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1. INTRODUCTION

Imagination is an irrefutable part of mankind’s social-cognitive processes such as
visual-spatial skills, memory access, learning, creativity, and communication. Peo-
ple rely on the capability of creating, sharing, and communicating imaginations in
their daily activities. There are two general approaches to share imaginations: explicit
approach and implicit approach. In former, imaginations are directly realized using
visualization techniques such as sketching, painting, and computer-aided tools. This
approach has an objective nature and results in an accurate description of a given
imagination. However, it requires high-level visualization skills that would take years
of practice and learning. As an example, in case of computer animation, a vast variety of
design tools are available. These tools provide the designers with a user-friendly graph-
ical user interface (GUI) that follows a dominant approach in human-computer inter-
actions known as windows, icons, menus, and pointer (WIMP) model. Learning these
tools even for professional designers is tedious, labor intensive, and time-consuming,
requiring them to learn and utilize a set of complex graphical interfaces. Further-
more, migrating from one specific tool to another one would require learning a set of
new interfaces from scratch. The learning process faces more sophistication in case of
scripting interfaces such as graphical application program interfaces (APIs) and game
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engines. The learning curve is even slower for novice users who only need to create a
simple animation for ad hoc applications.

The implicit approach, on the other hand, is subjective and is carried out by rep-
resenting the imaginations through a set of natural language descriptions. In this
approach, a speaker or a writer shares her imaginations through a verbal channel and
audience perceive and reconstruct the imaginations based on their internal mental
states. Hence, a unique imagination can result in different realizations. Due to sim-
plicity and naturalness of describing the imaginations through the verbal channel, the
explicit approach is considered the dominant mechanism for sharing the imaginations
in interpersonal communications. It motivates researchers to develop systems that can
directly convert the natural language descriptions to target visualizations.

A natural language interface exploits the conceptual simplicity and naturalness
of the language to create a high-level user-friendly communication channel between
humans and machine. The interface can be used to generate visual interpretations of
the semantic content of a given natural language that can be then visualized either as
a static scene or a dynamic animation. Nevertheless, current technical difficulties do
not allow machines to completely capture the deep semantics embedded within natural
languages. These difficulties root in characteristics of natural languages such as being
semi—structured, ambiguous, context—sensitive and subjective.

In recent research [Lee and Yan 2014], comprehensive user studies are performed to
compare the performance of natural language interfaces against conventional GUI
for animation design tasks in terms of control, creativity, and learning measures.
The results suggest that in terms of high-level control over virtual objects and an-
imation design, natural language interfaces outperform GUIs, whereas in terms of
spatial and motion control it is simpler to use GUIs. It is also concluded that using
GUTIs increase the creativity in micro-level design while in macro-level design natu-
ral language interfaces are more efficient because of their higher versatility. It is also
shown that natural language interfaces significantly reduce both learning time and
design time. According to this study, a good strategy is to develop a hybrid interface
that integrates both interfaces and lets the user decide which one to use for different
manipulations.

1.1. Requirements and Challenges

Three general requirements can be identified for developing such systems. The first
requirement is associated with computer graphics. A system for visualizing natural
language descriptions requires a visualization engine to realize the final interpretation
of the language. Fortunately, current software and hardware technologies of computer
graphics are highly advanced and can generate natural visualizations in real time.
Thus, this requirement does not pose any challenges. The second requirement is related
to understanding the natural language. A natural language interface must be able to
disambiguate a description, discover the hidden semantics, and convert them into a
formal knowledge representation. This requirement, even for a limited system, can
present a fundamental challenge. The third requirement is designing an integrated
architecture. Designing a system capable of integrating a natural language interface
and a GUI for visualization purposes requires tackling profound technical challenges
in different conceptual and operational levels. Such a system requires integrating
artificial intelligence (Al) techniques such as natural language understanding (NLU),
knowledge representation (KR), planning, spatiotemporal reasoning, and so on, and
computer graphics techniques such as real-time rendering, action synchronization,
behavior-based modeling, deformation, etc., in a consistent manner. Considering the
above-mentioned requirements, five main challenges of developing these systems can
be identified as follows.
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1.1.1. Natural Language Understanding. NLU is the process of disambiguating a set of de-
scriptions expressed in natural language, capturing deep semantics embedded within
surface syntax, and converting the discovered semantics into a representation that
can be processed by software. This process relies on a hierarchy of some sub-processes
including but not limited to (1) morphological analysis such as stemming and lemma-
tization; (2) syntactic analysis such as part-of-speech (POS) tagging, syntactic parsing,
named-entities recognition, and anaphora resolution; (3) semantic analysis such as
word disambiguation, capturing predicate-argument structures, and role labeling; and
(4) discourse analysis. A natural language interface with visualization purposes should
disambiguate the descriptions based on scene arrangements and capture the semantics
associated with scene layout, spatiotemporal constraints, parameterized actions, and
SO on.

1.1.2. Inferring Implicit Knowledge. When people communicate, they assume the target
audience have a priori knowledge about the context and hence do not elaborate on it.
They also omit the common-sense facts and assume the audience fill in the gaps [Chang
et al. 2014a]. Inferring this implicit knowledge is a big challenge for current computer
software. Furthermore, it is a challenging task to derive meaningful interpretations of
spatiotemporal relations from descriptions of the world model.

1.1.3. Knowledge Representation. KR refers to a formal representation of information
in a way that computer software can utilize it to perform complex tasks. The rep-
resentation should support insertion, update, and querying operations on the target
knowledge. It should also represent concepts, entities, relations, constraints, uncer-
tainty, etc. A system designed to convert natural language descriptions to a visual
representation requires a KR component to represent the discovered semantics and
use it to decide the actions to be taken. Also, a reasoning mechanism embedded within
the KR component can help the system to derive implicit knowledge from available
knowledge. Designing such a component is not a trivial task.

1.1.4. Symbol Grounding. Semantics are represented as high-level concepts within KR
components that eventually need to be grounded into low-level graphical objects, visual
features, transformations, and relations. This mapping process involves decomposing
high-level concepts into a set of low-level graphical instructions running in serial or
parallel and parametrizing those instructions. Automating this process is one of the
AT’s research goals.

1.1.5. Scalability. A scalable system should couple high-level semantic processing
with low-level action decomposition in a consistent manner. It should also exploit
data-driven techniques to generalize to unseen scenarios. Gathering required tools
and repositories such as lexical resources and object database is also a challenging
task. In addition, obtaining the knowledge itself (i.e., both implicit and explicit) is a
challenge.

1.2. Classification

Considering the interdisciplinary nature of visualization systems with natural lan-
guage interfaces, one can categorize the literature from several points of view. In terms
of design methodology, the systems can be classified into rule-based, data-driven, and
multi-agent systems. Another possible classification can be based on the system behav-
ior that divides the systems into reactive and deliberative systems. It is also possible to
classify the literature based on the utilized language understanding approach, syntac-
tic analysis, knowledgebase scheme, and so on. However, none of these classifications
address the graphical aspects. Similarly, one may categorize the literature based on
the graphical aspects that ignore the intelligent aspects of the systems. In order to
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have a consistent classification scheme that can address different aspects of the re-
search works, we categorize the literature based on the generated output. Using this
scheme, we classify the literature to three categories: text-to-picture, text-to-scene, and
text-to-animation conversion systems.

It is noteworthy that throughout the article, the term text interchangeably refers to
any oral or written form of the language utterance. In this regard, verbal commands
issued by an operator, textual scripts provided by a user, or textual content within Web
pages are all treated as text.

1.3. Contribution

As far as the authors’ knowledge is concerned, this article is the first comprehensive
overview on the systems and approaches associated with visualizing natural language
descriptions. Surprisingly, despite its scientific and industrial merit, not so many stud-
ies have been carried out in this direction. And among existing works, there are only a
few that have solid contributions to this field. This survey discusses requirements and
challenges for developing such systems and reports 26 graphical systems that exploit
natural language interfaces and addresses both artificial intelligence and visualization
aspects. This work serves as a frame of reference to researchers and to enable further
advances in the field. For each introduced system, we elaborate on the system inputs
and outputs, design methodology, architecture, implementation, language processes,
graphical processes, intelligent processes, and resources and discuss the advantages
and disadvantages as well.

1.4. Organization

The article is organized as follows. Section 2 provides a concise terminology of com-
putational linguistics. Section 3 overviews the text-to-picture conversion systems and
investigates two example systems. Section 4 discusses the text-to-scene conversion sys-
tems and elaborates on seven systems. Section 5 provides a comprehensive overview
of 17 text-to-animation conversion systems. Section 6 discusses the overall restrictions
of the developed systems and provides potential solutions and possible directions for
future studies. Section 7 concludes the article.

