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Abstract—Opportunistic Controls are a class of user interaction techniques that we have developed for augmented reality (AR)

applications to support gesturing on, and receiving feedback from, otherwise unused affordances already present in the domain

environment. By leveraging characteristics of these affordances to provide passive haptics that ease gesture input, Opportunistic

Controls simplify gesture recognition, and provide tangible feedback to the user. In this approach, 3D widgets are tightly coupled with

affordances to provide visual feedback and hints about the functionality of the control. For example, a set of buttons can be mapped to

existing tactile features on domain objects. We describe examples of Opportunistic Controls that we have designed and implemented

using optical marker tracking, combined with appearance-based gesture recognition. We present the results of two user studies. In the

first, participants performed a simulated maintenance inspection of an aircraft engine using a set of virtual buttons implemented both as

Opportunistic Controls and using simpler passive haptics. Opportunistic Controls allowed participants to complete their tasks

significantly faster and were preferred over the baseline technique. In the second, participants proposed and demonstrated user

interfaces incorporating Opportunistic Controls for two domains, allowing us to gain additional insights into how user interfaces

featuring Opportunistic Controls might be designed.

Index Terms—Haptic I/O, interaction styles, user interfaces, virtual and augmented reality.

Ç

1 INTRODUCTION

MANY domains in which augmented reality (AR) could be
applied pose two sets of competing constraints. The

first set of constraints limits extraneous head, eye, and hand
movements beyond the immediate vicinity of a user’s current
task. For example, a mechanic servicing an engine may find it
impractical (or impossible) to reposition their hands to
manipulate any device not currently within reach or sight.
Likewise, head and eye movements that cause the mechanic
to avert their gaze from the repair area can break context and
increase task completion time. The second set of constraints
relates to various policies, material properties, and physical
space limitations that restrict modifications to the applica-
tion’s environment. For example, safety regulations and a
confined repair space might preclude the mechanic from
bringing in, or installing, certain interface devices (e.g.,
portable devices or keypads) that might, otherwise, compen-
sate for limited head, eye, and hand movements.

To support these types of AR scenarios, we have
developed a class of interaction techniques that we call
Opportunistic Controls, an example of which is shown in
Fig. 1. An Opportunistic Control (OC) is a tangible user
interface [19] that leverages naturally occurring, tactilely
interesting, and otherwise unused affordances—properties
of an object that determine how it can be used [15], [25]. These
affordances serve as tactile landmarks [5] that provide
inherent passive haptic feedback [22] for hand gestures and
are augmented with overlaid 3D widgets to provide visual

feedback. Ideally, OCs are “harvested” from compatible
surfaces in the physical task domain of the AR application. As
we describe later, certain characteristics of the tactile land-
marks are exploited to simplify gesture recognition.

An OC interface enables a user to interact with an AR
application by touching naturally occurring surfaces within
an application’s task environment. For example, a mechanic
servicing an engine might use fasteners, such as screws and
bolts, located on individually serviced components to
display documentation specific to each component. A
rotating washer on the same component can be used to
page through the documentation or select entries from a list.
A grooved surface in the vicinity of the component, such as
a door hinge, might map to a virtual spinner used to enter
diagnostic data or set various component parameters.

This approach creates a tangible user interface with three
distinguishing properties: 1) leveraging otherwise unused
and unassociated objects that are already in the task domain
as primary user interface components; 2) deliberately
exploiting certain features of these objects for passive
haptics and hand gesture recognition; and 3) minimizing
the need for external user interface artifacts. As we describe
below, this generalizes earlier work on passive haptics.

In this paper, which extends our previously published
work [16], we begin by examining related works and
discussing alternatives to an OC interface. We then provide
a formal definition of OCs, and describe a prototype
implementation. Next, we describe a performance and
acceptance user study involving our prototype and a
compared baseline. This is followed by details and results
from a second study examining user preferences for the
design of OCs.

2 RELATED WORK

There is much previous work on the use of haptic feedback in
user interfaces in general and 3D user interfaces in particular.
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Some of this involves active haptics (e.g., [7]), in which active
devices, typically using motors, create forces and torques as
part of the user interface. Here, we concentrate on previous
work on passive haptics, in which passive elements in the
environment respond to user interaction.

Buxton et al. [8] added a cardboard overlay with cutout
holes to a 2D touch tablet, creating a set of separate
widgets, each of which could be discriminated through
tactile feedback, encouraging eyes-free use. Weimer and
Ganapathy [30] positioned a set of 3D virtual buttons
operated with a DataGlove to be coplanar with a physical
desktop, providing what they called “a natural source of
tactile feedback.” Later, Hinckley et al. [17] used a ball or
doll’s head and a small plastic panel, both outfitted with
6DOF trackers as “passive interface props” with which a
physician could control an interactive visualization of a
patient’s head when planning neurosurgery.

Several groups have used tracked hand-held tablets with
tracked fingers or styli to provide a supportive mobile
surface on which to operate 2D widgets in AR (e.g.,
Szalavari and Gervautz [28]) or VR (e.g., Lindeman et al.
[22]). Lindeman et al. [22] referred to this as “passive
haptics” or “passive-haptic feedback.” Later work by Insko
[18] demonstrated the advantages of passive haptics in
virtual environments, positioning styrofoam blocks to
coincide with the walls of an otherwise virtual environment.
(In fact, one could argue that essentially any immersive
virtual environment in which the virtual floor is coplanar
with the real floor is using passive haptics.)

Research on tangible user interfaces [19] uses a variety of
physical artifacts, often tracked or recognized wirelessly, as
physical representations of otherwise virtual data and to
physicalize otherwise virtual interaction techniques. Fails
and Olsen [12] introduced “light widgets” that used
optically tracked hand gestures made on everyday surfaces
(e.g., the edge of a bed) to control household appliances.
While this is an important forerunner of our work on OCs,
light widgets do not present any visual feedback to the user
(except in a separate application used during camera
configuration), do not allow the widget’s underlying

affordance to move, and do not emphasize the use of
differentiated surfaces.

