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ABSTRACT

We propose a new method for producing color images from sketches. Current solutions
in sketch colorization either necessitate additional user instruction or are restricted to
the "paired" translation strategy. We leverage semantic image segmentation from a gen-
eral-purpose panoptic segmentation network to generate an additional adversarial loss
function. The proposed loss function is compatible with any GAN model. Our method is
not restricted to datasets with segmentation labels and can be applied to unpaired trans-
lation tasks as well. Using qualitative, and quantitative analysis, and based on a user
study, we demonstrate the efficacy of our method on four distinct image datasets. On the
FID metric, our model improves the baseline by up to 35 points. Our code, pretrained
models, scripts to produce newly introduced datasets and corresponding sketch images
are available at https://github.com/giddyyupp/AdvSegLoss.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

The task of image generation from an input sketch or edge
map is known as "sketch to image translation", or "sketch col-
orization". Sketches capture essential content of the images and
they can be easily acquired. Yet, vast amount of domain dif-
ference between single channel edge maps and color images
makes sketch colorization a challenging process. Lack of de-
tails in sketches especially for background is another problem.

Sketch colorization has been investigated in numerous do-
mains: faces [1, 2, 3, 4], objects [5, 6, 7, 8], animes [9, 10, 11,
12, 13, 14, 15], art [16], icons [17] and scenes [18, 19, 20]. The
majority of the approaches require user direction in the form of
supplementary input, such as a reference color, patch, or image.
These approaches usually generate surreal colorizations other-
wise. Except for a few studies (e.g., Liu et al. [8]), most of the
approaches follow the “paired” strategy, which is restricted to
use datasets with a ground-truth image for each sketch.
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In this study, we aim to leverage general purpose semantic
image segmentation to alleviate the aforementioned shortcom-
ings. We argue that an accurately colored sketch would pro-
duce a “real” segmentation result, i.e., a result that looks like
the segmentation of a real image. Thus, for sketch based image
colorization problem, we exploit semantic segmentation meth-
ods that have reached to a degree of maturity even for datasets
on which they were not trained (Section 4). We introduce a
segmentation-based adversarial loss to be used in a GAN (Gen-
erative Adversarial Network) setup. With our approach, neither
extra user instruction nor "paired" input is required.

We introduce three models for varying levels of segmenta-
tion feedback in the sketch to image translation pipeline. Our
models could be integrated into both paired and unpaired GAN
models. We illustrate the effectiveness of applying segmenta-
tion cues via comprehensive experimental analyses. This pa-
per extends our previous work [21] in the following ways: (i)
We apply our method to a new task: label-to-photo transla-
tion. Our experiments on two challenging datasets show that
our segmentation-based adversarial loss is useful in this task,
too. Again, ground-truth segmentation labels are not a require-
ment for our approach. (ii) We perform experiments to set
the optimal values for weights of two additional discriminators.
(iii) We incorporate an outdoor dataset, Cityscapes [22], to both

ar
X

iv
:2

30
1.

08
59

0v
1 

 [
cs

.C
V

] 
 2

0 
Ja

n 
20

23



2

Fake Segmentation

Real SegmentationReal Image

Input Sketch

Inference

GAN Model

Generated 
Image

Segmentation 

Network

Real?

0/1

Real?

0/1

Real?

0/1

Fig. 1: The proposed model for sketch colorization with Adversarial Segmentation Loss (ASL). It is composed of two parts; a general purpose image translation
GAN model, and an image segmentation model. During training, input sketches are first colorized using the baseline GAN model. Then, generated and ground truth
color images are fed to the pre-trained panoptic segmentation model to extract fake and real segmentation maps. Finally, two additional discriminators are used to
classify the segmentation maps as fake or real, respectively. The box with dashed yellow borders shows the inference stage. Red border marks the GAN model used
for sketch to image translation. Here, Pix2Pix is used as an example image translation model, which could be replaced by any paired or unpaired model.

sketch colorization and label to photo translation tasks. (iv) We
add a new metric, mean Intersection over Union (mIoU), in ad-
dition to FID score to measure the performance of all the mod-
els more reliably.

