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Abstract. Machine learning techniques are often used in computer vi-
sion due to their ability to leverage large amounts of training data to
improve performance. Unfortunately, most generic object trackers are
still trained from scratch online and do not benefit from the large num-
ber of videos that are readily available for offline training. We propose
a method for offline training of neural networks that can track novel
objects at test-time at 100 fps. Our tracker is significantly faster than
previous methods that use neural networks for tracking, which are typ-
ically very slow to run and not practical for real-time applications. Our
tracker uses a simple feed-forward network with no online training re-
quired. The tracker learns a generic relationship between object motion
and appearance and can be used to track novel objects that do not appear
in the training set. We test our network on a standard tracking bench-
mark to demonstrate our tracker’s state-of-the-art performance. Further,
our performance improves as we add more videos to our offline training
set. To the best of our knowledge, our tracker1 is the first neural-network
tracker that learns to track generic objects at 100 fps.

Keywords: Tracking, deep learning, neural networks, machine learning

1 Introduction

Given some object of interest marked in one frame of a video, the goal of “single-
target tracking” is to locate this object in subsequent video frames, despite object
motion, changes in viewpoint, lighting changes, or other variations. Single-target
tracking is an important component of many systems. For person-following ap-
plications, a robot must track a person as they move through their environment.
For autonomous driving, a robot must track dynamic obstacles in order to esti-
mate where they are moving and predict how they will move in the future.

Generic object trackers (trackers that are not specialized for specific classes
of objects) are traditionally trained entirely from scratch online (i.e. during test
time) [15,3,36,19], with no offline training being performed. Such trackers suffer
in performance because they cannot take advantage of the large number of videos
that are readily available to improve their performance. Offline training videos

1 Our tracker is available at http://davheld.github.io/GOTURN/GOTURN.html
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Training:	

Network	learns	generic	object	tracking	

Neural		
Network	

Test:	

Frozen	weights	
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Network	

Training	videos	
and	images	

Previous	frame	

Current	frame	
tracking	output	

Fig. 1. Using a collection of videos and images with bounding box labels (but no
class information), we train a neural network to track generic objects. At test time, the
network is able to track novel objects without any fine-tuning. By avoiding fine-tuning,
our network is able to track at 100 fps

can be used to teach the tracker to handle rotations, changes in viewpoint,
lighting changes, and other complex challenges.

In many other areas of computer vision, such as image classification, object
detection, segmentation, or activity recognition, machine learning has allowed vi-
sion algorithms to train from offline data and learn about the world [5,23,13,25,9,28].
In each of these cases, the performance of the algorithm improves as it iterates
through the training set of images. Such models benefit from the ability of neural
networks to learn complex functions from large amounts of data.

In this work, we show that it is possible to learn to track generic objects in
real-time by watching videos offline of objects moving in the world. To achieve
this goal, we introduce GOTURN, Generic Object Tracking Using Regression
Networks. We train a neural network for tracking in an entirely offline manner.
At test time, when tracking novel objects, the network weights are frozen, and no
online fine-tuning required (as shown in Figure 1). Through the offline training
procedure, the tracker learns to track novel objects in a fast, robust, and accurate
manner.

Although some initial work has been done in using neural networks for track-
ing, these efforts have produced neural-network trackers that are too slow for
practical use. In contrast, our tracker is able to track objects at 100 fps, making
it, to the best of our knowledge, the fastest neural-network tracker to-date. Our
real-time speed is due to two factors. First, most previous neural network trackers
are trained online [26,27,34,37,35,30,39,7,24]; however, training neural networks
is a slow process, leading to slow tracking. In contrast, our tracker is trained of-
fline to learn a generic relationship between appearance and motion, so no online
training is required. Second, most trackers take a classification-based approach,
classifying many image patches to find the target object [26,27,37,30,39,24,33].
In contrast, our tracker uses a regression-based approach, requiring just a single
feed-forward pass through the network to regresses directly to the location of
the target object. The combination of offline training and one-pass regression
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leads to a significant speed-up compared to previous approaches and allows us
to track objects at real-time speeds.

GOTURN is the first generic object neural-network tracker that is able to
run at 100 fps. We use a standard tracking benchmark to demonstrate that our
tracker outperforms state-of-the-art trackers. Our tracker trains from a set of la-
beled training videos and images, but we do not require any class-level labeling
or information about the types of objects being tracked. GOTURN establishes
a new framework for tracking in which the relationship between appearance and
motion is learned offline in a generic manner. Our code and additional experi-
ments can be found at http://davheld.github.io/GOTURN/GOTURN.html.

2 Related Work

Online training for tracking. Trackers for generic object tracking are typically
trained entirely online, starting from the first frame of a video [15,3,36,19]. A
typical tracker will sample patches near the target object, which are considered as
“foreground” [3]. Some patches farther from the target object are also sampled,
and these are considered as “background.” These patches are then used to train
a foreground-background classifier, and this classifier is used to score patches
from the next frame to estimate the new location of the target object [36,19].
Unfortunately, since these trackers are trained entirely online, they cannot take
advantage of the large amount of videos that are readily available for offline
training that can potentially be used to improve their performance.

