Versatile Multi-Modal Pre-Training for Human-Centric Perception
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b) Performance on Downstream Tasks

Figure 1. An Overview of HCMoCo. a) We present HCMoCo, a versatile multi-modal pre-training framework that takes multi-modal
observations of human body as input for human-centric perception. The pre-train models can be transferred to various human-centric
downstream tasks with different modalities. b) Our HCMoCo shows superior performance on all four downstream tasks, especially for
data-efficient settings (10% DensePose, 20% RGB/depth human parsing, 0.5/0.1% 3D pose estimation). ‘IN” stands for ImageNet.

Abstract

Human-centric perception plays a vital role in vision and
graphics. But their data annotations are prohibitively ex-
pensive. Therefore, it is desirable to have a versatile pre-
train model that serves as a foundation for data-efficient
downstream tasks transfer. To this end, we propose the
Human-Centric Multi-Modal Contrastive Learning frame-
work HCMoCo that leverages the multi-modal nature of hu-
man data (e.g. RGB, depth, 2D keypoints) for effective rep-
resentation learning. The objective comes with two main
challenges: dense pre-train for multi-modality data, effi-
cient usage of sparse human priors. To tackle the chal-
lenges, we design the novel Dense Intra-sample Contrastive
Learning and Sparse Structure-aware Contrastive Learning
targets by hierarchically learning a modal-invariant latent
space featured with continuous and ordinal feature distri-
bution and structure-aware semantic consistency. HCMoCo
provides pre-train for different modalities by combining het-
erogeneous datasets, which allows efficient usage of exist-
ing task-specific human data. Extensive experiments on four
downstream tasks of different modalities demonstrate the ef-
fectiveness of HCMoCo, especially under data-efficient set-
tings (7.16% and 12% improvement on DensePose Estima-
tion and Human Parsing). Moreover, we demonstrate the
versatility of HCMoCo by exploring cross-modality super-
vision and missing-modality inference, validating its strong
ability in cross-modal association and reasoning. Codes

B4 Corresponding author

are available at https://github.com/hongfz16/
HCMoCo.

1. Introduction

As a long-standing problem, human-centric perception
has been studied for decades, ranging from sparse predic-
tion tasks, such as human action recognition [8,27,42,50],
2D keypoints detection [2, 26, 43,48] and 3D pose estima-
tion [22, 31,40], to dense prediction tasks, such as human
parsing [7, 11, 12,25] and DensePose prediction [14]. Un-
fortunately, to train a model with reasonable generalizabil-
ity and robustness, an enormous amount of labeled real data
is necessary, which is extremely expensive to collect and an-
notate. Therefore, it is desirable to have a versatile pre-train
model that can serve as a foundation for all the aforemen-
tioned human-centric perception tasks.

With the development of sensors, the human body can
be more conveniently perceived and represented in multi-
ple modalities, such as RGB, depth, and infrared. In this
work, we argue that the multi-modality nature of human-
centric data can induce effective representations that trans-
fer well to various downstream tasks, due to three major
advantages: 1) Learning a modal-invariant latent space
through pre-training helps efficient task-relevant mutual in-
formation extraction. 2) A single versatile pre-train model
on multi-modal data facilitates multiple downstream tasks
using various modalities. 3) Our multi-modal pre-train set-
ting bridges heterogeneous human-centric datasets through
their common modality, which benefits the generalizability
of pre-train models.



We mainly explore two groups of modalities as shown in
Fig. 1 a): dense representations (e.g. RGB, depth, infrared)
and sparse representations (e.g. 2D keypoints, 3D pose).
Dense representations can provide rich texture and/or 3D
geometry information. But they are mostly low-level and
noisy. On the contrary, sparse representations obtained by
off-the-shelf tools [4, 9] are semantic and structured. But
the sparsity results in insufficient details. We highlight that
it is non-trivial to integrate these heterogeneous modalities
into a unified pre-training framework for the following two
main challenges: 1) learning representations suitable for
dense prediction tasks in the multi-modality setting; 2) us-
ing weak priors from sparse representations effectively for
pre-training.

Challenge 1: Dense Targets. Existing methods [21,30]
perform contrastive learning densely on pixel-level features
to achieve view-invariance for dense prediction tasks. How-
ever, those methods require multiple views of a static 3D
scene [10], which is inapplicable for human-centric appli-
cations with only single view. Furthermore, it is preferable
to learn representations that are continuously and orderly
distributed over the human body. In light of this, we gener-
alize the widely used InfoNCE [33] and propose a dense
intra-sample contrastive learning objective that applies a
soft pixel-level contrastive target, which can facilitate learn-
ing ordinal and continuous dense feature distributions.

Challenge 2: Sparse Priors. To employ priors in con-
trastive learning, previous works [3,23,46] mainly use the
supervision to generate semantically positive pairs. How-
ever, these methods only focus on the sample-level con-
trastive learning, which means each sample is encoded to a
global embedding. It is not optimal for human dense predic-
tion tasks. To this end, we propose a sparse structure-aware
contrastive learning target, which uses semantic correspon-
dences across samples as positive pairs to complement pos-
itive intra-sample pairs. Particularly, leveraging sparse hu-
man priors leads to an embedding space where semantically
corresponding parts are aligned more closely.

