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a) c)b)

Figure 1: a) Physical setup: A VR user enters text without needing to see hands or keyboard, by tapping on a surface and 
resolving ambiguity between candidate words via gaze selection. b) Visual interface: Fingers are mapped to multiple letters 
(see colors at bottom); the central area shows candidate words corresponding to the current input sequence of fnger taps. 
Users can select a word by gazing at it and tapping the right thumb. c) State machine of Tapgazer with gaze selection and word 
completion. 

ABSTRACT 
While using VR, efcient text entry is a challenge: users cannot 
easily locate standard physical keyboards, and keys are often out 
of reach, e.g. when standing. We present TapGazer, a text entry 
system where users type by tapping their fngers in place. Users 
can tap anywhere as long as the identity of each tapping fnger 
can be detected with sensors. Ambiguity between diferent possible 
input words is resolved by selecting target words with gaze. If gaze 
tracking is unavailable, ambiguity is resolved by selecting target 
words with additional taps. We evaluated TapGazer for seated and 
standing VR: seated novice users using touchpads as tap surfaces 
reached 44.81 words per minute (WPM), 79.17% of their QWERTY 
typing speed. Standing novice users tapped on their thighs with 
touch-sensitive gloves, reaching 45.26 WPM (71.91%). We analyze 
TapGazer with a theoretical performance model and discuss its 
potential for text input in future AR scenarios. 
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1 INTRODUCTION 
Text entry is one of the most frequent, important, and demanding 
tasks in personal computing. Because efcient text entry meth-
ods are crucial to productivity, an enormous amount of research 
has been conducted on methods that improve their usability. As 
new types of electronic devices such as smartphones have become 
available, new text entry methods have been proposed [3, 25, 96]. 
With the increasing popularity of Virtual Reality (VR), there is 
an expanding interest in text entry methods that can support VR 
users [40, 55, 110, 112]. While using VR, efcient text entry poses 
the following challenges: 

Proximity. VR users typically interact with virtual environments 
using their hands, often turning their bodies to change orientation, 
and are frequently standing or even walking in their VR usage 
area. These movements generally take a user’s hands away from 
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stationary physical keyboards, and often out of reach of the keys. 
Therefore, a versatile VR text entry method should allow users to 
be more mobile than with a standard physical keyboard and also 
relax the requirement of having to keep fngers aligned with keys. 
Related works have addressed this by proposing virtual keyboards 
controlled with VR headsets [103, 104], portable standard keyboards 
[33, 44, 80], and input methods using hands [50, 101], fngers [26, 
36, 52, 67, 74, 94, 108, 109], gaze [48, 49, 65], or stylus [21]. 

Visibility. VR headsets occlude the real world, making it harder 
to locate physical keyboards, move to a suitable pose close to the 
keyboard, and align the fngers with the keys for efcient touch 
typing. Ideally, a VR text entry method should aford users aware-
ness of physical keyboards, or avoid the use of a physical key-
board in the frst place. Related works have addressed this by 
by providing visual cues about the physical keyboard position 
[11, 33, 41, 44, 55, 69, 74, 97], attaching keyboards to a user’s body 
so she is kinaesthetically aware of their position [80], or virtual key-
boards that readily show up in the user’s feld of view [19, 53, 106]. 

Learnability. Because text entry is a basic task of computing 
systems, it should ideally be easy to learn. Many novel text entry 
methods require users to learn entirely new, non-standard text entry 
skills such as new keyboard layouts [7, 63, 85, 113]. However, as 
many users are already profcient in the use of a QWERTY keyboard, 
much previous work on VR text entry has aimed to exploit this 
familiarity to improve learnability [10, 33, 44, 80, 106]. 

We propose TapGazer, a novel method for casual text entry 
in VR designed to address these challenges by combining fnger 
tapping and eye gaze input (Figure 1). We envision VR users to use 
TapGazer if they mainly use their hands to interact naturally in 
VR (without controllers), but need to enter some text quickly from 
time to time, e.g. to take notes or send text messages. Users type by 
tapping their fngers, without needing to look at their hands or be 
aware of fnger position. The location where a fnger is tapped is 
not needed by TapGazer, therefore taps may be detected with any 
input device capable of discerning which fnger is currently being 
tapped, e.g. fnger-worn accelerometers such as TapStrap, touch-
sensitive surfaces such as smart cloth, or visual fnger tracking like 
leap motion. This enables users to quickly move from VR hand 
interaction to text entry without having to align their fngers on 
keys, and facilitates use of TapGazer on soft surfaces such as thighs 
and in diferent poses such as seating or standing. Tracking fngers’ 
identities and detecting whether a fnger has tapped is generally 
less complicated and more accurate than tracking both the identity 
and location of each fnger, and it is generally easier for users to 
focus on tapping their fngers without the need to worry about 
fnger location. Given a suitable input device, any available surface 
may be used to support the hands and facilitate tapping movements, 
e.g. a table or one’s thighs. 

To enable text entry by fnger tapping, TapGazer simplifes key-
board input by assigning multiple letters to each fnger. Because 
this mapping is one-to-many, it is ambiguous (see the color-coded 
keyboard layout in Figure 1(b)). We resolve this ambiguity by show-
ing word suggestions in the users’ display and allowing users to 
select the correct word via gaze and determine the selection via a 
thumb tap. TapGazer’s fnger-to-letter mapping is based on a QW-
ERTY keyboard layout, so people can reuse their QWERTY skills 
and retain the performance benefts of ten-fnger typing, which is 

generally faster than alternatives such as word-gesture keyboards 
[17]. TapGazer supports the entry of unknown words, symbols, and 
cursor navigation by allowing users to switch between diferent 
modes. Furthermore, because gaze tracking may not always be 
available, we describe variants of TapGazer that work without gaze 
tracking by allowing users to select target words with additional 
taps. We investigate the following research questions: 

RQ1 How can text input be efciently achieved using only 
fnger taps and gaze? 

RQ2 How does TapGazer perform in terms of speed, accuracy, 
and user preference? 

RQ3 How can we model user performance in TapGazer? 
We address these questions by frst discussing the design of TapGazer 
(RQ1), then reporting on user studies evaluating TapGazer (RQ2) 
in seated and standing VR scenarios with diferent tap sensors, and 
lastly providing a model-based analysis of how diferent users of 
TapGazer will likely perform (RQ3). 

Novelty. Some previous work has looked at reduced QWERTY 
keyboards and word disambiguation. VType [26] applies a reduced 
keyboard layout, attempting to reconstruct words automatically 
based on fnger sequence, grammar, and context, but does not allow 
users to choose between ambiguous words. The 1Line keyboard [54] 
and the stick keyboard [32] fatten the QWERTY keyboard from 
three rows to one, allowing users to choose between ambiguous 
words through touchscreen gestures and arrow keys. Yet to the 
best of our knowledge we are the frst to investigate tapping while 
resolving ambiguity through gaze. The performance we measured 
for TapGazer (45.26 WPM on average in a standing VR scenario) 
compares favorably with those reported for similar works (see 
Table 1). In summary, we make the following key contributions: 

(1) A design that combines tap and gaze for efective text entry 
in VR, with variants for use without gaze tracking and for 
accommodating diferent user preferences. 

(2) Evidence that TapGazer is usable and easy-to-learn for novice 
users, and able to reach average speeds of 44.81 WPM (78.81% 
of their QWERTY typing speed) using touchpads in a sitting 
VR scenario (n=14) and 45.26 WPM with word completion 
(71.91%) using touch-sensitive gloves in a standing VR sce-
nario (n=5). 

(3) A model-based performance analysis illustrating the efects 
of diferent design options and usage strategies. 

(4) Open-source software and hardware designs to facilitate 
future research. 

2 RELATED WORK 
To develop a fast and usable text entry design using tap and gaze, 
we closely investigated prior work in alternative keyboard layout 
design, gaze interaction, and text entry for VR and similar scenarios. 
An overview of the most relevant and fastest methods, with their 
average speeds in words per minute (WPM), is shown in Table 1. 
For works that reported users’ QWERTY performance, we list also 
the percentage of their QWERTY WPM users were able to achieve. 