Some researchers have also attempted to use neural networks for tracking
within the traditional online training framework [26,27,34,37,35,30,39,7,24,16],
showing state-of-the-art results [30,7,21]. Unfortunately, neural networks are
very slow to train, and if online training is required, then the resulting tracker will
be very slow at test time. Such trackers range from 0.8 fps [26] to 15 fps [37], with
the top performing neural-network trackers running at 1 fps on a GPU [30,7,21].
Hence, these trackers are not usable for most practical applications. Because our
tracker is trained offline in a generic manner, no online training of our tracker is
required, enabling us to track at 100 fps.

Model-based trackers. A separate class of trackers are the model-based
trackers which are designed to track a specific class of objects [12,1,11]. For ex-
ample, if one is only interested in tracking pedestrians, then one can train a
pedestrian detector. During test-time, these detections can be linked together
using temporal information. These trackers are trained offline, but they are lim-
ited because they can only track a specific class of objects. Our tracker is trained
offline in a generic fashion and can be used to track novel objects at test time.

Other neural network tracking frameworks. A related area of research
is patch matching [14,38], which was recently used for tracking in [33], running
at 4 fps. In such an approach, many candidate patches are passed through the
network, and the patch with the highest matching score is selected as the tracking
output. In contrast, our network only passes two images through the network,
and the network regresses directly to the bounding box location of the target

http://davheld.github.io/GOTURN/GOTURN.html
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Fig. 2. Our network architecture for tracking. We input to the network a search region
from the current frame and a target from the previous frame. The network learns to
compare these crops to find the target object in the current image

object. By avoiding the need to score many candidate patches, we are able to
track objects at 100 fps.

Prior attempts have been made to use neural networks for tracking in var-
ious other ways [18], including visual attention models [4,29]. However, these
approaches are not competitive with other state-of-the-art trackers when evalu-
ated on difficult tracker datasets.

3 Method

3.1 Method Overview

At a high level, we feed frames of a video into a neural network, and the network
successively outputs the location of the tracked object in each frame. We train
the tracker entirely offline with video sequences and images. Through our offline
training procedure, our tracker learns a generic relationship between appearance
and motion that can be used to track novel objects at test time with no online
training required.

3.2 Input / output format

What to track. In case there are multiple objects in the video, the network
must receive some information about which object in the video is being tracked.
To achieve this, we input an image of the target object into the network. We
crop and scale the previous frame to be centered on the target object, as shown
in Figure 2. This input allows our network to track novel objects that it has not
seen before; the network will track whatever object is being input in this crop.
We pad this crop to allow the network to receive some contextual information
about the surroundings of the target object.

In more detail, suppose that in frame t− 1, our tracker previously predicted
that the target was located in a bounding box centered at c = (cx, cy) with a
width of w and a height of h. At time t, we take a crop of frame t− 1 centered
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at (cx, cy) with a width and height of k1 w and k1 h, respectively. This crop tells
the network which object is being tracked. The value of k1 determines how much
context the network will receive about the target object from the previous frame.

Where to look. To find the target object in the current frame, the tracker
should know where the object was previously located. Since objects tend to
move smoothly through space, the previous location of the object will provide
a good guess of where the network should expect to currently find the object.
We achieve this by choosing a search region in our current frame based on the
object’s previous location. We crop the current frame using the search region
and input this crop into our network, as shown in Figure 2. The goal of the
network is then to regress to the location of the target object within the search
region.

In more detail, the crop of the current frame t is centered at c′ = (c′x, c
′
y),

where c′ is the expected mean location of the target object. We set c′ = c, which
is equivalent to a constant position motion model, although more sophisticated
motion models can be used as well. The crop of the current frame has a width
and height of k2 w and k2 h, respectively, where w and h are the width and height
of the predicted bounding box in the previous frame, and k2 defines our search
radius for the target object. In practice, we use k1 = k2 = 2.

As long as the target object does not become occluded and is not moving
too quickly, the target will be located within this region. For fast-moving ob-
jects, the size of the search region could be increased, at a cost of increasing
the complexity of the network. Alternatively, to handle long-term occlusions or
large movements, our tracker can be combined with another approach such as
an online-trained object detector, as in the TLD framework [19], or a visual
attention model [4,29,2]; we leave this for future work.

Network output. The network outputs the coordinates of the object in the
current frame, relative to the search region. The network’s output consists of the
coordinates of the top left and bottom right corners of the bounding box.

3.3 Network architecture

For single-target tracking, we define a novel image-comparison tracking archi-
tecture, shown in Figure 2 (note that related “two-frame” architectures have
also been used for other tasks [20,10]). In this model, we input the target object
as well as the search region each into a sequence of convolutional layers. The
output of these convolutional layers is a set of features that capture a high-level
representation of the image.

The outputs of these convolutional layers are then fed through a number of
fully connected layers. The role of the fully connected layers is to compare the
features from the target object to the features in the current frame to find where
the target object has moved. Between these frames, the object may have un-
dergone a translation, rotation, lighting change, occlusion, or deformation. The
function learned by the fully connected layers is thus a complex feature com-
parison which is learned through many examples to be robust to these various
factors while outputting the relative motion of the tracked object.
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In more detail, the convolutional layers in our model are taken from the first
five convolutional layers of the CaffeNet architecture [17,23]. We concatenate the
output of these convolutional layers (i.e. the pool5 features) into a single vector.
This vector is input to 3 fully connected layers, each with 4096 nodes. Finally, we
connect the last fully connected layer to an output layer that contains 4 nodes
which represent the output bounding box. We scale the output by a factor of 10,
chosen using our validation set (as with all of our hyperparameters). Network
hyperparameters are taken from the defaults for CaffeNet, and between each
fully-connected layer we use dropout and ReLU non-linearities as in CaffeNet.
Our neural network is implemented using Caffe [17].