All of this previous work either uses simple naturally
occurring surfaces (e.g., [30], [12]) or introduces new objects
into the environment, whether simple (e.g., [28]) or more
complex (e.g., [17]). In contrast, we are interested in the
opportunistic use of objects that not only already exist in a
particular task domain, but whose possibly complex sur-
face geometry provides affordances that lend themselves
well to certain kinds of interactions. Thus, OCs apply
Buxton and colleagues’ notion of 2D haptically discrimin-
able widgets to generalize and extend Weimer and
Ganapathy’s early example of a set of 3D widgets laid
out on a single undifferentiated existing surface, without
adding additional objects.

3 ALTERNATIVE USER INTERFACES

Prior to designing OCs, we considered many alternative
interaction techniques involving devices such as keyboards,
keypads, and touch screens. If these devices are not readily
available within the task domain, they can be added or
mobile versions can be used. We rejected these alternatives
because of the two sets of competing constraints high-
lighted in Section 1. Some AR task domains (e.g., aviation
maintenance) are not amenable to the introduction of
objects that are not indigenous to the domain. Even if
mobile devices are made available, they may require a user
to shift their hands and eyes away from a specific task.
Some require that the user hold them in one hand (e.g., a
Handykey Twiddler) or momentarily engage both hands
(e.g., a wrist-worn device operated with the other hand).

In contrast, OCs use existing features of the domain
environment to provide a suitable tangible user interface. If
the user’s eyes and hands must remain in a certain area,
then affordances within that area may be able to be
exploited as part of the user interface. Finally, when the
user finishes their task, nothing remains behind that must
be maintained, hidden, or removed.

It is important to address potential situations in which
the task domain lacks sufficient suitable features for our
technique. For example, a user might encounter areas that
do not offer enough of the right kind of features to satisfy a
task’s required number and type of OCs. In these cases, our
technique would offer a smooth fallback to conventional
passive haptic feedback techniques by binding one or more
OCs to undifferentiated available flat surface regions.

4 DEFINITION

We define an OC as the six tuple � ¼ ð�;  ; �;�; �; �Þ, where:

. � represents a continuous physical region that
bounds the naturally occurring affordance(s) serving
as one or more tactile landmarks for hand gestures.
This region is specified by a physical model
capturing the physical geometry used by the OC.

.  is a 3D widget that satisfies the definition and
design specifications of Conner et al. [9]. Each
instance of  consists of a virtual model representing
the widget’s geometry and an augmented transition
network (ATN) specifying behavior.

HENDERSON AND FEINER: OPPORTUNISTIC TANGIBLE USER INTERFACES FOR AUGMENTED REALITY 5

Fig. 1. Opportunistic controls in action: A user manipulates a virtual
button while receiving haptic feedback from the raised geometry of the
underlying engine housing.
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. � is a function that maps the encapsulated virtual
geometry of the widget ( ) to the physical geometry of
the affordance region (�). This function dynamically
registers the 3D widget’s model at the correct location
in � based on the current state of the widget’s ATN.

. � ¼ f�2; �1; :::; �ng is the set of visually recognized
hand gestures associated with the OC. These
gestures share a 3D model space and grammar.

. � represents the functional mapping from the
grammar of � to the ATN of  and defines how an
individual widget responds to gesturing.

. � is the 3D transformation mapping locations in the
model space of � to the model space of � . This
transformation is used to detect gesture intersection
with the physical geometry of an OC.

It is useful to place our definition of OCs within the
broader context of tangible user interfaces. Using Fishkin’s
taxonomy of tangible user interfaces [14], OCs present a
nearby embodiment to the user. That is, the output of
applications featuring OCs will take place near the primary
input device (the OC’s physical affordance region, �).
Continuing the classification, each OC presents a fully
realized metaphor to the user. Given the definition above, the
virtual component of the OC (the 3D widget,  ) is paired to
the physical system (the physical affordance region, �).
When the user gestures on an OC, the 3D widget and
physical affordance region respond and feel as one control.

5 PROTOTYPE

We developed a hardware and software architecture for
studying OCs in an indoor laboratory setting. This architec-
ture allowed us to create a prototype implementation that we
evaluated by means of the user study described in Section 6.

5.1 Authoring OC Interfaces

We followed a deliberate authoring process when creating
our prototype OC interface. This authoring process involves
three activities: affordance design, gesture recognition
design, and widget design. We expound on each of these
activitites in the following sections. In creating our proto-
type, we executed these activities manually. However, to
ensure the practicality of OC interfaces, more research is
required to automate the authoring process. Such auto-
mated techniques might use real-time vision algorithms to
extract interesting affordances and map them to predefined
gestures and widgets supporting interface requirements.

5.2 Affordance Design

We experimented with three kinds of affordances in our
prototype. The first kind includes unused objects in the
environment that tangibly resemble buttons. These objects
have physical contours that are easily distinguished by a

user’s hand. Examples include various fasteners (e.g.,
screws, bolts, and nuts), raised geometry, small holes,
dimples, or the intersection of hard edges, as shown in
Fig. 2. OCs based on these types of surfaces support binary
gestures in which the OC is activated when the user’s hand
intersects any part of the button. Here, passive haptic
feedback associated with button-based OCs need only
provide information about the button’s location to prove
useful (a result demonstrated in the user study). However,
certain types of elastic surfaces might provide additional
feedback about the state of the button.