2. TERMINOLOGY OF COMPUTATIONAL LIGUISTICS

Considering the interdisciplinary nature of this article, it will possibly attract au-
diences from different fields such as computational linguistics, human-computer in-
teractions, artificial intelligence, and computer graphics. To provide the readers with
a self-contained article, this section provides a concise terminology of computational
linguistics as follows.

Stop-Words: words with syntactic functionality that carry insignificant semantic
information (e.g., “the” and “is”).

Bag-of-Words Model: a text representation model that treats a given text as a set of
words and frequencies and disregards the syntax and word order.

Lemmatization: the process of grouping together the different inflected forms of a
word so they can be analyzed as a single item. As an example, “go” is the lemma
of the words [go, goes, going, went, gone].

Named-Entity Recognition: the process of locating and classifying elements in text
into pre-defined categories such as the names of persons, organizations, locations,
and so on.

POS-Tagging: also known as word-category disambiguation; the process of labeling
each and every word in a given text by its grammatical category (e.g., noun, verb,
etc.) based on both its definition and context.
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Syntactic Parsing: the process of constructing a treelike structure of a given text
that represents both POS tags of the words and the tags of syntactically related
word groups (e.g., noun phrase).

Semantic Parsing: the process of converting a given text into a formal knowledge
representation that can be processed by software.

Semantic Role Labeling: also known as shallow semantic parsing; the process of
identifying constituents as the semantic arguments of each and every verb and
determining their roles such as agent, instrument, and so on.

WordNet: an English lexical database that arranges the words in an ontological
representation based on relations such as synonymy, hypernymy, and so on [Miller
1998].

FrameNet: an English lexical database containing manually annotated sentences
for semantic role labeling [Baker et al. 1998].

ConceptNet: a semantic network of common-sense knowledge [Liu and Singh 2004].

3. TEXT-TO-PICTURE

Text-to-picture conversion is probably the simplest method for visualizing natural
language descriptions [Joshi et al. 2006; Zhu et al. 2007; Agrawal et al. 2011; Joshi
2004]. It treats the problem of mapping natural language descriptions to a visual
representation as a data-driven image retrieval and ranking problem and tries to
solve it using the foundations of commercial Web-based image search engines. In this
approach, descriptive terms or constituents that represent the main concepts of the text
are extracted using text-mining techniques such as bag-of-words, named entities, and
N-gram models. It is assumed that an annotated dataset of images is available. In case
of automatic annotation, it is common to collect a repository of multi-modal information
containing both images and text and then to use the co-occurring text around images
to annotate them. In Web-based image retrieval systems, this process is carried out
by exploiting the surrounding text of the images and the text appearing within HTML
tags. The extracted text is then tokenized and a subset of terms is selected and scored
to determine the weighted annotations of the corresponding images [Srinivasarao and
Varma 2012; Chen et al. 2012; Chiang 2013; Gong et al. 2005; Kilin¢ and Alpkocak
2011]. The extracted concepts are then matched against the image annotations and a
subset of images are retrieved and ranked for a given concept based on some predefined
similarity measures. Finally, for each concept, the retrieved images with the highest
rank are illustrated in the same order that their corresponding concepts appear in the
text.

This approach inherits the solid theoretical foundations of search engines. Also,
because of exploiting statistical information retrieval rather than natural language
understanding, the text-to-picture conversion approach is computationally efficient
[Zhang et al. 2010]. However, it does not result in expected visualization due to three
main reasons: (1) It cannot capture the deep semantics embedded within the natural
language descriptions, (2) the visualization is restricted to available images, and (3) it
cannot interpolate the in—between visual information. This approach is not the main
focus of this survey and hence only two systems are discussed.

3.1. Story Picturing Engine

The story picturing engine [Joshi et al. 2006, 2004] addresses the mapping process of a
given textual story to a set of representative pictures by focusing on “quantifying image
importance in a pool of images.” This system receives input stories such as “Vermont
is mostly a rural state. The countryside has the cozy feeling of a place which ...” [Joshi
et al. 2006] and ranks the related and available images accordingly as the output.
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This system is a pipeline of three processes as follows. First, the descriptor keywords
are extracted from the story. For this purpose, the stop-words are eliminated using a
manually crafted dictionary and then a subset of the remaining words is selected based
on a combination of bag-of-words model and named-entity recognition. The utilized bag-
of-words model uses WordNet to determine the polysemy count—the number of senses
of a given word—of the words. Among them, nouns, adjectives, adverbs, and verbs with
a low polysemy count (i.e., less ambiguity) are selected as descriptor keywords. A naive
named-entity recognizer is used to extract the proper nouns such as names of places
and people based on the beginning letter of the words. Those images that contain at
least one keyword and one named entity are retrieved from a local annotated image
database. The next step in the pipeline is to estimate the similarity between pairs of
images based on their visual and lexical features, which is calculated based on a linear
combination of Integrated Region Matching (IRM) distance [Wang et al. 2001] and
WordNet hierarchy. Finally, the images are ranked based on a mutual reinforcement
method and top £ ranked images are retrieved. This system is basically an image search
engine that gets a given description as a query and retrieves and ranks the related
images. Despite the good accuracy and performance of the story picturing engine, it
only retrieves one picture for a given story and ignores many aspects such as the
temporal or spatial relations.

3.2. Text-to-Picture Synthesis System

The goal of this system is to augment the human-human and human-computer commu-
nications by adding a visual modality to the natural language channel [Zhu et al. 2007].
In contrast to the story picturing engine, this system associates a different picture to
each extracted key phrase and presents the story as a sequence of related pictures.
It treats the text-to-picture conversion problem as an optimization process that tries
to optimize the likelihood of the extracted key phrases, images, and placement given
the input description. To extract the key phrases, the system first eliminates the stop-
words and then uses a POS tagger to extract the nouns, proper nouns, and adjectives.
These words are then fed to a logistic regression model to decide the probability of their
picturability based on Google Web hit counts and image hit counts. Then, the TextRank
algorithm [Mihalcea and Tarau 2004] is applied to the computed probabilities and the
top 20 keywords are selected and used to form the key phrases. The image selection
process is based on matching the extracted key phrases against the image annotations.
If the matching is a success, then the matched images are retrieved. Otherwise, an
image segmentation and clustering algorithm is applied to find an image that is more
likely associated with the query key phrase. Ultimately, the retrieved pictures are posi-
tioned based on three constraints including minimum overlap, centrality of important
pictures, and closeness of the pictures regarding the closeness of their associated key
phrases. Despite the superiority of this system over story picturing engine, it still in-
herits the drawbacks of text-to-picture systems and results in stilted visualizations. A
sample output of this system along with its corresponding input story is illustrated in
Figure 1.

4. TEXT-TO-SCENE

One possible way to improve the visualization is to directly create the scene rather than
showing representative pictures. This approach, known as text-to-scene conversion
paradigm, lets the system elaborate on background, layout, lighting, objects, poses,
relative sizes, spatial relations, and other features that cannot be addressed using text-
to-picture conversion systems [Coyne and Sproat 2001]. In a text-to-scene conversion
system, words with specific POS tags carry more visual information than others. Noun
and proper-noun POS tags are usually associated with objects, agents, and places and
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Fig. 1. A sample result generated by the Text-to-Picture Synthesis System for the following input:
“First the farmer gives hay to the goat. Then the farmer gets milk from the cow” [Zhu et al. 2007]. © Association for
the advancement of Artificial Intelligence 2007.

the words with these tags can be exploited to retrieve three-dimensional (3D) models
from model repositories. An adjective POS tag is usually associated with a set of object
features and the words with this tag are utilized to alter the object attributes such
as color, relative size, etc. A preposition POS tag is mostly associated with spatial
relations, and verbs usually determine actions and poses of articulated models such as
an avatar pointing to an object.

The text-to-scene approach can generate elaborated and unified visualization of given
descriptions within a single static scene which is a far more coherent realization in
comparison with the text-to-picture approach. Nevertheless, it faces the challenges
mentioned in Section 1.1 such as designing NLU and KR components. Also, because
the generated scene is static, it can address neither the dynamics nor the temporal
relations and is only useful for visualizing a single episode. In this section, we will
overview seven text-to-scene conversion systems.