3.4 Tracking

During test time, we initialize the tracker with a ground-truth bounding box
from the first frame, as is standard practice for single-target tracking. At each
subsequent frame t, we input crops from frame t−1 and frame t into the network
(as described in Section 3.2) to predict where the object is located in frame t. We
continue to re-crop and feed pairs of frames into our network for the remainder
of the video, and our network will track the movement of the target object
throughout the entire video sequence.

4 Training

We train our network with a combination of videos and still images. The training
procedure is described below. In both cases, we train the network with an L1
loss between the predicted bounding box and the ground-truth bounding box.

4.1 Training from Videos and Images

Our training set consists of a collection of videos in which a subset of frames
in each video are labeled with the location of some object. For each successive
pair of frames in the training set, we crop the frames as described in Section 3.2.
During training time, we feed this pair of frames into the network and attempt
to predict how the object has moved from the first frame to the second frame
(shown in Figure 3). We also augment these training examples using our motion
model, as described in Section 4.2.

Our training procedure can also take advantage of a set of still images that are
each labeled with the location of an object. This training set of images teaches
our network to track a more diverse set of objects and prevents overfitting to
the objects in our training videos. To train our tracker from an image, we take
random crops of the image according to our motion model (see Section 4.2). Be-
tween these two crops, the target object has undergone an apparent translation
and scale change, as shown in Figure 4. We treat these crops as if they were taken
from different frames of a video. Although the “motions” in these crops are less
varied than the types of motions found in our training videos, these images are
still useful to train our network to track a variety of different objects.
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Previous))
video)frame)
centered)on))

object)

Current)video)frame,))
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ground9truth)
bounding)box)

Fig. 3. Examples of training videos. The goal of the network is to predict the location
of the target object shown in the center of the video frame in the top row, after being
shifted as in the bottom row. The ground-truth bounding box is marked in green

Image&
centered&on&&

object&

Shi2ed&image&
with&ground5truth&
bounding&box&

Fig. 4. Examples of training images. The goal of the network is to predict the location
of the target object shown in the center of the image crop in the top row, after being
shifted as in the bottom row. The ground-truth bounding box is marked in green

4.2 Learning Motion Smoothness

Objects in the real-world tend to move smoothly through space. Given an am-
biguous image in which the location of the target object is uncertain, a tracker
should predict that the target object is located near to the location where it was
previously observed. This is especially important in videos that contain multiple
nearly-identical objects, such as multiple fruit of the same type. Thus we wish
to teach our network that, all else being equal, small motions are preferred to
large motions.

To concretize the idea of motion smoothness, we model the center of the
bounding box in the current frame (c′x, c

′
y) relative to the center of the bounding

box in the previous frame (cx, cy) as

c′x = cx + w ·∆x (1)

c′y = cy + h ·∆y (2)

where w and h are the width and height, respectively, of the bounding box of
the previous frame. The terms ∆x and ∆y are random variables that capture
the change in position of the bounding box relative to its size. In our training
set, we find that objects change their position such that ∆x and ∆y can each be
modeled with a Laplace distribution with a mean of 0 (see Appendix for details).
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Such a distribution places a higher probability on smaller motions than larger
motions.

Similarly, we model size changes by

w′ = w · γw (3)

h′ = h · γh (4)

where w′ and h′ are the current width and height of the bounding box and w
and h are the previous width and height of the bounding box. The terms γw and
γh are random variables that capture the size change of the bounding box. We
find in our training set that γw and γh are modeled by a Laplace distribution
with a mean of 1. Such a distribution gives a higher probability on keeping the
bounding box size near the same as the size from the previous frame.

To teach our network to prefer small motions to large motions, we aug-
ment our training set with random crops drawn from the Laplace distributions
described above (see Figures 3 and 4 for examples). Because these training ex-
amples are sampled from a Laplace distribution, small motions will be sampled
more than large motions, and thus our network will learn to prefer small motions
to large motions, all else being equal. We will show that this Laplace cropping
procedure improves the performance of our tracker compared to the standard
uniform cropping procedure used in classification tasks [23].

The scale parameters for the Laplace distributions are chosen via cross-
validation to be bx = 1/5 (for the motion of the bounding box center) and
bs = 1/15 (for the change in bounding box size). We constrain the random crop
such that it must contain at least half of the target object in each dimension. We
also limit the size changes such that γw, γh ∈ (0.6, 1.4), to avoid overly stretching
or shrinking the bounding box in a way that would be difficult for the network
to learn.

4.3 Training procedure

To train our network, each training example is alternately taken from a video or
from an image. When we use a video training example, we randomly choose a
video, and we randomly choose a pair of successive frames in this video. We then
crop the video according to the procedure described in Section 3.2. We addition-
ally take k3 random crops of the current frame, as described in Section 4.2, to
augment the dataset with k3 additional examples. Next, we randomly sample an
image, and we repeat the procedure described above, where the random crop-
ping creates artificial “motions” (see Sections 4.1 and 4.2). Each time a video or
image gets sampled, new random crops are produced on-the-fly, to create addi-
tional diversity in our training procedure. In our experiments, we use k3 = 10,
and we use a batch size of 50.

