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Figure 1. Visualization of the key components of our proposed pipeline. Color and depth images are blended with class and instance
information, and shown along with the optical flow w.r.t. to the previous frame (first image). This information is integrated to produce a
mask that segments the frame into static and dynamic regions (second image). Together with an accumulated 3D motion estimate (third
image), the scene is streamed to one or multiple remote clients for immersive exploration in VR (fourth image).

Abstract

Despite the impressive progress of telepresence sys-
tems for room-scale scenes with static and dynamic scene
entities, expanding their capabilities to scenarios with
larger dynamic environments beyond a fixed size of a few
squaremeters remains challenging.

In this paper, we aim at sharing 3D live-telepresence ex-
periences in large-scale environments beyond room scale
with both static and dynamic scene entities at practical
bandwidth requirements only based on light-weight scene
capture with a single moving consumer-grade RGB-D cam-
era. To this end, we present a system which is built upon a
novel hybrid volumetric scene representation in terms of the
combination of a voxel-based scene representation for the
Static contents, that not only stores the reconstructed sur-
face geometry but also contains information about the ob-
Jject semantics as well as their accumulated dynamic move-
ment over time, and a point-cloud-based representation for
dynamic scene parts, where the respective separation from
static parts is achieved based on semantic and instance in-
formation extracted for the input frames. With an indepen-
dent yet simultaneous streaming of both static and dynamic
content, where we seamlessly integrate potentially moving
but currently static scene entities in the static model until
they are becoming dynamic again, as well as the fusion of
static and dynamic data at the remote client, our system
is able to achieve VR-based live-telepresence at interac-
tive rates. Our evaluation demonstrates the potential of our

novel approach in terms of visual quality, performance, and
ablation studies regarding involved design choices.

1. Introduction

Sharing immersive, full 3D experiences with remote
users, while allowing them to explore the respectively
shared places or environments individually and indepen-
dently from the sensor configuration, represents a core el-
ement of metaverse technology. Beyond pure 2D images
or 2D videos, 3D telepresence is defined as the impression
of individually being there in an environment that may dif-
fer from the user’s actual physical environment [20, 28,41,
84, 152]. This offers new opportunities for diverse appli-
cations including remote collaboration, entertainment, ad-
vertisement, teaching, hazard site exploration, rehabilitation
as well as for joining virtual sports events, work meetings,
remote maintenance/consulting or simply enjoying social
gatherings. In turn, the possibilities for virtually bringing
people or experts together from all over the world in a dig-
ital twin of a location as well as the live-virtualization of
such environments and events may reduce the effort regard-
ing on-site traveling for many people, which not only helps
to reduce our C'O4 footprint and save time but also facili-
tates economically less well-situated or handicapped people
to access such events.

The creation of an immersive telepresence experience re-
lies on various factors. Respective core features are visu-



ally convincing depictions of a scenario as well as the sub-
jective experience, vividness and interactivity in terms of
operating in the scene [117, ]. Therefore, the involved
aspects include display parameters (e.g., resolution, frame
rate, contrast, etc.), the presentation of the underlying data,
its consistency, low-latency control to avoid motion sick-
ness, the degree of awareness and the suitability of con-
troller devices [20, 28,41, 84, , s ]. Furthermore,
experiencing 3D depth cues like stereopsis, motion paral-
lax, and natural scale also contribute to the perceived level
of immersion and copresence [35, 88].

However, such immersive 3D scene exploration experi-
ence becomes particularly challenging for telepresence in
live-captured environments due to the additional require-
ment of accurately reconstructing the digital twin of the
underlying scene on the fly as well as its efficient stream-
ing and visualization to remote users under the constraints
imposed by available network bandwidth and client-side
compute hardware. Among many approaches, impressive
immersive AR/VR-based live-3D-telepresence experiences
have only been achieved based on advanced RGB-D ac-
quisition for dynamic scenes on room scale using special
expensive static capture setups [14, 16,21, 26, 37, 52, 64,

,78,79,97, 98, s s , ] and display technol-
ogy [68], as well as for static scenes beyond room scale
based on low-cost and light-weight incremental scene cap-
ture with a moving depth camera [87, —126].  For
the latter category, bandwidth requirements have been re-
duced from hundreds of MBit/s for a single user [87] to
around 15MBit/s for group-scale sharing of telepresence
in live-captured environments while also handling network
interruptions [123, s ], thereby even allowing live-
teleoperation of robots [125]. However, expanding the ca-
pabilities and, thereby, overcoming the aforementioned lim-
itations in large dynamic environments for many users with
low-cost setups still remains an open challenge.

In this paper, we aim at sharing 3D live-telepresence ex-
periences in large-scale environments beyond room scale
with both static and dynamic scene entities at practical
bandwidth requirements and based on light-weight scene
capture with a single moving consumer-grade RGB-D cam-
era. For this purpose, we propose a respective system that
relies on efficient 3D reconstruction, streaming and im-
mersive visualization for dynamic large-scale scenes as de-
picted in Figure 1.

In particular, the key contributions of our work are:

* For the sake of efficiency, our system leverages a hy-
brid volumetric scene representation, where we use op-
tical flow and instance information extracted from the
input frames to detect static and dynamic scene en-
tities, thereby allowing the combination of a classic
implicit surface geometry representation enriched with
the object semantics as well as their accumulated dy-

namic motion over time, with a point-cloud-based rep-
resentation of dynamic parts.

* We achieve efficient data streaming to remote users by
the separate yet simultaneous streaming of both static
and dynamics scene information, where we seamlessly
integrate potentially moving but currently static scene
entities in the static model until they are becoming dy-
namic again. Additionally, the fusion of static and dy-
namic data at the remote client allows VR-based visu-
alization of the scene at interactive rates.

* We demonstrate the potential of our approach in the
scope of several experiments and provide an ablation
study for respective design choices.

Furthermore, while not being among the main contributions
of our work, our approach also inherits the robustness of
previous techniques to network interruptions for the recon-
struction of the static scene parts as well as the scalability
to group-scale telepresence [123, 125, 126].

2. Related Work

Telepresence Systems Despite almost two decades of de-
velopments, the development of systems that allow immer-
sive telepresence experiences remains challenging due to
the prerequisite of simultaneously achieving high-fidelity
real-time 3D scene reconstruction, the efficient streaming
and management of the reconstructed models and the high-
quality visualization based on AR and VR equipment. Early
approaches were limited by the capabilities of the available
hardware [31, 58, 66, 90, s ], inaccurate silhouette-
based reconstruction techniques [76, ].  Depth-based
3D scanning led to improved reconstruction quality and al-
lowed telepresence at room [32, 47, 54,78, 80, 85], how-
ever, remaining artifacts induced by the high sensor noise
and temporal inconsistency in the reconstruction process
still impacted the visual experience. More recently, ad-
vances in 3D scene capture, streaming and visualozation
technology led to impressive immersive AR/VR-based live-
3D-telepresence experiences. Live-telepresence for small-
scale scenarios of a few squaremeters has been achieved
based on light-weight capture setups for teleconferenc-
ing [4, 13,24,53,94, ] and other collaborative scenar-
i0s [25,36,77, s R ] as well as based on expensive
multi-camera static and pre-calibrated capture setups [14,
Furthermore, live-telepresence for scenarios beyond room
scale has been achieved based on low-cost and light-weight
incremental scene capture with a moving depth camera
[6,87, —126, ], allowing remote users to immersively
explore a live-captured environment independent from the
sensor configurations. Regarding the latter approaches, im-
practical bandwidth requirements of up to 175MBit/s for



immersive scene exploration by a single user [87] have
been overcome by more recent approaches that allow group-
scale sharing of telepresence experiences in live-captured
environments and handling network interruptions [123—

] as well as live-teleoperation of robots [125]. Fur-
thermore, mechanisms for annotation, distance measure-
ment [125] and efficient collaborative VR-based 3D la-
beling were added [169]. However, practical sharing of
live-captured 3D experiences in dynamic large-scale envi-
ronments for many users with low-cost setup still remains
an open challenge. The same applies for immersive robot
teleoperation where approaches focused on small-scale sce-
narios with dynamics [65,74,91, , s ) , ] and
large-scale, static scenarios [125].

In contrast to the aforementioned approaches, we pro-
pose a live-telepresence system for large-scale environ-
ments beyond room-scale and including scene dynamics.

3D Reconstruction and SLAM Techniques Current
state-of-the-art telepresence systems rely on depth-based si-
multaneous localization and mapping (SLAM) techniques.
Examples are the use of depth-sensor-based 3D scene
capture based on surfels [43] or extensions of Kinect-
Fusion [48, 93] in terms of voxel block hashing tech-
niques [55-57, 95, ] for incremental scene capture for
large-scale telepresence applications [87, —-126]. To
avoid the need for depth sensors, more recent Simultaneous
Localization and Mapping (SLAM) approaches for incre-
mental scene capture - that might be applicable in respec-
tive telepresence applications - leveraged principles of deep
learning [17,60,63,67, s X ]. Further approaches
investigated 3d reconstruction from multiple synchronized
cameras [1,2,23,46,86].

Recently, neural scene representation and rendering
techniques [137, 138] have led to significant improvements
in reconstruction quality for small-scale objects or scenes.
The underlying idea originates from novel view synthe-
sis and consists of training a neural network to represent
a scene with its weights, so that respectively synthesized
views match the input photographs. In particular, this in-
cludes implicit scene representations based on Neural Ra-
diance Fields (NeRFs) [83] and respective extensions to-
wards speeding up model training [7, 1 1,18,29,89, s ]
with training times of seconds, the adaptation to uncon-
strained image collections [10, 81], deformable scenes [8,

, 75, 96, 99, R , s , s ] and video in-
puts [22,34,71,72, s ], the refinement or complete
estimation of camera pose parameters for the input images
[50,73,82, , R s s ], combining NeRFs with
semantics regarding objects in the scene [30), s 1,
incorporating depth cues [3, 18, s s ] to guide
the training and allow handling textureless regions, han-
dling large-scale scenarios [133, 143], and streamable rep-

resentations [|2]. However, despite promising results, fur-
ther improvements regarding efficiency are required for the
joint camera pose estimation and neural scene reconstruc-
tion [131, ] as required in a SLAM setting to achieve
beyond the reported 5 fps on a current high-quality GPU
(Nvidia RTX 3090) [168] while also reducing the jittering
of the depicted scene during exploration.