2. Related Work

Even though the sketch and the edge map of an image are
different concepts, in practice, XDoG [23] or HED [24] based
edge maps are considered as sketches (e.g., [18, 11]). More-
over, some sketch based models [5] use edge maps for data aug-
mentation. Hence, we refer to all these models as "sketch-to-
image translation" or "sketch colorization" models. Although
general purpose image-to-image translation methods [25, 26,
27, 28, 29] could be used for sketch-to-image translation tasks,
the results are not satisfactory.

One widely used solution to improve the colorization per-
formance is to employ additional color [18, 11, 12, 10, 14, 15],
patch [6], image [2, 13, 16, 9, 17, 30] or language guidance [20,
31, 32]. For instance, in color guidance, users specify their de-
sired colors for the regions in the sketch image, and the model
utilizes this information to generate the same or similar colors
for these regions. Some automatic methods also utilize user
guidance to improve their performance as a hybrid approach.
Most of the sketch-to-image translation methods are based on
“paired” training approach [18, 11, 5, 19], but, recently un-
paired methods have also been presented [8, 16].

Scribbler [18] presents one of the very first paired and user
guided scene sketch colorization models. In addition to pixel,
perceptual and GAN losses, Scribbler uses total variation loss
to encourage smoothness. XDoG is used to generate sketch
images of 200k bedroom photos. DCSGAN [15] uses HSV
color space in addition to the RGB, for line art colorization
task. Zou et al. [20] use text inputs to progressively colorize an
input sketch, in such a way that a novel text guided sketch seg-
menter locates the objects in the scene. EdgeGAN [19] maps
edge images to a latent space during training using an edge en-

coder. During inference, the edge encoder is used to encode
the input sketch to the latent space to subsequently generate a
color image. Experiments are provided for 14 foreground and
3 background objects from COCO [33] dataset.

EdgeGAN [19] and Scribbler [18] use a supervised approach
where input sketches and corresponding output images exist.
However, it is hard to collect sketch image pairs. Liu et al. [8]
propose a two stage method to convert object sketches to color
images in an unsupervised (unpaired) way. They first convert
sketches to gray scale images, and then to color images. Self
supervision is used to complete the deliberately deleted sketch
parts and clear the added noisy edges from sketch images.

In Sketch-to-Art [16], an art image is generated using an in-
put sketch, with the additional help of the target style art image.
Content of the input sketch and style of the art image are en-
coded, and then fused to generate a stylized art image. In [17]
authors proposed a method to colorize icons which utilizes col-
ored icon images as input in addition to the black-white icons.

The user input is valuable not only in helping the coloriza-
tion network to put the right colors to indicated regions, but also
in removing the color bleeding problems. In [34], users draw
scribbles to the regions on the generated image suffered from
color bleeding artifacts for guiding the model to fix them.

Unlike these methods, our method does not require any user
input to generate satisfactory colorization. Instead, we utilize
adversarial segmentation guidance to improve performance.

3. Adversarial Segmentation Consistency

Figure 1 shows the overall structure of our proposed model
for sketch colorization, which we refer to as Adversarial Seg-
mentation Loss (ASL) based model. In this work, we used
Pix2Pix and CycleGAN methods as our baselines for paired and
unpaired training, respectively. This preference is made based
on the effectiveness of these methods across a variety of tasks
and datasets. In the figure, Pix2Pix is used to show ASL based
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model for paired approach. Our model could be integrated into
any other paired or unpaired GAN model.

Our model consists of a baseline GAN, a panoptic segmen-
tation network (Seg) and two discriminators (DM and DB). Panop-
tic segmentation network is trained offline on the COCO Stuff [35]
dataset and its weights are frozen during the training of our
model. Fake and real images are fed to the Seg network to get
real and fake segmentation maps. Then, these two segmenta-
tion maps are given to the discriminators to classify them as
fake or real. We designed three variants of our model to embed
different levels of segmentation feedback to the sketch to image
translation pipeline.

The first variant utilizes the full (multiclass) segmentation
map of an image where all foreground and background classes
(a total of 135 classes) are considered. In this model, ground-
truth color image Ireal and the generated color image I f ake are
fed to Seg which outputs full segmentation maps for both im-
ages. Then, these two outputs are given to a discriminator net-
work DM to discriminate between real and fake segmentation
maps. We call this model as Multi-class in the rest of the paper.