The convolutional layers in our network are pre-trained on ImageNet [31,8].
Because of our limited training set size, we do not fine-tune these layers to
prevent overfitting. We train this network with a learning rate of 1e-5, and other
hyperparameters are taken from the defaults for CaffeNet [17].



Learning to Track 9

5 Experimental Setup

5.1 Training set

As described in Section 4, we train our network using a combination of videos
and still images. Our training videos come from ALOV300++ [32], a collection
of 314 video sequences. We remove 7 of these videos that overlap with our test
set (see Appendix for details), leaving us with 307 videos to be used for training.
In this dataset, approximately every 5th frame of each video has been labeled
with the location of some object being tracked. These videos are generally short,
ranging from a few seconds to a few minutes in length. We split these videos into
251 for training and 56 for validation / hyper-parameter tuning. The training
set consists of a total of 13,082 images of 251 different objects, or an average of
52 frames per object. The validation set consists of 2,795 images of 56 different
objects. After choosing our hyperparameters, we retrain our model using our
entire training set (training + validation). After removing the 7 overlapping
videos, there is no overlap between the videos in the training and test sets.

Our training procedure also leveraged a set of still images that were used for
training, as described in Section 4.1. These images were taken from the training
set of the ImageNet Detection Challenge [31], in which 478,807 objects were la-
beled with bounding boxes. We randomly crop these images during training time,
as described in Section 4.2, to create an apparent translation or scale change be-
tween two random crops. The random cropping procedure is only useful if the
labeled object does not fill the entire image; thus, we filter those images for which
the bounding box fills at least 66% of the size of the image in either dimension
(chosen using our validation set). This leaves us with a total of 239,283 anno-
tations from 134,821 images. These images help prevent overfitting by teaching
our network to track objects that do not appear in the training videos.

5.2 Test set

Our test set consists of the 25 videos from the VOT 2014 Tracking Challenge [22].
We could not test our method on the VOT 2015 challenge [21] because there
would be too much overlap between the test set and our training set. However,
we expect the general trends of our method to still hold.

The VOT 2014 Tracking Challenge [22] is a standard tracking benchmark
that allows us to compare our tracker to a wide variety of state-of-the-art track-
ers. The trackers are evaluated using two standard tracking metrics: accuracy (A)
and robustness (R) [22,6], which range from 0 to 1. We also compute accuracy
errors (1−A), robustness errors (1−R), and overall errors 1− (A+R)/2.

Each frame of the video is annotated with a number of attributes: occlusion,
illumination change, motion change, size change, and camera motion. The track-
ers are also ranked in accuracy and robustness separately for each attribute, and
the rankings are then averaged across attributes to get a final average accuracy
and robustness ranking for each tracker. The accuracy and robustness rankings
are averaged to get an overall average ranking.
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6 Results

6.1 Overall performance

The performance of our tracker is shown in Figure 5, which demonstrates that
our tracker has good robustness and performs near the top in accuracy. Further,
our overall ranking (computed as the average of accuracy and robustness) out-
performs all previous trackers on this benchmark. We have thus demonstrated
the value of offline training for improving tracking performance. Moreover, these
results were obtained after training on only 307 short videos. Figure 5 as well as
analysis in the appendix suggests that further gains could be achieved if the train-
ing set size were increased by labeling more videos. Qualitative results, as well as
failure cases, can be found on the project page: http://davheld.github.io/;
currently, the tracker can fail due to occlusions or overfitting to objects in the
training set.

Ac
cu
ra
cy
	R
an
k	

Robustness	Rank	

GOTURN	
	(Ours)	

Fig. 5. Tracking results from the VOT 2014 tracking challenge. Our tracker’s perfor-
mance is indicated with a blue circle, outperforming all previous methods on the overall
rank (average of accuracy and robustness ranks). The points shown along the black line
represent training from 14, 37, 157, and 307 videos, with the same number of training
images used in each case

On an Nvidia GeForce GTX Titan X GPU with cuDNN acceleration, our
tracker runs at 6.05 ms per frame (not including the 1 ms to load each image in
OpenCV), or 165 fps. On a GTX 680 GPU, our tracker runs at an average of
9.98 ms per frame, or 100 fps. If only a CPU is available, the tracker runs at 2.7
fps. Because our tracker is able to perform all of its training offline, during test
time the tracker requires only a single feed-forward pass through the network,
and thus the tracker is able to run at real-time speeds.

http://davheld.github.io/
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We compare the speed and rank of our tracker compared to the 38 other
trackers submitted to the VOT 2014 Tracking Challenge [22] in Figure 6, using
the overall rank score described in Section 5.2. We show the runtime of the
tracker in EFO units (Equivalent Filter Operations), which normalizes for the
type of hardware that the tracker was tested on [22]. Figure 6 demonstrates that
ours was one of the fastest trackers compared to the 38 other baselines, while
outperforming all other methods in the overall rank (computed as the average
of the accuracy and robustness ranks). Note that some of these other trackers,
such as ThunderStruck [22], also use a GPU. For a more detailed analysis of
speed as a function of accuracy and robustness, see the appendix.
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Runtime (EFO / frame)
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an

k

Fig. 6. Rank vs runtime of our tracker (red) compared to the 38 baseline methods from
the VOT 2014 Tracking Challenge (blue). Each blue dot represents the performance
of a separate baseline method (best viewed in color). Accuracy and robustness metrics
are shown in the appendix

Our tracker is able to track objects in real-time due to two aspects of our
model: First, we learn a generic tracking model offline, so no online training is
required. Online training of neural networks tends to be very slow, preventing
real-time performance. Online-trained neural network trackers range from 0.8
fps [26] to 15 fps [37], with the top performing trackers running at 1 fps on
a GPU [30,7,21]. Second, most trackers evaluate a finite number of samples
and choose the highest scoring one as the tracking output [26,27,37,30,39,24,33].
With a sampling approach, the accuracy is limited by the number of samples, but
increasing the number of samples also increases the computational complexity.
On the other hand, our tracker regresses directly to the output bounding box, so
GOTURN achieves accurate tracking with no extra computational cost, enabling
it to track objects at 100 fps.