Particularly addressing dynamic environments, various
approaches focused on filtering dynamic objects and only
reconstructing the static background [5, 27, 61, , s

, 164] or additionally reconstructing the dynamics based
on rigid object tracking and reconstruction [42, 70, s

,128,153] and non-rigid object tracking and reconstruc-
tion [19, 38,45, 49,59, 69,92, 119, 120, 127, 149, 149, 158,

]. Taking inspiration of the non-rigid scene reconstruc-
tion approaches in terms of separating static and dynamic
scene parts, the 3D reconstruction approach involved in our
live-telepresence system is particularly designed for captur-
ing large-scale environments (i.e., beyond scenarios limited
to a small area of a few squaremeters) with both static and
dynamic entities based on a single moved RGB-D camera.
Our hybrid volumetric scene representation leverages se-
mantic and instance information to detect dynamic scene
entities and combines a voxel-based scene representation
for the static parts, where we also accumulate information
on whether and how significant objects have been moved,
with a point-cloud-based representation of dynamic parts.
A major contribution of our work is the separate but simul-
taneous streaming of both static and dynamics scene infor-
mation and its VR-based visualization at interactive rates.

3. Methodology

As shown in Figure 2, our live-telepresence system for
large-scale environments with scene dynamics at practical
bandwidth requirements takes a continuous stream of RGB-
D images (11, D1), (I2, D3), ... from a moving depth cam-
era as input, where I;(u) € R? represents the red, green
and blue color values of frame k, and Dy (u) € R the cor-
responding raw depth measurement at pixel u € U C N2,
with U/ being the image domain. The main challenge con-
sists in efficiency when processing these measurements, in-
tegrating them into a consistent model and streaming the
latter over the network at practical bandwidth requirements
to remote clients, where it has to be visualized at ade-
quate visual quality at tolerable overall latency. For this
purpose, we use a hybrid scene representation that sepa-
rately handles static and dynamic scene parts, thereby al-
lowing the combination of efficient large-scale 3D scene
mapping techniques, that face problems with dynamic re-
gions, with efficient point-based reconstruction for the dy-
namic parts. In more detail, we segment the frames of
the input stream into static and dynamic regions by de-
termining score maps Sy, where Sy (u) € R describes the
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Figure 2. Visualization of different processing stages for the k-th RGB-D frame in the pipeline. Starting with color I}, and depth Dy,
instance segmentation Ly (class labels) and ¢ (instance IDs), optical flow Fj, and odometry flow W, are computed. Next the end-point-
error (EPE) between the flows are computed, normalized and propagated using the instance segmentation to generate the dynamicity
scores Si. The scores are accumulated in Ay and Ly, ¢, Sk and Ay are used to integrate information about static regions in the voxel
block model. New static voxels and current dynamic regions are sent to the server, which forwards this information to the exploration

clients appropriately.

amount of dynamicity in frame k at pixel u. This separa-
tion allows us to efficiently reconstruct, stream and immer-
sively visualize static regions using existing state-of-the-
art large-scale telepresence techniques [123, 126] while si-
multaneously reconstructing, streaming and visualizing dy-
namic scene parts based on a point-based representation in
terms of a partial RGB-D image and its corresponding es-
timated camera pose, thereby limiting the amount of data
to be transferred and reducing the processing time. After
streaming the hybrid scene representation to remote users,
its static and dynamic parts are joined in a combined 3D vi-
sualization. In the following subsections, we provide more
details on the different steps of our pipeline.

3.1. Segmentation into Static and Dynamic Regions

For the sake of efficiency, we segment the RGB-D
frames of the input stream into static and dynamic regions,
which will later allow the efficient treatment of the differ-
ent types of scene parts. For this purpose, we compute score
maps S, where Si,(u) € R describes the amount of dynam-
icity in frame k at pixel u. In the following, we will assume
that these scores are normalized in the sense that a pixel
is deemed static if Si(u) < 1, and dynamic if Si(u) > 7,
where 7 > 1 is a threshold that allows for a region of un-
certainty between the static and dynamic labels. To com-
pute the dynamicity score Sy, of frame &, we first detect ob-
jects in I using instance segmentation, which yields both a
class label and an instance ID for each pixel in the image,
ie. (L, tk) = foeg(Ik) of Iy, where Ly (u) € N is the pre-
dicted class label and ¢ (u) € N is the instance ID at pixel
u. The raw output of the segmentation network may con-
sists of multiple, potentially overlapping region proposals

which we integrate into the instance and labels maps using
non-maximum suppression. Pixels without any proposal,
belong to a low confidence detection or to a region with
pixel count below a certain threshold are ignored by setting
Lj(u) = tx(u) = 0. See the supplemental material for a
detailed explanation of this procedure. In our experiments,
we used SoloV2 [146] using pretrained weights from [9].
Next, we estimate the backward optical flow
Fy = faow(I, I—1), where Fj(u) € R? is the cor-
responding flow vector at pixel w, such that w in Iy
corresponds to u + Fy(u) in Iy_q. For faow we used a
pretrained version [15] of LiteFlowNet2 [44].
Subsequently, we estimate the camera motion

&k = foose(Ik—1, I, Dk—1, Dy;) € se(3) )]

between the previous and current frame, yielding an abso-
lute camera pose T}, € R**4 when we assume 7} to be cen-
tered at the world origin. Our implementation uses a stan-
dard point-to-plane RGB-D registration implementation of
Open3D [167].

Based on F}, and T}, we determine a per-pixel end-point-
error I, between the estimated flow and the flow W7, we
expect from a completely static scene where only the cam-
era is moving by T}, i.e.

Ey(u) = || Fi(u) — ¥, (u)]]2. (2)

Using Dy, we can compute U, () as the offset between
u and the corresponding point u’ projected from frame
k — 1 into k. More specifically, let 7—! be the backpro-
jection operation of some fixed pinhole camera, such that
v =m"1(u, Dx(u)) € R? is the 3D coordinate of pixel u



with depth measurement Dy, () in the local coordinate sys-
tem the camera, and let m be the corresponding projection
operation transforming v back to u. Uy (u) is then given as

Up(u) = [moTpq1 0T, om t(u, Dy(u)] —u. (3)

Note that we imply proper conversion between euclidean
and homogeneous coordinates by using the concatenation
operator to keep the notation simple.

To decide which of the resulting scores Ej(u) in-
dicates dynamic regions, we analyze the histogram
H' = (H{,...,H}) € N" of errors for each instance i. We
chose the width of the n histogram bins empirically as
c = 0.25 based on the error values produced by our ap-
proach. As an indicator of the highest motion of ¢, we look
for the rightmost mode s (i) € R>q of H® that consists of
at least 7 - Y _,"_, Hj values, where r € [0, 1] is a hyperpa-
rameter. This means, we look for the bin index j*(¢) with

(3

j* (i) = max {] H;fl < HJZ:,H;:JFI < HJL, ZJZI}{; > 7“}
“)
which, in turn, allows the mode m; to be defined as the

center of histogram bin j*(7), i.e. s;(7) = (5*(¢) + 0.5)c.
We normalize all scores by subtracting the smallest mode
from them, assuming that at least one of the detections is
of static nature. This is done to remove shifts in the overall
error that can be caused by inaccurate estimates produced in
friow and fpose. Together with an empirically chosen linear
rescaling by a factor 6 € R>(, we get the normalized scores

Ei(u) =6 - (Eg(u) — miin{sk(i)}) 5)

that fulfill the previously mentioned criterion that scores
< 1 are indicating a static object, while higher scores in-
dicate dynamic regions.

While E; (u) can now be used for the segmentation into
static and dynamic regions, we found that the visualiza-
tion of moving regions is more coherent if the segmenta-
tion happens on the object level. This is particularly impor-
tant for articulated or non-rigid objects like humans, where
potentially only a small part of the object (e.g. an arm) is
moving. To accomplish this, we use the normalized modes
s} (1), which result from applying the transformation from
(Equation (5)) to m;. An instance ¢ is deemed as dynamic
if s},(¢) > 7. To represent this in the resulting score map,
we propagate this value in the final score map by setting
Sk(u) = s (@) for all pixels u with ¢ (u) = .

To make the dynamicity estimates more robust against
noise in the error values when looking at multiple frames,
we experimented with smoothing the values s},(i) tempo-
rally using the maximum over the current and a decaying
previous score, such that the smoothed score of instance @
in frame k is given as

55, (4) := max{a - §)_, (i), s5,(7) }. (6)

To make this work, we have to re-identify instance ¢ from
frame k£ — 1 in frame k. A priori, instance IDs do not have
any relation to each other, because fq, is assumed to only
be dependent on a single image. We use information about
mask overlap between ¢, L and L;C_l, L;C_l , where latter
maps result from warping ¢ 1, Li—1 according to flow Fy,
aligning them with the maps of frame k. A confusion matrix
C of the pairwise overlaps of the instance masks of the same
class in ¢; and L;€71 is computed, such that

Ciy = |{u] telu) = i,y (u) = 5, Li(w) = Ly, (w)}]-

)
We identify instance 4 with instance j’ from the previous
frame, if j' = argmax;{C;;} and Cjj. is larger than a min-
imum overlap count. In addition, we also keep track of the
average dynamicity scores over time to be able to give a sen-
sible initial score estimate when detecting a new instance.
A detailed explanation of this initialization scheme can be
found in the supplemental material.

As the object tracking is only performed in 2D for effi-
ciency reasons, we also accumulate the dynamicity scores
of each instance over time in 2D by updating an accumula-
tion map Ay (u) € R>¢. To increase the interpretability of
the scores, we compute a 3D end-point-error between last
and current frame by using Fj, for the correspondences be-
tween the pixels and unprojecting the respective coordinates
of into 3D using 7~! with the corresponding depth maps
and camera poses. The resulting 3D flow F(u) € R? is
then combined with the warped previous accumulated score
Aj_y as Ap(u) = Ap_y (u) + [[Fi(u)]2.