To sum up, we propose HCMoCo, a Human-Centric
multi-Modal Contrastive learning framework for versatile
multi-modal pre-training. To fully leverage multi-modal
observations, HCMoCo effectively utilizes both dense mea-
surements and sparse priors using the following three-levels
hierarchical contrastive learning objectives: 1) sample-
level modality-invariant representation learning; 2) dense
intra-sample contrastive learning; 3) sparse structure-aware
contrastive learning. As an effort towards establishing
a comprehensive multi-modal human parsing benchmark
dataset, we label human segments for RGB-D images from
NTU RGB+D dataset [42], and contribute the NTURGBD-
Parsing-4K dataset. To evaluate HCMoCo, we trans-
fer our pre-train model to four human-centric downstream
tasks using different modalities, including DensePose es-

timation (RGB) [14], human parsing using RGB [22] or
depth frames, and 3D pose estimation (depth) [16]. Un-
der full set and data-efficient training settings, HCMoCo
constantly achieves better performance than training from
scratch or pre-train on ImageNet. To name a few, as shown
in Fig. 1 b), we achieve 7.16% improvement in terms
of GPS AP on 10% training data of DensePose estima-
tion; 12% improvement in terms of mIoU on 20% training
data of Human3.6M human parsing. Moreover, we eval-
uate the modal-invariance of the latent space learned by
HCMoCo for dense prediction on NTURGBD-Parsing-4K
with two settings: cross-modality supervision and missing-
modality inference. Compared against conventional con-
trastive learning targets, our method improves the segmen-
tation mloU by 29% and 24% for the two settings, respec-
tively. To the best of our knowledge, we are the first to study
multi-modal pre-training for human-centric perception.
The main contributions are summarized below: 1) As
the first endeavor, we provide an in-depth analysis for
human-centric pre-training, which is formulated as a chal-
lenging multi-modal contrastive learning problem. 2) To-
gether with the novel hierarchical contrastive learning ob-
jectives, a comprehensive framework HCMoCo is pro-
posed for effective pre-training for human-centric tasks. 3)
Through extensive experiments, HCMoCo achieves supe-
rior performance than existing methods, and meanwhile
shows promising modal-invariance properties. 4) To bene-
fit multi-modal human-centric perception, we contribute an
RGB-D human parsing dataset, NTURGBD-Parsing-4K.

2. Related Work

Human-Centric Perception. Many efforts have been put
into human-centric perception in decades. Lots of work in
2D keypoint detection [2,26,43,48] has achieved robust and
accurate performance. 3D pose estimation has long been a
challenging problem and is approached from two aspects,
lifting from 2D keypoints [22, 31, 40] and predicting from
depth map [16,49]. Human parsing can be defined in two
ways. The first one parses garments together with visible
body parts [11, 12,25]. The second one only focuses on
parsing human parts [7, 20, 22]. In this work, we focus
on the second setting because the depth and 2D keypoints
do not contain the texture information needed for garment
parsing. There are a few works [19,32] about human pars-
ing on depth maps. However, the data and annotations are
too coarse or unavailable. To further push the accuracy of
human-centric perception, DensePose [14,44] is proposed
to densely model each human body surface point. The cost
of DensePose annotation is enormous. Therefore, we also
explore data-efficient learning of DensePose.

Multi-Modal Contrastive Learning. Multi-modality nat-
urally provides different views of the same sample which
fits well into the contrastive learning framework. CMC [45]
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Figure 2. Illustration of the general paradigm of HCMoCo.
We group modalities of human data into dense ] and sparse rep-
resentations I;. Three levels of embeddings are extracted (3.1).
Combining the nature of human data and tasks (3.2), we present
contrastive learning targets for each level of embedding (3.3).

proposes the first multi-view contrastive learning paradigm
which takes any number of views. CLIP [39] learns a
joint latent space from large-scale paired image-language
dataset. Extensive studies [, 15, 17, 34, 35, 41] focus on
video-audio contrastive learning. Recently, 2D-3D con-
trastive learning [2 1,29, 30] has also been studied with the
development in 3D computer vision. In this work, aside
from commonly used modalities, we also explore the poten-
tial of 2D keypoints in human-centric contrastive learning.

3. Our Approach

In this section, we first introduce the general paradigm
of HCMoCo (3.1). Following the design principles (3.2),
hierarchical contrastive learning targets are formally intro-
duced (3.3). Next, an instantiation of HCMoCo is intro-
duced (3.4). Finally, we propose two applications of HC-
MoCo to show the versatility (3.5).

3.1. HCMoCo

As shown in Fig. 2, HCMoCo takes multiple modalities
of perceived human body as input. The target is to learn
human-centric representations, which can be transferred to
downstream tasks. The input modalities can be categorized
into dense and sparse representations. Dense representa-
tions I; are the direct output of imaging sensors, e.g. RGB,
depth, infrared. They typically contain rich information but
are low-level and noisy. Sparse representations are struc-
tured abstractions of the human body, e.g. 2D keypoints, 3D
pose, which can be formulated as graph I = G(V, E). Dif-
ferent representations of the same view of a human should
be spatially aligned, which means intra-sample correspon-
dences can be obtained for dense contrastive learning. HC-
MoCo aims to pre-train multiple encoders Ej and E7 that
produce embeddings of dense representations and sparse

representations for downstream tasks transfer.

To support dense downstream tasks, other than the usual
sample-level global embeddings used in [5,6,13,18,28,45],
we propose to consider different levels of embeddings i.e.
global embeddings fY, sparse embeddings f° and dense
embeddings fd I which are defined as follows: 1) For
dense representations I, the global embedding is obtained
by applying a mapper network M to the mean pooling M
of the corresponding feature map, which is formulated as

= MJ oMo Ey(Iy). Similarly, for sparse representa-
tions I, the global embedding is defined as f¢ = MZoMo
Es(Is). 2) Sparse embeddings have the same size as that
of sparse representations. Formally, for sparse representa-
tions I, = G(V, E), where V € R7*X the corresponding
sparse embedding is defined as f? = M? o Es(I,), where
S e RI*K' M? is a mapper network. For dense rep-
resentations, the corresponding sparse features are pooled
from the dense feature map using the correspondences G.
Then the sparse features are mapped to sparse embeddings
as f5 = M3 o G o E4(I;). 3) Dense embeddings are only
defined on dense representations, which is formulated as
f4 = M$ o Eq4(1;). With three levels of embeddings de-
fined, we formulate the overall learning objective as

L= X Lyg(f) + MaLalfh) + NLs(f5), (D)

which is analyzed and explained as follows.