For devices where a full-size physical keyboard is not avail-
able, many specialized text entry solutions have been proposed, 
e.g. for touch screens [43, 54, 88], mobile phones [25, 115], and 
handheld devices [15]. Moreover, using a fnger [9, 76] or pen [45] 
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Table 1: Summary of prior text entry solutions that are compatible with our usage scenarios, ordered by their average WPMs. 

Design Average % of QWERTY Examples 
WPMs keyboard WPM 

Typing QWERTY on a touch surface 17.2–44.6 74.59% [88] BlindType [58], PalmBoard [107], TOAST [88] 
Tapping on tiny surface 11.0–41.0 Ahn & Lee [3], Vertanen et al. [95], VelociTap [96] 
Reduced physical QWERTY keyboard 7.3–30.0 37.17% [54] Stick [32], 1Line [54], LetterWise [61], VType [26] 
Gesture typing 15.6–34.2 GestureType [110], Chen et al. [17]s 
Mid-air chord gesture typing 22.0–24.7 Sridhar et al. [93], Adhikary [2] 
Typing with pinch gestures 11.9–23.4 TipText [105], DigiTouch [101], BiTipText [105] 
Mid-air fnger tapping 17.8–23.0 49.24% [108] VISAR [24], ATK [108] 
Tapping with head or controller on a soft 7.25–21.1 PizzaText [112], RingText [104], HiPad [40], Curved 
alternative keyboard QWERTY [106], Boletsis & Kongsvik [10] 
Tapping QWERTY with head or controller 11.3–15.6 Tap/Dwell [110] 
Gaze typing plus touch 14.6–15.5 EyeSwipe [48, 49], TAGSwipe [47] 

for handwritten text input has been considered, although this is 
slow compared to typing. Speech-to-text is also a widely explored 
option with the potential to be faster than typing [86]; however, 
it has limited accuracy and is not always suitable, e.g. when the 
environment is noisy, other people are talking, or the content is of 
a sensitive or personal nature. 

A key requirement of manual typing approaches is detection 
and tracking of the fngers. Gloves [52, 94], markers [36, 67], audio 
signals [98], cameras [84, 109], and specifc devices such as Leap 
Motion [108] have all been investigated. Based on this, various input 
recognition methods have been proposed, with some recognizing 
input as single characters (‘character-level’) and others recognizing 
entire words (‘word-level’). Methods recognizing larger chunks of 
input (e.g. words, sentences [96]) are typically more efective than 
those recognizing characters [95]. Input prediction and correction 
methods can be used to improve the performance of text entry [20, 
31, 75, 114]. 

2.1 Alternative Keyboard Layouts 
Some alternative layouts support a limited interaction size with a 
reduced number of keys, which makes them relevant for TapGazer. 
A common consideration is the similarity to familiar layouts such 
as QWERTY or T9 for learnability, e.g. for mobile phones [25, 61], 
smart glasses [3], and smartwatches [81]. Familiar layouts are of-
ten adapted to new typing gestures, e.g. using thumb-to-fnger 
interaction for small-screen devices or VR/AR using split QW-
ERTY [73, 101] or T9 layouts [102]. Another trend is rearranging 
keyboard characters into diferent 2D or 3D shapes: QuikWrit-
ing [79] and its gaze-version [5] distribute letters into a circle; 
PizzaText [112], WrisText [30], and HiPad [40] use a pie-shaped 
layout; Keycube [13] attaches push buttons to a physical magic 
cube for typing. 

When applying a reduced keyboard layout, fngers or keys are 
not uniquely assigned to characters, so a mechanism for disam-
biguation becomes necessary. LetterWise [61] uses prefx-based 
rather than word-based disambiguation, i.e. users press a button if 
the current character is wrong and then the respective character 
of the next-likely prefx is shown. By repeatedly pressing the but-
ton, even non-dictionary words can be typed. Stick keyboard [32] 

compresses the QWERTY keyboard into one line, with each key 
mapped to 2-3 characters. Users choose one of several ambiguous 
words by scrolling through possible candidates with button presses. 
Similarly, 1Line keyboard [54] reorganizes the QWERTY keyboard 
to a single line specifcally for touchscreen typing, using touch 
gestures to support candidate selection. TapGazer is also based on 
a reduced QWERTY layout, but it uses diferent mechanisms for 
faster disambiguation. 

2.2 Gaze-assisted Text Entry 
Text entry with gaze does not require a physical keyboard; it is 
a natural option to consider for VR, which can incorporate gaze 
tracking. Gaze-only methods mainly fall into four categories [66]: 
direct gaze pointing with dwell (“gaze typing”), eye switches, dis-
crete gaze gestures, and continuous gaze gestures (“gaze writing”). 
Dwell [6, 38, 65] (i.e. looking at keys for a certain time to trigger 
clicks) has been widely applied and optimized to solve the Midas 
Touch problem [39] (i.e. inadvertent clicks). Approaches for reduc-
ing the dwell time necessary for each key have been explored, e.g. 
by dynamically adjusting it based on prefx [64], word frequency, or 
character placement [70]; however, it is still a major factor slowing 
down typing speed. Eye-switch approaches try to avoid dwell by 
using other operations such as blinking, brow interaction or head 
movements [29] as triggers. Similarly, discrete gaze gestures have 
been proposed to avoid dwell, e.g. by adding a resting zone in the 
typing area [5], ‘swiping’ over a keyboard with gaze to enter a 
word [16, 48], or using other confrmatory eye movements such 
as inside-outside-inside saccades [87].Some disambiguation algo-
rithms have been proposed to improve the accuracy of word-level 
gaze gestures [56, 77]. Dasher [99] uses continuous gaze gestures 
to zoom towards and select candidate letters and words. 

Some approaches try to speed up gaze-only text entry methods 
by using other modalities for key and word selection, e.g. a brain-
computer interface [60], or touch gestures [3, 47]. If gaze tracking 
is not available, many gaze-based approaches can be modifed to 
use head movement only [104, 110]. This can be combined with 
other head gestures, e.g. nodding for letter selection [57]. Overall, 
gaze-based text entry methods facilitate social privacy and can 
be used while standing or moving in VR [83]; however, they are 
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still much slower than physical keyboards (below 25 WPM) as 
gaze movements are generally time-consuming [28]. Therefore, 
TapGazer uses gaze for disambiguation rather than typing. 

2.3 Text Entry in VR 
Various methods have been investigated for text entry in VR [22]. 
Because text entry using a physical keyboard is faster than other 
typing solutions, many approaches for text entry in VR try to facil-
itate access to a standard physical keyboard rather than replace it. 
This has mainly been done by tracking and visualizing a physical 
keyboard in VR while sitting at a desk, either by blending in a video 
stream showing the real keyboard [11, 41, 55, 69] or by visualizing 
the keyboard in VR [11, 33, 44, 74, 97]. To support better mobility, 
HawKEY [80] uses a portable keyboard for users to type on while 
standing and walking in VR. These approaches show that using a 
physical keyboard and high-quality tracking can lead to good per-
formance. However, using a physical keyboard can be cumbersome 
and break immersion when interacting naturally with a virtual 
environment through body movements, e.g. when standing. 

In order to integrate text entry more closely with natural VR 
interaction, pointing gestures on virtual keyboards have been inves-
tigated. Xu et al. [103] and Speicher et al. [92] compared pointing 
methods to selecting virtual keys with controllers, head, and hand. 
Boletsis & Kongsvik [10] proposed virtual keyboard layouts to 
optimize controller-based key selection. PizzaText [112] arranges 
virtual keys in a circle separated into segments. Didehkhorshid et 
al. [21] compared controller-based with stylus-based virtual key-
board interaction. Yanagihara et al. [106] introduced a curved vir-
tual QWERTY keyboard, allowing users to use a controller to swipe 
between diferent keys. Similarly, Chen et al. [17] proposed word 
gestures by pointing and swiping at a virtual keyboard. Addition-
ally, Dube & Arif [23] researched the impact of key design on virtual 
keyboards for typing speed and accuracy. While these approaches 
improve mobility, similar to what TapGazer aims to do, they are 
much slower than physical keyboards, typically below 25 WPM. 