3.2. Updating the Static Model

With the score map S; computed, we are able to inte-
grate the static part of the frame into the static model. For
this purpose, we use a modified version of real-time 3D
reconstruction based on spatial voxel block hashing [95],
where we added an extension for concurrent retrieval, in-
sertion and removal of data [123]. However, in order to
further increase the efficiency of our approach, we seam-
lessly shift potentially dynamic but currently static scene
parts into the static scene representation until they become
dynamic again. This requires us to additionally consider the
following situations:

1. Dynamic regions should not be integrated into the
static model. In case this happens erroneously, they
should be removed as quickly as possible.

2. Regions that change their state from dynamic to static
(e.g. a box was placed on a table) should be integrated
into the static model seamlessly.

3. Regions changing their state from static to dynamic
(e.g. a box is picked up) should be removed from the
static model immediately.



4. Static regions that changed while not in the camera
frustum should be updated as soon as new information
is available.

Following the suggested modification of the weighting
schema for dynamic object motion by Newcombe et al., we
truncate the updated weight which effectively results in a
moving average favoring newer measurements [93]. How-
ever, instead of having a global maximum weight W, > 0,
we store a separate value W, (v) > 0 for each voxel v in
our model and compute the new weight Wy (p) € R>¢ as

Wi (v) = min(Wi_1(v) + Wi (v), Wy k). 8)

These maximum weights are computed directly from the
dynamicity score. We found that a simple step function suf-
fices, i.e.

W Sk(uy) <7,
W =" K 9
n’k(v) Wy, Sk(uy) > 1, 7 ®

given the corresponding raycasting source pixel u,, € U of
voxel v, a threshold 7,, > 0 and weight caps 0 < W, < Wrr
This helps in situations 1 and 3, since dynamic regions are
updated with new information more quickly, as well as in
situation 4, as the weight is truncated even for static regions.

In addition, we aid the timely removal of dynamic re-
gions from the static model (situations 1 and 3) by settings
the SDF value to —1 for voxels where the associated dy-
namicity score S (p) exceeds a threshold Tspr > 0. This,
together with the high integration weight from before, in-
validates the existing surface estimate at that location.

Situation 2 is already covered by the temporal smoothing
of the dynamicity scores in Equation (6), because the decay
parameter « prevents to drop the scores too quickly, which
leads to objects being considered dynamic for some time
when they stop moving. Even though it takes a short time
for the static reconstruction to integrate and stream the vox-
els of the state-changing object, we found this to be more
intuitive when observing the live scene to have the object
stop first than to suddenly disappear.

3.3. Visualization

After having streamed the hybrid scene representation to
remote users’ devices, the static and dynamic scene enti-
ties have to be combined within an immersive scene explo-
ration component, where we focus on virtual reality (VR)
based immersion of users into the live-captured scenarios.
For this, we created a client component that receives up-
dates of the static model as well as the dynamic regions of
the current RGB-D frame.

The static model is visualized as a mesh, where the lo-
cal mesh representation of the static scene is updated using
received MC voxel block indices and rendered in real-time,

thereby following previous work [123]. In contrast, the dy-
namic parts are shown as a point cloud at the corresponding
location relative to the static mesh. For this, we backpro-
ject the dynamic pixels of the current RGB-D frame using
known camera intrinsics and the current camera pose.

The user is then able to individually and independently
from the sensor explore the captured scene by physically
looking and walking around or use a teleportation function-
ality for locomotion. The current position and orientation
of the RGB-D sensor and other users is also shown.

3.4. Streaming

To be able to run the described method with low latency
from the time of capturing to the visualization at remote
locations, we use a server-client architecture. The server re-
ceives and distributes data packages over a network to the
appropriate processing clients. The RGB-D capturing, seg-
mentation into static and dynamic regions as well as the in-
tegration into the static model are performed in the recon-
struction client.

Updates of this representation are then broadcasted to
one or multiple exploration clients, which in turn update a
mesh representation of the static scene using the MC in-
dices. At the same time, the server also sends updates of the
dynamic regions as masked RGB-D images together with
the current camera pose estimate, such that the RGB-D pix-
els can be projected into the scene as a point-cloud.

3.5. Implementation Details

To take advantage of modern multi-processor architec-
tures, the stages shown in Figure 2 are each running in sepa-
rate processes, such that each stage can begin processing the
next item once the current one has been processed. While
this leads to overhead due to inter-process communication,
the FPS of the pipeline is no longer bound to the latency, but
the processing duration of the slowest stage in the pipeline.
This can also be observed in our performance evaluation.

4. Experimental Results

To evaluate the performance of the proposed pipeline,
we ran experiments on 8 self-recorded sequences captured
with a Microsoft Azure Kinect RGB-D sensor in different
office environments, and measured both speed and band-
width metrics.

The scenes contain varying types of motion and we cat-
egorized them into three groups. Fixed (F.) are scenes that
have no camera motion once dynamic entities can be seen in
the camera, whereas Moving (M.) describes scenes with an
always-moving camera and simultaneous object motion. A
third category Outside (O.) contains a scene where the cam-
era is hand-held, but object motion only happens outside of
the camera view.



Scene | F | M. | O. | Latency [s] | FPS [1/s]

items_1 | v 2.55(0.07) | 11.38 (5.51)
items 2 | v 2.41(0.15) | 10.44 (4.94)
people_1 | v 2.51 (0.06) | 11.80 (5.79)
people_2 v 246 (0.11) | 10.14 (5.27)
people_3 v 2.58(0.19) | 9.63 (4.81)
ego_view v 2.32(0.11) | 10.27 (5.53)

0of_1 v 2.50 (0.09) | 11.09 (4.93)

oof 2 v | 2.53(0.14) | 10.85 (6.15)

Table 1. Performance results on the 8 self-recorded scenes. The
F., M., O. columns indicate the type of motion that was captured
(F: fixed camera when object motion is seen, M: camera always in
motion, O: object motion only outside of camera view). Latency
and FPS columns show both the mean and standard deviation (in
parentheses) of the respective metrics.

To validate design choices, we also conducted an abla-
tion study regarding certain components of the pipeline and
compared them to baseline methods. Following that, we
will discuss the impact and limitations of the approach.

4.1. Experimental Setup

We set up three computers in a local network that each
run one of the three processes shown in Figure 2. All de-
vices use the same hardware except for the GPU, which is
an Nvidia GeForce RTX 3090 for the reconstruction client
and an Nvidia GeForce GTX 1080 for both server and ex-
ploration client, as they require less GPU performance. We
merged the region proposals using a non-maximum sup-
pression approach. Details and all hyperparameter choices
can be found in the supplemental material.

We measured three different metrics in this setup: The
end-to-end latency of an RGB-D frame from the camera
to the exploration client, the frame-rate at which RGB-D
frames are being processed by the pipeline, and the network
bandwidth between server and connected clients. The la-
tency and frame-rate is measured using timestamped logs
that are synchronized via a “benchmark-start” broadcast
from the server. This ensures that the timestamps do not
deviate more than the local network latency. The frame-
rate we report is given as the averaged arrival time differ-
ence between consecutive dynamic RGB-D images at the
exploration client. The latency is the average between the
emission times of RGB-D frames into the pipeline and the
corresponding arrival times at the exploration client.

4.2. Evaluation of Performance and Visual Quality

Table 1 shows the results of the frame-rate and latency
measurements. It can be seen that the performance is largely
independent of the type of scene and averages around 2.48
seconds in end-to-end latency and 10.7 frames per second.

Type | F. | M. | 0.
TSDF | 29.47 (63.42) | 59.06 (95.06) | 56.18 (84.14)
MC | 320(6.67) | 591(7.86) | 5.51(6.24)
Dyn. | 4.89(7.97) | 262(541) | 127(327)

Table 2. Required bandwidth in MBit/s of the different types of
data packages, averaged over the types of recorded scenes (F: fixed
camera when object motion is seen, M: camera always in motion,
O: object motion only outside of camera view). Given are both
mean and standard deviation (in parentheses).

A closer analysis reveals that the frame-rate is upper-bound
by the single image inference speed of the instance segmen-
tation network. We provide respective details in the supple-
mental material.

The network bandwidth requirements are summarized in
Table 2. Here, the measured package sizes are split up in
the type of data. TSDF represents the values of truncated
signed-distance function generated by the voxel block hash-
ing of the reconstruction client, MC labels the Marching
Cubes indices the server generates from the TSDF repre-
sentation and sends to the exploration client(s). The dy-
namic RGB-D that results from the segmentation of the
reconstruction client and that is subsequently sent to the
exploration client(s) is called Dyn. The results show that
the majority of data is transferred between reconstruction
client and server. The Marching Cubes indices and dynamic
RGB-D data, which are selectively streamed to the explo-
ration client(s), allow for multiple connections, even over
the Internet, considering modern bandwidth availability.

Furthermore, we provide qualitative results in Figure 3.

4.3. Ablation Study

To validate some of the design choices of our approach,
we show the effects of removing certain elements of the
pipeline on the results. Figure 4 illustrates the effect of the
weighting function from Equation (9) as well as the differ-
ence between error thresholding with and without propaga-
tion into the object masks. In the weighting example, we
show that the update of false measurements is done with
less artifacts while walking around the box when using a
exponential decay. This motivates our choice to enable this
weighting schema for regions with recent object motion. At
the same time, the floor texture shows slightly more artifacts
as the more recent measurements are favored, but collide vi-
sually with regions that were not recently seen by the cam-
era. This effect is reduced in the original weighting schema,
which motivates the dual approach shown in Equation (9).

The bottom row of Figure 4 shows how the propagation
of the error modes into the object masks aids to correctly
identify potentially dynamic objects. Due to weak motion
boundaries produced by fhow, a large region of pixels be-



Figure 3. Results of our approach on different scenes. Left to right: Input color image; resulting segmentation into static (blue) and
dynamic (yellow) regions; the accumulated 3D flow magnitude; a novel view of the scene as visualized in the exploration client.