As a higher level of abstraction, grouping objects as back-
ground and foreground alone may yield sufficient information.
The second variant of our model uses only two classes (back-
ground and foreground) in the segmentation map by grouping
all foreground classes into one and all background classes into
another class. In this model, which we refer to as Binary, bi-
nary segmentation outputs for real and fake images are fed to a
discriminator network DB to discriminate between real and fake
ones. Finally, our third variant is the union of the above two. It
contains both discriminators, and is named as Combined.

Overall loss function for our model is the sum of losses of
the baseline GAN model (LG) and the two additional discrimi-
nators’ (LB and LM). That is, the objective function is:

L = wgLG + wbLB + wmLM

Let S egB and S egM correspond to the panoptic segmenta-
tion networks in Binary and Multi-class cases. The additional
losses that we introduce, LB and LM , are defined as:

LB(G,DB, S egB) =
∑

i

log(DB(S egB(yi)))+∑
i

log(1 − DB(S egB(G(xi)))

LM(G,DM , S egM) =
∑

i

log(DM(S egM(yi)))+∑
i

log(1 − DM(S egM(G(xi)))

Let xi be an input sketch image, and yi be the corresponding
ground truth color image. When the baseline GAN model is
Pix2Pix [27], GAN loss LG is formulated as:

LG(G,D) =
∑

i

log(D(xi))+
∑

i

log(1−D(G(xi))+
∑

i

‖yi−G(xi)‖

Fig. 2: Sample segmentations using general purpose panoptic segmentation
network on different datasets. The model generalizes well to several domains.

Table 1: Statistics of the datasets used in our experiments.

Dataset Train Images Test Images
ADE20k Bedroom 1355 135
Cityscapes 2975 500
Illustration 659 131
COCO Elephant 1800 343
COCO Sheep 1300 229

When baseline is CycleGAN [25], LG for direction X → Y is:

LG(GX ,GY ,DX) =
∑

j

log(DX(y j)) +
∑

i

log(1 − DX(GX(xi))

+
∑

i

‖xi −GY (GX(xi))‖

where GX maps input sketches to color images, and GY maps
the color images back to sketch domain. DX is the discriminator
for domain X, i.e. sketches. Final LG for CycleGAN is the sum
of above formulation for two directions.

We analysed the effect of each component in the objective
function and, set wg, wb and wm to 1 based on the experimental
analysis (see Section 5.1). Note that, for the Binary model wm,
and for the Multi-class model wb is set to 0 respectively.

4. Datasets

We evaluated our models on five challenging datasets (see
Table 1). The first dataset consists of bedroom images from the
ADE20k indoor dataset [36], with 1355 train and 135 test im-
ages. The second dataset is Cityscapes [22] dataset which con-
tains 2975 training and 500 test images. The third dataset [28]
contains illustrations from children’s books by Alex Scheffler,
with 659 train and 131 test images. The fourth and fifth ones
were curated by us from the COCO dataset. We collected im-
ages containing elephant or sheep. Note that these images may
also contain other foreground/background objects such as per-
son, animals, mountains, grass and sky. Elephant dataset con-
tains 1800 train and 343 test images, and the sheep dataset has
1300 train and 229 test images. Example images from these
datasets and their segmentation outputs are shown in Figure 2.
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Input GT CycleGAN C-ASL
(Multi-class)

C-ASL
(Binary)

C-ASL
(Combined)

Input GT Pix2Pix
P-ASL

(Multi-class)
P-ASL

(Binary)
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Fig. 3: Sample results from baselines and our model with different settings. Input images on each row are from bedroom, illustration, elephants and sheep datasets,
respectively. First two rows display results of unpaired training (baseline is CycleGAN), and last two rows show results for paired training (baseline is Pix2Pix). On
bedroom and elephant datasets Binary, on illustration and sheep datasets Combined setting gave best results for both training schemes.

Table 2: Comparison with CycleGAN [25] on unpaired sketch-to-image
translation task in terms of FID scores, lower is better.