Some VR text entry methods use fngers or hands directly. A 
popular approach is to detect pinch gestures between fngers and 
thumbs, e.g. using a data glove. Pinch keyboard [12] combines pinch 
with hand rotation and position to select letters. KITTY [46] uses 
pinch gestures on diferent parts of the thumb. PinchType uses a 
reduced keyboard, and if necessary, allows the user to disambiguate 
words with hand gestures [27]. DigiTouch [101] uses continuous 
touch position and pressure. Quadmetric [50] and HiFinger [42] 
support one-handed text entry with pinch. RotoSwype [35] uses 
one-handed word gestures by rotating a ring worn on one hand. 
Yu et al. propose one-dimensional ‘handwriting’ of words with a 
tracked fnger or controller [111]. Such pinch and word gesture 
based approaches are fexible but slow, with typical speeds far below 
20 WPM. Also, mid-air fnger gestures can be hard to track and can 
lead to fatigue when performing longer tasks [2, 24]. 

Some approaches for eyes-free typing could be feasible for use 
in VR scenarios although they were not originally designed for VR. 
BlindType [58] allows users to type without looking at the typing in-
terface using single-thumb touchpad gestures. PalmBoard [107] pro-
vides a one-handed touch typing solution that decodes which keys 
users likely intend to type on a fat touchpad. Similarly, TOAST [88] 

leverages statistical decoding algorithms for ten-fnger typing on 
fat touch-sensitive surfaces. 

Some approaches use fnger touch or taps similar to TapGazer. 
FaceTouch [34] allows users to type on a touch surface attached 
to their headset. ARKB [51] proposes visual tracking of fngers for 
tapping on a virtual QWERTY keyboard. VISAR [24] facilitates mid-
air one-fnger tapping on an AR QWERTY keyboard. VType [26] 
uses fnger tapping on a reduced QWERTY keyboard layout and 
reconstructs words based on fnger sequence, grammar, and context 
for text input in VR. The accuracy reported for a predefned vo-
cabulary is high; however, no method for disambiguation between 
candidate words was considered and no typing speed was reported. 
VType, the 1Line keyboard [54] and the stick keyboard [32], which 
all involve tapping on a reduced QWERTY keyboard, are the works 
closest to TapGazer. Tapping on a reduced QWERTY keyboard is 
promising for text entry in VR as it is fexible and robust compared 
to alternatives. Therefore, we explore how it can be optimized by 
using gaze input and additional taps for disambiguation. 

3 TAPGAZER DESIGN 
TapGazer allows users to tap words as if they are typing them on 
a physical QWERTY keyboard and then to disambiguate their tap 
input by selecting their target word through gaze. It was designed 
primarily for VR users, but could also be useful for other scenarios 
where more conventional input devices are unavailable or difcult 
to access. Given suitable sensors, users can type by tapping their 
fngers on any surface or even in mid-air. As TapGazer only consid-
ers the identity of the fnger that is currently tapping and not its 
position, it only needs to know which of the user’s 10 fngers has 
just been tapped, if any, at any given time. Each of the 26 letters 
of the alphabet is mapped to at least one of the eight non-thumb 
fngers, while the two thumbs are reserved for controlling editing 
functions for word selection, undoing a selection, deletion and cur-
sor navigation. Figure 1 illustrates the state machine of TapGazer 
with gaze selection and word completion. Starting from an idle 
state, TapGazer waits for tap or gaze input events. Except for the 
thumbs, a fnger tap adds a letter to the input string, starting from 
an empty string. The input string is constructed from an input 
alphabet with one character for each of the eight fngers: we are 
using the characters asdfjkl;, which correspond to the rest posi-
tions of each fnger on a QWERTY keyboard, for later reference. 
When typing a word with TapGazer, the user taps the fngers as 
they would do when typing on a QWERTY keyboard. However, as 
each fnger tap can be interpreted as one of several characters, the 
word represented by the input is ambiguous: for example, fjd is 
the input string for the words ‘the’ and ‘bye’. We refer to a set of 
words that all have the same tapping input string as a homograph 
set. A tap with the left thumb deletes the current input string so 
users can start the word again. A tap of the right thumb selects the 
word to enter from a list of suggestions while the word is pointed 
at by the user’s gaze. 

As a user enters an input string, the central area of TapGazer’s 
user interface shows a list of word candidates: similar to predictive 
text on a mobile phone, the user is given a list of the most likely 
words to choose from. TapGazer shows all words in the homograph 
set for the given input string, which we call complete candidates as 
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a) b) VR headset with 
gaze tracking

TapStrap

c)

d)

e)

f)

Figure 2: TapGazer text entry example: a) A user is ‘typing’ on her thighs using a TapStrap device instead of a keyboard. b) 
The user just started to ‘type’ the word “children”. The interface provides optional visualizations of the fnger-key mapping as 
a virtual keyboard and/or hands. c) The user frst tapped the left middle fnger (mapped to ‘c’), then d) the right index fnger 
(mapped to ‘h’), and e) the right middle fnger (mapped to ‘i’). f) Finally, the user looks at the word “children”, which gets 
highlighted with an underline as it is gazed upon, and taps the right thumb to select the highlighted word. 

they are based on the whole input string (e.g. ‘the’ for fjd). Addi-
tionally, TapGazer uses a language model to show the most likely 
incomplete candidates, i.e. words with a prefx matching the current 
input string (e.g. ‘these’ for fjd). After each tap, TapGazer updates 
the candidates shown. In order to select a candidate, the user looks 
at it, and in response, the fxated candidate is highlighted with an 
underline. If the right thumb is tapped, the currently highlighted 
candidate is selected and added to the entered text. At this point, the 
TapGazer state machine starts again with an empty input string. If 
the user taps the right thumb but does not fxate any candidate, then 
the most likely candidate is selected based on a language model. 
Figure 2 illustrates how to type ‘children’ with TapGazer. Word 
completion in TapGazer can be disabled; in this variant, only com-
plete candidates are shown if they exist. If no complete candidate 
exists, we show the shortest incomplete candidate to inform users 
about the progress of typing. Furthermore, we have designed a 
purely manual variant of TapGazer without gaze tracking, allowing 
users to disambiguate candidates with extra taps. Figure 4 illustrates 
diferent input devices (left) and variants (as decision nodes in the 
state machine) of Tapgazer. 

Several design decisions were made: First, we use fnger tapping 
so that users can ‘type’ on any surface and require no context 
knowledge between the surface location and fnger/hand location. 
Second, we help users fnd the word to type in the list of candidates 
by facilitating visual search in the layout of the graphical interface. 
Third, we provided word completion and compare whether word 
completion benefts TapGazer in terms of performance. 

3.1 Virtual Keyboard Layout 
Customization. TapGazer reuses the standard QWERTY layout to 
support learnability. However, in our pilot studies, we found peo-
ple had varying fnger preferences for typing on the QWERTY 
keyboard, e.g. key ‘m’ may be pressed with either the right index 
fnger or the right middle fnger. The mappings were consistent, i.e. 

remained overall stable for each user. As a result, TapGazer creates 
a profle for each user to record their fnger-to-key mapping, also 
allowing users to map multiple fngers to the same letter (e.g. ‘y’ 
could be triggered by both the left and right index fngers). To guide 
novice users, we optionally visualize the customized fnger-to-key 
mapping in a virtual keyboard and/or a hand model (Figure 2b), 
with each key colored according to its associated fngers and letters 
rendered on their corresponding fngers. Based on users’ mappings, 
we generate prefx trees to quickly look up complete and incom-
plete candidate words and their word frequencies for each input 
string. 