6.2 How does it work?

How does our neural-network tracker work? There are two hypotheses that one
might propose:



12 Held, Thrun, Savarese

1. The network compares the previous frame to the current frame to find the
target object in the current frame.

2. The network acts as a local generic “object detector” and simply locates the
nearest “object.”

We differentiate between these hypotheses by comparing the performance of our
network (shown in Figure 2) to the performance of a network which does not
receive the previous frame as input (i.e. the network only receives the current
frame as input). For this experiment, we train each of these networks separately.
If the network does not receive the previous frame as input, then the tracker can
only act as a local generic object detector (hypothesis 2).

NoneIllumination changeCamera motionMotion changeSize changeOcclusion
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

O
ve

ra
ll E

rro
rs

Current frame only
Current + previous frame

None	 Illumina,on	
Change	

Camera	
Mo,on	

Mo,on	
Change	

Occlusion	Size	
Change	

Fig. 7. Overall tracking errors for our network which receives as input both the current
and previous frame, compared to a network which receives as input only the current
frame (lower is better). This comparison allows us to disambiguate between two hy-
potheses that can explain how our neural-network tracker works (see Section 6.2).
Accuracy and robustness metrics are shown in the appendix

Figure 7 shows the degree to which each of the hypotheses holds true for
different tracking conditions. For example, when there is an occlusion or a large
camera motion, the tracker benefits greatly from using the previous frame, which
enables the tracker to “remember” which object is being tracked. Figure 7 shows
that the tracker performs much worse in these cases when the previous frame
is not included. In such cases, hypothesis 1 plays a large role, i.e. the tracker is
comparing the previous frame to the current frame to find the target object.

On the other hand, when there is a size change or no variation, the tracker
performs slightly worse when using the previous frame (or approximately the
same). Under a large size change, the corresponding appearance change is too
drastic for our network to perform an accurate comparison between the previous
frame and the current frame. Thus the tracker is acting as a local generic object
detector in such a case and hypothesis 2 is dominant. Each hypothesis holds true
in varying degrees for different tracking conditions, as shown in Figure 7.
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6.3 Generality vs Specificity

How well can our tracker generalize to novel objects not found in our training
set? For this analysis, we separate our test set into objects for which at least 25
videos of the same class appear in our training set and objects for which fewer
than 25 videos of that class appear in our training set. Figure 8 shows that, even
for test objects that do not have any (or very few) similar objects in our training
set, our tracker performs well. The performance continues to improve even as
videos of unrelated objects are added to our training set, since our tracker is
able to learn a generic relationship between an object’s appearance change and
its motion that can generalize to novel objects.
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Fig. 8. Overall tracking errors for different types of objects in our test set as a function
of the number of videos in our training set (lower is better). Class labels are not used by
our tracker; these labels were obtained only for the purpose of this analysis. Accuracy
and robustness metrics are shown in the appendix

Additionally, our tracker can also be specialized to track certain objects par-
ticularly well. Figure 8 shows that, for test objects for which at least 25 videos
of the same class appear in the training set, we obtain a large improvement as
more training videos of those types of objects are added. This allows the user
to specialize the tracker for particular applications. For example, if the tracker
is being used for autonomous driving, then the user can add more objects of
people, bikes, and cars into the training set, and the tracker will learn to track
those objects particularly well. At the same time, Figure 8 also demonstrates
that our tracker can track novel objects that do not appear in our training set,
which is important when tracking objects in uncontrolled environments.

6.4 Ablative Analysis

In Table 1, we show which components of our system contribute the most to
our performance. We train our network with random cropping from a Laplace
distribution to teach our tracker to prefer small motions to large motions (e.g.
motion smoothness), as explained in Section 4.2. Table 1 shows the benefit of this
approach compared to the baseline of uniformly sampling random crops (“No



14 Held, Thrun, Savarese

motion smoothness”), as is typically done for classification [23]. As shown, we
reduce errors by 20% by drawing our random crops from a Laplace distribution.

Table 1 also shows the benefit of using an L1 loss compared to an L2 loss.
Using an L1 loss significantly reduces the overall tracking errors from 0.43 to
0.24. Because the L2 penalty is relatively flat near 0, the network does not
sufficiently penalize outputs that are close but not correct, and the network
would often output a bounding box that was slightly too large or too small.
When applied to a sequence of frames, the bounding box would grow or shrink
without bound until the predicted bounding box was just a single point or the
entire image. In contrast, an L1 loss penalizes more harshly answers that are
only slightly incorrect, which keeps the bounding box size closer to the correct
size and prevents the bounding box from shrinking or growing without bound.