Figure 4. Comparison of design choices of the proposed pipeline.
Top row: An example output from the exploration client using
the standard voxelblock weighting schema (left) vs. exponential
weight decay via weight capping. The second approach yields a
reconstruction of the box with less artifacts. Bottom row: Thresh-
olding of the normalized EPE before (left) and after (right) propa-
gation of the error modes into the static (blue) and dynamic (yel-
low) object masks. Again, the second approach produces a more
plausible segmentation into static and dynamic regions.

hind the moving person is considered dynamic after nor-
malization. This can be filtered out completely in this case
using our approach.

4.4. Limitations

While our approach shows promising results and is de-
signed with modularity and extensibility in mind, there are
also some limitations to consider. Most importantly, the
pipeline only runs at interactive frame-rates due to the per-
formance limitations inherited by the involved neural net-
work approaches. In our scenario, we require high single-
image inference speed, which is not a functionality modern
deep learning approaches are particularly tuned for. Fur-
thermore, our approach requires the segmentation network
to detect objects to be able to identify dynamic regions,

which limits its capabilities on out-of-distribution samples.
This is also the case for the optical flow network, as it is
also limited by the quality of the training data and the do-
main overlap with the scenes we recorded. In the supple-
mental material, we show some failure cases where failed
detections of both fy, and oy cause artifacts in the static
reconstruction.

5. Conclusions

We presented a novel live-telepresence system that al-
lows immersing remote users into live-captured environ-
ments with static and dynamic scene entities beyond room
scale at practical bandwidth requirements. In order to allow
the respectively required efficient 3D reconstruction, data
streaming and VR-based visualization, we built our system
upon a novel hybrid volumetric scene representation that
combines a voxel-based representation of static scene ge-
ometry enriched by additional information regarding object
semantics as well as their accumulated dynamic movement
over time with a point-cloud-based representation for dy-
namic parts, where we perform the respective separation of
static and dynamic parts based on optical flow and instance
information extracted for the input frames. As a result of
independently yet simultaneously streaming static and dy-
namic scene characteristics while keeping potentially mov-
ing but currently static scene entities in the static model as
long as they remain static, as well as their fusion in the
visualization on remote client hardware, we achieved VR-
based live-telepresence in large-scale scenarios at interac-
tive rates.

With the rapid improvements in hardware technology,
particularly regarding GPUs, we expect our system to soon
reach full real-time capability. Also, the modularity of our
system allows replacing individual components with newer
approaches, which might be particularly relevant for the
instance segmentation network, which represents the main
bottleneck of our current system.



Acknowledgements

This work was supported by the DFG project KL
1142/11-2 (DFG Research Unit FOR 2535 Anticipating
Human Behavior).

References

(1]

[2

—

3

—_—

(8

—_—

[9]

[10

—

[11]

Dimitrios Alexiadis, Dimitrios Zarpalas, and Petros Daras.
Fast and smooth 3d reconstruction using multiple rgb-depth
sensors. In 2014 IEEE Visual Communications and Image
Processing Conference, pages 173—176. IEEE, 2014. 3
Dimitrios S Alexiadis, Dimitrios Zarpalas, and Petros
Daras. Real-time, realistic full-body 3d reconstruction and
texture mapping from multiple kinects. In IVMSP 2013,
pages 1-4. IEEE, 2013. 3

Benjamin Attal, Eliot Laidlaw, Aaron Gokaslan, Changil
Kim, Christian Richardt, James Tompkin, and Matthew
O’Toole. Torf: Time-of-flight radiance fields for dynamic
scene view synthesis. Advances in neural information pro-
cessing systems, 34:26289-26301, 2021. 3

Tyler Bell and Song Zhang. Holo reality: Real-time low-
bandwidth 3d range video communications on consumer
mobile devices with application to augmented reality. Elec-
tronic Imaging, 2019(16):7-1, 2019. 2

Berta Bescos, José M Facil, Javier Civera, and José Neira.
Dynaslam: Tracking, mapping, and inpainting in dynamic
scenes. IEEE Robotics and Automation Letters, 3(4):4076—
4083, 2018. 3

Gerd Bruder, Frank Steinicke, and Andreas Niichter.
Poster: Immersive point cloud virtual environments. In
2014 IEEE Symposium on 3D User Interfaces (3DUI),
pages 161-162, 2014. 2

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. arXiv preprint
arXiv:2203.09517,2022. 3

Jianchuan Chen, Ying Zhang, Di Kang, Xuefei Zhe, Lin-
chao Bao, Xu Jia, and Huchuan Lu. Animatable neural ra-
diance fields from monocular rgb videos. arXiv preprint
arXiv:2106.13629,2021. 3

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei
Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu,
Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu,
Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli
Ouyang, Chen Change Loy, and Dahua Lin. MMDetec-
tion: Open mmlab detection toolbox and benchmark. arXiv
preprint arXiv:1906.07155, 2019. 4

Xingyu Chen, Qi Zhang, Xiaoyu Li, Yue Chen, Ying Feng,
Xuan Wang, and Jue Wang. Hallucinated neural radiance
fields in the wild. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
12943-12952, 2022. 3

Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on
mobile architectures. arXiv preprint arXiv:2208.00277,
2022. 3

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

[20]

(21]

(22]

(23]

(24]

Junwoo Cho, Seungtae Nam, Daniel Rho, Jong Hwan Ko,
and Eunbyung Park. Streamable neural fields. In European
Conference on Computer Vision, pages 595-612. Springer,
2022. 3

Sunglk Cho, Seung-wook Kim, JongMin Lee, JeongHyeon
Ahn, and JungHyun Han. Effects of volumetric capture
avatars on social presence in immersive virtual environ-
ments. In 2020 IEEE Conference on Virtual Reality and
3D User Interfaces (VR), pages 26-34. IEEE, 2020. 2
Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett,
Dennis Evseev, David Calabrese, Hugues Hoppe, Adam
Kirk, and Steve Sullivan. High-quality streamable free-
viewpoint video. ACM Transactions on Graphics (ToG),
34(4):1-13,2015. 2

MMFlow Contributors. MMFlow: Openmmlab optical
flow toolbox and benchmark. https://github.com/
open-mmlab/mmflow, 2021. 4

Diana-Margarita Cérdova-Esparza, Juan R Terven, Hugo

Jiménez-Hernandez, Ana Herrera-Navarro,  Alberto
Viazquez-Cervantes, and Juan-M Garcia-Huerta. Low-
bandwidth 3d visual telepresence system. Multimedia

Tools and Applications, 78(15):21273-21290, 2019. 2

Jan Czarnowski, Tristan Laidlow, Ronald Clark, and An-
drew J Davison. Deepfactors: Real-time probabilistic dense
monocular slam. IEEE Robotics and Automation Letters,
5(2):721-728, 2020. 3

Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ra-
manan. Depth-supervised nerf: Fewer views and faster
training for free. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
1288212891, 2022. 3

Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip
Davidson, Sean Ryan Fanello, Adarsh Kowdle, Sergio Orts
Escolano, Christoph Rhemann, David Kim, Jonathan Tay-
lor, et al. Fusion4d: Real-time performance capture of
challenging scenes. ACM Transactions on Graphics (ToG),
35(4):1-13, 2016. 3

John V Draper, David B Kaber, and John M Usher. Telep-
resence. Human factors, 40(3):354-375, 1998. 1, 2
Ruofei Du, Ming Chuang, Wayne Chang, Hugues Hoppe,
and Amitabh Varshney. Montage4d: interactive seamless
fusion of multiview video textures. In Proceedings of ACM
SIGGRAPH Symposium on Interactive 3D Graphics and
Games (13D), 2018. 2

Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenen-
baum, and Jiajun Wu. Neural radiance flow for 4d view
synthesis and video processing. In 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
14304-14314. IEEE Computer Society, 2021. 3

Tobias Duckworth and David J Roberts. Camera image syn-
chronisation in multiple camera real-time 3d reconstruction
of moving humans. In 2011 IEEE/ACM 15th International
Symposium on Distributed Simulation and Real Time Ap-
plications, pages 138—-144. IEEE, 2011. 3

Jorg Edelmann, Peter Gerjets, Philipp Mock, Andreas
Schilling, and Wolfgang Strasser. Face2face—a system for
multi-touch collaboration with telepresence. In 2012 IEEE


https://github.com/open-mmlab/mmflow
https://github.com/open-mmlab/mmflow

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

(35]

(36]

(37]

International Conference on Emerging Signal Processing
Applications, pages 159-162. IEEE, 2012. 2

Fazliaty Edora Fadzli and Ajune Wanis Ismail. A robust
real-time 3d reconstruction method for mixed reality telep-
resence. International Journal of Innovative Computing,
10(2), 2020. 2

A. J. Fairchild, S. P. Campion, A. S. Garcia, R. Wolff, T.
Fernando, and D. J. Roberts. A Mixed Reality Telepresence
System for Collaborative Space Operation. IEEE Trans. on
Circuits and Systems for Video Technology, 27(4):814-827,
2016. 2

Yingchun Fan, Hong Han, Yuliang Tang, and Tao Zhi. Dy-
namic objects elimination in slam based on image fusion.
Pattern Recognition Letters, 127:191-201, 2019. 3

G. Fontaine. The Experience of a Sense of Presence in In-
tercultural and Int. Encounters. Presence: Teleoper. Virtual
Environ., 1(4):482-490, 1992. 1, 2

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5501-5510, 2022. 3

Xiao Fu, Shangzhan Zhang, Tianrun Chen, Yichong Lu,
Lanyun Zhu, Xiaowei Zhou, Andreas Geiger, and Yiyi
Liao. Panoptic nerf: 3d-to-2d label transfer for panoptic ur-
ban scene segmentation. arXiv preprint arXiv:2203.15224,
2022. 3

H. Fuchs, G. Bishop, K. Arthur, L. McMillan, R. Bajcsy,
S. Lee, H. Farid, and Takeo Kanade. Virtual Space Tele-
conferencing Using a Sea of Cameras. In Proc. of the Int.
Conf. on Medical Robotics and Computer Assisted Surgery,
pages 161 — 167, 1994. 2