4.1. NALIG

Natural Language Driven Image Generation (NALIG) is one of the early projects on
generating static 2D scenes from natural language descriptions [Adorni et al. 1983,
1984; Manzo et al. 1986]. It uses a very restricted form of input language that is
basically a simple regular expression. The main focus of NALIG is to investigate the
relationship between the spatial information and the prepositions in Italian phrases.
The accepted form of phrases in this system is as follows:

[subject][preposition][object]. (1)

Using this regular expression, NALIG can understand inputs such as “the book is on
the table.” It can also handle ambiguities within the phrases and infer simple implicit
spatial arrangements using taxonomical rules such as Object X supports object Y that
define the relations between the existing objects. These rules are defined based on state
conditions, containment constraints, structural constraints, and supporting rules. For
example, given an input such as “a branch on the roof,” the system can infer that “a
tree near the house having a branch on the roof.” In addition to spatial arrangements,
NALIG also utilizes statics to infer how an object can support another object based
on a physical equilibrium. All in all, NALIG is a very restricted system that does not
support user interactions, flexible inputs, or 3D spatial relations.
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4.2. PUT

The PUT language-based placement system [Clay and Wilhelms 1996] is a rule-based
spatial-manipulation system inspired by cognitive linguistics. It generates static scenes
through direct manipulation of spatial arrangements of rigid objects using a restricted
subset of the natural language. Using this restricted grammar, PUT is able to put 3D
objects on top of each other or hang a 2D object on a 3D one. It can also disambiguate
simple spatial relations such as “on the wall” and “on the floor.” This system consists of
a simple parser implemented in C++ designed for its restricted input language and a
rendering engine to visualize the static 3D environment. The syntax of the restricted
language is in the form of a regular expression shown in (2).

V TR[P LM]". (2)

V denotes the placement verb that specifies the type of positioning of the object
being manipulated. The system only defines two placement verbs including put and
hang. TR represents the object being placed, whereas LM represents the reference
object. The system contains a set of 2D objects, such as walls and rugs, and a set of
3D objects, such as tables and lamps, that are already included in the virtual world.
Hence, the user is limited to a set of pre-existing objects. P is preposition and indicates
the spatial relation between TR and LM. Ten different groups of spatial relations such
as above/ below, left/ right, and on are defined in this system. The Kleene plus operator
in (2) lets the system handle compound spatial relations with a set of reference objects.
As an example, an input command such as “Put the box on the floor in front of the
picture under the lamp” is decomposed to [putly[the box]rglon the floorlp_rylin front of
the picturelp_pylunder the lamplp_ryr, which consists of three consecutive prepositions
constructing a chain of spatial relations.

In this system, objects are annotated by their names, which are used to match the
geometric information of 3D models with their corresponding objects. The placement
is carried out using axis-aligned bounding boxes of the objects to facilitate determining
the surface and interiors of the objects. A simple failure handling mechanism is also
used to handle the non-existent locations. In comparison with NALIG, PUT has a
few advantages, such as more flexible allowed inputs, spatial arrangements, 3D object
repository, and object manipulations. Nevertheless, it inherits a few disadvantages of
NALIG, such as being restricted in terms of input language and interactions. Also, it
only focuses on spatial relations and ignores other clues within the scene description
that can be used to infer the implicit knowledge.

4.3. Words Eye

WordsEye [Coyne and Sproat 2001] is designed to generate 3D scenes containing envi-
ronment, objects, characters, attributes, poses, kinematics, and spatial relations. The
system input is a set of textual descriptions that can include information about actions,
spatial relations, and object attributes. The system consists of two main components,
including a linguistic analyzer and a scene depicter. The linguistic analyzer is equipped
with a POS tagger and a statistical parser. In the early version, an analyzer was imple-
mented in common Lisp and, later, MICA parser [Bangalore et al. 2009] was exploited
as well. It parses the input text and constructs a dependency structure that represents
the dependencies among the words to facilitate the semantic analysis. This structure
is then utilized to construct a semantic representation in which objects, actions, and
relations are represented in terms of semantic frames [Coyne et al. 2010]. The words
with noun POS tags are associated with 3D objects and their associated hyponyms
(i.e., words with an is—a semantic relation) and hypernyms (i.e., words with inverse
semantic relation of hyponymy) are acquired using WordNet. The spatial relations are
captured using a set of pre-defined spatial patterns based on the dependency structure.
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The words with a verb POS tag are associated with a set of parametrized functions
that indicate the effects of the verbs.

In a recent development, lexical knowledge extracted from WordNet and FrameNet
are semi-manually refined to construct a Scenario—Based Lexical Knowledge Resource
(SBLR), which is essentially a lexical knowledgebase tailored to represent the lexical
and commonsense knowledge for text-to-scene conversion purposes [Coyne et al. 2010].
The knowledge in SBLR is represented by VigNet [Coyne 2011; Coyne et al. 2012]
which is an extension of FrameNet and consists of a set of intermediate frames called
Vignettes that bridge the semantic gap between the semantic frames of FrameNet and
the low-level graphical frames. VigNet also contains implicit knowledge of a restricted
set of environments such as a kitchen. This knowledge is a remedy for missing common-
sense facts within the natural language descriptions and is acquired through manual
descriptions of the pictures gathered from Amazon Mechanical Turk (AMT) [Fort et al.
2011]—an online crowd-sourcing framework for data collection using Human Intel-
ligence Task (HITs). The collected corpus is processed using naive text processing
techniques to populate the VigNet with extracted Vignettes [Rouhizadeh et al. 2010;
Rouhizadeh, Bowler et al. 2011; Rouhizadeh, Bauer et al. 2011; Rouhizadeh, Coyne
et al. 2011;].

The Depiction module converts a set of semantic frames into a set of low-level graphi-
cal specifications. For this purpose, it uses a set of depiction rules to convert the objects,
actions, relations, and attributes from the extracted semantic representation to their
realizable visual counterpart. The geometric information of the objects is manually
tagged and attached to the 3D models. This component also employs a set of transduc-
tion rules to solve the implicit and conflicting constraints while positioning the objects
in the scene in an incremental manner. As soon as the layout is completed, the static
scene is rendered using OpenGL.

WordsEye relies on its huge offline rule-base and data repositories. Its semantic
database consists of 15,000 nouns and 2,300 verbs, whereas its visual database con-
sists of 2,200 3D models and 10,000 images. Different features of these models, such as
geometric shape, type, flexibility, embeddability, and so on, are manually annotated. As
an instance, all objects with a long thin vertical base are annotated as stem. WordsEye
also contains a large set of rules including spatial rules, depiction rules, and transduc-
tion rules. For example, it contains three rules for kicking action whose firing strengths
are evaluated based on the type of object to be kicked. WordsEye has been utilized by
a few thousand online users to create 15,000 static scenes. Although it has achieved a
good degree of success, the allowed input language for describing the scenes is stilted
[Coyne et al. 2010]. Another problem is that WordsEye is not interactive and does not
exploit the user’s feedbacks. Also, there is no interface provided for adding new knowl-
edge or rules to the system and one would require hardwiring them into the system. A
sample scene generated by WordsEye and its associated textual input is illustrated in
Figure 2.

4.4. AVDT

Automatic Visualization of Descriptive Texts (AVDT) [Spika et al. 2011] generates
static 3D scenes from descriptive text by emphasizing the spatial relations and the
naturalness of the generated scene. It consists of two layers, including an automatic
scene graph generation layer and an object arranging layer. The former is responsible
for processing and extracting the embedded information within the text and generating
the scene graph from this information. It utilizes GATE [Cunningham et al. 2002]—
an open-source text processing tool—as a pre-processor for tasks such as lemmatizing
the nouns, POS tagging, and generating dependency structures. It refines the pre-
processed text by segmenting it into a few blocks based on punctuation marks and
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Fig. 2. A snapshot of an output scene generated by WordsEys for the following input description (Incognito
by Coyne): “The camel is in the desert. The yellow light is above the camel. The small palm tree is 5 feet behind
the camel. The huge dirt dolphin is behind the camel. It is left of the camel. It is above the camel. It is facing
southeast. A 20 foot tall transparent yellow pyramid is 50 feet behind the tree. It is facing southwest. The
camel is facing southeast. A green palm tree is left of the camel.” Coyne and Sproat [2001]. Image courtesy of
Wordseye Inc.

the coordination conjunctions and then assigns metadata to the prepositions and the
nouns within the text and ignores the rest. The prepositions are grouped according to
their semantic similarities. For example, under, below, and beneath prepositions are
classified into the under group. The metadata contain the word role (i.e., preposition,
dependent, or supporter), its position in the text, its quantity, and the corresponding
3D model. In the next step, a directed graph is constructed in which a node represents
an object and an edge represents a preposition. The constructed graph is then pruned
by merging the redundant nodes. This graph provides an efficient data structure for
traversing the spatial relations.