3.2. Principles of Learning Targets Design

In this subsection, we analyze the intuitions when de-
signing learning targets, which makes the following three
principles. 1) Mutual Information Maximization: In-
spired by [36,47], we propose to maximize the lower bound
on mutual information, which has been proved by many pre-
vious works [5, 6, 18,45] to be able to produce strong pre-
train models. 2) Continuous and Ordinal Feature Distri-
bution: Inspired by the property of human-centric percep-
tion, it is desirable for the feature maps of the human body
to be continuous and ordinal. The human body is a struc-
tural and continuous surface. The dense predictions, e.g.
human parsing [11, 12, 25], DensePose [14], are also con-
tinuous. Therefore, such property should also be reflected
in the learned representations. Besides, for an anchor point
on human surfaces, closer points have higher probabilities
of sharing similar semantics with the anchor point than that
of far away points. Therefore, the learned dense repre-
sentations should also align with such ordinal relationship.
3) Structure-Aware Semantic Consistency: Sparse repre-
sentations are abstractions of the human body, which con-
tains valuable structural semantics about the human body.
Instead of identity information, the human pose and struc-

!For easier understanding of the notations, the superscripts of f and
M stand for the kind of embeddings. The subscripts stand for the kind of

LISt

representations (‘g’ for ‘global’; ‘d’ for ‘dense’; ‘s’ for ‘sparse’).



[ +——>  positive pair

<« = = = » soft positive pair

«—— negative pair }

| |
1] | I
Ea| | \
| |
| |

\ | f
| |
| |
| |
Eé | |
| |
— o |
\ \

[ S \ | f
E; } M ‘l\ fsg |
o - Y - |
| o LB |
Encoding — } a) Sample-level Modality-invariant }

Representation Learning

b) Dense Intra-sample
Contrastive Learning

fdr

s
daz

¢) Sparse Structure-aware
Contrastive Learning

Figure 3. Our Proposed Instantiation of HCMoCo. For dense representations, we choose to use RGB and depth. For sparse represen-
tations, 2D keypoints are used for its convenience to obtain. a) At sample-level, the global embeddings are used for modality-invariant
representation learning. b) Between paired dense embeddings, soft contrastive learning target is proposed for continuous and ordinal feature
learning. ¢) Using human prior provided by sparse representations, intra- and inter-sample contrastive learning targets are proposed.

ture understanding are the keys to our target downstream
tasks. Therefore, it is reasonable to eliminate the iden-
tity information and enhance the structure information by
enforcing structure-aware semantic consistency where se-
mantically close embeddings (e.g. embeddings of left hands
from different samples) are pulled close and vice versa.

3.3. Hierarchical Contrastive Learning Targets

Based on the above three principles, we formally define
hierarchical contrastive learning targets in this subsection.
Sample-level modality-invariant representation learn-
ing aims at learning a joint latent space at the sample level
using global embeddings, which fulfills the first principle.
Inspired by [45], the learning target can be formulated as

exp(f{ - £3/7)
S rers o0 TE) |

L, = E |log )

FJ,FjesS,
ferf

where FY is a set of global embeddings of one modality, .S,
is the set of FY of all modalities, fJ is the embedding of the
paired view of that of f{, T is the temperature. It should be
noticed that f{ can be sampled from the global embeddings
of either dense or sparse representations.
Dense intra-sample contrastive learning is operated on
the paired dense representations. For any two paired dense
embeddings f4,, f4, € RIXWxE ", to simultaneously sat-
isfy the first and the second principle, the dense intra-
sample contrastive learning target between them is defined
in a ‘soft’ way as

eXP(fg1($7i‘/) ) ng(mvn))/T)
Z exp(fjl(mvy) : ng(xlvy/)/T)

w/’yl
3
where W;’L” is the weight, 7 is the temperature,

(x,y), (m,n), («’,y") are coordinates on the dense repre-

LP=-F Wy, log
z,Y

m,n

sentation, 1 < z,2’,m < H,1 < y,y/',n < W. The
above equation is a generalized version of InfoNCE [33].
InfoNCE is a special case when W™ is set to 1 if x = m
and y = n else 0. We use the normalized distances as the
weights, which is formulated as

exp(y/(z —m)? + (y — n)?)
S ar g X(y/ (& — 2)2 + (y — /)?)
For each pair of dense representations, the above learning

target is calculated between each pair of dense embeddings.
Therefore, the whole learning target is defined as
12/ ¢d  pd
Li= E Ly (fars faz),
Fd FdeSy
sd1-¢d€m Py

“)

mn __
Wy =

®)

where F'? is a set of dense embeddings of one modality, Sy
is the set of all F%, f¢, and f¢, are two paired embeddings.
It should be noticed that the ‘soft’ learning target cannot
guarantee an ordinal feature distribution. Instead, it serves
as a computationally efficient relaxation of the requirement
of ordinal distribution.

Sparse structure-aware contrastive learning takes two
sparse representations fi and f5 as inputs. The paired fea-
tures f7; and f3; (i.e. features of the j-th joint) should be
pulled close while unpaired features are pushed away. The
two sparse representations can be sampled from the same
or different modalities, intra- or inter-sample. The intra-
sample alignment satisfies the first principle. The inter-
sample alignment follows the third principle. The sparse
structure-aware contrastive learning target is formulated as

eXP(flsj : fQSj/T)
exp(fi; - fij:/7)
(6)

where F? is a set of sparse embeddings of one modality,
S, is the set of F?, 7 is the temperature, f;, f5 are sam-

Ly =— E lo
s F# F3€S, g >
Piff FSE{FF FS} G fsE{Fs Fs}
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Figure 4. Pipelines of Two Applications of HCMoCo.

pled from the union of FY and F55. To conclude, the overall
learning target is formulated as Eq. 1, where A, are the
weights to balance the targets.