H. Fuchs, A. State, and J. Bazin. Immersive 3D Telepres-
ence. Computer, 47(7):46-52, 2014. 2

Guy Gafni, Justus Thies, Michael Zollhofer, and Matthias
NieBner. Dynamic neural radiance fields for monocu-
lar 4d facial avatar reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8649-8658, 2021. 3

Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin
Huang. Dynamic view synthesis from dynamic monocu-
lar video. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5712-5721, 2021.
3

Simon J Gibbs, Constantin Arapis, and Christian J Breit-
eneder. Teleport—towards immersive copresence. Multime-
dia Systems, 7(3):214-221, 1999. 2

Scott W Greenwald, Wiley Corning, Gavin McDowell, Pat-
tie Maes, and John Belcher. Electrovr: An electrostatic
playground for collaborative, simulation-based exploratory
learning in immersive virtual reality. 2019. 2

Markus Gross, Stephan Wiirmlin, Martin Naef, Edouard
Lamboray, Christian Spagno, Andreas Kunz, Esther Koller-
Meier, Tomas Svoboda, Luc Van Gool, Silke Lang, et al.
blue-c: a spatially immersive display and 3d video portal
for telepresence. ACM Transactions on Graphics (TOG),
22(3):819-827, 2003. 2

10

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

Kaiwen Guo, Feng Xu, Yangang Wang, Yebin Liu, and
Qionghai Dai. Robust non-rigid motion tracking and sur-
face reconstruction using 10 regularization. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 3083-3091, 2015. 3

Kai Han, Rafael S Rezende, Bumsub Ham, Kwan-Yee K
Wong, Minsu Cho, Cordelia Schmid, and Jean Ponce. Sc-
net: Learning semantic correspondence. In Proceedings
of the IEEFE international conference on computer vision,
pages 1831-1840, 2017. 16, 17

Kaiming He, Georgia Gkioxari, Piotr Dolldr, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2961-2969,
2017. 16, 17

Richard Held. Telepresence. The Journal of the Acoustical
Society of America, 92(4):2458-2458, 1992. 1,2

Mina Henein, Jun Zhang, Robert Mahony, and Viorela Ila.
Dynamic slam: The need for speed. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 2123-2129, 2020. 3

Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren,
and Dieter Fox. Rgb-d mapping: Using depth cameras for
dense 3d modeling of indoor environments. In Experimen-
tal robotics, pages 477-491. Springer, 2014. 3

Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. A
lightweight optical flow cnn—revisiting data fidelity and
regularization. IEEE transactions on pattern analysis and
machine intelligence, 43(8):2555-2569, 2020. 4, 16, 17
Matthias Innmann, Michael Zollh¥ofer, Matthias NieBner,
Christian Theobalt, and Marc Stamminger. Volumede-
form: Real-time volumetric non-rigid reconstruction. In
European conference on computer vision, pages 362-379.
Springer, 2016. 3

ABM Islam, Christian Scheel, Ali Shariq Imran, and Oliver
Staadt. Fast and accurate 3d reproduction of a remote
collaboration environment. In International Conference
on Virtual, Augmented and Mixed Reality, pages 351-362.
Springer, 2014. 3

S. Izadi et al. KinectFusion: Real-time 3D Reconstruction
and Interaction Using a Moving Depth Camera. In Proc. of
the ACM Symp. on User Interface Software and Technology,
pages 559-568, 2011. 2

Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
et al. Kinectfusion: real-time 3d reconstruction and inter-
action using a moving depth camera. In Proceedings of the
24th annual ACM symposium on User interface software
and technology, pages 559-568, 2011. 3

Mariano Jaimez, Christian Kerl, Javier Gonzalez-Jimenez,
and Daniel Cremers. Fast odometry and scene flow from
rgb-d cameras based on geometric clustering. In 2017
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 3992-3999. IEEE, 2017. 3

Yoonwoo Jeong, Seokjun Ahn, Christopher Choy, Anima
Anandkumar, Minsu Cho, and Jaesik Park. Self-calibrating
neural radiance fields. In Proceedings of the IEEE/CVF



[51]

[52

[53

[54

[55

[56

]

]

]

]

]

[57]

[58

[59

[60

[61

[62

[63

]

]

—

]

]

—

International Conference on Computer Vision, pages 5846—
5854,2021. 3

Shihao Jiang, Dylan Campbell, Yao Lu, Hongdong Li,
and Richard Hartley. Learning to estimate hidden motions
with global motion aggregation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 9772-9781, 2021. 16, 17

Michal Joachimczak, Juan Liu, and Hiroshi Ando. Real-
time mixed-reality telepresence via 3d reconstruction with
hololens and commodity depth sensors. In Proceedings of
the 19th ACM International Conference on Multimodal In-
teraction, pages 514-515, 2017. 2

Andrew Jones, Magnus Lang, Graham Fyffe, Xueming Yu,
Jay Busch, Ian McDowall, Mark Bolas, and Paul Debevec.
Achieving eye contact in a one-to-many 3d video telecon-
ferencing system. ACM Transactions on Graphics (TOG),
28(3):1-8, 2009. 2

B. Jones et al. RoomAlive: Magical Experiences Enabled
by Scalable, Adaptive Projector-camera Units. In Proc. of
the Annual Symp. on User Interface Software and Technol-
ogy, pages 637-644, 2014. 2

Olaf Kihler, Victor Prisacariu, Julien Valentin, and David
Murray. Hierarchical voxel block hashing for efficient in-
tegration of depth images. IEEE Robotics and Automation
Letters, 1(1):192-197, 2015. 3

Olaf Kihler, Victor A Prisacariu, and David W Murray.
Real-time large-scale dense 3d reconstruction with loop
closure. In European Conference on Computer Vision,
pages 500-516. Springer, 2016. 3

Olaf Kihler, Victor Adrian Prisacariu, Carl Yuheng Ren,
Xin Sun, Philip Torr, and David Murray. Very high frame
rate volumetric integration of depth images on mobile de-
vices. [EEE transactions on visualization and computer
graphics, 21(11):1241-1250, 2015. 3

T. Kanade, P. Rander, and P. J. Narayanan. Virtualized re-
ality: constructing virtual worlds from real scenes. IEEE
MultiMedia, 4(1):34-47,1997. 2

Maik Keller, Damien Lefloch, Martin Lambers, Shahram
Izadi, Tim Weyrich, and Andreas Kolb. Real-time 3d re-
construction in dynamic scenes using point-based fusion.
In 2013 International Conference on 3D Vision-3DV 2013,
pages 1-8. IEEE, 2013. 3

Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? Advances
in neural information processing systems, 30, 2017. 3
Deok-Hwa Kim and Jong-Hwan Kim. Effective back-
ground model-based rgb-d dense visual odometry in a
dynamic environment. [EEE Transactions on Robotics,
32(6):1565-1573, 2016. 3

Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. Pointrend: Image segmentation as rendering. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9799-9808, 2020. 16, 17
Maria Klodt and Andrea Vedaldi. Supervising the new with
the old: learning sfm from sfm. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 698—
713,2018. 3

11

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

Ryohei Komiyama, Takashi Miyaki, and Jun Rekimoto.
Jackin space: designing a seamless transition between first
and third person view for effective telepresence collabora-
tions. In Proceedings of the 8th Augmented Human Inter-
national Conference, pages 1-9, 2017. 2

Dennis Krupke, Sebastian Starke, Lasse Einig, J Zhang, and
F Steinicke. Prototyping of immersive hri scenarios. In
Human-Centric Robotics: Proceedings of CLAWAR 2017:
20th International Conference on Climbing and Walking
Robots and the Support Technologies for Mobile Machines,
pages 537-544. World Scientific, 2018. 3

G. Kurillo, R. Bajcsy, K. Nahrsted, and O. Kreylos. Immer-
sive 3D Environment for Remote Collaboration and Train-
ing of Physical Activities. In IEEE Virtual Reality Confer-
ence, pages 269-270, 2008. 2

Yevhen Kuznietsov, Jorg Stuckler, and Bastian Leibe.
Semi-supervised deep learning for monocular depth map
prediction. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 6647-6655,
2017. 3

Jason Lawrence, Dan B Goldman, Supreeth Achar, Gre-
gory Major Blascovich, Joseph G. Desloge, Tommy Fortes,
Eric M. Gomez, Sascha Hiberling, Hugues Hoppe, Andy
Huibers, Claude Knaus, Brian Kuschak, Ricardo Martin-
Brualla, Harris Nover, Andrew Ian Russell, Steven M.
Seitz, and Kevin Tong. Project starline: A high-fidelity
telepresence system. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia), 40(6), 2021. 2

Hao Li, Linjie Luo, Daniel Vlasic, Pieter Peers, Jovan
Popovié, Mark Pauly, and Szymon Rusinkiewicz. Tempo-
rally coherent completion of dynamic shapes. ACM Trans-
actions on Graphics (TOG), 31(1):1-11, 2012. 3

Shile Li and Dongheui Lee. Rgb-d slam in dynamic envi-
ronments using static point weighting. IEEE Robotics and
Automation Letters, 2(4):2263-2270, 2017. 3

Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, Richard Newcombe,
et al. Neural 3d video synthesis from multi-view video. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5521-5531, 2022. 3
Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver
Wang. Neural scene flow fields for space-time view syn-
thesis of dynamic scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6498-6508, 2021. 3

Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. Barf: Bundle-adjusting neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5741-5751, 2021. 3

Jeffrey I Lipton, Aidan J Fay, and Daniela Rus. Bax-
ter’s homunculus: Virtual reality spaces for teleoperation
in manufacturing. IEEE Robotics and Automation Letters,
3(1):179-186, 2017. 3

Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu
Sarkar, Jiatao Gu, and Christian Theobalt. Neural actor:
Neural free-view synthesis of human actors with pose con-



[76]

[77]

(78]

[79]

(80]

[81]

[82]

[83]

[84
[85]

—_

(86]

[87]

[88

—

trol. ACM Transactions on Graphics (TOG), 40(6):1-16,
2021. 3

C. Loop, C. Zhang, and Z. Zhang. Real-time High-
resolution Sparse Voxelization with Application to Image-
based Modeling. In Proc. of the High-Performance Graph-
ics Conference, pages 7379, 2013. 2