The object arranging layer uses the described graph to render the scene. It assigns
an axis-aligned bounding box for each object and applies distance and rotation heuris-
tics for standardizing the scales and orientations of the dependent and supporting
objects. The rotation heuristic ensures that a dependent object faces its supporter. It
also applies a little randomness to achieve an untidy appearance. These heuristics
result in a more natural appearance of the scene. AVDT focuses on the naturalness
of the generated layout using manually crafted heuristics and proper analysis of spa-
tial relations and, hence, results in more natural-looking scenes in comparison with
WordsEye. Also contrary to WordsEye, AVDT can deal with linguistic cycles and allows
more comfortable inputs. As an example, it is shown that WordsEye fails to visualize
a sentence such as “On the table is a vase,” whereas AVDT can successfully realize
it. In general, AVDT inherits the problems of WordsEye, such as stilted input, lack of
interactivity, and relying on hand-crafted rules. A sample scene generated by AVDT
and its associated textual input is illustrated in Figure 3.

4.5. System Developed at Stanford University

Contrary to previous systems, the system developed at Stanford University [Chang
et al. 2014a, 2014b, 2014c] infers the implicit relations and partially supports inter-
active scene manipulation and active learning. In this system, a scene template is
generated from an input text and converted to a geometric graph that is then utilized
to render a static scene. The scene template constructed from the input text using Stan-
ford CoreNLP language processing tool [Manning et al. 2014] is a graph with objects
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Fig. 3. A sample scene generated by AVDT for the input: “In front of a cottage is a tree. On the left side of the
cottage are 2 trees and 3 trees are growing on the right side of the cottage. Behind the cottage is another tree.
A bench is standing on the left side of the first tree and in front of the bench is a man. In front of the first tree
is a fence. An old-timer waits in front of the fence. On the left side of the old-timer is a lantern and another
lantern is on the right side of the old-timer.” [Spika et al. 2011] ©Eurographics Association 2011.

as its vertices and relations as its edges. The objects are recognized by detecting nouns
that are considered as visualizable according to WordNet. The words with an adjective
tag within the noun phrases are extracted to identify the attributes of the objects. The
spatial relations are extracted using a set of pre-defined patterns.

Natural language descriptions usually do not contain common-sense facts about
the spatial arrangements. To alleviate this challenge, the system uses conditional
probability to model the object occurrences and hierarchy priors and exploits Bayes’s
rule to infer the implicit spatial arrangements. The inferred knowledge is then inserted
into the scene template graph. For example, for a sample input text, “put the cake on
the table,” it can infer to put the cake on a plate and put the plate on the table.

The geometric graph contains a set of 3D model instances that correspond to the ob-
jects within the scene template and their associated spatial arrangements. This graph
is used directly to render the static 3D scene. The system also supports interactive
scene manipulation and active learning. The user can add new objects to defined posi-
tions and remove the existing objects. She can also select an object within the scene and
annotate it. The system modifies its probabilistic model of support hierarchy by observ-
ing how users design the scenes. For example, if a user asks the system to put a cup on
the table, the system increases the probability of co-occurrence of the cup and the table
and the probability of table supporting a cup. This system surpasses previous text-to-
scene conversion systems in terms of adaptive behavior and interactivity. However, in
terms of language understanding and richness of the model repository, WordsEye and
AVDT outperform this system. A sample scene generated by this system is illustrated
in Figure 4.

4.6. Systems That Learn Visual Clues

The systems mentioned so far only utilize textual clues either as a set of pre-defined
rules or a set of models learned from corpora. A new trend in text-to-scene conversion
systems is learning the associations between both textual and visual clues. These
research works follow the approach used by text-to-picture conversion systems by
focusing on learning the visual features from available image database and extracting
associations between visual and textual features to automate the visualization process.
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Fig. 4. A sample scene generated by the text-to-scene conversion system developed at Stanford University
for the following input: “There is a room with a chair and a computer.” Note that the system infers the
presence of a desk and that the computer should be supported by the desk [Chang et al. 2014c].

Fig. 5. A sample interface of Attribit system in which “the user explores novel virtual creatures by changing
the strength of semantic attributes reflecting high-level design intent” [Chaudhuri et al. 2013].

However, contrary to the text-to-picture conversion systems, they use associations to
position the objects within a static scene rather than selecting representative pictures.

AttribIt [Chaudhuri et al. 2013] is designed to help the users create visual content
using subjective attributes such as dangerous airplane. This system provides the user
with a set of 3D parts of a model of interest and helps her with assembling those compo-
nents to construct a plausible model. It exploits AMT crowd-sourcing and presents the
volunteers with a set of 3D models of different parts of objects such as airplane wings
and asks them to compare each and every pair of models using adjectives. It then ranks
the associations between the components and gathered attributes using the Support
Vector Machine (SVM) classifier. The learned model is used along with a GUI to directly
capture the semantic attributes and to provide the user with corresponding parts of
the model. A sample snapshot of the Attriblt interface is shown in Figure 5.

A promising data-driven system developed at Microsoft Research Center is intro-
duced in Zitnick et al. [2013]. This system learns the visual features from abstract
scenes, extracts the semantic information from corresponding corpus, and learns the
associations between extracted visual features and semantics to generate new scenes
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{a) (b)

Fig. 6. A sample scene generated by the system developed at Microsoft Research Center for the following
descriptions. (a) “Jenny is catching the ball. Mike is kicking the ball. The table is next to the tree.” (b) “Mike
is sitting next to Jenny. The cat is sitting next to the tree. Jenny is throwing the ball.” (d) “Mike is scared of
lightning. It is a stormy day. Jenny is standing on the slide” [Zitnick et al. 2013].

(c)

based on a set of unseen natural language descriptions. Similar to Attriblt, this system
utilizes AMT for gathering a training dataset. It exploits Conditional Random Field
(CRF) [Shotton et al. 2007] to extract objects and their occurrences, attributes, and
positions. After extracting visual features, the system extracts semantics in the form of
predicate tuples using semantic role analysis [Quirk et al. 2012]. For scene generation,
the system learns the associations between the predicate tuples and the visual features
based on their co-occurrences using highest mutual information and then uses these
associations to generate a new scene. This system is purely data driven and learns
how to generate static 2D scenes by observing available scenes and corresponding de-
scriptors. However, it does not support online learning. The authors have only used
their system on a simple 2D scenario of children’s playground. Therefore, it is not clear
whether their approach can generate satisfactory scenes in 3D scenarios as well. The
system also lacks a strong semantic analysis for capturing more general dependencies.
Three sample generated scenes along with their input descriptions are illustrated in
Figure 6.

5. TEXT-TO-ANIMATION

The text-to-animation paradigm adds dynamics to static scenes and realizes temporal
relations as an extra layer towards the naturalness of the generated visualization. In
this paradigm, in addition to linguistic analysis performed by the text-to-scene conver-
sion systems, the visual verbs within the text are captured, parametrized, and then
grounded to a set of virtual actions and manipulations within the digital world. The
action parametrization is a big challenge in the case of general-domain systems and
requires inference of knowledge about trajectories, targets, intermediate actions, and
so on. Moreover, in a text-to-animation conversion system, the constraint network is
expanded to capture the spatiotemporal constraints rather than just static spatial
constraints. In other words, the objects may enter or exit the scene and the spatial
relations among them may vary as the simulation time proceeds. This approach can
visualize the imaginations in a more natural way than the two aforementioned ap-
proaches. In this section, we will overview 17 text-to-animation conversion systems. It
is noteworthy that we classify the systems in which user controls embodied agents by
natural language commands as text-to-animation systems. The reason is that similar
to conventional text-to-animation conversion systems, these systems manipulate the
environment based on some verbal descriptions or commands as well. The only differ-
ence is that, in these systems, the user manipulates the world through the embodied
agents rather than directly manipulating the objects.
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Fig. 7. A sample scene of the reconstructed SHRLDU program in 3D in which the world is manipulated
based on a set of commands such as “Put the red pyramid on the block in the box” [Winograd 1971].

5.1. SHRLDU

SHRLDU, developed by Winograd [1971] at Massachusetts Institute of Technology, was
one of the pioneer systems that integrated Al into computer graphics. It was also one of
the early systems that used deep semantic parsing. SHRLDU consists of a simulated
robotic manipulator equipped with an intelligent controller that operates within a
virtual toy world. The world contains a few blocks with different shapes (e.g., cube,
pyramid, etc.), sizes, and colors. The robotic arm can perform three actions on these
blocks including (1) moving a block to a location, (2) grasping a block, and (3) ungrasping
a block. The robot manipulates the environment according to a restricted set of given
natural language commands. SHRLDU is implemented in the Micro—Planner and Lisp
programming languages. Its architecture consists of four modules, including a language
analyzer, planner, dialogue manager, and graphical engine.