3.4. Instantiation of HCMoCo

In this section, we introduce an instantiation of HC-
MoCo. As shown in Fig. 3, for dense representations,
we use RGB and depth. Large-scale paired human RGB
and depth data is easy to obtain with affordable sensors e.g.
Kinect. These two modalities are the most commonly en-
countered in human-centric tasks [7, 11, 12,22,25]. More-
over, a proper pre-train model for depth is highly desired.
Therefore, RGB and depth are reasonable choices of hu-
man dense representations, both of which are easy to ac-
quire and important to downstream tasks. For sparse repre-
sentations, 2D keypoints are used, which provide positions
of human body joints in the image coordinate. Off-the-shelf
tools [4, 9] are available to quickly and robustly extract hu-
man 2D keypoints given RGB images. Using 2D keypoints
as the sparse representation is a good balance between the
amount of human prior and acquisition difficulty.

For RGB inputs I}, an image encoder E [43] is applied
to obtain feature maps E(I}). Similarly, for depth inputs
I2, an image encoder [43] or 3D encoder [37,38] E2% can
be applied to extract feature maps E2(13). 2D keypoints I
are encoded by a GCN-based encoder [51] E to produce
sparse features E(). Mapper networks comprise a single
linear layer and a normalization operation.

As for the implementation of contrastive learning targets,
we choose to use a memory pool to store all the global em-
beddings which are updated in a momentum way. Sparse
and dense embeddings cannot all fit in memory. Therefore,
for the last two types of contrastive learning targets, the neg-
ative samples are sampled within a mini-batch.

3.5. Versatility of HCMoCo

On top of the pre-train framework HCMoCo, we pro-
pose to further extend it on two direct applications: cross-
modality supervision and missing-modality inference. The
extensions are based on the key design of HCMoCo: dense

Label Distribution

RGB

Depth

Annotation

« upper spine e
«left forearm «right arm «right forearm

Figure 5. [Illustration of the RGB-D human parsing dataset
NTURGBD-Parsing-4K.

intra-sample contrastive learning target. With the feature
maps of different modalities aligned, it is straightforward to
implement the two extensions, which are shown in Fig. 4.

Cross-Modality Supervision is a novel task where we train
the network on the source modality, while test on the target
modality. This is a practical scenario where people trans-
fer the knowledge of some single modality dataset to other
modalities. At training time, an additional downstream task
head (e.g. segmentation head) D is attached to the backbone
of the source modality. The hierarchical contrastive learn-
ing targets £ together with downstream task loss £ are used
for end-to-end training. At inference time, D is attached to
the backbone of the target modality. The extracted feature
maps of the target modality are passed to D for prediction.

Missing-Modality Inference is another novel task where
we train the network using multi-modal data and inference
on single modality. Multi-modal data collection in practice
would inevitably result in data with incomplete modalities,
which brings the requirement of missing-modality infer-
ence. At training time, the feature maps of multiple modal-
ities are fused using max-pooling and fed to a downstream
task head D. Similarly, hierarchical contrastive learning tar-
gets £ and downstream task loss £’ are used for co-training.
At inference time, the feature map of a single modality is
passed to D for missing-modality inference.

4. NTURGBD-Parsing-4K Dataset

Although RGB human parsing has been well studied [7,
I'1,12,25], human parsing on depth [19,32] or RGB-D data
has not been fully addressed due to the lack of labeled data.
Therefore, we contribute the first RGB-D human parsing
dataset: NTURGBD-Parsing-4K. The RGB and depth are
uniformly sampled from NTU RGB+D (60/120) [27, 42].
As shown in Fig. 5, we annotate 24 human parts for paired
RGB-D data. The partition protocols follow that of [22].
The train and test set both have 1963 samples. The whole
dataset contains 3926 samples. Hopefully, by contributing
this dataset, we could promote the development of both hu-
man perception and multi-modality learning.



Table 1. DensePose Estimation Results on COCO. " randomly initializes the model before pre-training. T initializes the model by ImageNet
pre-train before pre-training. All results in [%].

Method Pre-train Datasets Full Data 10% Data
) BBox AP GPS AP GPSM AP 10U AP | BBox AP GPS AP GPSM AP IoU AP

From Scratch - 57.27 62.03 63.61 65.88 39.38 35.75 41.62 49.92
CMC” [45] NTURGBD+MPII 60.33 64.97 65.66 66.96 44.92 43.84 47.94 54.00
MMV™ [1] NTURGBD+MPII 59.89 64.23 65.47 67.03 43.24 41.40 45.99 52.52
Ours” NTURGBD+MPII 61.33 65.89 66.92 67.66 47.76 48.47 51.65 56.15
IN Pre-train - 62.66 66.48 67.42 68.63 48.28 44.34 49.11 56.11
CMC' [45] NTURGBD+MPII 62.76 66.16 67.30 68.06 49.21 48.82 52.57 57.94
MMVT [1] NTURGBD+MPII 62.97 66.67 67.51 68.29 50.16 50.28 53.54 58.32
Ours' NTURGBD+MPII 63.11 67.33 68.12 68.72 50.29 51.50 54.47 58.66
CMCT [45] NTURGBD+COCO 63.58 67.22 67.77 68.46 51.77 53.53 56.18 59.37
Ours’ NTURGBD+COCO 62.95 67.77 68.29 68.63 52.18 54.01 56.64 59.93

Table 2. Human Parsing Results on Human3.6M. * randomly initializes the model before pre-training. T initializes the model by ImageNet

pre-train before pre-training. All results in [%].

Method Full Data 20% Data 10% Data 1% Data

mloU mAcc aAcc | mloU mAcc aAcc | mloU mAcc aAcc | mloU mAcc aAcc
From Scratch | 44.13 58.88 98.82 | 4241 56.25 98.81 | 32.61 4376 9852 | 7.27 1097 97.45
CMC” [45] 5433  68.01 99.09 | 52.10 65.65 99.03 | 48.37 61.18 98.95 | 14.61 20.07 98.07
MMV™ [1] 52.69 65.82 99.06 | 50.66 63.55 99.01 | 46.23 58.52 9890 | 12.86 17.10 97.94
Ours’ 61.36 75.09 99.25 | 59.17 7344 99.19 | 57.08 71.75 99.13 | 16.55 22.27 98.18
IN Pre-train 5690 69.94 99.14 | 48.86 60.75 9897 | 44.55 56.86 98.87 | 14.65 20.22 98.09
cMct [45] 5893 71.70 99.20 | 57.41 70.13 99.17 | 5435 6747 99.09 | 17.77 23.77 98.20
MMV [1] 59.08 71.57 99.20 | 57.28 69.69 99.17 | 53.86 66.46 99.08 | 17.66 23.54 98.20
Ours! 62.50 75.84 99.27 | 60.85 74.23 99.23 | 58.28 7199 99.17 | 20.78 27.52 98.34

5. Experiments
5.1. Experimental Setup

Implementation Details. The default RGB and depth en-
coders are HRNet-W18 [43]. The default datasets for pre-
train are NTU RGB+D [27] and MPII [2]. The former pro-
vides paired indoor human RGB, depth, and 2D keypoints,
The latter provides in-the-wild human RGB and 2D key-
points. Mixing human data from different domains helps
our pre-train models adapt to a wilder domain.