Xinzhong Lu, Ju Shen, Saverio Perugini, and Jianjun Yang.
An immersive telepresence system using rgb-d sensors and
head mounted display. In 2015 IEEE International Sym-
posium on Multimedia (ISM), pages 453—-458. IEEE, 2015.
2

A. Maimone, J. Bidwell, K. Peng, and H. Fuchs. Enhanced
personal autostereoscopic telepresence system using com-
modity depth cameras. Computers & Graphics, 36(7):791
-807,2012. 2

A. Maimone and H. Fuchs. Encumbrance-free Telepres-
ence System with Real-time 3D Capture and Display Us-
ing Commodity Depth Cameras. In Proc. of the IEEE Int.
Symp. on Mixed and Augmented Reality, pages 137-146,
2011. 2

A. Maimone and H. Fuchs. Real-time volumetric 3D cap-
ture of room-sized scenes for telepresence. In Proc. of the
3DTV-Conference, 2012. 2

Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7210-7219, 2021. 3

Quan Meng, Anpei Chen, Haimin Luo, Minye Wu, Hao Su,
Lan Xu, Xuming He, and Jingyi Yu. Gnerf: Gan-based neu-
ral radiance field without posed camera. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 6351-6361, 2021. 3

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99—-106, 2021.
3

M MINSKY. Telepresence. Omni, 2(9):44-52, 1980. 1, 2
D. Molyneaux, S. Izadi, D. Kim, O. Hilliges, S. Hodges, X.
Cao, A. Butler, and H. Gellersen. Interactive Environment-
Aware Handheld Projectors for Pervasive Computing
Spaces. In Proc. of the Int. Conf. on Pervasive Computing,
pages 197-215, 2012. 2

Carl Moore, Toby Duckworth, Rob Aspin, and David
Roberts. Synchronization of images from multiple cam-
eras to reconstruct a moving human. In 2010 IEEE/ACM
14th International Symposium on Distributed Simulation
and Real Time Applications, pages 53-60. IEEE, 2010. 3
A. Mossel and M. Kroter. Streaming and exploration of dy-
namically changing dense 3d reconstructions in immersive
virtual reality. In Proc. of IEEE Int. Symp. on Mixed and
Augmented Reality, pages 43-48, 2016. 2, 3

Lothar Muhlbach, Martin Bocker, and Angela Prussog.
Telepresence in videocommunications: A study on stere-
oscopy and individual eye contact. = Human Factors,
37(2):290-305, 1995. 2

12

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

(971

(98]

[99]

[100]

[101]

Thomas Miiller, Alex Evans, Christoph Schied, and
Alexander Keller. Instant neural graphics primitives with a
multiresolution hash encoding. ACM Trans. Graph., 41(4),
jul 2022. 3

J. Mulligan and K. Daniilidis. View-independent scene ac-
quisition for tele-presence. In Proc. IEEE and ACM Int.
Symp. on Augmented Reality, pages 105-108, 2000. 2
Abdeldjallil Naceri, Dario Mazzanti, Joao Bimbo, Yonas T
Tefera, Domenico Prattichizzo, Darwin G Caldwell,
Leonardo S Mattos, and Nikhil Deshpande. The vicar-
ios virtual reality interface for remote robotic teleopera-
tion. Journal of Intelligent & Robotic Systems, 101(4):1—
16,2021. 3

Richard A Newcombe, Dieter Fox, and Steven M Seitz.
Dynamicfusion: Reconstruction and tracking of non-rigid
scenes in real-time. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 343—
352,2015. 3

Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J. Davison, Push-
meet Kohli, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. KinectFusion: Real-time dense surface map-
ping and tracking. In 2011 10th IEEE International Sympo-
sium on Mixed and Augmented Reality, ISMAR 2011, 2011.
3,6

Viet Anh Nguyen, Jiangbo Lu, Shengkui Zhao, Dung T Vu,
Hongsheng Yang, Douglas L Jones, and Minh N Do. Item:
Immersive telepresence for entertainment and meetings—a
practical approach. IEEE Journal of Selected Topics in Sig-
nal Processing, 9(3):546-561, 2014. 2

Matthias NieBner, Michael Zollhofer, Shahram Izadi, and
Marc Stamminger. Real-time 3d reconstruction at scale us-
ing voxel hashing. ACM Transactions on Graphics (ToG),
32(6):1-11, 2013. 3,5

Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya
Harada. Neural articulated radiance field. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 5762-5772,2021. 3

S. Orts-Escolano et al. Holoportation: Virtual 3D Telepor-
tation in Real-time. In Proc. of the Annual Symp. on User
Interface Software and Technology, pages 741-754, 2016.
2

Viken Parikh and Mansi Khara. A mixed reality workspace
using telepresence system. In International Conference
on ISMAC in Computational Vision and Bio-Engineering,
pages 803-813. Springer, 2018. 2

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5865-5874, 2021. 3

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. arXiv preprint arXiv:2106.13228, 2021. 3
Tomislav Pejsa, Julian Kantor, Hrvoje Benko, Eyal Ofek,
and Andrew Wilson. Room2room: Enabling life-size telep-



[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

resence in a projected augmented reality environment. In
Proceedings of the 19th ACM conference on computer-
supported cooperative work & social computing, pages
1716-1725, 2016. 2

Sida Peng, Junting Dong, Qiangian Wang, Shangzhan
Zhang, Qing Shuai, Xiaowei Zhou, and Hujun Bao. An-
imatable neural radiance fields for modeling dynamic hu-
man bodies. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 14314—
14323, 2021. 3

Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqgian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9054-9063, 2021. 3

Lorenzo Peppoloni, Filippo Brizzi, Carlo Alberto Aviz-
zano, and Emanuele Ruffaldi. Immersive ros-integrated
framework for robot teleoperation. In 2015 IEEE Sympo-
sium on 3D User Interfaces (3DUI), pages 177-178. IEEE,
2015. 3

B. Petit, J.-D. Lesage, C. Menier, J. Allard, J.-S. Franco, B.
Raffin, E. Boyer, and F. Faure. Multicamera Real-Time 3D
Modeling for Telepresence and Remote Collaboration. Int.
Journal of Digital Multimedia Broadcasting, 2010. 2
Victor Adrian Prisacariu, Olaf Kihler, Stuart Golodetz,
Michael Sapienza, Tommaso Cavallari, Philip HS Torr, and
David W Murray. Infinitam v3: A framework for large-
scale 3d reconstruction with loop closure. arXiv preprint
arXiv:1708.00783,2017. 3

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10318-10327, 2021. 3

Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. De-
tectors: Detecting objects with recursive feature pyramid
and switchable atrous convolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10213-10224, 2021. 16, 17

Amit Raj, Michael Zollhofer, Tomas Simon, Jason M.
Saragih, Shunsuke Saito, James Hays, and Stephen Lom-
bardi. Pixel-aligned volumetric avatars. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 11733-11742, 2021. 3

Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 14335—
14345, 2021. 3

Konstantinos Rematas, Andrew Liu, Pratul P Srini-
vasan, Jonathan T Barron, Andrea Tagliasacchi, Thomas
Funkhouser, and Vittorio Ferrari. Urban radiance fields.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12932-12942, 2022.
3

David J Roberts, Allen J Fairchild, Simon P Campion, John
O’Hare, Carl M Moore, Rob Aspin, Tobias Duckworth,

13

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Paolo Gasparello, and Franco Tecchia. withyou—an exper-
imental end-to-end telepresence system using video-based
reconstruction. IEEE Journal of Selected Topics in Signal
Processing, 9(3):562-574, 2015. 2

Barbara Roessle, Jonathan T Barron, Ben Mildenhall,
Pratul P Srinivasan, and Matthias Niefner. Dense depth
priors for neural radiance fields from sparse input views. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12892-12901, 2022.
3

Eric Rosen, David Whitney, Michael Fishman, Daniel Ull-
man, and Stefanie Tellex. Mixed reality as a bidirec-
tional communication interface for human-robot interac-
tion. In 2020 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 11431-11438.
IEEE, 2020. 3

Martin Runz, Maud Buffier, and Lourdes Agapito. Maskfu-
sion: Real-time recognition, tracking and reconstruction of
multiple moving objects. In 2018 IEEE International Sym-
posium on Mixed and Augmented Reality (ISMAR), pages
10-20. IEEE, 2018. 3

Martin Riinz and Lourdes Agapito. Co-fusion: Real-time
segmentation, tracking and fusion of multiple objects. In
2017 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4471-4478. IEEE, 2017. 3

David W Schloerb. A quantitative measure of telepresence.
Presence: Teleoperators & Virtual Environments, 4(1):64—
80, 1995. 2

Raluca Scona, Mariano Jaimez, Yvan R Petillot, Maurice
Fallon, and Daniel Cremers. Staticfusion: Background
reconstruction for dense rgb-d slam in dynamic environ-
ments. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 3849-3856. IEEE, 2018. 3

Miroslava Slavcheva, Maximilian Baust, Daniel Cremers,
and Slobodan Ilic. Killingfusion: Non-rigid 3d reconstruc-
tion without correspondences. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1386-1395, 2017. 3

Miroslava Slavcheva, Maximilian Baust, and Slobodan Ilic.
Sobolevfusion: 3d reconstruction of scenes undergoing free
non-rigid motion. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2646—
2655, 2018. 3

Rajinder S. Sodhi, Brett R. Jones, David Forsyth, Brian P.
Bailey, and Giuliano Maciocci. Bethere: 3d mobile collab-
oration with spatial input. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI
’13, page 179-188, New York, NY, USA, 2013. Associa-
tion for Computing Machinery. 2

Jonathan Steuer. Defining virtual reality: Dimensions deter-
mining telepresence. Journal of communication, 42(4):73—
93,1992. 2

Patrick Stotko, Stefan Krumpen, Matthias B. Hullin,
Michael Weinmann, and Reinhard Klein. SLAMCast:
Large-Scale, Real-Time 3D Reconstruction and Streaming
for Immersive Multi-Client Live Telepresence. IEEE Trans-
actions on Visualization and Computer Graphics, 25(5),
2019. 2,3,4,5,6