The language analyzer operates based on a systematic grammar view of the language.
It validates the syntactic analysis with semantic clues acquired from the environment
through the parsing process. As an instance, for an ambiguous command such as “Put
the red pyramid on the block in the box,” it first recognizes “the red pyramid” as a
possible noun phrase and then checks the world model to determine whether a unique
red pyramid exists. Based on this observation, it then decides whether “on the block”
is part of the noun phrase. The planner component is used to plan a sequence of fea-
sible actions to reach a goal state defined via input command. It utilizes a backward
chaining algorithm considering the preconditions of actions to plan the sequence of
manipulations. For example, given that in the world model “¢he red block is on top of
the blue block” and the user asks to “put the pyramid on the blue block,” the robot first
has to grasp the red block, move it to a random location, ungrasp it, grasp the pyra-
mid, move it to the top of blue block, and, finally, ungrasp it. An interesting feature of
SHRLDU is its dialogue manager, which enables it to answer simple queries regarding
the world configuration and history of actions it has taken. It also can ask for command
clarification in case of ambiguities in the input command and acknowledge the accom-
plishment of the tasks. Despite its restricted grammar, operational environment, and
naive dialogue manager, SHRLDU has inspired many other systems. A sample scene
of a reconstructed SHRLDU program is depicted in Figure 7.

5.2. PAR

Parameterized Action Representation (PAR), developed at the University of Pennsylva-
nia, is a framework for controlling virtual humans using natural language commands
in a context-sensitive fashion [Badler et al. 1999; Badler et al. 2000; Bindiganavale
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Fig. 8. A sample snapshot of the Jack’s MOOse Lodge environment in which agents are controlled using
PAR architecture [Badler et al. 1999].

et al. 2000]. The main focus of PAR is to develop a comprehensive knowledge repre-
sentation scheme to reflect the input commands on agents’ behaviors. The structure of
PAR is shown in (3) [Badler et al. 2000].

In this representation, the applicability condition is a Boolean expression that indi-
cates the feasibility of an action for a given agent. The start and result indicate the
states and time stamps of a given action performed by the agent and the beginning and
termination of that action. The participants refer to the agent that is executing the cur-
rent PAR and the passive objects that are related to that action. The semantics include
a set of Boolean pre-conditions and post-conditions of an action that must be satisfied
to let the agent perform that action. They also embed the motion and the force of the
action that should be applied. The path denotes the start and end points, direction,
and distance of a motion. The purpose determines whether the current action should
satisfy a set of conditions or trigger another action and the termination determines
the condition for terminating the current action. PAR structure also contains a set of
pointers to other PARs, including parent, next, previous, and concurrent actions.

The execution architecture of PAR implemented in C++ and Python is a reactive
framework designed to handle the PAR representation. The architecture consists of
five components, including language converter, database manager, execution engine,
agent process, and visualizer. The language converter parses the input commands using
an XTAG parser [Paroubek et al. 1992] and uses a naive string matching algorithm to
find the corresponding 3D objects and agents from the database through the database
manager. It also captures the verbs and the adjectives in order to construct the cor-
responding PAR representation of the given verbal command. The execution engine
synchronizes the actions using its universal clock and passes the received PAR struc-
tures to the corresponding agent processes. It also controls the visualizer to update the
environment. Each active agent within the virtual world is assigned with an agent pro-
cess that handles a queue of PARs (i.e., Pat—Net data structure) to be executed [Badler
et al. 1993]. The visualizer uses OpenGL to render the virtual world and its inhabitants
based on the received commands from the execution engine. The PAR architecture re-
lies on shallow parsing rather than attempting to capture the deep semantics. It also
does not support the deliberative planning that is essential for generating plans for
complicated goals. The lack of interactivity is another drawback of this architecture.
A sample snapshot of an environment in which the agents are controlled using PAR
architecture is illustrated in Figure 8.

ACM Computing Surveys, Vol. 49, No. 1, Article 17, Publication date: June 2016.



17:16

Start :
Results :

Participants :

Semantics :

PAR =
Path :

Purpose :

Termination:
Duration:

Manner
Subactions:

Parent action:
Previous action:
Concurrent action:

Next action :

5.3. Carsim

[ Applicability conditions : Boolean

Boolean

|

K. Hassani and W.-S. Lee

Time/State
Time/State
Agent

e

[ Preconditons : Boolean

Object set

Postconditions : Boolean

[ Object

) Caused : Boolean
Motion :
Translational : Boolean

| Rotational : Boolean

|

[ Object

| Contact point

Force :

[ Direction
Start 3)
End

Units
{Quantily
[ Achieve : Boolean
Generate : PAR

| Enable : PAR

|

PAR constraint graph

PAR

PAR

PAR
PAR

Distance :

|

Units
Quantity

Carsim [Dupuy et al. 2001; Akerberg et al. 2003; Johansson et al. 2004] is a domain—
specific system developed for generating simple animations of car accidents based on
a set of Swedish accident reports collected from news articles, narratives from victims,

and official transcriptions from office

rs. It consists of two main modules including

information extraction module and visualization module. The information extraction
module analyzes the input text and converts it to a triplet representation <S,R,C> in
which S denotes scene objects such as weather, R represents a set of road objects such as
cars, and C is a set of collisions that happened in the accident. This module utilizes the
Granska POS tagger [Carlberger and Kann 1999] for tagging the input text and uses
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a small lexicon and a few regular expressions to extract the named entities, such as
street names. It also exploits a local dictionary extracted from WordNet to discover the
action verbs. A light domain-specific ontology combined with a classifier that is trained
using a small set of example reports are employed to extract the events from textual
description of the accidents. The ontology is also utilized to solve the coreferences.

The visualization module utilizes an animation planner and a graphical engine
to render the planned animation. The animation planner exploits a naive greedy
algorithm to plan the animation considering the constraints, initial positions, initial
directions, and the trajectories. The planning algorithm does not support backtracking
and thus cannot find the optimal plans. The constraints are addressed using a small
set of spatial and temporal rules. The initial direction and position are inferred
directly from the input report and then propagated to those objects whose initial
condition is not explicitly mentioned in the report. The trajectories are acquired
using the Iterative deepening A* (IDA*) algorithm. Carsim is a good example of
a practical text-to-animation conversion system that mostly focuses on practical
aspects rather than theoretical arguments. It has shown a fair degree of success in its
limited domain. Yet it lacks a solid mechanism to harvest the information from user
interactions and feedbacks. It also does not contain a strong object repository or lexical
resources.

5.4. ScriptViz

ScriptViz [Liu and Leung 2005] aims to replace the manual storyboard drawing with
automatic dynamic scene generation in the motion-picture production process. It is
capable of analyzing the screenplays written in well-formed sentences (i.e., grammat-
ically correct and not ambiguous) and animating the corresponding objects, agents,
and actions. The system consists of three interacting modules, including a language
understanding module, a high-level planner, and a scene generator. The language un-
derstanding module uses Apple Pie parser [Sekine 1998] to derive the syntactical
structure of the input text. It separates the clauses based on the conjunctions, extracts
the actions from verbs, and recognizes the objects from proper nouns. The verb and
proper noun are matched against the actions and the objects using a naive binary
matching mechanism, respectively.

The high-level planning module generates action plans based on the information
received from the language understanding module. The planning process is completed
within four consecutive phases. First, an offline plan outline is extracted from a plan
database in respect to the objects and actions detected in the input script. The states of
the objects and agents are then collected from the virtual environment. This informa-
tion is used to decide the feasibility of actions according to the current configuration
of the environment. In case of a feasible action, parameters of the offline plan are set
and the result is represented using PAR structure [Badler et al. 2000]. The scene gen-
erator assigns the resulted PAR to the corresponding agent, updates the states, and
renders the scene in real time. ScriptViz is implemented in Java and uses OpenGL
as its graphical engine. It does not support interactive modification of the generated
animation and does not embed any lexical or common-sense resources. Also, it has
a very limited model repository and scene layout options. These limitations result in
weak visualizations of given scripts. Furthermore, it is not clear what kind of actions
the agents can perform as the treatment of articulated bodies is not discussed in this
work.

5.5. CONFUCIS

CONFUCIS [Ma 2006] is a multi-modal text-to-animation conversion system that
can generate animation from a single input sentence containing an action verb and
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synchronize it with speech. It is basically a narrator system developed for animat-
ing human characters with a peripheral narrator agent for storytelling of the actions.
CONFUCIS can address the temporal relations between the actions performed by the
virtual humans. It utilizes H-Anim' standard for modeling and animating the virtual
humans. It supports lip synchronization, facial expressions, and parallel animation of
the upper and the lower body of human models [Ma and Kevitt 2007].