Feasibility. Text entry is only feasible if all the words in the ho-
mograph set of any input string can be somehow selected. The 
minimum candidate number (MCN) is the minimum number of can-
didate words the interface must be able to disambiguate at a time. It 
is equal to the maximum number of homographs an input string can 
have, i.e. it describes the worst possible ambiguity that may need to 
be resolved. The design needs to determine the MCN in advance be-
cause display space needs to be adequately allocated, or users must 
be given the option to page through sets of candidates. The MCN is 
also relevant for performance as it describes the worst-case scenario 
of visual search for the right candidate. We determined popular 
QWERTY-based fnger-to-key mappings in pilot experiments and 
then ran a simulation to determine their overall MCN based on 
diferent word sources: the 1000 most common words (“1K”) re-
trieved from Wikipedia with MCN1K = 4; the standard MacKenzie 
phrase corpus [62], which contains 500 phrases for evaluation use, 
with MCNMacKenzie = 6; and the 90% most frequent words (7,440, 
“7K”) generated from the wordfreq library [1], which includes many 
very-low-frequency specialized words and acronyms that are not 
typically part of dictionaries, with MCN7K = 7. We design our 
interface to be able to show at least 10 candidates to cover all Eng-
lish dictionary words and also many low-frequency non-dictionary 
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(a) Lexical Layout. (b) WordCloud Layout. (c) Division Layout. (d) Pentagon Layout.

Figure 3: Evolution of TapGazer candidate layout designs: a) Lexical Layout places the most common candidate word in the frst 
row and arranges the other candidates in alphabetical order. All the candidates have the same font size. b) WordCloud Layout 
emphasizes frequent candidates with a larger font size. Candidates that were already shown on the previous tap keep their 
position. c) Division Layout divides all candidates into three columns according to their last letter. d) Pentagon Layout orders 
the candidates based on the frequency and arranges the candidates in a compact single or double pentagon shape, separating 
them for easier gaze selection. 

words across typical QWERTY fnger-to-key mappings. For unsup-
ported words such as neologisms and special acronyms, we provide 
a spelling mode for character-level text entry (see subsection 3.4). 

Alternative Layouts. We also calculated the MCNs of standard 
keyboard layouts other than QWERTY to gauge their suitabil-
ity for use in TapGazer. Optimal word gesture keyboards such 
as Smith et al.’s GK-D (MCNMacKenzie = 11, MCN7K = 12) and 
GK-T (MCNMacKenzie = 7, MCN7K = 17) [90] have higher MCNs, 
probably because they are not optimized for key-based typing. 
If the left thumb is used for tapping instead of deletion (e.g. by 
triggering deletion with a chord), having 9 fngers to tap reduces 
ambiguity in the fnger-to-key assignment, potentially decreas-
ing the MCN. We calculated the MCN for some known 9-key lay-
outs: standard T9 [102] (MCNMacKenzie = MCN7K = 5); HiFin-
ger [42], which distributes letters in lexical order over nine keys 
(MCNMacKenzie = 5, MCN7K = 8); and the quadmetric optimized 
layout [50] (MCNMacKenzie = MCN7K = 4). Finally, we performed 
an extensive combinatorial search of non-QWERTY layouts and 
found that there is a very large number of mappings for eight fn-
gers with MCNMacKenzie = MCN7K = 4. These results suggest that 
layout optimization can help to reduce the number of candidates 
that have to be shown at one time, which could speed up text input. 

3.2 Word Candidate Layout 
The most important part of TapGazer’s visual interface is the central 
gray area where word candidates are shown for selection by the user 
(Figure 2b). These candidates are colored to indicate the tapping 
progress of each word: the prefx of each word that has already 
been tapped is colored in blue, while yet-to-be-tapped postfxes are 
colored in orange. Complete candidates are completely blue and 
are always shown in the interface as they must be available as word 
choices. Any further available space can be flled with incomplete 
candidates, indicating options for word completion. The number 
of candidates shown is a trade-of between saving taps through 
word completion, and visual search time spent looking for the right 
candidate. Visual search time is afected by the way we arrange 

the candidates, therefore we designed, tested, and re-designed the 
layout to reach a suitable design. Figure 3 illustrates the design 
evolution of TapGazer’s candidate layout. 

Initial Design. We frst designed (a) Lexical Layout and (b) Word-
Cloud Layout based on the following design principles. Systematic 
locations: Users should intuitively know where to look for a word. 
Salience: More likely words should be more salient (e.g. larger or 
more central). Continuity: Avoiding changes in the position of a 
suggested word between taps may help users to spot it. Lexical 
Layout places the most frequent word into the frst row by itself 
for salience, and flls the rows below with other candidates in al-
phabetical order to achieve systematic locations. This prioritizes 
systematic locations over continuity, as candidates’ positions may 
change between taps, e.g. “welcome” in Figure 3. WordCloud Lay-
out arranges candidates in word-cloud style, with more frequent 
words arranged at the center and in a larger font. Candidates keep 
their positions between taps, prioritizing continuity over systematic 
locations. Both layouts use only the central part of the VR display 
to avoid large eye movements. 

Formative Design Study. To understand the efects of the lay-
outs and their design principles on novices, we conducted a for-
mative study with 12 participants (5 female, 7 male; aged 18 to 30, 
M = 24.67, SD = 3.94), comparing the two layouts which were 
implemented in Unity in a within-participant design. After a 5-
minute training phase, each participant used each layout twice for 
5 minutes each, with a small break in between, to enter random 
sentences from the MacKenzie corpus [62] as quickly and accu-
rately as possible. Wearing a Tobii HTC VIVE Devkit gaze tracking 
VR headset, they tapped on a QWERTY keyboard, keeping their 
fngers on the same keys for tapping. To investigate the efects of 
a diferent input device, participants then repeated the task with 
the TapStrap using only their preferred layout. Each condition was 
followed by quantitative and qualitative questionnaires collecting 
their feedback on each layout, design principle and input device. 

Paired t-tests showed no signifcant diferences in typing speed 
(t(11) = 0.897, p = .389, Cohen’s d = 0.259), accuracy in terms 
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of Total Error Rate (TER) [91] (t(11) = 0.099, p = .923,d = 0.029), 
System Usability Scale (SUS) scores [4] (t(11) = 1.081, p = .202, d = 
0.312), or NASA-TLX task load scores [37] (t(11) = 1.307, p = 
.218, d = 377). Participants were split equally in their layout pref-
erence. Their qualitative responses showed that they immediately 
understood Lexical layout’s systematic locations but did not fnd 
them helpful in spotting target words quickly. Having the most 
frequent word at the top or center was found useful, but variations 
in font size were found to be distracting when typing low-frequency 
words (“words with larger font size draw too much attention and 
it became difcult to locate the infrequent words”). Some partici-
pants noticed WordCloud’s continuity but did not fnd it benefcial 
(“confusing”) as tapping was too fast to visually follow candidates. 

In conclusion, our most important fnding was that it is not 
useful to design the visual layout around the tapping process or 
around cognitively demanding criteria such as relative alphabetic 
ordering, as fngers are much faster than the eye or the mind [82]. 
It is more useful to consider the layout as a pure visual search 
task, where visual search time is correlated with the number of 
candidates and the distance of eye movement [72]. The study also 
highlights the importance of the tap input device: leaving the fngers 
on the same keys for tapping felt unnatural and slowed them down 
considerably (on average 15.37 WPM for Lexical and 14.34 WPM 
for WordCloud); participants liked the idea of TapStrap but were 
frustrated and slowed down by its low tap recognition rates (on 
average 9.89 WPM; TER of 0.34 vs. 0.15 for Lexical and 0.14 for 
WordCloud). We will introduce the input device we used for fnal 
evaluation in subsection 3.5. 

