

Park covers an area of 55 acres. It was 

designated as a U.S. National Historic 

Landmark District on October 9, 1966.

I would like 

to know

Independence 

National 

Historical 

Park. What is 

the area of 

the park? 

When was it 

designated as 

a U.S. 

National 

Historic 

Landmark 

District?

Figure 10: Traveling success. The agent first correctly understood the user’s request and provided
accurate map directions. It then navigated through the outdoor environment and moved to the correct
location. Because this was a traveling task at a tourist site, the agent finally queried the environment
by consulting the Wikipedia page, obtained the right information, and successfully completed the
entire task.

Buy one 500g cheese with the lowest price.

Click [6] where [6] Type [16] [500g] where [16]

Type [15] [500g] where [15] Click [6] where [6]

Error

Figure 11: Shopping error. The agent failed to correctly interpret the elements on the webpage and
likewise did not produce the correct action based on its visual and language inputs (it should have
clicked instead of typing), which ultimately caused the agent to err and fail to complete the shopping
task.
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I need to get from CVS Pharmacy, 65, 5th 

Avenue to Whole Foods Market, 4, East 

14th Street.

Type [16] [CVS Pharmacy, 65, 5th 

Avenue] where [16]

Type [18] [Whole Foods Market, 4, East 

14th Street] where [18]

Start on East 14th Street. 

Reach destination.

Navigation Result

Outdoor Environment

Can you add 

one piece of 

chicken with 

4.5 stars to 

my cart?
Click [11] where [11]

Click [17] where [17]

Figure 12: Shopping success. The agent successfully completed all of its subtasks. First, it retrieved
the correct directions from the webpage, then navigated to the right location and began shopping.
Finally, during the shopping process, it selected the correct item and saw the entire shopping task
through to completion.

confident enough to make a prediction and proceeds to output both its predicted location and its
reasoning.

Figure 13: An exemplar pipeline of completing the geolocation task. The red box indicates initial
input, the blue box indicates web interaction, the orange box indicates embodied interaction, and the
green boxes indicate agent reasoning and prediction. Boxes with gradient colors indicate switching
from one environment to the other.
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F LLM Prompts

F.1 Outdoor

Here we list three key prompts used in our outdoor tasks. First, the prompt for generating locations
at the very beginning. Second, based on those generated locations and the initial instruction, we
use a task generation prompt to create the detailed subtasks, both embodied and web-based. After
generating each task, we perform human verification and the verified data then becomes the dataset
we use for our experiments. Once the experiments begin, the web-interaction portion still relies on the
same prompts used in VisualWebArena. For the outdoor navigation portion, we employ the outdoor
navigation prompt shown below. For visualization purposes, some of the prompts shown have been
appropriately shortened.

Location Generation for Outdoor Tasks

You are an AI assistant that is familiar with cities all around the world. For a given city, please
provide an iconic locations. For each location, provide a navigation instruction that captures
its unique characteristics, historical significance, cultural importance, or architectural features
WITHOUT directly mentioning its name. The navigation instructions should be specific
enough that someone knowledgeable about the city could identify the exact location. Return
the results as a JSON list where each element contains ’location’ (a searchable address for
geocoding) and ’instruction’ (an informative instruction that avoids using the location’s name
but will uniquely locate the location). REMEMBER that the location MUST be in the city of
New York, USA; Philadelphia, USA; Boston, USA; Pittsburgh, USA!

Here are four examples:
["location": "350 5th Ave, New York, NY 10118", "instruction": "I’m
in New York City and I’d like to go to the Art Deco skyscraper from
the 1930s that held the title of world’s tallest building for nearly
40 years. It has 102 stories and is an enduring symbol of the city’s
ambition."]
["location": "520 Chestnut St, Philadelphia, PA 19106",
"instruction": "I’m in Philadelphia and I’d like to go to the
red-brick Georgian hall with a white steeple in the historic district
where revolutionary delegates gathered in the 18th century to debate
and adopt the nation’s founding documents."]
["location": "4 Jersey St, Boston, MA 02215", "instruction": "I’m
in Boston and I’d like to go to the century-old ballpark that
opened in 1912, famous for its emerald-green left-field wall and
as the longstanding home of one of Major League Baseball’s oldest
franchises."]
["location": "601 Commonwealth Pl, Pittsburgh, PA 15222",
"instruction": "I’m in Pittsburgh and I’d like to go to the
150-foot-tall water jet fountain at the tip of downtown’s triangular
park, marking where three rivers converge against a backdrop of the
city skyline."]"

Only give me one spot in one of these cities: New York, USA; Philadelphia, USA;
Boston, USA; Pittsburgh, USA.

Task Generation for Outdoor Tasks

You are an Embodied Web Agent capable of obtaining information from webpages and exe-
cuting tasks within an embodied environment. I will provide you with a generated_instruction
and a generated_name from the embodied environment. The generated_instruction is
a description of the task that outlines what the embodied agent needs to do, while the
generated_name is the name or address of a location that the embodied agent needs to go to.
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Based on the generated_instruction and generated_name, you need to generate tasks
that both the web and the embodied agent must execute. These tasks should ensure that
after execution, the embodied web agent can obtain information from the web to assist in
completing the task in the embodied environment.