The second kind of affordance we explored includes
linear or curved static surfaces in the environment that could
support valuator-based OCs. These include smooth edges,
pipes, cords, or natural surfaces, as shown in Fig. 3. Gestures
interacting with these types of surfaces require more precise
tracking of the user’s hand and 3D widgets. More interest-
ing versions of these affordances are characterized by
grooves, notches, and other textures that provide discretized
feedback to the user as they gesture along the control (e.g.,
in the spirit of the ridged surfaces designed by Murray-
Smith et al. [24] to provide haptic feedback).

The third kind of affordance we studied involves
surfaces associated with movable objects in the environment.
Examples include objects that slide (e.g., the clips on top of
a chalkboard shown in Fig. 4, left), objects that bend (e.g.,
the rubberized tube shown in Fig. 4, center), and objects that
rotate (e.g., the disconnected wiring connector shown in
Fig. 4, right). These objects allow for richer controls whose
underlying physical geometry (�) moves with the 3D
widget ( ) in response to the user’s gestures. However, in
practice, movement of these affordances is usually assigned
an a priori meaning, which can conflict with the OCs
functionality. This limits their potential use in many
practical settings.

Throughout this exploration of the space of possible
affordances, we adopted the following initial set of heuristic
guidelines governing the selection of OCs:

. OCs should avoid desensitizing the user to a
function of an overloaded object (e.g., using switches
on a control panel for functions outside their design
specification). This includes avoiding the use of
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Fig. 2. Objects that could support button OCs. Fig. 3. Objects that could support valuator OCs.

Fig. 4. Objects that could support movable OCs.

Authorized licensed use limited to: GOOGLE. Downloaded on September 04,2021 at 01:09:19 UTC from IEEE Xplore.  Restrictions apply. 



objects with strong preconceived purposes and
functionality that deviate from the purposes and
functionality of the OC. As mentioned above, this
guideline especially constrains movable OCs.

. OCs should not endanger the user or desensitize
them to surfaces that could prove dangerous outside
the context of the OC (e.g., using the tip of a spark
plug as a button).

. When applicable, affordances should not overload
objects that might become damaged through gestur-
ing (either while the user is manipulating the OC or
when the user tries to execute the gesture when the
object is assuming its designed purpose).

5.3 Widget Design

We experimented with several designs for 3D widgets ( )
as part of our prototype development. In each case, we
sought to create an appropriate 3D model that matched the
particular geometry of the OC. In all cases, we found that
increasing the transparency of the widget models was
helpful to allow users to partially view the OC’s underlying
geometry. The transparency also allows the user to partially
view any gestures that might be occluded by the 3D widget.
The ATNs for each widget are modeled as specified by
Conner et al. [9]. This was a trivial process for button-type
OCs, and involved slightly more complicated transitions for
valuator and movable OCs.

5.4 Gesture Recognition Design

Gesture recognition is performed optically with a single
camera mounted overhead with clear line of sight to all OCs
in our environment. The camera is tracked by using the
ARTag optical marker tracking library [13] to detect a
fiducial array within the camera’s current frame. We use a
separate dedicated camera (as opposed to the cameras
supporting the user’s display) to free the user from having
to look at the OCs. This allows the user to look in another
location while gesturing and supports eyes-free interaction.

A separate execution thread analyzes each camera frame
for the user’s gesture and is implemented in three phases:
data reduction, gesture matching, and gesture parsing. In the
data reduction phase, we build on the appearance-based
approach developed by Kjeldsen and Kender [20] to segment
each frame to locate the user’s hands. The segmentation
process first defines the collective gesture model space as one
sharing the camera’s 2D coordinate system. In doing so, the
segmentation algorithm ignores any depth information in the
scene. Despite several notable disadvantages discussed in
Section 5.5, this relaxation speeds gesture recognition and
provides sufficient grammar for our OCs. We next define the
physical model for each OC (�) as a convex polyhedron that
generally matches the physical contours of a particular OC.
Each polyhedron is defined by 3D points positioned in a
common physical interface coordinate system. The algorithm
then defines the transformation � that enables conversion of
coordinates in gesture space (camera coordinates) to and
from physical interface coordinates.

This is an important step in the data reduction chain, and
a particular advantage afforded by OCs, because it focuses
the amount of follow-on image processing required for
segmentation. Because the interaction technique is only

concerned with gestures that might intersect with specific
physical areas, segmentation algorithms can restrict proces-
sing to the 2D pixel regions that overlap with each OC’s
physical model. Moreover, because we track the position
and orientation of the camera, � is computable in real time
by solving for the inverse model-view matrix received from
the ARTag library. The algorithm calculates a segmentation
window for each OC by using the value of � to construct a
2D bounding box encapsulating each OC’s physical geome-
try (Fig. 5a). Each segmentation window is filtered for
significant values of the primary color red in the source
image’s 24-bit RGB color format. When complemented by a
controlled lighting environment, this filtering can effectively
isolate a user’s gesture from other objects in an image and
supports a wide range of skin pigmentation. The result is a
binary image that represents possible locations of the user’s
skin touching (or overlapping) each OC’s geometry (Fig. 5b).

The algorithm then executes a connected component
analysis for each OC bounding box and assumes the largest
component in each is the user’s hand, finger, or set of fingers.
A high-pass filter is applied to the size of each maximum
component to prevent noise from triggering buttons when
skin is not present. During this step, the reduced pixel area
provided by each OC’s segmentation window again helps
reduce data processing by limiting the breadth and depth of
recursive connected component analysis.

During the gesture matching phase of the algorithm, the
largest connected component C in each OC is evaluated for
the location of point ph, where ph approximates the location
of the user’s fingertip in the connected component. This
point is determined by selecting the leftmost point on the
highest scan line of C. This approach assumes ph is the
highest leftmost point of the user’s gesture in the camera’s
coordinate system. The algorithm then uses ��1 to translate
the point ph to the corresponding point th in the physical
coordinates of the OC (�). The location of th is used to match
against the gestures in the OC’s gesture set (�).