Dataset CycleGAN C-ASL
(Multi-class)

C-ASL
(Binary)

C-ASL
(Combined)

Bedroom 113.1 111.7 87.1 93.2
Cityscapes 62.9 64.1 64.9 59.1
Illustration 213.6 206.9 204.8 189.4
Elephant 126.4 103.9 91.9 116.9

Sheep 209.3 207.2 236.1 196.8

Edge images are extracted using the HED [24] method. In
the first two columns of Figure 3, we present sample natural and
edge images for all the datasets. It can be seen that the images
contain a variety of foreground and background objects, also it
is hard to figure out the source dataset for some images.

5. Experiments

We used PyTorch [37] to implement our models. We use
sketch images as source domain, and color images as target do-
main. All training images (i.e. color and sketch images) are
resized to 256× 256 pixels. We train all models for 200 epochs
using the Adam optimizer [38] with a learning rate of 0.0002.

We conducted all our experiments on a NVIDIA Tesla V100
GPU.

We compared our models with Pix2Pix [27] and AutoPainter
(AP) [11] for paired and CycleGAN [25] for unpaired setting
on sketch-to-image translation task. We used the official im-
plementations that are publicly available. Baseline models are
trained for 200 epochs. Our proposed ASL model that uses
Pix2Pix as the baseline GAN model is referred to as P-ASL,
and similarly C-ASL refers to the model that uses CycleGAN.

5.1. Quantitative Analysis

To quantitatively evaluate the quality of generated images,
we used the widely adopted Frechet Inception Distance (FID) [39]
metric. FID score measures the distance between the distribu-
tions of the generated and real images. Lower FID score indi-
cates the higher similarity between two image sets.

On Bedroom and Cityscapes datasets where ground truth
segmentation maps are available, we also calculate the mean
Intersection over Union (mIoU) scores on colorized images. We
forward each colorized image to an off-the-shelf segmentation
model trained on these two datasets separately. mIoU score
measures the quality of the segmentation. We argue that better
colorized images should yield higher mIoU scores.
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Table 3: Comparison with AutoPainter [11] and Pix2Pix [27] on paired sketch-
to-image translation task in terms of FID scores, lower is better.

Dataset
Auto

Painter Pix2Pix
P-ASL

(Multi-class)
P-ASL

(Binary)
P-ASL

(Combined)

Bedroom 206.8 100.5 100.0 95.1 110.1
Cityscapes 151.3 74.1 69.9 71.6 71.2
Illustration 272.0 180.0 176.9 178.0 175.7
Elephant 155.1 83.5 85.8 78.8 82.8

Sheep 233.1 157.0 159.9 162.0 150.5

Table 4: Comparison with CycleGAN on unpaired sketch-to-image transla-
tion task in terms of mIoU scores, higher is better.

Dataset CycleGAN C-ASL
(Multi-class)

C-ASL
(Binary)

C-ASL
(Combined) Oracle

Bedroom 5.20 6.71 6.58 6.44 20.62
Cityscapes 15.67 14.63 13.56 15.68 44.85

We present FID scores for unpaired translation in Table 2
and paired translation in Table 3. FID scores are inline with the
visual inspections (see Figure 3), for all the datasets, at least
one variant of our model performed better than the baseline.

First of all, when we compare FID scores of two training
schemes and baseline models, paired training (Pix2Pix) per-
formed better than unpaired training, as expected. However, our
“adversarial segmentation loss” affected the results of paired
and unpaired cases differently. For instance, on elephant dataset
our models improved baseline up to 35 points for unpaired case,
but only 5 points for paired case.

Another crucial observation is that segmentation guidance
closed the gap between unpaired and paired training results.
Best FID scores for unpaired models on bedroom, illustration
and elephant datasets become very close to or even better than
paired training. For instance on the elephant dataset, the ini-
tial 40+ point FID gap (126 vs 83) dropped to 13 (92 vs 79)
on Binary setting. Here the only exception is the sheep dataset.
Since the sheep dataset contains various complex objects, un-
paired and paired models failed to generate plausible images.