Downstream Tasks. We test our pre-train models on four
different human-centric downstream tasks, two on RGB
images and two on depth. 1) DensePose estimation on
COCO [14]: DensePose aims at mapping pixels of the ob-
served human body to the surface of a 3D human body,
which is a highly challenging task. 2) RGB human parsing
on Human3.6M [22]. Human3.6M provides pure human
part segmentation, which aligns with our objectives. We
uniformly sample 2fps of the video for training and evalu-
ation. 3) Depth human parsing on NTURGBD-Parsing-4K.
4) 3D pose estimation from depth maps on ITOP [16] (only
side view). For all the above downstream tasks, we use the
pre-train backbones for end-to-end fine-tune.

Comparison Methods. Since there are few previous
human-centric multi-modal pre-train methods, we propose

to use general multi-modal contrastive learning methods
CMC [45] and MMV [1] as the baselines. Although there
are other multi-modal contrastive learning works, they ei-
ther require the multi-view calibration [21] or focus on
multi-modal downstream tasks [17, 29] and therefore are
not suitable for comparison. In addition, for RGB tasks,
we also experiment under two settings, one initializes en-
coders with supervised ImageNet [24] (IN) pre-train while
the other does not.

5.2. Performance on Downstream Tasks

DensePose Estimation. As shown in Tab. 1, we test Dense-
Pose estimation [14] under two settings: full and 10% of the
training data. The trained models are tested on the full val-
idation set of DensePose. Firstly, if not using IN pre-train,
our pre-train model significantly outperforms both ‘From
Scratch’ and two baseline methods. Especially under 10%
of training data, 12.7% improvement in terms of GPS AP
is observed. And our pre-train model even outperforms that
using IN pre-train by 4.13% in terms of GPS AP. When
we use IN pre-train as initialization, which is a common
practice for 2D tasks, our method still outperforms all the
baselines. Our method surpasses IN pre-train by 7.2% and
5.4% in terms of GPS/GPSM AP under 10% setting. To
further test the performance of in-domain transfer, we also



Table 3. Ablation Study on Densepose/ Human3.6M/ ITOP/ NTURGBD-Parsing-4K. All results in [%].

Method DensePose 10% ITOP 0.1%/ 0.2% | Human3.6M 10% | NTURGBD 20%
BBox GPS GPSM IoU Acc Acc mloU mAcc mloU mAcc
Sample-level Mod-invariant | 49.21 4882  52.57 57.94 | 57.73 50.08 54.35 67.47 30.40 51.54
+ Hard Dense Intra-sample | 49.40 49.14 5249 5730 | 56.43 54.05 55.36 68.43 31.26 51.54
+ Soft Dense Intra-sample 5021  50.25 53.42  57.70 | 62.33 51.50 56.35 69.26 32.20 51.06
+ Sparse Structure-aware 50.29 51.50 5447 58.66 | 65.83 62.36 58.28 71.99 35.01 52.55
pre-train models using training sets of NTU RGB+D and 5.3. Ablation Study

COCO. The performance gain under 10% setting further
improves to 9.7% and 7.5% in terms of GPS/GPSM AP.

RGB Human Parsing. As shown in Tab. 2, we test four
settings on Human3.6M [22]: full, 20%, 10% and 1% train-
ing data. In all settings, our method outperforms all base-
lines in all metrics. On full training data, we outperform
IN pre-train by 5.6% in terms of mloU. The performance
gain increases with the amount of training data decreases.
It is worth noticing that with only 10% of training data, our
method outperforms IN pre-train with full training data.

Table 4. Human Parsing Results on NTURGBD-Parsing-4K [%].

Method Full Data 20% Data
mloU mAcc aAcc | mloU mAcc aAcc
IN Pre-train | 37.49 57.52 98.36 | 28.56 46.81 98.10
CMC [45] 38.20 58.73 98.39 | 30.40 51.54 98.02
MMV [1] 38.09 58.49 98.37 | 30.41 50.62 98.07
Ours 39.32 58.79 98.47 | 35.01 52.55 98.53

Depth Human Parsing. As shown in Tab. 4, we test
the pre-train depth backbone on our proposed Dataset
NTURGBD-Parsing-4K with all training data and 20%
training data. We outperform all baselines on two settings.
Especially, only using 20% of training data, we surpass IN
pre-train by 6.4% and MMV [1] by 4.6 % in terms of mloU.

Table 5. 3D Pose Estimation Results on ITOP. All results in [%].

Method | 100% 10% 1% 0.5% 02% 0.1%
IN Pre-train | 85.19 8344 7720 5431 1327 1421
CMC[45] | 87.08 8536 79.49 7507 57.73 50.08
MMV [I] | 8613 8349 79.70 7170 60.83 54.44
Ours 87.19 8549 78.71 76.34 65.83 62.36

3D Pose Estimation. As shown in Tab. 5, we test the pre-
train depth backbone on ITOP [16] with six different ra-
tios of training data. Our pre-train model outperforms all
baselines on most settings. With only 10% training data,
the accuracy of our method outperforms that of IN pre-train
with all training data. It is also worth noticing that 0.1% of
training data are 17 samples, which makes this a few-shot
learning setting. With such limited training data, IN pre-
train barely produce meaningful results, while our method
improves the accuracy by 48.2%.