We have four types of webpages, and I will provide you with a task category. Based on the
task category, you need to generate one or more tasks that interact with the webpages. The
tasks must make use of at least one of the following webpages (or multiple): Task categories
include: Shopping, Navigation, and Traveling.

The descriptions for these task categories are as follows:
1. Shopping: You need to search for product information, prices, store locations on the web.
Then compare this information to find the most suitable store. Finally, the outdoor embodied
agent can use the store address from the web to reach the store.
2. Navigation: You need to search for maps and route planning on the web. These details
will help the outdoor embodied agent find the best route from the current location to the
destination.
3. Traveling: You need to search for tourist attractions, travel guides, local culture, etc., on
the web. Then, this information will help the outdoor embodied agent plan an itinerary and
choose attractions or activities.

The types of webpages include: Shopping, OpenStreetMap, Wikipedia, and Home-
page.
Here are descriptions of these webpages:
1. Shopping: This is a shopping website that provides information on various products,
including prices and store locations. You can look for detailed product information and
purchasing options here.
2. OpenStreetMap: This is an OpenStreetMap website, which provides maps and route
planning services. You can search for your current location, destination, and best routes here.
3. Wikipedia: This is a Wikipedia website that provides encyclopedic knowledge on various
topics. You can look up tourist attractions, local culture, travel guides, and more.
4. Homepage: This is a homepage website that provides links to the above websites. These
websites can also lead you back to this homepage, making it convenient for users to switch
between different websites.

Below are three examples. You need to generate output in this format:
Example 1:
Task Category: Traveling
generated_instruction: I’d like to visit the iconic Central Park, a sprawling urban park in
New York City, known for its picturesque landscapes, recreational activities, and cultural
landmarks. generated_name: Central Park, New York, NY
web_task_intent_0: Search for information about Central Park on the Wikipedia website. I
would like to know about its open hours.
embodied_task_intent_1: I would like to explore Central Park and its various attractions.
web_task_intent_2: Find the best walking route between my current location and Central
Park using the OpenStreetMap website.

Example 2:
Task Category: Navigation
...

Example 3:
Task Category: Shopping
...

You are given the following inputs:
Task Category: [task_category_placeholder]
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generated_instruction: [generated_instruction_placeholder]
generated_name: [generated_name_placeholder]

Please only generate the embodied_task_intent and web_task_intent below.

Outdoor Navigation

You are an embodied navigation agent operating within a street-view graph environment.

Each environment is defined by:
(1) A source node (starting latitude-longitude).
(2) A target node (destination latitude-longitude).
(3) A set of graph nodes, each with:
(a) A unique node ID (lat-lng string).
(b) Four street-view images (north, east, south, west) as your visual observations.
(c) A list of neighbor nodes with absolute heading, descriptive text, and edge distance.

Your Objective:
Navigate step-by-step from the source to the target node by selecting exactly one neighbor at
each step, according to the given parsed navigation instructions and the visual/textual context.

Available Inputs:
(1) Current node ID (string).
(2) Target node ID (string).
(3) Current absolute heading (degrees clockwise from true north).
(4) Parsed instructions: a list of action, distance pairs (action ∈ straight, left, right).
(5) Remaining distance (meters) to complete the current instruction step.
(6) List of previously visited node IDs (to avoid loops).
(7) For each neighbor:
(a) Neighbor ID.
(b) Absolute heading (°).
(c) Relative heading to your current facing (°).
(d) Distance (m) along the edge.

(8)Four visual observations: street-view images facing north, east, south, and west.

Your Task:
Based on all of the above, choose exactly one neighbor ID that best:
1. Follows the current action instruction (straight/left/right) relative to your facing.
2. Moves you toward the target by reducing distance.
3. Does not revisit an already visited node.

Response Format:
Reply with exactly one node ID (lat-lng string) on a single line, with no additional
commentary.

F.2 Geolocation

We design separate prompting strategies for the baseline and embodied pipelines. Additionally, we
found that Qwen required significantly stricter prompt constraints to produce output consistent with
our expected format, so we created dedicated prompts for Qwen.

In the baseline setting, we only prompt the vision-language model (VLM) with a single north-facing
image from the initial standpoint. As shown in Figure 14, we use one prompt for GPT and Gemini
and a separate version tailored to Qwen.

In contrast, the embodied pipeline involves multiple types of prompts, as illustrated in Figure 15. We
use distinct prompts to:
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• instruct the agent to move to adjacent standpoints,
• estimate confidence based on the current context,
• and generate a final location prediction.

The web query prompt (Figure 16) is issued after each new round of observations. The web query is
executed in VisualWebArena and we add the results to a growing context cache along with prior image
observations and web results. This evolving context is provided to the agent for both confidence
estimation and the final prediction.