Final Designs. Based on the formative study, we developed two 
new layouts that focus on optimizing visual search by reducing 
distances between words, improving salience of frequent words, 
dropping the continuity principle, and applying the systematic lo-
cations principle more carefully to avoid cognitive load: one layout 
for power users and one for novices. Division Layout (Figure 3c) dis-
tributes candidates into three columns according to their last letter, 
ordering each column by word frequency. The column boundaries 
were chosen to balance the expected number of candidates in each 
column, with words ending in A-E on the left, F-R in the middle, and 
S-Z on the right. This layout is designed for power users who have 
learned where to expect a word, potentially reducing search time 
by 2/3. The authors tested this on themselves over several days and 
found that with practice, the eyes would subliminally move to the 
right column when tapping frequent words. Pentagon Layout (d) 
is designed to be suitable both for novices and experts. It arranges 
candidates in compact groups of fve, close together to minimize eye 
movement but with enough separation for accurate gaze selection 
(at least 0.5◦ visual angle between the edge of two neighbour words, 
which typically leads to considerably more separation between the 
center of any two words and enabled accurate selection in our pilot 
studies). The pentagon shapes mitigate overlap between long adja-
cent words and try to take advantage of people’s ability to quickly 
scan groups of fve items at a time [68]. Complete candidates are 
always shown before incomplete candidates, with frequent words 
closer to the top. 

The two new layouts were delivered to a group of users remotely 
for subjective feedback. Most participants believed both layouts 
could facilitate fast typing given enough practice. However, they 

preferred the Pentagon layout because it was more compact (less 
“sprawling” and “confusing”) and more straightforward and intu-
itive to search since they would usually scan for the word to type 
downwards one by one (“from the top”). Thus we chose Pentagon 
Layout for our main study as it is easier to use for non-experts. 

3.3 Disambiguation 
After presenting possible word candidates, users need to select 
a candidate to disambiguate the input. In text entry on mobile 
devices where word candidates are commonly selected by touch, 
users typically fxate on a candidate with their eyes right before and 
while selecting it [100], and similar gaze behaviour can be observed 
for pointer-based selection [8]. TapGazer takes advantage of these 
quick, subliminal fxations by employing gaze tracking for word 
selection to minimize taps and reduce cognitive load. Once the user 
has found the right word and is looking at it, the user can select it 
with a tap of the right thumb. We chose to use a tap rather than a 
gaze-dwell for selection as the latter is much more time-consuming 
and can lead to Midas Touch (inadvertent activations) [78]. We 
tested our gaze selection implementation With an HTC Vive Tobii 
DevKit for VR users and also a Tobii 5 tracker bar for non-VR 
users, showing a small transparent circle as gaze indicator to give 
users feedback about gaze tracking. Pilot user feedback showed 
that, based on the estimated gaze coordinates, it was possible to 
determined which candidate word was being gazed at. 

In the absence of gaze tracking, we provide a variant of TapGazer 
with purely manual selection (Figure 4 bottom-right). In this variant, 
selecting a candidate is a two-step operation: 1) tapping with the 
right thumb, and 2) tapping with one of fve fngers (right thumb, 
right middle, right index, left middle, left index) to select one among 
a maximum of fve candidates shown. To support selection from 
more than fve candidates, users can page through sets of fve 
candidates with their left and right little fngers. The layout design 
helps to avoid paging operations by showing complete candidates 
frst and ordering complete and incomplete candidates by their 
descending word frequencies. 

Impact Study for Manual Selection. To understand how manual se-
lection impacts TapGazer, we conducted a study with 20 participants 
(3 female and 17 male; aged 24 to 35, M = 28.25, SD = 3.45) using 
a within-participant design. The study was conducted remotely 
because of COVID restrictions, so participants used their personal 
computers without VR headset or gaze tracker. Participants were 
sent a Unity executable and completed the same procedure as in 
the formative design study (subsection 3.2) except that they were 
allowed to ‘tap’ using their whole keyboard (i.e. type as usual). 
We compared manual selection with simulated gaze selection, i.e. 
the prototype assumes the user gazed on the correct word when 
selecting a candidate. To mitigate the bias of simulated gaze, we 
impressed on our participants the importance of locating the right 
candidates with their eyes before selecting them with a key tap. 

Paired t-tests showed that selection with simulated gaze was 
signifcantly faster than manual selection (average 51.84 vs. 36.85 
WPM, t(19) = 9.697, p < .001∗∗∗ , d = 2.168), with signifcantly 
higher SUS scores (77.00 vs. 60.63, t(19) = 4.052, p < .001∗∗∗ , d = 
0.906). The diferences in TER (0.040 vs. 0.046, t(19) = 1.422, p = 
.171, d = 0.318) and TLX scores (36.94 vs. 54.14, t(19)=1.990, p=.061, 
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Figure 4: TapGazer’s workfow: After receiving a tap from a suitable input device, TapGazer updates the candidates according 
to the word completion mode, and allows users to select a candidate either with gaze or with additional taps. 

d=0.445) were not signifcant. Participants were able to reach 76% 
and 54% of their QWERTY typing speed, respectively. This setup 
favoured gaze selection because simulated gaze tracking does not 
sufer from tracking inaccuracy and selection mistakes, hence the 
results arguably estimate an upper bound for the impact of man-
ual selection. While the reduction in performance is marked, the 
results indicate that manual selection is possible with a reasonable 
performance, and that users are able to learn it quickly. 

3.4 Miscellaneous Text Entry Functionality 
We have designed miscellaneous text editing functions for TapGazer 
in order to make it a complete text entry method. Deletion of the 
current input string is performed by tapping the left thumb, al-
lowing users to start a word again. If the left thumb is pressed 
right after selecting a candidate, the candidates for the last input 
string will be shown again, allowing users to change the selection 
or tap the left thumb again to delete the word. Spelling mode is trig-
gered with a chord operation. Users can switch between word-level 
and character-level text entry by tapping their left and right index 
fngers simultaneously. Afterward, users can rotate through the 
characters mapped to each fnger by repeatedly tapping a respective 
fnger, and enter the character by tapping the right thumb. Tapping 
the right thumb again concludes the character-level input. Cursor 
navigation with gaze is performed by selecting words in the entered 
text directly with gaze and right thumb [89], or by entering a cursor 
navigation mode through a button in the periphery of the inter-
face [59] with gaze and right thumb. Users can then move the cursor 
by tapping the left/right index fnger and exit cursor mode with a 
right thumb tap. If the gaze is unavailable, users can enter cursor 
mode by tapping the right index and ring fngers simultaneously. 

3.5 Input Devices 
We tested TapGazer with several of-the-shelf input devices (Fig-
ure 4 left): 1) QWERTY keyboards are partitioned into areas that 
are each mapped to one fnger. This partitioning is consistent with 
a user’s usual fnger-to-key mapping, so the user can retain their 
QWERTY skills. 2) Touchpads (Sensel Morph in our case) report 
pressure images of fngers for every frame. We detect the hand 
directions (left and right hand) and identify fngers based on the 
shape and confguration of recent pressure points. Users can cali-
brate the fnger detection at any time by placing all fngers onto the 
touchpad. In pilot studies we estimated the accuracy of fnger detec-
tion on Sensel Morph touchpads at 99.86%. 3) Wearable devices such 
as TapStrap can report tapping information through Bluetooth. In 
addition to TapStrap, which had a comparatively poor accuracy (see 
subsection 3.2), we also designed a pair of touch-sensitive gloves 
that report taps with fnger identities (Figure 4 bottom left). We 
connected a pair of cotton gloves to an Arduino UNO board through 
wires with conductive foil tape around each fnger, and used foil 
tape on hard and soft surfaces such as tabletops and things to detect 
taps based on electric currents. In pilot studies we estimated the 
accuracy of the gloves at close to 100%. 