In this subsection, we perform a thorough ablation study
on HCMoCo to justify the design choices. As shown
in Tab. 3, we firstly report the results of only apply-
ing sample-level modality-invariant representation learning.
Then we add dense intra-sample contrastive learning and
sparse structure-aware contrastive learning in order. To fur-
ther demonstrate the effect of the ‘soft’ design in dense
intra-sample contrastive learning, we also report results of
the ‘hard’ learning target, which takes the form of a classic
InfoNCE [33]. We report the results of the ablation study
on all four downstream tasks under data-efficient settings.

For DensePose estimation, it is important to learn fea-
ture maps that are continuously and ordinally distributed,
which is the expected result of soft dense intra-sample con-
trastive learning. The performance gain of the soft learn-
ing target over the hard counterpart justifies the observation
and the learning target design. The dense intra-sample con-
trastive learning also shows superiority on three other down-
stream tasks, which shows the importance of fine-grained
contrastive learning targets for dense prediction tasks.

Explicitly injecting human prior into the network
through sparse structure-aware contrastive learning also
proves its effectiveness by further improving the perfor-
mance on DensePose. Thanks to the strong hints provided
by 2D keypoints, the performance of 3D pose estimation is
improved. Moreover, the sparse structure-aware contrastive
learning boosts the performance of human parsing both on
RGB and depth maps by 1.9% and 2.8% respectively in
terms of mloU. Although 2D keypoints are sparse priors,
they still provide the rough location of each part of the hu-
man body, which facilitate the feature alignment of same
body parts. To summarize, the sparse and dense learning
targets both contribute to the performance of our methods,
which is in line with our analysis.

5.4. Performance on HCMoCo Versatility

Cross-Modality Supervision. We test the cross-modality
supervision pipeline on the task of human parsing on
NTURGBD-Parsing-4K because it has two modalities and
respective dense annotations. Two baseline methods are
adopted: 1) using CMC [45] contrastive learning target; 2)
no contrastive learning target. For a fair comparison, the
backbones of all methods are initialized by CMC [45] pre-
train. At training time, the target modality of training data



Table 6. Cross-Modality Supervised Human Parsing Results on
NTURGBD-Parsing-4K. All results in [%].

RGB — Depth Depth — RGB
Method mloU mAcc aAcc | mloU mAcc aAcc
No Contrastive | 3.94 436 9224 | 371 4.03 91.63
CMC [45] 386 559 86.81| 3.85 427 091.75
Ours 33.19 5438 94.70 | 26.80 48.80 92.84

is not available. We experiment on two settings where we
supervise on RGB, test on depth (RGB — Depth), and vice
versa (Depth — RGB). As shown in Tab. 6, our method
outperforms both baselines under two settings. Specifically,
our method improves the mloU of both settings by 29.2%
and 23.0%, respectively. Even compared to methods with
direct supervision, we can achieve comparable results.

Table 7. Missing-Modality Human Parsing Results on
NTURGBD-Depth. All results in [%].

Only RGB Only Depth
mloU mAcc aAcc | mloU mAcc aAcc

No Contrastive | 13.45 14.77 93.35| 24.41 30.49 95.27
CMC [45] 19.62 28.19 9294 | 16.58 19.83 93.94
Ours 43.88 64.27 96.15 | 43.98 63.66 96.34

Method

Missing-Modality Inference. For missing-modality in-
ference, we report the experiments on the same dataset
and same baselines as above. As shown in Tab. 7, with
no pixel-level alignment, the two baseline methods strug-
gle in two missing-modality settings i.e. ‘Only RGB’ and
‘Only Depth’. While our method improves the segmenta-
tion mloU by 24.3% and 19.6% on two settings.

IN Pre-train CMC Ours
65 60
55 50
2 45 40
E s "
25 10
15 0

1 10 19 28 37 46 0 30 60 90 120
epochs epochs

Figure 6. Validation mloU Changes with Training Epochs In-
crease. Left: Human3.6M human parsing full training set. Right:
Human3.6M human parsing 20% training set.

5.5. Further Analysis

Faster Convergence. One of the advantages of pre-training
is the fast convergence speed when transferred to down-
stream tasks. Our HCMoCo also shows superiority in this
feature. We log the validation mIoU of Human3.6M hu-
man parsing at different training epochs. As shown in Fig.
6, compared with IN pre-train and CMC [45], our pre-train
model is able to converge within a few training epochs in

Table 8. Experiments on changing the backbone. * stands for
‘IN Pre-train’ for DensePose and ‘From Scratch’ for NTURGBD-
Parsing-4K. All results in [%].

Method DensePose 10% NTURGBD 20%
BBox GPS GPSM 1IoU |mloU mAcc
* 55.10 54.60 57.60 61.73 |4536  59.51
CMC [45] | 53.88 54.62 57.46 61.14|4874 6294
Ours 54.55 55.80 58.36 61.75|49.43  63.52

both the full training data and data-efficient settings.
Changing Backbone. So far our experiments are all
performed on HRNet-W18. To further demonstrate HC-
MoCo’s performance on other backbones, for the 2D back-
bone, we also experiment with HRNet-W32 [43]. For the
depth backbone, we choose to test with PointNet++ [38].
For the RGB pre-train model, we experiment on the 10%
DensePose estimation. For the depth pre-train model, we
experiment on the 20% NTURGBD-Parsing-4K. As shown
in Tab. 8, our method outperforms its pre-train counterparts
by a reasonable margin, which is in line with our previous
experimental results.

6. Discussion and Conclusion

In this work, we propose the first versatile multi-modal
pre-training framework HCMoCo specifically designed for
human-centric perception tasks. Hierarchical contrastive
learning targets are designed based on the nature of hu-
man datasets and the requirements of human-centric down-
stream tasks. Extensive experiments on four different hu-
man downstream tasks of different modalities demonstrated
the effectiveness of our pre-training framework. We con-
tribute a new RGB-D human parsing dataset NTURGBD-
Parsing-4K to support research of human perception on
RGB-D data. Besides downstream task transfer, we also
propose two novel applications of HCMoCo to show its ver-
satility and ability in cross-modal reasoning.