Table 1. Comparing our full GOTURN tracking method to various modified versions
of our method to analyze the effect of different components of the system

GOTURN Variant Overall errors Accuracy errors Robustness errors

L2 loss 0.43 0.69 0.17
No motion smoothness 0.30 0.48 0.13
Image training only 0.35 0.54 0.16
Video training only 0.29 0.44 0.13

Full method (Ours) 0.24 0.39 0.10

We train our tracker using a combination of images and videos. Table 1
shows that, given the choice between images and videos, training on only videos
gives a much bigger improvement to our tracker performance. At the same time,
training on both videos and images gives the maximum performance for our
tracker. Training on a small number of labeled videos has taught our tracker to
be invariant to background motion, out-of-plane rotations, deformations, lighting
changes, and minor occlusions. Training from a large number of labeled images
has taught our network how to track a wide variety of different types of objects.
By training on both videos and images, our tracker learns to track a variety of
object types under different conditions, achieving maximum performance.

7 Conclusions

We have demonstrated that we can train a generic object tracker offline such
that its performance improves by watching more training videos. During test
time, we run the network in a purely feed-forward manner with no online fine-
tuning required, allowing the tracker to run at 100 fps. Our tracker learns offline
a generic relationship between an object’s appearance and its motion, allowing
our network to track novel objects at real-time speeds.
Acknowledgments. We acknowledge the support of Toyota grant 1186781-31-
UDARO and ONR grant 1165419-10-TDAUZ.
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Fig. 9. Tracking performance as a function of the number of training videos (lower is
better). This analysis indicates that large gains are possible by labeling more training
videos.

Our tracker is able to improve its performance as it trains on more offline
data. By observing more videos, GOTURN learns how the appearance of objects
change as they move. We further analyze the effect of the amount of training data
on our tracker’s performance in Figure 9. We see that that the tracking errors
drop dramatically as we increase the number of training videos. Our state-of-
the-art results demonstrated in Section 6.1 of the main text were obtained after
training on only 307 short videos, ranging from a few seconds to a few minutes
in length, with an average of 52 annotations per video. Figure 9 indicates that
large gains could be achieved if the training set size were increased by labeling
more videos.

B Online training

Previous neural network trackers for tracking generic objects have been trained
online [26,27,34,37,35,30,39,7,24,16]. Unfortunately, such trackers are very slow
to train, ranging from 0.8 fps [26] to 15 fps [37], with the top performing neural-
network trackers running at 1 fps [30,7,21]. Our tracker is trained offline in a
generic manner, so no online training of our tracker is required. As a result, our
tracker is able to track novel objects at 100 fps.

In Figures 10 and 11, we explore the benefits of online training. We use cross-
validation to choose the online learning rate to be 1e-9. Figure 10 shows that
online training does not significantly improve performance beyond our offline
training procedure. As might be expected, there is a small increase in robustness
from online training; however, this comes at a cost of accuracy, since online
training tends to overfit to the first few frames of a video and would not easily
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Fig. 10. Tracking results from the VOT 2014 tracking challenge. Our tracker’s per-
formance is indicated with a blue circle, outperforming all previous methods on the
overall rank (average of accuracy and robustness ranks). A version of our tracker with
online training is shown with a green X. Both versions achieve approximately the same
performance, demonstrating that our offline training procedure has already taught the
network how to track a variety of objects.

generalize to new deformations or viewpoint changes. A more detailed analysis
is shown in Figure 11.

Our offline training procedure has seen many training videos with deforma-
tions, viewpoint changes, and other variations, and thus our tracker has already
learned to handle such changes in a generic manner that generalizes to new ob-
jects. Although there might be other ways to combine online and offline training,
our network has already learned generic target tracking from its offline training
procedure and achieves state-of-the-art tracking performance without any online
training required.

C Generality vs Specificity

In the main text, we analyze the generality of our tracker. We demonstrate that
our tracker can generalize to novel objects not found in the training set. At the
same time, a user can train our tracker to track a particular class of objects
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Fig. 11. Comparison of our tracker with and without online training (lower is better).
Both versions achieve approximately the same performance, demonstrating that our
offline training procedure has already taught the network how to track a variety of
objects. Online training can lead to overfitting to the first few frames of a video,
leading to more errors.

especially well by giving more training examples of that class of objects. This
is useful if the tracker is intended to be used for a particular application where
certain classes of objects are more prevalent.

We show more detailed results of this experiment in Figure 12. Analyzing the
accuracy and robustness separately, we observe an interesting pattern. As the
number of training videos increases, the accuracy errors decreases equally both
for object classes that appear in our training set and classes that do not appear
in our training set. On the other hand, the decrease in robustness errors is much
more significant for object classes that appear in our training set compared to
classes that do not.
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Fig. 12. Overall tracking errors for different types of objects in our test set as a function
of the number of videos in our training set (lower is better). Class labels are not used
by our tracker; these labels were obtained only for the purpose of this analysis.

Thus our tracker is able to learn generic properties about objects that enable
it to accurately track objects, i.e. to accurately denote the borders of the object
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with a bounding box. On the other hand, the tracker’s ability to generalize
robustness is more limited; the tracker has a hard time tracking the motion
of unknown objects when faced with difficult tracking situations. This analysis
points towards future work to increase the robustness of the tracker by labeling
more videos or by learning to train on unlabeled videos.