3.6 Discussion 
Our current prototype has limitations. Word prediction is based only 
on word frequency; it could be improved by also taking the context 
of a word into account. We also do not provide auto-correction 
(neither at the character level of fnger-key mappings nor the word 
level), as this could confound our study of accuracy. Finally, there 
is the wider design question of using only the fnger identities 
of taps: is it a good idea to disregard fnger positions altogether, 
although they were shown to be benefcial to input speed when 
tapping on hard, fat surfaces [84]? Most participants of the pilot 
studies presented in this section believed that just tapping could 
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be more efcient, and there is some evidence in session input logs 
(from the study in subsection 3.3) of users becoming ‘lazy’ and 
just tapping the correct fnger instead of hitting the corresponding 
QWERTY key. Our main motivation was that “just tapping” would 
better support the use of non-standard surfaces and poses such as 
one’s thighs while standing, which will be further investigated in 
the next section. TapGazer was not designed to replace typing, but 
rather to complement it to address casual text entry in VR. 

4 EVALUATION 
We conducted two user studies to examine I) how the diferent 
TapGazer variants perform in terms of speed, accuracy and user 
preference (RQ2), as compared to typing on a physical QWERTY 
keyboard outside of VR, and II) how tapping on the thighs in dif-
ferent poses (sitting vs. standing) impacts TapGazer performance. 
In Evaluation I, we used a within-participant design with three 
conditions: typing on a standard QWERTY keyboard (K) in a typ-
ical manner outside of VR, using TapGazer with gaze candidate 
selection and word completion (GC) while wearing a VR headset, 
and using TapGazer with gaze candidate selection and no word 
completion (GN) while wearing a VR headset. Participants were 
sitting at a desk in all conditions and were tapping on touchpads 
(two Sensel Morphs) when using TapGazer. In Evaluation II we 
used a within-participant design with three conditions: typing on a 
standard QWERTY keyboard (K) outside of VR, tapping on thighs 
while sitting (SIT) in VR, and tapping on thighs while standing 
(STAND) in VR with a pair of touch-sensitive gloves made by us. 
The order of the conditions was counterbalanced to mitigate the 
efects of learning and fatigue. All TapGazer prototypes were built 
in Unity, using the Pentagon layout. Participants wore a Tobii HTC 
VIVE Devkit HMD with gaze tracking connected to a windows 
laptop (Intel Core i7, NVidia GeForce RTX 2070) in the TapGazer 
conditions. 

Measures. We compared the conditions using as objective perfor-
mance measures typing speed (WPM) and total error rate (TER) [91], 
and as subjective measures SUS usability scores [4] and NASA-TLX 
task load scores [37]. Each tap/keystroke operation was recorded 
for analysis. WPM and TER were calculated following Mackenzie 

|T −1 |et al.’s defnition [91]: WPM = × 60/5, where |T | is the length S 
of the fnal transcribed string and S is the elapsed time in seconds 

I N F +I F from the frst to the last tap in a phrase; TER = , where C+I N F +I F 
IN F is the number of incorrect keystrokes that were not fxed by 
the user, IF are keystrokes (excluding editing keys) that occurred in 
the input stream but not in the transcribed text, and C are correct 
keystrokes. 

Procedure. Both Evaluation I and II followed a similar procedure. 
After a brief introduction of TapGazer, participants were asked to 
type phrases randomly selected from the MacKenzie & Soukoref 
corpus [62] on a standard QWERTY keyboard, to measure their 
speed and TER. Then we recorded their fnger-to-key mapping 
preference: participants were instructed to frst type letters from ‘A’ 
to ‘Z’ and then random phrases from the MacKenzie & Soukoref 
corpus [62], while being observed by the experimenter. Customized 
fnger-to-key mappings for each participant were then generated 
with a Python script according to the fngers they were using for 
each letter. Participants were able to update their mappings during 

the following training sessions if desired. For both evaluations, they 
performed each of the two conditions (GC vs. GN for Evaluation 
I, and SIT vs. STAND for Evaluation II) in counterbalanced order, 
with each condition consisting of a training session and fve test 
sessions. First, gaze calibration was performed after putting on the 
VR headset. Then, in the training session, participants were given 
a brief tutorial of the respective text entry condition and were able 
to practice it for a couple of minutes until they felt comfortable. In 
the following fve test sessions, participants were again asked to 
enter phrases randomly sampled from the MacKenzie & Soukoref 
corpus [62] as fast and accurately as possible. Each test session was 
one minute long and participants were allowed to take short breaks 
between the sessions. In Evaluation I, participants completed SUS 
and NASA-TLX questionnaires after each condition. Each condi-
tion took around 10-15 minutes. After fnishing all two conditions, 
participants completed a demographics questionnaire and for Eval-
uation I, ranked the conditions according to their preference. Lastly, 
participants were interviewed about their TapGazer experience. 
Each experiment took between 40 and 60 minutes. 

Participants. For Evaluation I, we recruited 14 participants (10 
male, 4 female), with an average age of 23.6 (SD = 1.7). All of them 
used a QWERTY keyboard regularly. Their QWERTY typing speed 
was on average 52.61 WPM (SD = 21.07) with a TER of 11.5% (SD = 
5.85%). 11 had used eye-tracking devices before. For Evaluation 
II, we recruited 5 diferent participants (3 male, 2 female), with an 
average age of 23.8 (SD = 1.1). Their QWERTY typing speed was on 
average 62.94 WPM (SD = 12.38) with a TER of 9.3% (SD = 3.3%). 
4 had used eye-tracking devices before. 

4.1 Results 
We validated that the data satisfes the assumptions of a repeated 
measures analysis of variance (ANOVA). We used one-way repeated 
measures ANOVAs to compare efects across all TapGazer condi-
tions, and two-way repeated measures ANOVAs to compare the 
efects of TapGazer variants with regards to the factors Completion 
(word completion vs. no word completion) and Session in Evalu-
ation I, and Pose (sitting vs. standing) and Session in Evaluation 
II. Paired t-tests with Holm correction were used for all pairwise 
comparisons between conditions. All tests for signifcance were 
made at the α = 0.05 level. The error bars in the graphs show the 
standard error. 

Text Entry Speed. In Evaluation I (Figure 5a), users tapped at 
M = 42.80 WPM (SD = 14.87) for GC, M = 42.34 WPM (SD = 
16.11) for GN, and M = 44.81 WPM (SD = 14.67) for their pre-
ferred TapGazer variant. The main efect of Condition (K, GN, 
GC) (F (2, 26) = 11.15,p < .001∗∗∗) was signifcant. K was signif-
cantly faster than both TapGazer variants (t(13) ≥ 3.93, p < .002∗∗). 
The main efect of Session (1 to 5) (F (4, 52) = 13.08, p < .001∗∗∗) 
was signifcant, while the main efect of Completion (GN, GC) 
(F (1, 13) = 0.42, p = .53) and the interaction efect of Completion 
and Session (F (4, 52) = 1.16, p = .34) were not signifcant (Fig-
ure 5b). In Evaluation II (Figure 5c), users tapped at M = 47.16 
WPM (SD = 12.74) for SIT and M = 45.26 WPM (SD = 14.12) for 
STAND. The main efect of Condition (K, SIT, STAND) (F (2, 8) = 
7.76, p = .013∗) was signifcant. K was signifcantly faster than 
SIT (t(8) = 3.2, p = .037∗∗) and STAND (t(8) = 3.6, p = .021∗∗). 
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Figure 5: Evaluation results for WPM comparing QWERTY keyboard (K), TapGazer with gaze selection and no word completion 
(GN), and TapGazer with gaze selection and word completion (GC), as well as SIT and STAND poses while tapping on the thighs. 

The main efects of Pose (SIT, STAND) (F (1, 4) = 1.32, p = .33) 
and Session (F (4, 16) = 0.40,p = .81), and the interaction efect 
(F (4, 16) = 0.30,p = .88) were not signifcant (Figure 5d). Users 
saved on average 3.4% of taps by using word completion in GN 
(if there was only one possible candidate) and 7.1% of taps in GC. 
Using word completion in GC could theoretically have saved up to 
34.2%, but participants used word completion mostly only for long 
words. 