CONFUCIS consists of a knowledgebase, language processor, media allocator, ani-
mation engine, text-to-speech engine, narrator, and synchronizer. The knowledge base
contains a lexicon, a parser, and a visual database. The visual database contains a
very limited set of 3D models and action animations. The language processor uses a
Connexor functional-dependency Grammar parser [Jarvinen and Tapanainen 1997],
WordNet, and a lexical conceptual structure database [Ma and Kevitt 2005] to parse
the input sentence and capture the semantics it carries. The media allocator exploits
the acquired semantics to generate an XML representation of three modalities, in-
cluding animation, speech, and narration. The animation engine uses generated XML
and the visual database to generate animation. The text-to-speech and the narrator
modules also use the XML to generate speech and initialize the narrator agent, respec-
tively. Finally, the synchronizer integrates these modalities into a VRML file that is
later used to render the animation.

One of the main challenges of a text-to-animation conversion system is defining a set
of sub-actions that can result in a high-level action. In a hypothetical scenario, assume
that the input sentence is John hits Paul with a bottle and John is in a distance of
2m from Paul and there is a bottle on a table that is in a distance of 1m from John.
To realize this input sentence with a plausible animation, the system should exploit a
planner to schedule a set of intermediate actions such as John walks toward the table,
picks up the bottle, walks toward Paul, and hits him with the bottle. CONFUCIUS
addresses this challenge by using hand-crafted sub-actions that in turn restrict the
animation to a few pre-defined actions (i.e., less than 20 visual verbs). Also, due to
limited number of sentences (i.e., one sentence) in each input and the restricted format
of the input sentences (i.e., one action verb per sentence), the user is restricted in
expressing the intended description. CONFUCIUS is not interactive in a sense that it
does not let the user modify the generated animation. A sample snapshot of an output
animation generated by this system is depicted in Figure 9.

5.6. Scene Maker

SceneMaker [Hanser et al. 2010, 2009] is a collaborative and multi-modal system de-
signed for pre-visualizing the scenes of given scripts to facilitate the movie production
process. This system is a successor of the CONFUCIS system and exploits its under-
lying language processing and multi-modal animation generation tools. SceneMaker
expands CONFUCIS by adding common-sense knowledge for genre specification, emo-
tional expressions, and capturing emotions from the scripts. Users can edit the gener-
ated animation online via mobile devices.

SceneMaker consists of two layers, including a user interface that can run on a PC
or a mobile device and a scene production layer running on a server. The user interface
receives a screenplay from the user and provides her with a 3D animation of the script
and a scene editor to edit the generated animation. The scene production layer contains
three components operating in a serial manner, including an understanding module,
a reasoning module, and a visualization module. The understanding module performs

Ihttps://www.h-anim.org.
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Fig. 9. A sample snapshot of a generated animation by the CONFUCIS system for the following input:
“John put a cup on the table” [Ma 2006; Ma and Kevitt 2007].

text analysis using the CONFUCIS platform. The reasoning module uses WordNet-
Affect [Valitutti 2004]—an extension to WordNet—and ConceptNet to interpret the
context, manage emotions, and plan the actions. The visualization module fetches
the corresponding 3D models and music from the database, generates speech, and sets
the camera and lighting configuration. Despite adding interactions and alleviating
input restrictions, SceneMaker inherits the flaws of CONFUCIS in terms of action def-
inition. It is noteworthy that we could not find any snapshots of the resulting animation
in the published articles.

5.7. System Developed at Kyushu Institute of Technology

This system is designed to generate motion for virtual agents using a set of motion
animations stored within a motion database [Oshita 2009, 2010]. To carry out this task,
it captures pre-defined action verbs including intransitive (no target object), transitive
(one target object), and ditransitive (two target objects) verbs from the input using
a local dictionary. The system exploits motion frames—an extension to case frames
focusing on semantic valence [Fillmore 1968]—as its knowledge representation scheme,
which consists of an agent, a motion, an instrument, a target, a contact position, a
direction, an initial posture, and a set of adverbs to modify the motion. It is assumed
that the characters, objects, and motion frames are manually pre-defined by the user.
The workflow of this system is as follows.

First, the input sentence is parsed using the Stanford CoreNLP tool and then a small
set of rules (e.g., four rules for temporal constraints) and a dictionary are utilized to
extract the query frames and the temporal constraints. The query frames are motion
frames extracted from the input that are matched against the motion database. The
temporal constraints determine whether two actions are serial or parallel. The system
uses the extracted temporal constraints to create a rough schedule of the actions and
searches the motion database to find the motion clips that match the query frames. The
motion database consists of a set of manually annotated atomic motions represented
in motion frames. These atomic actions can be combined to create more complex ac-
tions. The matching process is done in two consecutive steps. First, the query frame is
matched against the motion frames in the database based on the actions and the agents.
The retrieved candidates are then ranked using a weighted similarity measure based
on the target, instrument, initial posture, and adverbs. The system can generate a set
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Fig. 10. A sample animation generated by the system developed at the Kyushu Institute of Technology for
“Neo waves to Jack. At the same time, Jack takes the red bottle. Jack hits Neo with it” [Oshita 2009].

of intermediate motions such as locomotion and grabbing an instrument. Ultimately,
the predefined scene information and the retrieved atomic motions are integrated in
order to animate the motions.

This system relies on its offline motion database, which makes it difficult to handle
unseen motions. It is also not clear how atomic motion clips are fused to generate
compound motions. Another disadvantage of this system is its limited language pro-
cessing capabilities. Last but not least, it imposes a high volume of workload on users
by assuming that the characters, objects, and motion frames are manually predefined
by the users. A sample sequence of an animation generated by this system is shown in
Figure 10.

5.8. IVELL

Intelligent Virtual Environment for Language Learning (IVELL) [Hassani et al. 2013a,
2013b] is a domain-specific multi-modal virtual reality system that consists of a few
Embodied Conversational Agents (ECAs). It is designed to improve the speaking and
listening skills of non-native users in English. IVELL implements a few scenarios, such
as an airport and shopping mall, in which learners speak to domain-specific agents such
as an immigration agent while manipulating the virtual world using a haptic robot. The
agents can alter the difficulty level of the conversation by automatically evaluating the
user’s linguistic proficiency. Each agent consists of an abstract layer and an embodied
layer.

The abstract layer consists of a language interpreter, user evaluator, fuzzy knowl-
edgebase, haptic interpreter, language generator, and action coordinator. The language
interpreter lemmatizes and parses the inputs using the OpenNLP tool?> and matches
the results against deterministic finite automata to capture the user’s intentions. The
user evaluator uses a weighted model to score the user’s proficiency. The knowledgebase
is a light domain-specific fuzzy ontology that keeps knowledge about the predefined
tasks. The haptic interpreter maps the low-level force and position vectors acquired
from a haptic robot to high-level perceptions. The language generator generates a set
of answers with different difficulty levels based on the knowledge extracted from the
knowledgebase. The action coordinator synchronizes the graphical actions, haptic ac-
tions, and output speech whose score is the closest to the user’s proficiency level. The
embodied layer contains a speech recognizer, a text-to-speech engine, a haptic interface,
and an avatar controller. The system is developed in C#.Net and uses Autodesk 3D Max
and 3DVIA Virtools to model and render the environment. Different modules within

2https://opennlp.apache.org/.
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Fig. 11. A sample scene of interaction between a user’s avatar and an agent in the IVELL environment
[Hassani et al. 2013a, 2013b].

this system communicate synchronously through TCP/IP protocol which provides the
system with distributed processing capabilities.

IVELL is an interactive system that can adapt its interactions based on the user’s
proficiency level. It also utilizes a natural language generator to augment the inter-
actions. Moreover, it asks user’s help when it is not able to understand her utterance.
Nevertheless, it uses a very limited approach to capture the semantics. Also similar
to previous systems, it uses a set of limited and hardwired actions. A sample scene of
interaction between a user’s avatar and an agent is shown in Figure 11.

5.9. Other Systems

One of the early text-to-animation synthesis systems is the Story Driven Animation
System (SDAS) introduced in Takashima et al. [1987]. This Japanese system consists
of three modules, including story understanding, stage directing, and action generat-
ing modules implemented in the Prolog and Lisp programming languages. The system
input is restricted to unambiguous text that can only contain sentences describing
actions in a time sequence. The story understanding module performs syntactic and
semantic analyses. However, the original article does not explain the applied tech-
niques. It also uses an assumption-based reasoning that adds very simple implicit
assertions about the story. The stage direction module exploits a few simple heuristics
to position the actors and set the background based on the extracted information and
generated assertions. The action generating module uses a set of model descriptions
and motion descriptions. A very limited set of simple articulated figures and primitive
joint motions are defined and combined to create a simple animation.