We show mIoU scores for unpaired translation in Table 4
and paired translation in Table 5. We also present oracle perfor-
mances of the segmentation method on both datasets. On mIoU
metric, again for all the datasets, at least one of the variants of
our model performed better than the baseline.

When we look at the best performing settings on different
datasets, structure of the dataset has an effect on the results. For
instance, even though one is an indoor and the other one is an
outdoor dataset, bedroom and elephant images are composed
of similar structure. FG/BG ratios and placements of them in
these datasets are similar across all images, i.e. walls, ceiling

Table 5: Comparison with Pix2Pix on paired sketch-to-image translation task
in terms of mIoU scores, higher is better.

Dataset
Auto

Painter Pix2Pix
P-ASL

(Multi-class)
P-ASL

(Binary)
P-ASL

(Combined) Oracle

Bedroom 2.08 6.49 6.95 7.39 6.60 20.62
Cityscapes 6.02 18.71 18.63 18.70 18.74 44.85

Table 6: User Study results.

Dataset CycleGAN C-ASL

Bedroom 20.0 80.0
Illustration 27.0 73.0
Elephant 39.1 60.9
Sheep 19.1 80.9
Cityscapes (L2P) 25.7 74.3

Table 7: Effect of changing the wb and wm values, wb is used as 1.0 for all ex-
periments. Using 1.0 for both weights yields the best FID score on the ADE20k
bedroom images for the task of sketch-to-image translation.

wb and wm

0.1 0.5 1.0 5.0 10.0

FID 114.8 114.5 93.2 147.8 104.6

and floors in bedroom images are always positioned in the same
places on different images. Also elephant images contain very
few FG objects, i.e. only elephants most of the time, and large
BG areas such as grass, trees and sky. On these two datasets,
Binary setting which considers FG/BG classes only gave the
best FID score. On the other hand, illustration and sheep images
got a variety of FG objects and scenes. On such datasets, using
only a FG/BG discriminator even degrades the performance.

Our model has two important parameters, wb and wm, to
control the effect of segmentation discriminators. To find the
best possible values, we conducted experiments by training our
models on the ADE20k bedroom images on the unpaired sketch
to image translation task (see Table 7). Using a small value
like 0.1 gives a similar score to baseline CycleGAN. On the
other hand using a big value like 5.0 increased the FID score
dramatically. Setting wb and wm to 1.0 resulted in the best FID
score, thus the weights are set to 1.0 in all experiments.

5.2. Qualitative Analysis and User Study

We present visual results of sketch colorization for our model
and the baseline models in the Figure 3. On bedroom and illus-
tration datasets, we show results of unpaired training, and on
elephant and sheep datasets we show paired training results.

On the bedroom dataset, the Binary setting generates bet-
ter images compared to baselines and other settings. Colors
are uniform across the object parts in this setting. There are
defective colors in the CycleGAN results such as the bottom
of the bed and floor. On the illustration dataset, the baseline
model performed poorly. Objects are hard to recognize and
most importantly colors are not proper at all. On the other hand,
Multi-class and Combined settings generate significantly better
images i.e. generated objects and background got consistent
colors. Finally, on elephant and sheep datasets although gener-
ated images are not very visually appealing for all the methods,
segmentation guided images are quite appealing compared to
baseline models’. On the elephant dataset Binary, on the sheep
dataset Combined setting performed the best.

We conducted a user study to measure realism of generated
images. We show two random images (at random positions,
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Input GT CycleGAN Binary

Fig. 4: Sample results on Cityscapes dataset for CycleGAN and our best model.
In the first image, CycleGAN generates buildings instead of trees, also there are
defects on the road. Other two images are blurry and lack details. On the other
hand, in all cases our Binary setting generates more visually appealing images.

Table 8: Comparison with CycleGAN [25] on unpaired label-to-photo trans-
lation task in terms of FID scores, lower is better.

Dataset CycleGAN C-ASL
(Multi-class)

C-ASL
(Binary)

C-ASL
(Combined)

Bedroom 84.2 86.9 85.6 78.9
Cityscapes 83.0 70.9 64.8 66.0

left or right) which were generated with CycleGAN and our
best setting (lowest FID score) for all four datasets, and asked
participants to select the more realistic one.