Error Rate. In Evaluation I (Figure 6a), users typed with a TER 
of M = 11.55% (SD = 0.058) for K, M = 2.13% (SD = 0.017) 
for GN, and M = 3.64% (SD = 0.026) for GC. The main efect of 
Condition (F (1, 13) = 12.62, p = .004∗∗) was signifcant, while the 
main efect of Session (F (4, 52) = 1.44, p = .23) and the interaction 
efect of Condition and Session (F (4, 52) = 1.21,p = .38) were not 
signifcant. All TapGazer variants had signifcantly lower error rates 
than K (t(13) ≥ 6.53, p < .001∗∗∗). In Evaluation II (Figure 6a), users 
typed with a TER of M = 10.25% (SD = 0.039) for K, M = 3.69% 
(SD = 0.029) for SIT, and M = 4.03% (SD = 0.028) for STAND. The 
main efects of Pose (F (1, 4) = 0.97, p = .40) and Session (F (4, 16) = 
0.56,p = .70), and the interaction efect (F (4, 16) = 0.3, p = .87) 
were not signifcant. Again, all TapGazer variants had signifcantly 
lower error rates than K (t(4) ≥ 6.47, p < .001∗∗∗). 

Usability and Workload. Figure 6c shows the average SUS usabil-
ity scores for Evaluation I, with M = 69.64 (SD = 18.55) for GN 
and M = 73.21 (SD = 11.87) for GC. Figure 6d shows the aver-
age NASA-TLX task load scores, with M = 48.47 (SD = 11.15) 
for GN and M = 48.60 (SD = 13.49) for GC. The diferences 
in SUS scores (t(13) = −0.109, p = .29) and NASA-TLX scores 
(t(13) = 0.378, p = .71) between GN and GC were not signifcant. 

Preferences and Qualitative Feedback. When asked about which 
variant of Tapgazer they preferred in Evaluation I, 10 of the 14 par-
ticipants preferred GC and 4 preferred GN. In the post-interviews, 
participants were overall positive about Tapgazer (“I can type very 
fast after practice”, “save energy by just tapping without reaching 
the specifc letter”). Several participants stated it was easy to fnd 
the right candidate words (“the candidate words are diferent from 
each other and easy to locate the word to type”, “look at where the 
word will show up and select it when it shows”). Most participants 
appreciated the ability to complete words (“I’d love to have more 
words to select from”, “can save quite a few keystrokes when using 

TapGazer with completion”, “I want to scan all candidates words in 
case I found the correct one”), but some noted that it was easier not 
to consider completion of words (“focus on typing the word and no 
need to worry about the candidates shown. And usually I don’t need 
to type the entire word when it is long” – referring to the fact that 
without word completion, TapGazer shows the most likely incom-
plete candidate if there are no complete candidates, allowing users 
to quickly complete long words). In Evaluation II, all participants 
reported that they would be willing to use TapGazer for of-desktop 
scenarios like VR as it felt comfortable in both a seated and standing 
pose. 

4.2 Discussion 
Our results demonstrate that overall, TapGazer is an easy-to-use 
system that can reach similar or higher average typing speeds 
than other text entry methods addressing similar use cases (see 
Table 1): on average 47.2 WPM when tapping on the thighs while 
sitting, compared to 44.6 WPM and 41.0 WPM, respectively, for the 
best competitors TOAST [88] and VelociTap [96]. In contrast to 
most competitors, Evaluation II demonstrates that TapGazer can 
be used efectively by tapping on one’s thighs, both in a sitting and 
a standing pose, without apparent loss of performance. Further-
more, TapGazer achieves signifcantly lower error rates than the 
QWERTY keyboard, as word-level text entry avoids some sources 
of error of character-level text entry: while QWERTY typing, par-
ticipants frequently used the correct fnger on the wrong key – a 
mistake that does not afect TapGazer. Our study data logs show 
that mistakes due to inconsistent fnger-to-key mappings happened 
very rarely in TapGazer. The higher WPM averages listed in Table 1 
are mainly for experienced ‘expert’ users; however, our participants 
were all novice users of TapGazer, so it is plausible that even better 
performance could be achieved with more practice. TapGazer with 
and without word completion perform similarly and both have 
their place: some users prefer to just type and not think about the 
completion of words, while others prefer to look for incomplete can-
didates before completion. We analyze these two strategies further 
in subsection 5.1. 

When comparing TapGazer with the best alternative method, 
TOAST [88], it appears that TOAST is potentially more efcient at 
entering individual letters: it uses a standard QWERTY layout on a 
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Figure 6: On the left, evaluation results for TER comparing a) QWERTY keyboard (K), TapGazer with gaze selection and no 
word completion (GN), and TapGazer with gaze selection and word completion (GC), as well as b) SIT and STAND poses while 
typing on thighs. On the right, evaluation results for c) SUS and d) TLX comparing GN with GC. 

table-mounted touchpad where specifc key strokes are detected, 
as opposed to just fnger taps. However, TOAST requires additional 
key strokes to select candidate words and avoid input errors, which 
is likely less efcient than TapGazer’s gaze selection. The second-
best alternative method, VelociTap [96], uses fnger taps on a small 
mobile display to enter letters; this is likely slower than TapGazer’s 
tapping, which resembles normal QWERTY typing. However, Ve-
lociTap appears to use a very efcient sentence-based language 
model for text completion, which is more sophisticated than the 
model we were using for TapGazer. 

Limitations. Our study used novices and is mainly cross-sectional, 
thereby likely underestimating the average performance of longer-
term users. Both evaluations had fairly small sample sizes; however, 
they were able to detect the diferences in WPM and TER between 
TapGazer and QWERTY keyboard. The diferences between the 
TapGazer conditions (GN vs. GC and SIT vs. STAND) had only 
small efect sizes, therefore it is unlikely that the statistical test 
results would change with more participants [18]. The results of 
Evaluation II are roughly in keeping with those of Evaluation I, 
supporting their validity. 

The use of gaze in TapGazer is not only a main strength but likely 
also its biggest limitation: besides typical challenges of gaze tracking 
such as availability and accuracy, users of TapGazer need to use 
their gaze while typing, which makes eyes-free typing infeasible. 
Users cannot simultaneously look at other things, such as (avatars 
of) other users or visual content to transcribe. Furthermore, fnger 
tap detection poses its own challenges and will likely require some 
kind of extra hardware such as gloves in many cases. 

5 MODEL-BASED ANALYSIS 
In the following we will discuss models describing the user per-
formance of TapGazer and its variants (RQ3) and then apply them 
to the analysis of design options and usage strategies. Because 
TapGazer is based on QWERTY typing, it is plausible to estimate 
performance based on a user’s QWERTY typing speed. Based on 
the data from Section 4, WPMK is signifcantly positively corre-
lated with WPMGN (r (14) = 0.88, p < .001∗∗∗) and with WPMGC 
(r (14) = 0.87, p < .001∗∗∗), with ‘large’ efect sizes. Linear slope re-
gression analysis yielded signifcant regression equations: WPMGN = 
0.788 × WPMK and WPMGC = 0.792 × WPMK . That is, users 

achieved on average 79% of their QWERTY typing speed when 
using the GC variant. Similarly, the average time taken for typ-
ing a key on a QWERTY keyboard typeK is signifcantly posi-
tively correlated with the average times for tapping a fnger tapGN 
(r (14) = 0.91, p < .001∗∗∗) and tapGC (r (14) = 0.82, p < .001∗∗∗). 
Linear slope regression analysis yielded signifcant regression equa-
tions: tapGN = 1.28 × typeK and tapGC = 1.30 × typeK . Such 
regression analyses confrm that there is a strong linear relation-
ship between QWERTY typing and TapGazer performance with 
novice users, across various input devices, TapGazer variants and 
poses. This makes QWERTY typing speed a good estimator of 
TapGazer performance and a good covariate to consider for fair 
comparisons of TapGazer variants between diferent users. 

5.1 Slow Typists 
Some people are slow typists, e.g. when they are just learning to 
type. Word completion can be particularly useful for them. This is 
similar to text entry on a mobile phone, where tapping individual 
keys can be slow and many people use word completion extensively 
to speed up text input. In the following we show how to estimate 
the QWERTY typing speed that marks the point in typing and 
tapping skill where not using word completion becomes faster than 
using word completion with a visual search for the correct word 
after every tap. 