(a) GPT, Gemini baseline prompt. (b) Qwen baseline prompt.

Figure 14: LLM prompts for geolocation baseline.

G Web Environment

In Figure 20, we show screenshots of our web environment. Please go to http://98.80.38.242:
1220/ for more details.

H Human Performance

To establish meaningful benchmarks for our evaluations, we recruited undergraduate and graduate
student volunteers from UCLA’s Computer Science and Statistics departments. Participants were
selected to represent a diverse range of technological familiarity and task-specific expertise. Each
volunteer participated in a 2-hour session where they completed the same set of tasks that were
presented to the AI models, covering both web-based and embodied scenarios in shopping, traveling,
and cooking domains.

Our analysis reveals remarkable human performance across all domains, with overall accuracy rates
ranging from 77.08% to 92.59%, significantly outperforming even the most capable AI systems.
Particularly noteworthy is the consistent human performance across both web-based and embod-
ied tasks, whereas AI models showed dramatic performance drops in embodied scenarios. This
performance gap underscores the substantial challenges remaining in developing AI systems that
can match human-level understanding and execution of everyday tasks that require multimodal
reasoning, real-world knowledge application, and adaptive problem-solving strategies in response to
environmental feedback.
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(a) Action generation prompt. (b) Confidence estimation prompt.

(c) GPT, Gemini prediction prompt. (d) Qwen prediction prompt.

Figure 15: LLM prompts for geolocation task exploration, confidence estimation, and final predic-
tions.
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Figure 16: LLM prompt for geolocation task web query generation.

27



Crack an Egg in the Pan and move it to a plate

Type: Ultimate Delight Sandwich with Egg

Click Drop-down menu: All Diet Types Click Non-Vegetarian 

Click Drop-down menu: All Difficulties Click Hard

Click Image:Ultimate Delight Sandwich with Egg
 

Scroll Down

Switch_environm
ent

[Crack egg in the 
pan and move it 
to a plate]

Open [Fridge] PickupObject
[Egg]

Teleport
[Pan]

PutObject
[Egg]

PickupObject
{pan]

PutObject
[Stoveburner]

SliceObject
[Egg]

OpenObject
[Cabinet]

PickupObject
[Plate]

PutObject
[Cabinet]

PickupObject [Egg]
PutObject [Plate]

Task: Cook Ultimate Delight Sandwich with Egg. Diet Type: Non-Vegetarian. Difficulty: Hard 

Switch_environe
ment
[The egg has 
been cracked 
and moved to 
the plage]

Figure 17: Qualitative example of indoor cooking - Part 1
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Click Next

Click Next

Switch_envir
onment
[Slice the 
potato]

Switch_envir
onment
[The potato 
has been 
sliced]

Switch_envir
onment
[Cook the 
potato]

Click Next
Teleport 
[Potato]

TurnonObject
[Stoveburner]]
CookObkect
[Potato]

Switch_envir
onment
[The potato 
has been 
cooked]

Switch_envir
onment
[Put potato in 
the plate]

PickupObject
[Potato]

PutObject
[Plate]

Switch_envir
onment
[The potato 
has been put 
to plate]

Switch_envir
onment
[Slice apple, 
tomato and 
bread]

Teleport 
[Apple]

SliceObject
[Apple]

Teleport
[Tomato]

SliceObject
[Tomato]

SliceObject
[Bread]

Switch_envir
onment
[The apple, 
tomato and 
bread have 
been sliced]

Click Next

Click Next

Switch_envir
onment
[Place apple, 
tomato and 
bred on the 
plate]

Teleport
[Bread]

PickupObject
[Bread]

PutObject
[Plate]

PickupObject
[Tomato]

Teleport
[Plate]

PutObject
[Plate]

PickupObject
[Apple]

Teleport
[Plate]

PutObject
[Plate]

Figure 18: Qualitative example of indoor cooking - Part 2
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Teleport [Egg], Teleport [Egg], OpenObject [Fridge], 
OpenObject [Fridge], OpenObject[Fridge], OpenObject 
[Fridge], CookObject [Egg], CookObject [Egg], 
CookObject [Egg], CookObject [Egg], CookObject [Egg], 
OpenObject [Cabinet], OpenObject [Cabinet]...

Failed 

Task: Cook Scrambled Egg with Apple and Toast

Type: Scrambled Egg with Apple and Toast
Click image: Scrambled Egg with Apple and Toast  

Scroll down SliceObject [Apple]

SliceObject [Bread]

Switch_environment
[slice the apple and 
the bread]

Figure 19: Failure case of indoor cooking
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(b) The recipe website. It has a 
lot of filtering chocies 

(a) Homepage

(c)The recipe page (before 
scrolling down)

(d)The recipe page (after 
scrolling down)

(e) The shopping website

(f) The shopping website (Add to 
cart)

(g) The shopping website 
(Checkout)

(h) Openstreetmap

(i) Wikipedia

Figure 20: Web environment screenshots
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