3DSV [Zeng et al. 2005a, 2005b; Zeng and Tan 2007; Zeng 2007] attempts to create an
interactive interface for animating 3D stages of simple stories described in restricted
sentences. The stage includes objects, their attributes, and simple spatial relations. The
spatial relations are captured using a set of regular expressions and represented in
XML format. 3DSV utilizes an XML-based knowledgebase to parametrize the extracted
properties of the stage. The knowledgebase contains visual descriptions of the objects,
attributes, and spatial relations. The information extracted from the input text and
the knowledgebase are then integrated into an XML representation that is converted
to the VRML format. The VRML is animated within a Java applet and lets the user
manipulate the stage using mouse commands. Despite the simplicity and restricted
nature of 3DSV, it provides the users with cross-platform functionalities.
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Fig. 12. A sample sequence of frames generated by the system developed at Melbourne University corre-
sponding to the input: “The man grabs the mug on the table” [Ye and Baldwin 2008]. (©) Association for the
advancement of Artificial Intelligence, 2008.

Interactive e-Hon [Sumi and Nagata 2006; Sumi and Tanaka 2005] is a Japanese
multi-modal storytelling system designed for facilitating the interactions between par-
ents and children by animating and explaining the difficult concepts in a simpler form
using Web content. This system uses a Japanese morphological analyzer and a lexicon
to extract time, space, weather, objects, and actions from the story. The extracted in-
formation is matched against two lookup tables, including a background table and an
action table. The time, space, and weather are matched against the background table
to provide the animation with the appropriate static background. The objects and the
actions are matched against an action table that is used to retrieve a corresponding
recorded animation from a database. This system mostly relies on lookup tables and
binary matching algorithms, which severely limits its capability of semantic analyses.

A semi-automatic system developed at Rhodes University [Glass and Bangay 2008;
Glass 2008] generates animations from given annotated fiction texts. The basic as-
sumption in this system is that the characters, objects, environment configuration,
spatial relations, and the character transitions in the text are annotated in a well-
formed structure in advance. It uses the annotations of the characters and the objects
to query a 3D model database. The system exploits a query expansion mechanism using
WordNet to enhance the possibility of finding proper models. It also uses annotated
spatial information to construct a spatiotemporal constraint network. It provides the
users with an interface to alter the constraint network to increase the artistic aspects
of the generated animation. The layout constraints are satisfied using an incremental
greedy algorithm. The system is developed in Python, and the extracted models and the
environment are rendered using Blender3D. This system lets the user modify the ani-
mation by manipulating the constraints and provides a robust model matching scheme
using the query expansion mechanism. On the other hand, it requires annotated fiction
texts as its input, which is a labor-intensive and tedious task.

A data-driven system developed at the University of Melbourne [Ye and Baldwin
2008] attempts to train a classifier to ground high-level verbs into a set of low-level
graphical tasks. To carry out this task, it extracts verb features, collocation features,
and semantic role features from the scripts. It also extracts binary spatial features
from the virtual stage. These linguistic and visual features are then used to train a
maximum entropy classifier [Ratnaparkhi 1996] to decide the next graphical action.
Despite its interesting approach for co-training the semantic and stage features, it fails
to provide a proper means of interaction. A sample sequence of frames generated by
the system is illustrated in Figure 12.
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Web2Animation [Shim et al. 2009] is a multi-modal pedagogical system that uses
Web content related to recipes to create an online animation to teach the users how to
cook. Converting the Web content to an animation is done within three steps, including
extracting relevant text, capturing semantics, and animating actions. The relevant
recipe information is located by traversing the HTML tags and analyzed using the
Phoenix parser [Ward 1991]. The extracted instructions are mapped to a few actions and
the captured ingredients are associated with a set of objects. A domain-specific ontology
is utilized to match the actions with their graphical representation. The ingredients are
also matched against their graphical models. Finally, a user-created screenplay is used
to synchronize the animation with a monologue explaining the recipe. In this system,
the user has to craft the screenplay, which interferes with its pedagogical purpose.
Also, considering the noise-prone nature of Web content, it is not clear how well the
system will behave in mining useful content.

Vist3D [Oddie et al. 2011; Presland et al. 2010] is a domain-specific system for
creating 3D animation of historical naval battles from narratives provided by the users.
The system uses a manually populated ship specification database and a temporal
database. The temporal database is populated by a narrative analyzer that extracts the
time and date and [Subject][Verb][Object] structures using a set of regular expressions.
The retrieved information from these two databases is converted to VRML format.
Vist3D is designed in a very restricted way. Similar to NALIG, it can only detect very
simple syntactic structures and utilizes a very small dictionary.

A different approach that relyies on service-oriented and multi-agent design method-
ology is proposed in Bolano-Rodriguez et al. [2011]. It models the agents using
NLP4INGENIAS [Moreno and Lépez 2009], which is a multi-agent system based on
the INGENIAS framework [Pavéon and Gomez-Sanz 2003]. NLP4INGENIAS exploits
natural language descriptions to model the agents and supports user-in-the-loop disam-
biguation of the descriptions. The acquired agent models are fed to Alice [Kelleher and
Pausch 2007]—a rapid prototyping environment for generating virtual environments—
to render the world and agents. This system approaches the text-to-animation con-
version problem from a software engineering point of view. It exploits agile software
development using existing platforms rather than struggling with theoretical sophisti-
cations. On the other hand, it is restricted to the limitations of its building blocks and
cannot tailor them to meet its specific requirements.

An adaptive animation generation system is introduced in Hassani and Lee [2015].
This system is a multi-agent and data-driven system that utilizes statistical Web
content mining techniques for extracting the attribute values of objects such as rel-
ative sizes and velocities. The system consists of three interacting agents, including
an information retrieval agent, a cognitive agent, and a language processing agent.
The cognitive agent contains a knowledgebase and a planner to decide the actions. It
also interacts with visualization interface in terms of high-level visual operations and
perceptions. The authors mostly focus on the information retrieval agent and do not
elaborate on the language processing agent. The reported accuracy of the retrieved
results is promising. However, the results are only provided for simulating the solar
system and it is not clear whether it can generalize to other scenarios as well. The
language processing agent employs a set of regular expressions for extracting the em-
bedded information and query generation. A sample scene of the generated animation
is depicted in Figure 13.

6. DISCUSSION

We elaborated on 26 systems including 2 text-to-picture conversion systems, 7 text-to-
scene conversion systems, and 17 text-to-animation conversion systems. The evolution
of the text-to-picture conversion systems can be identified in two main directions.

ACM Computing Surveys, Vol. 49, No. 1, Article 17, Publication date: June 2016.



17:24 K. Hassani and W.-S. Lee

Fig. 13. A snapshot of the solar system animation generated by the adaptive animation generation system
based on a few input commands such as “Add the Sun to the center. Animate the outer planets within the
solar system. Orbit the outer planets around sun. Add the inner planets as well. Move them around the center.
Increase the size of Jupiter” [Hassani and Lee 2015].

(1) The systems have evolved in terms of extracting text—image associations. The early
systems only exploit associations between the text and image annotations. Later, these
associations are augmented by fusing the visual features with the semantic features.
(2) The systems also have evolved in terms of output. The early system provides the
users with only one representative picture, whereas the successor system provides the
users with a set of images ordered based on the temporal flow of the input descrip-
tions. The future text-to-picture conversion systems can improve by exploiting better
semantic processing, image processing, and association learning techniques. However,
because they are limited to pictures, the results will not enhance dramatically in com-
parison to the current systems.

We investigate the evolution of the text-to-scene conversion systems in terms of five
measures, including lexical flexibility, grammatical flexibility, action diversity, spatial
diversity, and object diversity. The lexical and grammatical flexibility measures are
related to the flexibility of the input language, whereas the other three measures
determine the quality of the output. These measures are defined based on the Likert
scale and have five distinct values including +2 (very high), +1 (high), 0 (medium), —1
(low), and —2 (very low).

The evolution timeline of the text-to-scene conversion systems is illustrated in
Figure 14. As shown, the diversity of the input vocabulary and the flexibility of the
input structure improve from NALIG to WordsEye and then are no longer enhanced.
This trend represents the current technical difficulties in understanding natural lan-
guage. The evolution of the action diversity follows a similar trend. Because of the
large number of possible actions, it is not practical to craft all of them. On the other
hand, learning actions and associating them with action verbs is a big challenge for the
current machine vision techniques. In terms of spatial and object diversity, WordsEye
has almost achieved a good performance by relying on its huge object database and
large number of hand-crafted spatial rules. This is because the spatial relations are
limited and can be hand crafted. An important observation is that the current data-
driven systems do not outperform the rule-based systems. This is probably because the
data-driven systems have been only used for feasibility studies, whereas a few rule-
based systems such as WordsEye are commercialized, which, in turn, provide them
with the required resources for crafting as many rules as possible. Moreover, as far as
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Fig. 14. Evolution of the text-to-scene conversion systems in terms of lexical flexibility, grammatical flexi-
bility, action diversity, spatial diversity, and object diversity.
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Fig. 15. Evolution of the text-to-animation conversion systems in terms of lexical flexibility, grammatical
flexibility, action diversity, spatial diversity, temporal diversity, and object diversity.

the authors’ knowledge is concerned, there is no big and useful dataset available for
this purpose.