Similar to the well-known Keystroke-Level Model (KLM) [14], 
we model the time TGN required for entering a word w in TapGazer 
without word completion based on: a) the average tapping time 
for fngers tap; b) the average tapping time for the right thumb 
space (which types space in the standard QWERTY mapping), and 
c) the average visual search time searchGN for fnding a desired 
word among the completed words shown: TGN (w) = |w | × tap + 
searchGN + space . That is, we sum up the average tapping time 
for each of the |w | letters, the average search time for spotting the 
right completed word, and the average time of the confrmatory tap 
with the thumb. Note that by defnition, this model predicts the av-
erage word completion time for our evaluation of GN exactly when 
substituting our measured average values for the model parameters. 
Similarly, we model the time TGC required for entering a word w 
in TapGazer with word completion, assuming that the user looks 
at the suggested words after every tap. This time we consider the 
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number of taps c(w) ≤ |w | required until w appears in the list of 
suggestions, and the average visual search time searchGC for fnd-
ing a desired word among suggested, possibly incomplete words: 
TGC (w) = c(w) × (tap + searchGC ) + space . The model illustrates 
the trade-of between a reduced number of taps and increased time 
spent per tap. 

In Section 5 we have shown that there is a strong linear relation-
ship between tapping and QWERTY typing speed. Therefore, in 
order to estimate TGN based on the time TK required to type word 
w , we substitute tap and space by corresponding linear estimates 
1.28 × typeK and 0.94 × typeK , respectively. Because search times 
do not vary with QWERTY speed, we approximate them using 
averages searchGN = 270 ms and searchGC = 331 ms. The latter 
is the average for GC when the maximum number of candidates is 
shown (10) so that it is not immediately apparent which candidate 
to choose, as this is the most likely case when looking for word 
completions after every tap. Furthermore, we substitute the aver-
age word length in English text |w | = 4.79 [71], and the expected 
number of taps c = 2.41 required before a desired word appears in 
the suggestions. The latter was determined using a simulation of 
the word-frequency based suggestion algorithm used in GC on a 
dictionary of the 7,582 most frequent English words. This results 
in estimates of the average times per word dependent on typeK : 
TGN = 7.05 × typeK + 270 ms and TGC = 3.95 × typeK + 797.71 ms. 
TGN and TGC are equal at typeK = 170 ms, which is equivalent to 
about WPMK = 60.95. Therefore, typists much slower than that 
would likely be faster using TapGazer with word completion. A 
better word prediction algorithm will reduce the expected value for 
c(w), increasing the estimated speed at which word completion be-
comes a hindrance. A similar analysis can be done for the non-gaze 
variants of TapGazer. 

5.2 Power Users 
If the prediction algorithm used to generate suggestions for word 
completion is reasonably stable, i.e. if users can anticipate which 
word will be suggested as the most likely option, then power users 
will learn for frequent words how many taps they need before 
they can simply accept the most likely suggested word. In both 
GC and MC, the most likely suggestion can be quickly accepted 
without even looking at the word suggestions, by tapping the right 
thumb. Let us assume a power user has learned all the prefxes that 
must be tapped to make each of the 100 most frequent words of 
the English language the most likely suggestion, e.g. “tapping ‘t’ 
makes ‘the’ the most likely word.” According to our word frequency 
data, the 100 most common words account for 47.07% of all English 
texts. Let c(w) be the number of taps a user needs to do before 
the word suggested as most likely is the desired word w . Similar 
to Section 5.1, this leads to the following model for a power user 
who uses word completion without visual search for the 100 most 
frequent words (frst summand) and types words in full otherwise 
(second summand, using searchGN as the search is only among 
the completed words, which come frst): TGC (w) = 47.07%(c(w) × 
tap + space) + 52.93%(|w | × tap + searchGN + space). 

According to our simulation of the word-frequency based sug-
gestion algorithm used in GC and MC, which is based on the 7,582 
most frequent English words, the expected number of taps a user 

needs to make before one of the 100 most frequent words becomes 
the most likely suggestion is c = 2.05. This is lower than one might 
think, as the three most frequent words (the, of, and), which account 
for more than 14% of English texts, all use diferent fngers on their 
frst tap, so each appears immediately as a most likely suggestion. 
Furthermore, our simulation reveals that six of the 100 most fre-
quent words (my, or, if, now, our, then, go) are never shown as most 
likely suggestion; they typically make up 1.15% of English texts, 
therefore we shift this percentage from the frst to the second sum-
mand in our model. As in Section 5.1, we substitute c , the average 
word length in English texts |w | = 4.79, and estimates of searchGN , 
tap and space . In order to relate the model to QWERTY typing 
speed, we describe tap and space as linear estimates of typeK . The 
result is TGC = 5.49 × typeK + 143; the corresponding WPMGC 
can be approximated for typical QWERTY typing speeds (up to 
80 WPM) with a linear lower bound as WPMGC = 0.88 × WPMK 
(compared to 0.79 × WPMK for novice users). That is, by learning 
tap prefxes for frequent words so that these words can be selected 
quickly without visual search, TapGazer is expected to allow power 
users to achieve typing speed closer to QWERTY typing. Even if a 
user learns tap prefxes only for the 10 most common words, this 
accounts for about 22.22% of English texts. 

When using gaze tracking, if a power user furthermore learns 
where a frequent word appears for the frst time in the suggestions, 
e.g. “after tapping the left ring fnger ‘with’ appears at the centre 
left”, then the power user could potentially look at the right sugges-
tion and select it immediately, reducing the average number of taps 
per word c and leading to an estimate of WPMGC = 1.03 × WPMK 
for the 100 and WPMGC = 0.84 × WPMK for the 10 most frequent 
words. If a power user is willing to learn a new layout, i.e. a fnger-
to-letter mapping not based on QWERTY, then c can be reduced 
further. We used branch-and-bound search to fnd a mapping that 
minimises c for the 100 frequent words, resulting in a mapping 
with c = 1.18 and WPMGC = 1.03 × WPMK if the positions of the 
respective word suggestions are also learned. In summary, learn-
ing tap prefxes and even display positions for common words can 
potentially speed TapGazer up drastically, with and without gaze 
tracking. 

5.3 Discussion 
Similar to KLM [14], our models are based on the average measure-
ments obtained from our evaluation. As a result, their predictions 
will be inaccurate to to some degree when applied to diferent 
groups of users. In particular, our experiments collected TapGazer 
performance data only from novice users, and it is likely that users 
will get faster with practice. The models we created are therefore 
likely to underestimate the performance of longer-term users, form-
ing a reference baseline for future research. Also, the models add 
value by formalising strategies that some users will likely apply to 
increase their TapGazer performance. Finally, the models identify 
important parameters afecting TapGazer’s performance, providing 
starting points for further improvements in future work. 

6 CONCLUSION AND FUTURE WORK 
We have presented TapGazer, a novel text entry method combining 
tapping and gaze. TapGazer was designed to facilitate casual text 
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entry in VR, without the need for a physical keyboard. Our results 
indicate that novice users can achieve 79% of their QWERTY typing 
speed, with an average TapGazer WPM of 44.81, which surpasses 
the performance of comparable text entry methods. Furthermore, 
the error rate of TapGazer is signifcantly lower than for a physical 
QWERTY keyboard, and TapGazer can be used in diferent poses 
(sitting and standing) while tapping on one’s thighs without marked 
loss of performance. We have created performance models illustrat-
ing how diferent users can beneft from diferent usage strategies, 
and identifying performance parameters that can be optimized in 
future design iterations. 

In the future, when afordable AR glasses with gaze and fnger 
tracking will be as ubiquitous as mobile phones are today, wearers 
of those glasses may use TapGazer for text entry, e.g. by tapping 
on their thighs while waiting at a bus stop or walking down the 
street. This is an exciting direction for future work. 
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