We collected a total of 115 survey inputs from 39 different
users. We ask users to evaluate 4 S2P models and 1 L2P model.
In Table 6, we present results of the user study in terms of pref-
erence percentages of each model. User study results are inline
with the FID score results, on all datasets, images generated
by our model were preferred by the users most of the time. On
sheep and elephant datasets, users struggled to select an answer.
Color distributions and shapes of FG objects are two dominant
factors which lead user preferences.

5.3. Label to Photo Translation
We also experimented with label-to-photo (L2P) translation

task to show the effectiveness of our model in a different task
where adversarial segmentation loss could be helpful. In L2P
task, we use ADE20k bedroom and Cityscapes datasets. Sim-
ilar to S2P task, all images are resized to 256x256 pixels. We

Table 9: Comparison with Pix2Pix [27] on paired label-to-photo translation
task in terms of FID scores, lower is better.

Dataset Pix2Pix
P-ASL

(Multi-class)
P-ASL

(Binary)
P-ASL

(Combined)

Bedroom 128.1 118.2 122.3 110.1
Cityscapes 79.5 78.4 72.9 77.6

Table 10: Comparison with CycleGAN on unpaired label-to-photo transla-
tion task in terms of mIoU scores, higher is better.

Dataset CycleGAN C-ASL
(Multi-class)

C-ASL
(Binary)

C-ASL
(Combined) Oracle

Bedroom 5.70 5.88 6.10 6.69 20.62
Cityscapes 20.13 21.45 20.70 19.61 44.85

Table 11: Comparison with Pix2Pix on paired label-to-photo translation task
in terms of mIoU scores, higher is better.

Dataset Pix2Pix
P-ASL

(Multi-class)
P-ASL

(Binary)
P-ASL

(Combined) Oracle

Bedroom 1.56 1.59 1.54 1.62 20.62
Cityscapes 8.62 8.66 8.69 8.56 44.85

train L2P models for 200 epochs using the Adam optimizer [38]
with a learning rate of 0.0002. We show FID scores for unpaired
L2P in Table 8 and paired translation in Table 9. For unpaired
translation our best performing method improves the baseline
for more than 5 points on Bedroom and almost 20 points on
Cityscapes datasets. Similarly on the paired translation, the im-
provements regard to the baseline reaches 18 points.

In Table 10 and Table 11, we present mIoU scores for un-
paired and paired L2P translation, respectively. For both cases,
our best performing variant outperforms the baseline method.

We present visual results in Figure 4 for only the base-
line model and our best performing setting Binary for unpaired
translation. Our model generates more photo-realistic images,
also generated images comply with the input label maps better.

Input GT CycleGAN +ASL

Fig. 5: Sample results on elephant and sheep datasets for CycleGAN and our
best model. Realism of both models are not satisfactory, however, especially
colors of BG areas are better in our results.

5.4. Limitations
Figure 5 presents examples on elephant and sheep datasets

where both baseline and our best performing model suffer from
low visual realism. The main reason for that is these datasets
contains complex foreground and background objects. How-
ever, our method performs significantly better than the baseline.
Especially on the first row, colorized image using our method
resembles more to the ground truth image.

6. Conclusion

In this study, we present a new method for the sketch col-
orization problem. Our method utilizes a general purpose im-
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age segmentation network and adds an adversarial segmenta-
tion loss (ASL) to the regular GAN loss. ASL could be inte-
grated to any GAN model, and works even if the dataset does
not have segmentation labels. We used CycleGAN and Pix2Pix
as baseline GAN models. We conducted extensive evaluations
on various datasets including bedroom, sheep, elephant and il-
lustration images and evaluate the performance both quantita-
tively (using FID and mIoU scores) and qualitatively (through
a user study). We showed that our model outperforms baselines
on all datasets on both FID score and user study analysis.

Regarding the limitations of our method, although we im-
prove the baseline both qualitatively and quantitatively, espe-
cially elephant and sheep results lack realism. Even the paired
training results are not visually appealing on these two datasets,
most probably due to the fact that the baseline models are not
very successful at generating complex scenes.
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