[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

Patrick Stotko, Stefan Krumpen, Reinhard Klein, and
Michael Weinmann. Towards scalable sharing of immer-
sive live telepresence experiences beyond room-scale based
on efficient real-time 3d reconstruction and streaming. In
CVPR Workshop on Computer Vision for Augmented and
Virtual Reality, 2019. 2, 3

Patrick Stotko, Stefan Krumpen, Max Schwarz, Christian
Lenz, Sven Behnke, Reinhard Klein, and Michael Wein-
mann. A vr system for immersive teleoperation and live
exploration with a mobile robot. In 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pages 3630-3637. IEEE, 2019. 2, 3

Patrick Stotko, Stefan Krumpen, Michael Weinmann, and
Reinhard Klein. Efficient 3d reconstruction and streaming
for group-scale multi-client live telepresence. In 2019 IEEE
International Symposium on Mixed and Augmented Reality
(ISMAR), pages 19-25. IEEE, 2019. 2, 3,4

Michael Strecke and Jorg Stuckler. Em-fusion: Dynamic
object-level slam with probabilistic data association. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5865-5874, 2019. 3

Jorg Stiickler and Sven Behnke. Efficient dense rigid-body
motion segmentation and estimation in rgb-d video. In-
ternational Journal of Computer Vision, 113(3):233-245,
2015. 3

Po-Chang Su, Ju Shen, and Muhammad Usman Rafique.
Rgb-d camera network calibration and streaming for 3d
telepresence in large environment. In 2077 IEEE Third In-
ternational Conference on Multimedia Big Data (BigMM),
pages 362-369. IEEE, 2017. 2

Shih-Yang Su, Frank Yu, Michael Zollhoefer, and Helge
Rhodin. A-nerf: Surface-free human 3d pose refinement via
neural rendering. arXiv preprint arXiv:2102.06199, 2021.
3

Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davi-
son. imap: Implicit mapping and positioning in real-time.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6229-6238, 2021. 3

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct
voxel grid optimization: Super-fast convergence for radi-
ance fields reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5459-5469, 2022. 3

Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek
Pradhan, Ben Mildenhall, Pratul P Srinivasan, Jonathan T
Barron, and Henrik Kretzschmar. Block-nerf: Scalable
large scene neural view synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8248-8258, 2022. 3

T. Tanikawa, Y. Suzuki, K. Hirota, and M. Hirose. Real
world video avatar: Real-time and real-size transmission
and presentation of human figure. In Proc. of the Int. Conf.
on Augmented Tele-existence, pages 112-118, 2005. 2
Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on
computer vision, pages 402—419. Springer, 2020. 16, 17
Theophilus Teo, Louise Lawrence, Gun A Lee, Mark
Billinghurst, and Matt Adcock. Mixed reality remote col-

14

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

laboration combining 360 video and 3d reconstruction. In
Proceedings of the 2019 CHI conference on human factors
in computing systems, pages 1-14, 2019. 2

Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann,
Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-
Brualla, Tomas Simon, Jason Saragih, Matthias Niefner,
et al. State of the art on neural rendering. In Computer
Graphics Forum, volume 39, pages 701-727. Wiley Online
Library, 2020. 3

Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srini-
vasan, Edgar Tretschk, W Yifan, Christoph Lassner, Vin-
cent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi,
et al. Advances in neural rendering. In Computer Graphics
Forum, volume 41, pages 703-735. Wiley Online Library,
2022. 3

Michail Theofanidis, Saif Iftekar Sayed, Alexandros Li-
oulemes, and Fillia Makedon. Varm: Using virtual real-
ity to program robotic manipulators. In Proceedings of the
10th International Conference on PErvasive Technologies
Related to Assistive Environments, pages 215-221,2017. 3
H. Towles, W. Chen, R. Yang, S. Kum, H. Fuchs, N.
Kelshikar, J. Mulligan, K. Daniilidis, C. C. Hill, L.
Holden, B. Zeleznik, A. Sadagic, and J. Lanier. 3D Tele-
Collaboration Over Internet2. In Proc. of the Int. Workshop
on Immersive Telepresence, 2002. 2

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik,
Michael Zollhofer, Christoph Lassner, and Christian
Theobalt. Non-rigid neural radiance fields: Reconstruc-
tion and novel view synthesis of a dynamic scene from
monocular video. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 12959—
12970, 2021. 3

Wei-Cheng Tseng, Hung-Ju Liao, Lin Yen-Chen, and Min
Sun. Cla-nerf: Category-level articulated neural radiance
field. arXiv preprint arXiv:2202.00181, 2022. 3

Haithem Turki, Deva Ramanan, and Mahadev Satya-
narayanan. Mega-nerf: Scalable construction of large-
scale nerfs for virtual fly-throughs. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12922-12931, 2022. 3

R. Vasudevan, G. Kurillo, E. Lobaton, T. Bernardin, O.
Kreylos, R. Bajcsy, and K. Nahrstedt. High-Quality Visual-
ization for Geographically Distributed 3-D Teleimmersive
Applications. IEEE Trans. on Multimedia, 13(3):573-584,
2011. 2

Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer,
Kyle Genova, Mehdi SM Sajjadi, Etienne Pot, Andrea
Tagliasacchi, and Daniel Duckworth. Nesf: Neural se-
mantic fields for generalizable semantic segmentation of 3d
scenes. arXiv preprint arXiv:2111.13260, 2021. 3
Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and
Chunhua Shen. Solov2: Dynamic and fast instance seg-
mentation. Proc. Advances in Neural Information Process-
ing Systems (NeurIPS), 2020. 4, 16, 17

Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen,
and Victor Adrian Prisacariu. Nerf—: Neural radiance
fields without known camera parameters. arXiv preprint
arXiv:2102.07064,2021. 3



—

—

—

—

—

[

[148] Yi Wei, Shaohui Liu, Yongming Rao, Wang Zhao, Jiwen

Lu, and Jie Zhou. Nerfingmvs: Guided optimization of neu-
ral radiance fields for indoor multi-view stereo. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 5610-5619, 2021. 3

Thomas Whelan, Renato F Salas-Moreno, Ben Glocker,
Andrew J Davison, and Stefan Leutenegger. Elasticfusion:
Real-time dense slam and light source estimation. The
International Journal of Robotics Research, 35(14):1697—
1716, 2016. 3

David Whitney, Eric Rosen, Daniel Ullman, Elizabeth
Phillips, and Stefanie Tellex. Ros reality: A virtual re-
ality framework using consumer-grade hardware for ros-
enabled robots. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 1-9.
IEEE, 2018. 3

Felix Wimbauer, Nan Yang, Lukas Von Stumberg, Niclas
Zeller, and Daniel Cremers. Monorec: Semi-supervised
dense reconstruction in dynamic environments from a sin-
gle moving camera. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
6112-6122, 2021. 3

B. G. Witmer and M. J. Singer. Measuring Presence in Vir-
tual Environments: A Presence Questionnaire. Presence:
Teleoper. Virtual Environ., 7(3):225-240, 1998. 1, 2

Jonas Wulff, Laura Sevilla-Lara, and Michael J Black. Op-
tical flow in mostly rigid scenes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4671-4680, 2017. 3

Wengqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil
Kim. Space-time neural irradiance fields for free-viewpoint
video. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9421—
9431, 2021. 3

Binbin Xu, Wenbin Li, Dimos Tzoumanikas, Michael
Bloesch, Andrew Davison, and Stefan Leutenegger. Mid-
fusion: Octree-based object-level multi-instance dynamic
slam. In 2019 International Conference on Robotics and
Automation (ICRA), pages 5231-5237. IEEE, 2019. 3

Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel
Cremers. D3vo: Deep depth, deep pose and deep uncer-
tainty for monocular visual odometry. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1281-1292, 2020. 3

Nan Yang, Rui Wang, Jorg Stuckler, and Daniel Cremers.
Deep virtual stereo odometry: Leveraging deep depth pre-
diction for monocular direct sparse odometry. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 817-833, 2018. 3

Mao Ye and Ruigang Yang. Real-time simultaneous pose
and shape estimation for articulated objects using a sin-
gle depth camera. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2345—
2352,2014. 3

Lin Yen-Chen, Pete Florence, Jonathan T Barron, Alberto
Rodriguez, Phillip Isola, and Tsung-Yi Lin. inerf: Invert-
ing neural radiance fields for pose estimation. In 2021

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1323-1330. IEEE, 2021. 3
Jacob Young, Tobias Langlotz, Steven Mills, and Holger
Regenbrecht. Mobileportation: Nomadic telepresence for
mobile devices. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 4(2):1-16,
2020. 2

Chao Yu, Zuxin Liu, Xin-Jun Liu, Fugui Xie, Yi Yang,
Qi Wei, and Qiao Fei. Ds-slam: A semantic visual slam
towards dynamic environments. In 2018 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pages 1168-1174. IEEE, 2018. 3

Hao Zhang and Feng Xu. Mixedfusion: Real-time re-
construction of an indoor scene with dynamic objects.
IEEE transactions on visualization and computer graphics,
24(12):3137-3146, 2017. 3

Shujun Zhang and Wan Ching Ho. Tele-immersive inter-
action with intelligent virtual agents based on real-time 3d
modeling. Journal of Multimedia, 7(1):57, 2012. 2
Tianwei Zhang, Huayan Zhang, Yang Li, Yoshihiko Naka-
mura, and Lei Zhang. Flowfusion: Dynamic dense rgb-d
slam based on optical flow. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages
7322-7328. IEEE, 2020. 3

Shengyu Zhao, Yilun Sheng, Yue Dong, Eric I Chang, Yan
Xu, et al. Maskflownet: Asymmetric feature matching with
learnable occlusion mask. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6278-6287, 2020. 16, 17

Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and
Andrew J Davison. In-place scene labelling and under-
standing with implicit scene representation. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 15838-15847, 2021. 3

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun.
Open3D: A modern library for 3D data processing.
arXiv:1801.09847,2018. 4

Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu,
Hujun Bao, Zhaopeng Cui, Martin R Oswald, and Marc
Pollefeys. Nice-slam: Neural implicit scalable encoding
for slam. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12786—
12796, 2022. 3

Domenic Zingsheim, Patrick Stotko, Stefan Krumpen,
Michael Weinmann, and Reinhard Klein. Collaborative vr-
based 3d labeling of live-captured scenes by remote users.
IEEE Computer Graphics and Applications, 41(4):90-98,
2021. 3

Nikolaos Zioulis, Dimitrios Alexiadis, Alexandros
Doumanoglou, Georgios Louizis, Konstantinos Apos-
tolakis, Dimitrios Zarpalas, and Petros Daras. 3d
tele-immersion platform for interactive immersive experi-
ences between remote users. In 2016 IEEE International
conference on image processing (ICIP), pages 365-369.
IEEE, 2016. 2



A. Detailed Explanation of Components

Filtering of Instance Proposals. When given a color im-
age I, the instance segmentation network fe, used in
our work outputs region proposals Mj, ..., M, in terms of
Boolean masks that indicate the membership of each pixel
u € U, i.e. M;(u) = 1, if pixel u belongs to proposal j, and
M (u) = 0 otherwise. In addition, each mask is associated
with a class label /; and a confidence score ¢; € [0,1]. To
produce the per-pixel class label L and instance ID maps
Lk, we have to integrate potentially overlapping region pro-
posals, taking the confidence scores into account. We ac-
complish this by first removing proposals with a confidence
smaller than a threshold 7¢.ns. For each pixel u, we then
find the instance ID of the proposal with maximum con-
fidence, i.e. for the filtered indices j1, ..., 7., we compute
i*(u) = argmax,{c; | M;(u) = 1}. The resulting assign-
ment is again filtered by removing IDs that do not exceed a
minimum pixel count. In other words, we set

) = {z’*(u>, if (@) = i 2 om0

0, otherwise.

As described in the paper, the resulting indices are then as-
sociated with the IDs from the previous frame to get the
final map ¢, of instance IDs and the label map is set to the
corresponding class labels Ly, (u) = 1, (x)-

Dynamicity Initialization. For instances that cannot be
associated with an instance in the previous frame, we keep
a mean for the dynamicity scores of each class that is
smoothed according to the scheme shown in Equation (6)
of the main paper. More specifically, let 55, : £ — R>q be
defined as a mapping from the set of class labels L to the
mean dynamicity scores, where

5k(1) :== max {aclass < 8k—1(1), |T1\ Z §§€(z)} . (1D
=
Figure 5 depicts the steps taken to compute the temporally
smoothed score sj (¢) of some instance ¢ with label /; from
the initial score s (7). Importantly, we also handle the case
that a class is observed for the first time in the current frame.
In that case, we set the class mean to the only available ob-

servation s ().

B. Hyperparameter Choices

The hyperparameters used for the performance evalua-
tion and visualization were fixed for all scenes and are listed
in Table 3.

C. Scene Descriptions

Table 5 contains a short description as well as some ex-
emplary RGB images of each of the 8§ self-recorded scenes
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Figure 5. Flowchart visualizing the procedure for the temporal
smoothing of the dynamicity score of instance ¢ with class label
l; in frame k. If the tracking matches instance ¢ with an instance
from the previous frame, the resulting score is smoothed as shown
in Equation (6). Otherwise, we first check whether the class was
observed in a previous frame. In this case, we smooth the score
similarly to Equation (6) but using the smoothed class mean from
the last frame instead. In case the class is observed for the first
time, we keep the initial score and use it as the new class mean for
l;. Lastly, the class mean for /; is updated.

used for our experiments. The scenes were all captured with
a Microsoft Azure Kinect RGB-D sensor at a frame-rate
of 30 Hz using the narrow FOV configuration and without
depth binning.

D. Detailed Performance Comparison

In Table 6, we list the raw computation speed, measured
in terms of frames per second (FPS), of individual compo-
nents of our pipeline during evaluation. The results show
that, on average, the inference of the instance segmentation
network is the limiting factor for the overall speed of the
pipeline. Note that the components run in parallel, such
that actual processing speed of each component is limited
by the output speed of the previous one. The measured val-
ues therefore only represent an upper bound for the FPS
that each component can reach in our implementation. An
example of this parallel execution is also visualized in Fig-
ure 7.

E. Comparison with Further Segmentation
and Optical Flow Networks

To evaluate the choice of the instance segmentation [ 146]
and optical flow [44] networks used in our approach, we
compared the performance differences with some other re-
cent segmentation [39,40,62,108] and optical flow [51, s



Symbol Description Value
Teonf Minimum segmentation confidence 0.1
_ Minimum pixel count for class 2300

acceptance
T Dynamic threshold 1.1
Ty Voxel weight dynamicity threshold 1.1
. SDF invalidation dynamicity 11
threshold '
W, Static max. voxel weight 255
Wn Dynamic max. voxel weight 3
c Histogram bin width 0.25
N/A Histogram relative min. bin count 0.01
N/A Instance tracking min. overlap ratio | 0.2
« Instance dynamicity decay factor 0.9
Olelass Class dynamicity decay factor 0.9
5 Dynamicity normalization scale 04
factor '

Table 3. Choices for the hyperparameters of the pipeline used dur-
ing the evaluation. Symbol “N/A” indicates that no symbol was
given to this parameter in the main publication or the supplemen-
tary material.

Segmentation ‘ Optical Flow ‘ FPS [1/s]
Mask R-CNN [40] 6.91 (1.49)
PointRend [62] . 5.34 (1.29)
SCNet [39] LiteFlowNet2 [44] 417 (0.44)
DetectoRS [108] 2.39 (0.14)
MaskFlowNet [165] | 9.57 (5.08)
SoloV2 [146] RAFT [135] 2.88 (0.09)
GMA [51] 2.55(0.08)
SoloV2 [146] ‘ LiteFlowNet2 [44] ‘ 11.38 (5.51)

Table 4. Performance comparison of our pipeline using different
networks for instance segmentation and optical flow. For this pur-
pose, we provide the resulting frame-rate (in FPS) our approach
reaches using the given combinations of networks.

] techniques. Table 4 shows our pipeline’s performance
in terms of frames per second.

F. Failure Cases

Our approach relies on accurate predictions from both
the segmentation and optical flow networks. Objects not
detected by the instance segmentation network affect their
assignment to the static or dynamic scene parts, which is
shown in Figure 6. Here, the balloon is not detected as an
object by the SoloV2 network and is therefore erroneously
integrated into the static model. While the integrated vox-
els conflict with future measurements and are eventually re-
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Figure 6. Failure case of our method. Shown are RGB (top left),
optical flow (top right), instance segmentation (bottom left) and re-
sulting segmentation into static and dynamic (bottom right). Even
though a clear motion cue is available in the optical flow image,
due to a missing object detection, our method fails to correctly
identify the dynamic region (orange circle).

moved, they cause visually unpleasant artifacts during re-
construction. However, due to the modular nature of our
approach, future developments with improved accuracy of
the predictions might address this current limitation of our
approach. Furthermore, future developments on increasing
the efficiency of the networks for the respectively involved
subtasks will further improve the overall performance.



Scene ‘ Description ‘ Exemplary Images from Scene

7

A person moves around
items_1 items (books and boxes)
on an office table.

A person picks up and
drops off items on a
table in a medium-sized
office.

items_2

Two persons meet at a
people_1 | coffee table and
exchange a box.

Chairs and a boxes are
people_2 | moved around in an
office seating area.

Two persons exchange a

people.3 small box.

Balloons are kicked
ego_view | around ina
medium-sized office.

An office door is opened
oof_1 and closed while not
seen by the camera.

A box is moved multiple
oof 2 times while the camera
is not observing it.

Table 5. Short description and exemplary images for each of the scenes used for the evaluation.
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Scene ‘ System Components

Segmentation Optical Flow | Odometry Dynamicity

Inference  Tracking EPE  Norm. Smooth. Prop. Acc.

items_1 11.53 62.89 12.20 11.29 2245 28.12 55,79  159.78 59.65
items_2 9.86 58.40 11.81 13.25 24.08 43.22 59.36  148.02 57.75
people_1 10.53 56.91 11.68 13.02 24.82 3422 6242 15588 58.84
people_2 9.36 54.17 11.71 14.66 25.83 44.61 6344  156.12 58.38
people_3 12.94 69.20 11.29 11.46 2552  26.86 71.12  159.16 59.62
ego_view 9.73 51.88 11.92 16.29 25776  49.17 56.43 156.67 59.23
oof_1 13.24 67.29 11.01 11.19 2410 28.95 58.75 155.81 57.10
oof 2 10.63 56.02 11.87 14.99 2545 41.48 59.37 154.40 58.75
Mean | 10.98 5959 | 1156 | 1327 | 2465 37.08  60.84 15573 58.67

Table 6. Raw computation speeds in FPS [1/s] for the major components of our pipeline, evaluated separately for each of the 8 scenes used
for the evaluation. The last rows shows the mean over all scenes. The dynamicity computation is split into end-point-error computation
(EPE), normalization (Norm.), temporal smoothing (Smooth.), object propagation (Prop.) and accumulation (Acc.).

0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 10 | 45 | 50 | 55 | 60 | 65 | 70

Flow I | N | | | | |
Seg. | I | | | | |
Odom. [ ] | I
Teck | [] [ (] O (]

EPE| [ | o ] B O ]
Norm. | N O [ 0 @
Smooth. ] ] (] O ] ]
Prop. | [] (] (] (]

Ace, ) ] o s s Y s I o ]

Figure 7. Gantt chart showing the compute durations of the major components of our pipeline in a 700ms long section from the evaluation
of scene items_1. The highlighted bars correspond to the same input frame. System components are optical flow estimation (Flow), instance
segmentation (Seg.), odometry (Odom.), instance tracking (Track.), end-point-error computation (EPE), dynamicity normalization (Norm.),
temporal smoothing (Smooth.), propagation (Prop.) and accumulation (Acc.). It can be seen that faster components of the pipeline have to
wait for the next frame to become available to continue processing. Additional gaps result from scheduling and process communication.
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