Gesture parsing is accomplished with a finite-state
machine for each OC that resembles the ATN of the
accompanying 3D widget ( ). Each state in the finite-state
machine represents a command (e.g., “BUTTON_1_
DOWN” or “SLIDER_2_UP”) in the shared OC grammar
associated with � and the ATN’s transitions are mapped to
the OC gestures �. The gesture algorithm then uses the
functional mapping of � to translate the current command
to the appropriate state in the corresponding 3D widget  .
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Fig. 5. Unsegmented (a) and segmented (b) bounding boxes for a set of
OCs. Graphics are added in debugging interface. (The user does not
see the camera’s view.)
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5.5 Design Limitations

Our design suffers from several limitations. First, it relies on
an optical marker-based tracking scheme to compute the
value of �. Therefore, markers must be added to the domain
environment, contradicting our vision of OCs as not requiring
modifications of or additions to the task domain. We believe
that it will be possible to build on recent advances in
markerless or feature-based tracking [21], [6] to replace our
current use of markers. Second, our segmentation algorithm’s
relaxation of depth information limits the type of interactions
one can perform, specifically clutching and hovering. Third,
our segmentation algorithm relies on controlled lighting
conditions, limiting its practical use in settings outside the
laboratory. More work is required to select and incorporate
more robust segmentation algorithms into our gesture
recognition process. Finally, because each OC’s bounding
box is segmented separately, the gesture algorithm can
produce multiple gestures from multiple OCs. This was a
deliberate design decision to support the user gesturing on
more than one OC simultaneously (i.e., for multitouch
interactions). However, this feature requires more sophisti-
cated program logic to reconcile potentially conflicting
gestures. When coupled with our algorithm’s lack of depth
information, this feature can create situations in which
hovering and clutching movements overlap neighboring
controls and are erroneously interpreted as active gestures.
We discuss this further in the description of our user study.

5.6 Prototype Implementation

We implemented our current prototype using two locally
networked computers, one for managing gesture recognition
for the OCs, and one for rendering OC widgets as part of a
broader AR application testing the OCs in various scenarios.
The decision to use two machines resulted in part from
concerns about the resource load required to drive a binocular
stereo video see-though display, while also supporting hand
gesture recognition. Additionally, we are interested in the
ability of our software architecture to support scenarios
where a single, relatively fixed server and attached cameras
could provide gesture recognition to multiple users.

5.6.1 Implemented OCs

Our current implementation features five button-type OCs on
a Rolls-Royce Dart 510 turboprop aircraft engine in our

laboratory, as shown in Fig. 1. Four of these OCs map to large
smooth protrusions on the outside of the engine’s compres-
sion section and are used to select items in a virtual menu. The
fifth button OC maps to a nearby bolt, and is used as a “next”
button to navigate between menus. The menu button widgets
were modeled to resemble the underlying protrusions, while
the “next” button widget is a semitransparent circle.

We also implemented two other types of OCs. One is a
valuator-based OC that maps a grooved wiring harness
sleeve on the Dart engine to a linear slider (Fig. 6a). This slider
is used to control a numeric value recorded in a text box. The
other is a rotating OC that maps an antenna connector to a
virtual text box (Fig. 6b). As the user rotates the connector’s
collar, the text box changes value. Fig. 7 shows the engine
geometry with and without overlaid graphics.

5.6.2 Gesture Recognition

The gesture tracking algorithm runs on a dedicated Dell
M1710 XPS laptop connected to a fixed Point Grey Firefly
MV 640� 480 resolution color camera tracked by a single
ARTag fiducial array mounted near the five button-type
OCs (Fig. 8). The gesture recognition application segments
the five button-type OCs and parses gestures at 30 frames
per second (fps).

5.6.3 Opportunistic Control Application

We implemented a central OC application that integrates all
aspects of gesture recognition, rendering, user tracking, and
AR task management. This application executes on a PC
running Windows XP Professional, with a single NVIDIA
Quadro 4500 graphics card. We then attached a custom-
built stereo video see-through head-worn display (HWD).
This HWD was constructed from a Headplay Visor 800�
600 resolution color stereo gaming HWD with two Point
Grey Firefly MV 640� 480 resolution color cameras
mounted to the front and connected to separate IEEE
1394a buses on the PC (Fig. 8).

Tracking is provided by two systems. For the user’s head,
we used a ceiling-mounted InterSense IS900 6DOF tracker to
track a single station mounted on the HWD. Head tracking
data is used to position all virtual content, with the exception
of the 3D widgets that are part of the OCs. These widgets are
positioned using the same optically tracked ARTag fiducial
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Fig. 6. Additional OCs in our prototype. (a) A valuator-based OC uses the grooves in a wire harness sleeve to provide discrete feedback for a linear

slider. (b) A movable OC allows the user to turn the collar of an antenna connector to change a virtual text box value.
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array used by the gesture recognition camera, sensed with the
HWD’s left camera. Note that the HWD cameras operate
independently of the fixed gesture recognition camera in
order to facilitate eyes-free gesture recognition.

The primary AR application software was developed
using the Valve Source Engine Software Development Kit.
All virtual content in the AR scene is provided by custom
game engine models, GUI elements, and other components.
Full-resolution stereo video from the two Firefly MV
cameras is stretched and displayed on the back buffer and
the entire scene is rendered in stereo at 800� 600 resolution
with an average frame rate of 60 fps, synchronized to the
display refresh rate. (Note that the effective video frame
rate from the cameras is approximately 25 fps due to the
software upscaling from 2� 640� 480 to 2� 800� 600).