D Speed analysis

In the main text, we showed the speed of our tracker as a function of the overall
rank (computed as the average of accuracy and robustness ranks) and showed
that we have the lowest overall rank while being one of the fastest trackers.
In Figure 13 we show more detailed results, demonstrating our tracker’s speed
as a function of the accuracy rank and the robustness ranks. Our tracker has
the second-highest accuracy rank, one of the top robustness ranks, and the top
overall rank, while running at 100 fps. Previous neural-network trackers range
from 0.8 fps [26] to 15 fps [37], with the top performing neural-network trackers
running at only 1 fps GPU [30,7,21], since online training of neural networks is
slow. Thus, by performing all of our training offline, we are able to make our
neural network tracker run in real-time.
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Fig. 13. Rank vs runtime of our tracker (red) compared to the 38 baseline methods from
the VOT 2014 Tracking Challenge (blue). Each blue dot represents the performance of
a separate baseline method (best viewed in color).

E How does it work?

In the main text, we explored how our tracker works as a combination of two
hypotheses:

1. The network compares the previous frame to the current frame to find the
target object in the current frame.

2. The network acts as a local generic “object detector” and simply locates the
nearest “object.”



22 Held, Thrun, Savarese

We distinguished between these hypotheses by comparing the performance of our
network to the performance of a network which does not receive the previous
frame as input. In Figure 14 we show more details of this experiment, showing
also accuracy and robustness rankings. For a more detailed interpretation of the
results, see Section 6.2 of the main text.
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Fig. 14. Tracking errors for our network which receives as input both the current and
previous frame, compared to a network which receives as input only the current frame
(lower is better). This comparison allows us to disambiguate between two hypotheses
that can explain how our neural-network tracker works (see Section 6.2 of the main
text).

F Motion Smoothness Distribution

In Section 4.2 of the main text, we describe how we use random cropping to im-
plicitly encode the idea that small motions are more likely than large motions.
To determine which distribution to use to encode this idea, we analyze the dis-
tribution of object motion found in the training set. This motion distribution
can be seen in Figure 15. As can be seen from this figure, each of these distri-
butions can be modeled by Laplace distributions. Accordingly, we use Laplace
distributions for our random cropping procedure. Note that the training set was
only used to determine the shape of the distribution (i.e. Laplace); we use our
validation set to determine the scale parameters for the distributions.

In more detail, suppose that the bounding box in frame t − 1 is given by
(cx, cy, w, h) where cx and cy are the coordinates of the center of the bounding
box and w and h are the width and height accordingly. Then the bounding box
at time t can be seen as drawn from a distribution:

c′x = cx + w ·∆x (5)

c′y = cy + h ·∆y (6)

w′ = w · γw (7)

h′ = h · γh (8)
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Fig. 15. Statistics for the change in bounding box size and location across two consec-
utive frames in our training set.

with random variables ∆x, ∆y, γw, and γh, where (c′x, c
′
y, w

′, h′) parameterize
the bounding box at time t using the same representation described above. In
terms of the random variables, we can rewrite these expressions as

∆x = (c′x − cx)/w (9)

∆y = (c′y − cy)/h (10)

γw = w′/w (11)

γh = h′/h (12)

The empirical distributions of these random variables over the training set are
shown in Figure 15.

G Number of layers

In Figure 16 we explore the effect of varying the number of fully-connected
layers on top of the neural network on the tracking performance. These fully-
connected layers are applied after the initial convolutions are performed on each
image. This figure demonstrates that using 3 fully-connected layers performs
better than using either 2 or 4 layers. However, the performance is similar for
2, 3, or 4 fully-connected layers, showing that, even though 3 fully-connected
layers is optimal, the performance of the tracker is not particularly sensitive to
this parameter.

H Data augmentation

In Figure 17 we explore the effect of varying the number of augmented images
created for each batch of the training set. Note that new augmented images are
created on-the-fly for each batch. However, varying the number of augmented
images varies the percentage of each batch that consists of real images compared
to augmented images. Our batch size is 50, so we can vary the number of aug-
mented images in each batch from 0 to 49 (to leave room for at least 1 real
image).
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Fig. 16. Tracking performance as a function of the number of fully-connected layers in
the neural network (lower is better).

As shown in Figure 17, best performance is achieved when 49 augmented
images are used per batch, i.e. only 1 real image is used, and the remainder
are augmented. However, performance is similar for all values of augmented
images greater than 20. In our case (with a batch size of 50), this indicates that
performance is similar as long as at least 40% of the images in the batch are
augmented. The augmented images show the same examples as the real images,
but with the target object translated or with a varying scale. Augmented images
thus teach the network how the bounding box position changes due to translation
or scale changes.
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Fig. 17. Tracking performance as a function of the number of augmented images in
each batch (lower is better). Note that new augmented images are created on-the-fly
for each batch.
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I Training Set

Our training set was taken from ALOV300++ [32]. To ensure that there was
no overlap with our test set, we removed 7 videos from our training set. These
videos are:

– 01-Light video00016
– 01-Light video00022
– 01-Light video00023
– 02-SurfaceCover video00012
– 03-Specularity video00003
– 03-Specularity video00012
– 10-LowContrast video00013

After removing these 7 overlapping videos, there is no overlap between the videos
in the training and test sets.