We investigate the evolution of the text-to-animation conversion systems with a
similar approach by adding a temporal diversity measure to the measures used to
evaluate the text-to-scene conversion systems. The evolution timeline is illustrated in
Figure 15. Surprisingly, as shown in this figure, the trend indicates that the text-to-
animation conversion systems have not improved much since SHRLDU. These systems
can improve in terms of object diversity and spatial diversity using similar approaches
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taken by systems such as WordsEye. Also, because the temporal relations are more
limited than spatial relations, this measure can be improved as well. Nevertheless, the
text-to-animation conversion systems inherit the challenges related to the actions and
the input language. We conclude that both the text-to-scene and the text-to-animation
conversion systems will not significantly improve until the machine vision and lan-
guage understanding methods are improved. Fortunately, the new advances in deep
convolutional neural networks and long short-term memory neural networks are grad-
ually enhancing these two areas of research, respectively.

We summarize the discussed systems in Table I. The type of the system indicates
whether it is a text-to-picture, text-to-scene, or a text-to-animation conversion system.
The interactivity indicates whether it provides the user with means to manipulate the
generated output, whereas the adaptive characteristic refers to the system’s capability
in extracting information that is not given to the system a priori. A system that uses
data-driven techniques such as Web content mining, active learning, crowd-sourcing,
association learning, and so on, is considered as adaptive. The interface type can be text,
speech, or a pointer (i.e., mouse interaction). The system domain determines whether
it is built for general or custom purposes. The syntactic and semantic analyses indicate
the approaches that the system utilizes to analyze the text. Finally, the methodology
and the knowledgebase determine the paradigm on which the system is built (i.e.,
data-driven, rule based, and multi-agent) and the exploited knowledge resource (e.g.,
lexicons), respectively.

As shown in Table I, in terms of system behavior only 30.7% of the systems are
interactive and only 42.3% of them are adaptive. This behavioral information reveals a
fundamental flaw in most of the research works carried out in this direction. A system
designed for visualizing the natural language descriptions should be both interactive
and adaptive. Considering the current technical challenges with designing a complete
natural language understanding component, the system should harvest the relevance
feedbacks and the modifications performed by the user to evolve in an incremental
manner. The system can disambiguate the input text in collaboration with the user
as well. Also considering the huge amount of common-sense information required for
such system, it is not practical to gather the information manually. And, hence, data-
driven methods (e.g., Web content mining, Corpus mining, etc.) and active learning
(i.e., user-in-the-loop learning) should be integrated into these systems. Moreover, it is
not possible to pre-determine all possible actions that a user may ask from the system.
These actions can range from a “character shooting a gun” to a “horse galloping on the
hills.” To address this challenge, the system should be able to detect and capture the
motions of the actions by learning the dynamics and features of the actions and retarget
them to other agents. A potential but challenging approach would be using machine
vision techniques to learn the actions from online annotated multi-media content such
as YouTube. Both of these tasks (i.e., natural language understanding and learning
actions) are currently a bottleneck for such systems. However, new developments in
end-to-end learning paradigms, especially the combination of deep learning and re-
inforcement learning, has shown potentially promising results that can be applied to
mitigate the mentioned challenges (Mnih et al. 2015).

In terms of interface type, only 7.7% of the systems utilize mouse interactions (i.e.,
mentioned as a pointer in Table I) and only 3.8% of them utilize speech. As suggested by
the study reported in Lee and Yan [2014], it is better to use a hybrid interface consist-
ing of natural language and mouse interactions. Also, considering the current advances
in speech recognition technology, it is simpler to use speech rather than typed text. In
terms of the domain, 69.2% of the systems are general-domain systems, whereas 30.8%
are designed as domain specific. Nevertheless, this percentage does not reflect the com-
pleteness of the systems. For example, even though Carsim is a domain-specific system,
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it outperforms some of the general-domain systems in terms of language processing and
semantic analysis. Except for some cases, designing general-domain systems resulted
in systems with more restrictions. This is because most of these systems ignore the
adaptive and interactive behaviors and heavily rely on hardwiring the rules. As sum-
marized in Table I, 26.9% of the systems are designed based on a data-driven approach,
7.7% follow a multi-agent paradigm, and 65.4% are rule-based systems. Surprisingly,
61.1% of the general-domain systems are designed following a rule-based approach
that in turn prevents them from supporting appropriate degrees of generalizability. A
successful system should ignore neither a priori knowledge provided by the experts nor
the chunks of knowledge that can be acquired from different online resources. Such a
system also should be able to distribute the tasks among different agents to support
cross-platform and service-oriented models. Therefore, a practical and general natural
language visualizer requires the integration of a priori knowledge (rule based) with
extracted knowledge through the process (data driven) while distributing the tasks
among a few agents (multi-agent).

In terms of syntactic analyses, 26.9% of the systems exploit regular expressions,
15.4% of them utilize POS tagging, and 34.6% of them employ syntactic parsing. Among
general-domain systems, 61.1% of them use syntactic parsing, 16.7% of them exploit
POS tagging resulting in loss of constituent information, and 16.7% of them use regu-
lar expressions that essentially ignore the syntactic information. The latter two meth-
ods cannot provide proper syntactic analyses in comparison with parsing techniques.
Therefore, 33.4% of the general-domain systems suffer from this deficiency. In terms of
the semantic analyses, 46.2% of the systems rely on naive matching of the keywords,
which is equivalent to ignoring the semantics. On the other hand, 53.8% of the sys-
tems exploit some shallow semantic analyses. Shockingly, 33.3% of the general-domain
systems follow this approach. Furthermore, 15.4% of the systems use knowledgebase
and ontologies for semantic analysis whereas 7.7% of them exploit user-in-the-loop
semantic analysis. The rest of the systems rely on shallow semantic analysis as fol-
lows: 11.5% association analysis, 7.7% dependency analysis, and 7.7% semantic role
analysis. Finally, in terms of using knowledgebase, lexicons, and ontologies, 57.7% of
the systems completely ignore these resources. This ratio is 72.2% for general-domain
systems. In other words, a great fraction of the general-domain systems that require
common-sense knowledge are not equipped with any knowledge resources. This fact
highlights another fundamental problem of the current systems: They simply ignore
the knowledge resources and hence cannot infer in unpredicted situations. Among the
systems utilizing some sort of knowledge resources, 63.6% of them exploit the WordNet
lexicon.

All in all, we identify two main problems with the current systems. The first problem
is associated with the current technical challenges such as natural language under-
standing, knowledge representation, common-sense knowledge, implicit knowledge,
and action learning. To our surprise, the second problem is rooted in the fact that the
current systems appreciate neither the available resources (e.g., lexicons and semantic
networks) nor the available techniques (active learning, shallow semantic analysis,
etc.) and, hence, do not meet the expected requirements for a natural language visual-
izer. The first problem possibly will be alleviated using end-to-end learning algorithms
in the near future. Deep learning has shown promising results in machine vision, ob-
ject recognition, speech recognition, and language modeling (Bengio 2009), and deep
reinforcement learning has shown promising results in action learning (Mnih et al.
2015). The remedy for the second problem is to combine rule-based and data-driven
paradigms to design adaptive and interactive systems that utilize available resources
and techniques to its full extent.
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7. CONCLUSION

In this article, we discussed the requirements and challenges for developing systems
that are capable of visualizing descriptions expressed in a natural language. We re-
ported 26 such systems and elaborated on the methodology; implementation; natural
language processing aspects, including morphological, syntactic, and semantic anal-
yses; knowledgebase; lexicons; Al components; computer graphics aspects, such as
rendering and model repositories; and the pros and cons of these systems. We conclude
that, in addition to the current technical challenges in natural language understanding,
providing common-sense knowledge, inferring the implicit knowledge, action learning,
and so on, most of the systems introduced in the literature appreciate neither the
available resources (e.g., lexicons and semantic networks) nor the available techniques
(active learning, shallow semantic analysis, etc.) and, hence, do not meet the expected
requirements for a natural language visualizer. We predict that, by using end-to-end
learning algorithms, the current challenges of developing these systems will be miti-
gated in the foreseeable future.
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