6 OC PERFORMANCE AND ACCEPTANCE

USER STUDY

We designed a user study to compare the performance and
general acceptance of our OC prototype to that of a more
standard tangible user interface technique. This study only
featured button-based OCs due to ongoing development of
our valuator and button-based prototypes at the commence-
ment of the study. Fifteen participants (11 male and

4 female), ages 20-34, were recruited by mass email to the
Computer Science students at our university and by flyers
distributed throughout the campus, and were paid $10 each.
All participants were frequent computer users, but only two
had experience with VR or AR techniques or technology. All
participants but one identified themselves as right-handed.
Eight participants indicated that they required corrective
contact lenses or glasses. All participants determined that
the separate left and right eye focus adjustments on the
Headplay display provided adequate correction.

6.1 Baseline Comparison Technique

We selected virtual buttons projected on a single undiffer-
entiated surface as the baseline comparison technique for
the study (herein referred to as BL). This technique is
similar to the one used by Weimer and Ganapathy [30].
More recent versions optically track the user’s fingers, and
have proven robust enough for commercialization as
“virtual keyboards” [27], [29]. In order to adapt this
technique to our prototype, we installed a 60 cm ðwidthÞ �
78 cm ðheightÞ � 0:3 cm (thickness) panel of PVC plastic
over the top of the part of the Dart engine that we used to
implement the OCs described in Section 5.6.1. The panel,
shown in Fig. 9, was positioned and curved such that the
virtual buttons would appear in the same locations and
could use the same tracking and segmentation algorithms
as their OC counterparts, but on an undifferentiated
surface. The panel was attached with quick release hard-
ware to facilitate a rapid transition between the two
techniques during our study.

6.2 Task

Participants were asked to perform a selection task simulat-
ing the mechanical inspection of the Rolls-Royce Dart 510
turboprop engine. This selection task, demonstrated in
Fig. 10, consisted of matching target text displayed on 3D
virtual placards positioned at locations on the engine with a
corresponding text entry in a screen-fixed virtual 2D list. The
3D placards are registered to subcomponents of the engine to
simulate specific items to be checked during the inspection.
Each target text entry corresponds to a technical maintenance
failure condition that might be recognized, observed, and
recorded by a trained mechanic (e.g., “Broken” or
“Cracked”). This target failure condition was randomly
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Fig. 7. Prototype interface. (a) Dart 510 Engine without OCs. (b) Dart 510 Engine with OCs.

Fig. 8. A user, wearing a stereo video see-through HWD, manipulates
OCs with our prototype. The fixed gesture recognition camera appears
at the top of the photograph.
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chosen from a list of 32 actual failure codes sampled from an
aviation maintenance manual [2].

To successfully complete an individual trial, the user
must use virtual buttons to highlight and confirm the target
condition in the 2D list. The list contains four positions
randomly populated with the target and three incorrect
alternative conditions. Participants use four virtual buttons
mapped to each position in the list for the highlight step,
and confirm the highlighting with a fifth virtual button.
Fig. 10 shows an example 3D placard with target text
(Figs. 10b and 10c) and the accompanying 2D menu
(Figs. 10c, 10d, and 10e), as seen in the HWD.

6.3 Procedure

A within-subject, repeated measures design was used
consisting of two techniques (OC and BL) and five
inspected locations on the engine. The experiment lasted
approximately 60 minutes and was divided into two blocks
with a short break between blocks. Each block consisted of
all trials for one of the two techniques, and the order was
counterbalanced across participants. At the start of the
experiment, each participant was shown an instructional
video demonstrating the techniques. Before each block, each
participant was afforded an opportunity to rehearse the
technique using practice trials until they felt comfortable.

The timed portion of the block consisted of 50 trials
divided uniformly over five locations on the engine. As
shown in Fig. 10, each trial began by populating the virtual
environment with a single virtual placard at one of the five
randomly chosen locations. Cuing information was first
presented to the participant, prompting them to locate and
read the target condition displayed on the placard (Figs. 10a
and 10b). This portion of the trial was not timed. When the
participant positioned and oriented their head so that the

placard was under a cross hair in the middle of their field of
view, the 2D list appeared and the trial timer started
(Fig. 10c). Once the participant used the buttons to highlight
and confirm a condition (right or wrong) in the 2D list, the
trial ended (Figs. 10d and 10e). The experiment logic then
logged the overall completion time, the displayed target
condition, and the participant’s selection from the list. The
block then proceeded to the next trial in repeated fashion
until the participant had experienced 10 random target
conditions at each of the five locations.

6.4 Hypotheses

Prior to the experiment, we proposed the following
hypotheses:

1. OC would be faster than BL, as the differentiable
tactile landmarks would reduce homing time and
facilitate eyes-free manipulation of buttons.

2. OC would be more accurate than BL, as the tactile
landmarks would focus gestures and prevent stray
entries.

7 RESULTS

We first filtered our collected data for outliers, which we
defined as selection tasks lasting longer than 10 seconds.
These outliers accounted for 3.5 percent of all trials, with a
total of 23 occurring during the OC block and 29 occurring
during the BL block. We then analyzed the remaining data
set for completion time, error rate, and subjective ratings,
with � ¼ 0:05.

7.1 Completion Time Analysis

We applied a 2 (Technique)� 5 (Location) repeated measure
ANOVA on mean selection time from a subset of the outlier
free data with our participants as the random variable. This
subset included only those trials where the user correctly
selected the target condition from the menu (96 percent of
our outlier-filtered trials).

Technique had a significant main effect on selection
completion times (Fð1;28Þ ¼ 8:11; p < 0:001). On average, the
OC technique was 16 percent faster (Fig. 11) than the BL
baseline technique, which was statistically significant
(tð14Þ ¼ 4:983; p < 0:001). This result confirms our first
hypothesis. Finally, the interaction of Technique and
Location did not have a significant main effect on
completion time for the selection task.