Potential Negative Impacts & Limitations. Usage of
large amounts of data and long training time might nega-
tively impact the environment. Moreover, even though we
did not collect any new human data in this work, human data
collection could happen if our framework is used in other
applications, which potentially raises privacy concerns. As
for the limitations, due to limited resources, we could only
experiment with one possible instantiation of HCMoCo.
And for the same reason, even though the theoretical possi-
bility exists, we do not have the chance to further scale up
the amount of human dataset and network size.
Acknowledgments  This work is supported by NTU
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Supplementary Material

In this supplementary material, we provide more imple-
mentation details of HCMoCo, downstream tasks and two
applications (Sec. 1). More detailed quantitative and qual-
itative results of downstream tasks are also illustrated (Sec.
2 and Sec. 3).

1. Implementation Details
1.1. HCMoCo

Network Details. For the proposed instantiation of HC-
MoCo, we implement the sample-level modality-invariant
representation learning target by maintaining a memory
pool, which is adapted from an open-sourced implemen-
tation 2. The memory pool is updated in a momentum
style with the momentum of 0.5. For global embeddings,
we sample 16384 negative samples from the memory pool.
For other hyper-parameters, we use a batch size of 224, a
learning rate of 0.03, a temperature of 0.07 for all three
contrastive learning targets. For the pre-train, 4 NVIDIA
V100 GPUs are used. The training process is divided in two
steps. The first step only pre-train the model using sample-
level modality-invariant representation learning target for
100 epochs. The second stage adds the other two learn-
ing targets and trains for another 100 epochs. The whole
training process takes approximately 48 hours.

Mixing Heterogeneous Datasets. Since we mix several
heterogeneous human datasets for pre-train, we need to
mask out the missing modalities. For example, when we
use NTU RGB+D and MPII for pre-train. The former
dataset has all the required modalities, while the latter one
misses depth maps. Therefore, for the hierarchical con-
trastive learning targets, we mask out the missing depth em-
beddings of MPII for all the positive pairs sampling. By
using the masking technique, it is possible to combine mul-
tiple heterogeneous datasets into this pre-train paradigm as
long as there are at least two common modalities.

Datasets for Pre-train. For NTU RGB+D, we only use
the version with 60 actions [42]. With the provided RGB-
D videos, we uniformly sample one frame from every 30
frames, which makes 143648 samples. The RGB and depth
frames are calibrated by the correspondences provided by
the 2D keypoints positions on RGB and depths. For MPII
and COCO, we use the full training sets for pre-train.

1.2. DensePose Estimation

For the DensePose [14] estimation, we use the official
open-sourced implementation *. For the full training set, we
train the network for 130000 iterations with a batch size of
16, a learning rate of 0.01 on 4 NVIDIA V100 GPUs, which

Zhttps://github.com/HobbitLong/PyContrast
3https://github.com/facebookresearch/detectron?
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takes around 80 hours to train. For the 10% training set, we
train the network for 13000 iterations with a learning rate
of 0.005 and other settings the same, which takes 9 hours to
train. The 10% training set is uniformly sampled from the
default ordered training set.

1.3. RGB Human Parsing

For the RGB human parsing on Human3.6M [22], we
use the official HRNet [43] semantic segmentation imple-
mentation *. Different ratios of training settings are uni-
formly sampled from the default ordered full training set.
For the full training set, we train the network for 50 epochs
with a learning rate of 0.007, a batch size of 40 on 2
NVIDIA V100 GPUs. For other data-efficient settings, we
train the network for 150 epochs with other settings the
same. We use the the standard dataset split protocol, where
the subjects 1,5, 6,7, 8 are for training and the subjects 9
and 11 are for evaluation.

1.4. Depth Human Parsing

For the depth human parsing on NTURGBD-Parsing-
4K, we use the same implementation as that of RGB human
parsing. To use the HRNet to encode depth maps, we repeat
the depth dimension for three times to fit the RGB input,
which is also how HCMoCo deals with depth inputs. For all
training settings, we train the network for 150 epochs with
a learning rate of 0.007, a batch size of 80 on 2 NVIDIA
V100 GPUs. Even though the encoder is used to deal with
depth inputs, we still initialize it using ImageNet pre-train
for that it might help with the performance proved by some
previous works [49].

1.5. 3D Pose Estimation on Depth

For the 3D pose estimation from depth maps on
ITOP [16], we choose to adapt the official implementation
3 of A2J [49]. The original implementation uses ResNet as
the backbone. And we switch to HRNet. Since the origi-
nal implementation only provides validation scripts, we re-
implement the whole training pipeline. We change the orig-
inal normalization method where a global mean and vari-
ance is counted for a global normalization. Instead, we per-
form an online instance normalization where we only cen-
tralize each depth pixel to zero mean but do not normalize
its variance, since its a better way to prevent the over-fitting
to the relatively small dataset. We train the network for 50
epochs with a learning rate of 0.00035 and a batch size of
12 on one NVIDIA V100 GPU. As for the dataset, we use
the side-view of ITOP since the depth maps in pre-train are
side views. Following the official dataset split, there are
17991 samples for training and 4863 for testing. Following

“https : / / github . com / HRNet / HRNet — Semantic —
Segmentation
Shttps://qithub.com/zhanqboshen/AZJ



the practice of A2J [
ImageNet pre-train.