J Detailed Results

The detailed results of our method compared to the 38 other methods that
were submitted to the VOT 2014 Tracking Challenge [22] are shown in Table 2.
The VOT 2014 Tracking Challenge consists of two types of experiments. In the
first experiment, the trackers are initialized with an exact ground-truth bound-
ing box (“exact”). In the second experiment, the trackers are initialized with a
noisy bounding box, which is shifted slightly off of the target object (“noisy”).
For the noisy initialization experiment, the same 15 noisy initializations are used
for each tracker, and the results shown are an average of the tracking perfor-
mance across these initializations. This experiment allows us to determine the
robustness of each tracker to errors in the initialization. This noisy initializa-
tion procedure imitates that of a noisy automatic initialization process or noisy
human initializations.

The trackers are evaluated using two standard tracking metrics: accuracy
and robustness [22,6]. Each frame of the video is annotated with a number
of attributes: occlusion, illumination change, motion change, size change, and
camera motion. The trackers are ranked in accuracy and robustness separately
for each attribute, and the rankings are then averaged across attributes to get
a final accuracy and robustness ranking for each tracker. The accuracy and
robustness rankings are averaged to get an overall ranking, shown in Table 2.
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Overall Ranks Accuracy Ranks Robustness Ranks Speed
Method name Exact Noisy Exact Noisy Exact Noisy Frames/EFO
GOTURN (Ours) 8.206944 8.588319 5.544841 7.227564 10.869048 9.949074 29.928769
SAMF 9.970153 9.297234 5.866667 5.685897 14.073638 12.908571 1.617264
KCF 10.368056 9.341055 5.533730 5.583333 15.202381 13.098776 24.226259
DSST 9.193519 9.393977 5.979630 5.855556 12.407407 12.932399 5.803051
PLT 14 10.526710 9.412576 14.720087 13.726667 6.333333 5.098485 62.846506
DGT 10.633462 9.880582 11.719306 9.318182 9.547619 10.442982 0.231538
PLT 13 11.045249 11.066132 18.340498 17.298932 3.750000 4.833333 75.915548
eASMS 14.267836 12.838634 14.220760 11.327036 14.314912 14.350232 13.080900
HMMTxD 15.398256 14.663101 10.070087 9.727810 20.726425 19.598391 2.075963
MCT 15.376874 15.313581 16.806659 17.576278 13.947090 13.050884 1.447154
ABS 19.651999 15.340186 20.666961 15.344515 18.637037 15.335856 0.623772
ACAT 14.438846 16.338981 13.796118 17.769841 15.081575 14.908122 3.237589
MatFlow 15.393888 16.910356 21.996109 19.142094 8.791667 14.678618 19.083821
LGTv1 20.504135 18.189239 29.225131 26.533460 11.783138 9.845018 1.158273
ACT 18.676877 18.692439 20.756783 22.184568 16.596972 15.200311 10.858222
VTDMG 19.992574 18.835055 21.481942 20.647094 18.503205 17.023016 1.832097
qwsEDFT 18.365675 19.776101 17.495604 18.545589 19.235747 21.006612 3.065546
BDF 20.535189 19.905596 23.242965 21.731090 17.827413 18.080103 46.824844
Struck 21.038417 20.129413 20.868501 21.424688 21.208333 18.834137 5.953411
ThunderStruck 21.389674 20.333286 22.612468 21.989153 20.166880 18.677419 19.053603
DynMS 21.141005 20.479737 22.815739 21.510423 19.466270 19.449050 2.650560
aStruck 20.780963 21.465762 22.409722 20.878854 19.152203 22.052670 3.576635
SIR PF 22.705212 22.413896 24.537547 22.331205 20.872878 22.496587 2.293901
Matrioska 21.371144 23.119954 22.115980 21.947863 20.626308 24.292044 10.198580
EDFT 22.516498 23.176905 20.338931 22.141689 24.694066 24.212121 3.297059
OGT 22.463076 23.528818 14.810633 16.893364 30.115520 30.164271 0.393198
CMT 22.788164 23.852773 20.098007 22.612765 25.478321 25.092781 2.507500
FoT 23.003472 24.375915 19.388889 21.623392 26.618056 27.128439 114.643138
IIVTv2 25.669987 24.610138 25.651061 25.400309 25.688913 23.819967 3.673112
IPRT 25.014620 25.081882 27.564283 26.643535 22.464957 23.520229 14.688296
PTp 27.288300 25.208133 33.046296 30.268937 21.530303 20.147328 49.892214
LT FLO 23.958402 26.020573 17.075617 20.843334 30.841186 31.197811 1.096522
FSDT 28.275770 26.805519 24.378835 24.318730 32.172705 29.292308 1.529770
IVT 28.892955 27.820781 27.952576 27.432765 29.833333 28.208796 1.879526
IMPNCC 27.566645 29.293698 26.570580 29.349962 28.562711 29.237434 5.983489
CT 30.585835 29.377864 32.462103 30.823647 28.709566 27.932082 6.584306
FRT 27.800316 29.554293 24.300128 27.199856 31.300505 31.908730 3.093665
NCC 26.831924 30.305656 18.497180 23.444646 35.166667 37.166667 3.947948
MIL 30.007762 30.638921 34.934175 35.527778 25.081349 25.750064 2.012286

Table 2. Full results from the VOT 2014 tracking challenge, comparing our method
(GOTURN) to the 38 other methods submitted to the competition. We initialize the
trackers in two different ways: with the exact ground-truth bounding box (“Exact”)
and with a noisy bounding box (“Noisy”).
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