7.2 Error Rate Analysis

We applied a 2 (Technique)� 5 (Location) repeated measure
ANOVA on mean errors per trial, with our participants as
random variables. However, we failed to identify any
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Fig. 9. Baseline comparison technique (BL).

Fig. 10. User study task sequence. (a) Cuing target. (b) Finding target. (c) Reading target. (d) Finding entry. (e) Selecting entry.
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significant effects of technique on error rates (Fð1;28Þ ¼ 1:94;
p ¼ 0:185). The mean error rates were 2.6 errors for OC, and
1.5 errors for BL (Fig. 12) which was not significant. Thus,
we fail to confirm our second hypothesis.

We attribute this result to two design shortcomings.
First, based on our observations of the experiment and user
input, the “next” virtual button was placed too close to the
physical protrusion on the engine that was mapped to the
virtual button used to select the bottom item in the menu.
As a result, the participant’s hand gesture could acciden-
tally stray into the segmentation window of this bottom
button just prior to activation of the next button. This would
erroneously update the participant’s selection without
allowing time to detect the stray gesture before confirma-
tion. Second, our gesture recognition algorithm does not
provide a depth filter. As a result, if the participant’s hand
hovers over the top of any buttons while transitioning, the
algorithm will detect this hovering as button activation. We
believe that including depth information in our gesture
recognition algorithm and selecting OC affordances more
carefully could decrease the number of these errors.

7.3 Subjective Analysis

We asked each participant to complete a postexperiment
questionnaire. This questionnaire featured five-point Likert
scale questions (where 1 is most negative, 5 is most positive)
to evaluate ease of use, satisfaction level, and intuitiveness
for each interaction technique. The results from these
ratings, shown in Fig. 13 using a technique demonstrated
by Bernstein et al. [3], are difficult to generalize given our

small population size and individual rating systems.
However, we offer them as interesting indicator of how
our technique might be perceived by a larger population.
Collectively, the participants rated the OC technique as
better than the baseline in terms of ease of use (4.00),
satisfaction (3.87), and intuitiveness (4.67). When asked to
rank the technique they would rather use to perform the
task, 11 of 15 participants selected the OC technique.
General participant comments reflected a preference for
tactile landmarks to help with homing and feedback. The
majority of participants expressed frustration with the top-
to-bottom button layout and the inability of the gesture
algorithm to distinguish hovering from selection.

We also noticed several interesting behaviors in partici-
pants. First, many participants were uncomfortable touch-
ing physical parts of the aircraft engine. As one participant
recounted, touching the plastic surface of BL felt more
familiar than touching louvers and bolts on an engine.
Second, several participants used additional passive haptics
from the task environment that were not linked to our
button OCs to assist in the selection task. These techniques
involved incorporating surfaces adjacent to the buttons as
homing points between gestures. Third, even though we
deliberately did not mention two-handed techniques to the
participants, several participants quickly incorporated them
into their technique. The fastest recorded completion time
was achieved by one such participant.

Additionally, although our user study did not explicitly
feature tasks mandating eyes-free interaction, several
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Fig. 11. Average completion times (seconds) for (a) OC and (b) BL. OC
was 16 percent faster than BL, which was a significant speedup.

Fig. 12. Average errors per technique for (a) OC and (b) BL. Differences
in means were not statistically significant.

Fig. 13. Survey responses for all participants. Responses are plotted on
Likert scales (where 1 is most negative, 5 is most positive) with mean
and standard error below the horizontal axes.
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participants tried to select the buttons when they were
outside their field of view during both OC and BL trials.
Multiple participants commented on how they felt more
comfortable attempting eyes-free interaction using OCs as
opposed to BL.

8 OC USER INTERFACE DESIGN STUDY

OCs enable a wide range of potential surfaces and objects to
be used as interface artifacts. However, based on our
experience with the prototype, the design of user interfaces
featuring OCs requires careful consideration of how users
perceive affordances not typically associated with user
interfaces and how best to redirect user thinking to view
these affordances as OCs. Additionally, heuristics are
needed to determine the best set of affordances from a given
domain to meet a particular set of interface requirements.

We designed a user observation study to help answer
these questions. Our study rationale was to present
participants with 3D interaction tasks that might be encoun-
tered when using an AR application within an environment
containing a rich set of naturally occurring affordances.
Participants would then create hypothetical OCs using any
surface or object of their choice, and we would observe the
types of surfaces and corresponding gestures that partici-
pants selected to accomplish the assigned tasks.

Fifteen additional participants (11 males and 4 females),
ages 19-35, were recruited for this study from our university’s
Computer Science student population, and were paid $15
each. All participants were frequent computer users, and
seven reported experience using 3D interfaces. Only one
student had participated in our earlier study.

8.1 Task

During the study, each participant was asked to participate
in a “Wizard of Oz” session where they created a
hypothetical OC-based user interface to perform a series
of common 3D interface tasks presented in sample VR and
AR applications. These tasks are normally accomplished
with common 3D widgets manipulated with traditional
input devices. However, in our study, subjects selected any
available affordance of their choice and began gesturing to
accomplish the particular task while using a “think out
loud” protocol to verbalize expected system responses (e.g.,
“I’m moving the wiring harness to the left to select the
wrench with the 3D cursor”). As they gestured, an observer
who was out of direct view of the participant used mouse
and keyboard inputs to simulate this expected output in our
sample applications. This simulated output provided basic
visual feedback to the subject.

We used the following seven categories from the 3D
widget taxonomy proposed by Dachselt and Hinz [11] as the
basis for the target interaction tasks presented to each user:

. 3D object selection. Widgets used to manipulate a 3D
cursor to select objects in a scene.

. 3D object manipulation. Widgets used to rotate and
translate a 3D object in a scene.

. 3D scene control. Widgets used to control the position
and orientation of a 3D scene’s camera.

. 2D document visualization. Widgets used to pan and
zoom 2D documents in 3D.