], we initialize the encoders using

1.6. Cross-Modality Supervision

To experiment with the cross-modality supervision,
we choose the downstream task of human parsing on
NTURGBD-Parsing-4K. The modalities to experiment with
are RGB and depth. To make the experiment fair and the
networks to converge faster, the backbones are initialized
by CMC [45] pre-train. The following descriptions are for
the setting of ‘RGB—Depth’, where the source modality
is RGB and the target modality is depth. To implement
‘Depth—RGB’, one can simply switch the source and tar-
get modalities. At training time, a randomly initialized
segmentation header, which is the same one used for hu-
man parsing experiments, is attached to the dense mapper
network of RGB. Then the network is trained with both
the hierarchical contrastive learning targets £ and a cross-
entropy loss £’ for the supervision of the segmentation. For
the ‘No Contrastive’ baseline, we only train with £/. As
for the ‘CMC’ baseline, the network is supervised by both
the learning target proposed by CMC [45] £ and the seg-
mentation loss £’. Note that, during the whole training
time, including the CMC pre-train, the target modality of
NTURGBD-Parsing-4K is not exposed to better simulate
the application scenario. In order to build the connection
between RGB and depth during training time, we mix the
NTURGBD-Parsing-4K with NTU RGB+D which is the
same one used for our pre-train. At inference time, we at-
tach the trained segmentation head to the mapper network
of depth. Since the dense embeddings of RGB and depth
are aligned thanks to our hierarchical contrastive learning
targets, it is reasonable for the segmentation head to be able
to handle the dense embeddings of depth.

1.7. Missing-Modality Inference

We also use human parsing on NTURGBD-Parsing-4K
to experiment with our extension of missing-modality in-
ference. The basic setup is the same as that of the cross-
modality supervision experiments. At training time, we take
the dense embeddings of both RGB and depth together for
a max pooling operation for a simple feature-level fusion.
Then the fused dense embedding is passed to a segmen-
tation header, which is the same one used by the human
parsing experiment, to produce the segmentation predic-
tion. The network is supervised with both the hierarchi-
cal contrastive learning targets £ and a cross-entropy loss
L' for segmentation supervision. Similarly, the ‘No con-
trastive’ baseline does not use any contrastive learning tar-
gets. The ‘CMC’ baseline uses the contrastive learning tar-
get proposed in CMC [45] as L. At inference time, if RGB
is missing, then the dense embedding of depth is passed to
the trained segmentation header for prediction. Since the
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dense embeddings of RGB and depth are aligned and the
segmentation header is trained with the fusion of both em-
beddings, missing one of them will still produce reasonable
predictions.

2. More Quantitative Results

DensePose Estimation. Due to the page limitation, we
could not report all metrics for the DensePose [14] esti-
mation. Therefore, we report them in this supplementary
material. As shown in Tab. 9, detailed results of all set-
tings mentioned in the main paper are listed. Specifically,
for the initialization of the network, we test with the net-
work randomly initialized (‘From Scratch’) and the network
initialized by ImageNet pre-train (‘IN Pre-train’). As for
the ratio of training data, we test with the full training set
and 10% of the training set. As for the pre-train datasets,
we test with two combinations: NTU RGB+D + MPII and
NTU RGB+D + COCO. As for the backbone, we test with
HRNet-W18 and HRNet-W32. Compared with the base-
line and two other state-of-the-art pre-train counterparts,
our method outperforms them in most of the metrics. Espe-
cially, our method has advantages in GPS and GPSM, which
are two critical metrics for DensePose quality. Additionally,
we also report full results of the ablation study. The detailed
results further validates the analysis in the main paper.
RGB Human Parsing. We further report detailed RGB hu-
man parsing results on Human3.6M [22] that could not fit
into the main paper. As shown in Tab. 10, we report the
per-class IoU for all the settings reported in the main paper.
Similarly, for the initialization of the network, we test with
the network randomly initialized (‘From Scratch’) and the
network initialized by ImageNet pre-train (‘IN Pre-train’).
As for the ratio of training data, we test with the full train-
ing set, 20%, 10% and 1% of the training set. The pre-
train datasets are NTU RGB+D + MPIIL. In most classes,
our method outperforms comparison methods. Moreover,
we also report per-class IoU for the four settings in ablation
study, which are in line with our analysis in the main paper.
Depth Human Parsing. We report detailed depth human
parsing results on NTURGBD-Parsing-4K. As shown in
Tab. 11, we report the per-class IoU for all the settings re-
ported in the main paper. We initialize the networks using
ImageNet pre-train. Two ratios of the training set, i.e. full
and 20%, are tested. We also change the backbone to Point-
Net++ [38] (‘PN++"). Since it is a point-based backbone,
the ‘background’ class is ignored and not included in the
calculation of mloU. The per-class IoU results also agree
with the conclusion in the main paper that our method is
superior than other comparison methods.

Cross-Modality Supervision. As shown in Tab. 12,
we report detailed per-class IoU for the experiments of
cross-modality supervision. In both ‘RGB—Depth’ and
‘Depth—RGB’ settings, our method outperforms other



baseline methods in all classes. Especially, other baseline
methods barely make correct predictions while ours makes
a huge improvement.

Missing-Modality Inference. As shown in Tab. 12, we
list detailed per-class IoU for the experiments of missing-
modality inference. In both ‘Only RGB’ and ‘Only Depth’
settings, our method outperforms baseline methods in most
classes. Therefore, the detailed results further validates the
conclusions made in the main paper.

3. More Qualitative Results

More qualitative results of RGB human parsing on Hu-
man3.6M [22] and depth human parsing on NTURGBD-
Parsing-4K are shown in Fig. 7, Fig 8 and Fig. 9. We
choose to visualize both the full training set and 10% train-
ing set for RGB human parsing. The segmentation results
produced by our pre-train model are superior than those of
other comparison methods, especially in data-efficient set-
tings. For challenging classes like hands and elbows, our
method is capable of producing correct predictions con-
stantly while other methods struggle. The depth map is a
challenging modality for the dense prediction task like se-
mantic segmentation. Our method manages to produce rea-
sonable predictions that are better than those of other com-
parison methods.
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Figure 7. Qualitative Results of RGB Human Parsing on Human3.6M with 10% of the Training Set.

18



Figure 8. Qualitative Results of RGB Human Parsing on Human3.6M with the Full Training Set.
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Figure 9. Qualitative Results of Depth Human Parsing on NTURGBD-Parsing-4K with the Full Training Set.
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