. Discrete valuators. Widgets modeling a single binary
value (e.g., a button).

. Continuous valuators. Widgets modeling a continuous
range of values (e.g., a slider).

. Menu selection. Widgets used to allow selection of
items from a list.

We restricted the study to only seven of the most
common (based on our experience) members of the
taxonomy’s 14 widget types in order to limit the scope
and duration of the study.

8.2 Procedure

Each participant experienced two application domains that
we selected—performing maintenance on an aircraft engine
(Fig. 14, herein referred to as MA) and servicing a suite of
home entertainment equipment (Fig. 15, herein referred to
as HE). We selected these particular domains because they
are both rich in tactilely interesting affordances and present
experiences that our participants would find unfamiliar (the
MA domain) and familiar (the HE domain). For each
application domain, participants were given individual
tasks from our selected set of common 3D user interaction
activities. Both the domain and task orderings were
randomized, with the participant experiencing all seven
tasks from one domain before proceeding to the next. The
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Fig. 14. Aircraft engine inspection domain (MA).

Fig. 15. Home entertainment domain (HE).
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entire observation lasted approximately 45 minutes. In-
dividual tasks were presented to the user as part of an
unregistered AR application, examples of which are shown
in Figs. 16a, 16b, and 16c, with the exception of the 2D
document visualization task, which was displayed using
the Cooliris [10] application to render 2D images of
simulated documentation (Fig. 16d). Fig. 16a shows an
example of a participant receiving “Wizard of Oz feedback”
from a 3D cursor (positioned by the observer using a
keyboard) as the participant selects a virtual wrench by
moving an engine hose.

Prior to the observation, each participant signed a consent
form, read a one-page set of instructions, and then watched a
two-minute introductory video of our connector OC shown in
Fig. 6a. The connector shown in this video is not part of either
the MA or HE domain. Following this introduction, the user
started the first task in the observation. Each task was
displayed to the user using an untracked, hand-held Xenearc
700TSV LCD panel with a back-mounted Point Grey Firefly
MV camera to generate a video see-through magic lens
display [4]. The 3D scenes were rendered at 800� 600
resolution using the Goblin XNA augmented reality frame-
work [26]. The 3D models rendered in this study were
overlaid on, but not registered with, the physical environ-
ment. However, the background provided application con-
text to the user and the device also served as a nonintrusive
way to capture what the user was viewing. A stand was
provided nearby to hold the display, allowing the user to use
both hands for any interaction that they demonstrated.

Data was collected via annotated screen captures taken by
the observer through an independent documentation tool not
visible to the participant. When the participant indicated a
gesture or affordance of interest, the observer snapped a
screen shot from the magic lens display, and annotated it with
comments from the participant and additional commentary
of their own. This documentation system interfaced with the
Goblin XNA application via shared memory interprocess
communication, and was completely transparent to the
participant. This limited extraneous dialogue between the
participant and the observer. The documentation tool also
tracked the start and finish times of each task.

Once the participant experienced all tasks from both
domains, they completed a questionnaire regarding the
perceived usefulness of various affordances and a complete
description of their recommended user interface for each
task in both domains. Participants were encouraged to
provide additional hand-drawn sketches, samples of which
are shown in Fig. 17. To assist the user in this phase of the
study, we provided each with an automatically generated,

hypertext-based report that contained all screen captures
and observer notes.

8.3 Results

In an attempt to gather insights about user affinities toward
possible OC affordances, we examined participant responses
to the seven task types using two criteria: OC type and
preferred features. We define a participant response as any
and all affordances and gestures used to fulfill a particular
task. We used the screen captures taken during each session
to manually code each participant response as follows: For
the OC affordance type criteria, each participant response
was examined for presence of affordance types as defined in
Section 5.2. In cases where the user invoked multiple
affordances to complete a task (e.g., navigating the 3D
camera using a valuator for two axes, and two buttons for the
third axis), we coded each separately. For the specific
preferred feature criteria, we counted and sorted the
appearance of specific affordances across all tasks.

8.3.1 Results by OC Affordance Type

Table 1 summarizes the distribution of OC types for each
task type across all participant responses.

Study participants selected a plurality of valuator-based
affordances, which appeared in 57 percent of tasks in the ME
case and 50 percent of tasks in the HE case. It is difficult to
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Fig. 16. User observation tasks. (a) 3D object selection and (b) manipulation in MA; (c) 3D object manipulation and (d) 2D document visualization
in HE.

Fig. 17. Selected user concept sketches of proposed OCs.
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draw conclusions about user affinities from this result due to
the influence of task type. The tendency to select valuator-
based affordances might easily be the result of participants
satisfying device-independent notions about the widgets
required to complete a task (e.g., a participant might expect
the ability to control volume with a slider). However, the
results do provide insights about the general distribution of
affordances a typical OC-based application might require.

Examining the results by task type illuminates several
interesting findings. In the case of discrete valuators, where
one would expect button-based affordances to dominate, our
population substituted or incorporated valuator-based af-
fordances 20 percent of the time in the MA scenario, and
33 percent of the time in the HE scenario. In these cases, the
participants either fully ignored available button-based OCs
(e.g., by tapping the individual striations on a grooved
wiring harness sleeve rather than pushing a nearby fastener)
or opted to incorporate a valuator as part of the task (e.g.,
using a scroll gesture on the wiring harness sleeve to first
select the desired virtual button, then making a select gesture
on the nearby fastener). Examining the continuous valuators
task reveals a similar result. In these cases, participants either
exclusively used button-based approaches (e.g., changing a
spinner’s value with up and down buttons, then confirming
completion with a third button) or used a valuator-based
affordance supported by one or more button-based counter-
parts. This substitution of valuators and buttons is likely the
result of variance in general user interface preferences. For
example, when confronted with the task of navigating a
menu using a tangible user interface, some users may prefer
a user interface that mimics a trackpad, while others might
prefer one that resembles the buttons on a keyboard.

Inspection of the results also suggests a general omission
of movable OCs. During any given task, a maximum of
33 percent of participants incorporated movable OCs into
their interfaces (i.e., when responding to the continuous
valuator task in the MA domain). This stands in contrast to
preferences for button OCs, which achieved a maximum use
by 67 percent of participants during discrete valuator tasks in
both domains, and preferences for valuator OCs, which

achieved a maximum of 87 percent during 3D object
manipulation in the MA domain. We suspect that these
results reflect a reluctance on the part of user to modify the
environment and the failure of participants to identify
movable surfaces due to a lack of knowledge about under-
lying physical mechanics. Further inspection of the results
reveals that participant preferences for OC affordance types
were not mutually exclusive. In several instances, particu-
larly for the more complex interaction tasks (e.g., 3D scene
control), the participants selected multiple affordances types.
In most cases, this was due to a combination of convenience
and necessity, where the participant was initially drawn to a
particular affordance, later found it lacking, and then added
the nearest object. In these instances, it was interesting to
watch participants “make their interface work,” rather than
start over with a more suitable alternative.

Based on these results, one proposed heuristic for the
design of OC interfaces, supplementing those of Section 5.2,
is to include multiple, possibly redundant, OC types in
support of a single interface task. Such an approach might
include the ability for a user to dynamically select and
configure which controls to use for a task.

8.3.2 Results by Preferred Physical Feature

Table 2 lists the top four physical features appearing in
participant responses, with each feature manually high-
lighted in a photograph of the domain. Even though we
cannot draw conclusions from these results about what
specific features make the best OCs in general, the results
do reveal the wide range of affordances users can envision
as supporting OCs. Additionally, we noticed that each of
the top four selected features in both scenarios were located
roughly at eye level and are within arm’s reach of where
participants stood (unprompted) during the study. This
supports the importance of location in the selection of
affordances for OCs: The affordance underlying an OC
should require minimal physical exertion by the user.

8.4 Additional Findings

We noted several additional findings as a result of this
study. First, it was difficult to inspire participants to
imagine objects in the MA and HE environments as being
components of a computer interface. When participants
voiced confusion about what they were supposed to do, we
deliberately avoided demonstrating within the MA or HE
environments and instead referred the participant to the
connector OC video shown prior to the observation. Many
participants verbalized their hesitancy to respond with
remarks about how they were unfamiliar with the larger
objects in the environment (e.g., “I don’t know how to hook
up a VCR” or “I’m not a mechanically inclined person”).
This suggests that even though an object (e.g., the back of a
television) might contain objects that are individually
perceived as meaningful affordances by the user, context
from the area surrounding these affordances can cloud
perception. Any implemented OC should make full use of
virtual content to help mitigate this effect, possibly even
removing or hiding real-world objects that are not part of
the OC. (For example, although we did not use any kind of
highlighting in this study, techniques such as that used
manually in the photographs in Table 2, might be useful to
emphasize an important feature in a user interface that
employed OCs.)

As part of our questionnaire, we asked participants to
suggest other objects found in their daily lives that might be
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used as part of an OC-based interface. Some of the

proposed ideas included:

. Using a writing pen to control mobile media players
or 3D games.

. Using a chair or sofa arm rest to control a home
entertainment system.

. Using the various straps and fasteners on a backpack
to control a mobile device (e.g., in the spirit of the
wearable communication enabler developed by
Mikkonen et al. [23]).

. Using rings worn on fingers to control applications.

9 CONCLUSIONS AND FUTURE WORK

We were pleased that our initial prototype implementation

of OC was able to support faster completion times than

those of the baseline. Moreover, we were encouraged by the

level of enthusiasm for our technique expressed by the

participants in our OC performance and acceptance user

study. We also believe that minor modifications to our
design (e.g., selecting a better arrangement of buttons)
could result in a significant improvement over the baseline
in error rate performance.

Our current research focus is on adding depth informa-
tion to the gesture recognition algorithm. We have already
implemented a two-camera solution, with one camera
mounted parallel to, and just above the dominant plane of
our OCs. This allows our system to suspend the segmenta-
tion process of the top camera when the user’s hand is not
seen gesturing at the same depth as our OCs. Initial pilot
testing demonstrates improvements in hovering and clutch-
ing. We are currently researching more robust options such
as a stereo pair of cameras or a depth camera [1]. Other
planned improvements in the segmentation process include
replacing marker-based tracking with a feature-based
approach. We believe many of the same rich features
embodied in tactilely interesting OCs could also be
leveraged for visual tracking.

We are also interested in developing tools that would
allow a user to quickly designate promising looking
elements in the environment as OCs. This would require
having the user locate a physical object, select a widget
type, and specify how the physical object is mapped to the
widget. It might even be possible for the system to
recognize certain types of features to automatically suggest
possible OCs to support the task at hand.

Despite the preliminary insights offered by our OC user
interface observation study into how users perceive and
interact with OCs, more work is required in this area.
Specifically, we would like to determine a set of heuristics
that govern which mechanical and free-form topological
features fit best with various 3D widgets. These heuristics
could be used with the aforementioned tool to help
automate the creation of OCs.

In closing, we have presented a class of user interaction
techniques for AR applications that support gesturing on,
and receiving feedback from, otherwise unused affordances
already present in the domain environment. In one user
study, a collection of OCs was demonstrated to be faster than
a similarly laid out set of controls on an undifferentiated
surface. In a second user study, we explored participants’
suggested designs for user interfaces that incorporate OC.
While not suitable for all user interface scenarios, we believe
that OCs may be a good choice for tasks requiring eye and
hand focus and which restrict other interaction techniques.
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