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ABSTRACT
Compression for machines is an emerging field, where in-
puts are encoded while optimizing the performance of down-
stream automated analysis. In scalable coding for humans
and machines, the compressed representation used for ma-
chines is further utilized to enable input reconstruction. Often
performed by jointly optimizing the compression scheme for
both machine task and human perception, this results in sub-
optimal rate-distortion (RD) performance for the machine
side. We focus on the case of images, proposing to utilize
the pre-existing residual coding capabilities of video codecs
such as VVC to create a scalable codec from any image com-
pression for machines (ICM) scheme. Using our approach we
improve an existing scalable codec to achieve superior RD
performance on the machine task, while remaining compet-
itive for human perception. Moreover, our approach can be
trained post-hoc for any given ICM scheme, and without cre-
ating a coupling between the quality of the machine analysis
and human vision.

Index Terms— Compression for machines, Coding for
machines, Image coding, Scalable coding, Learned image
compression

1. INTRODUCTION

Recent trends in computer vision (CV) have seen an increase
in the bandwidth used for communication of images and
video for processing by automated task models. As a re-
sult, the emerging field of compression for machines (some-
times referred to as coding for machines, CM) has garnered
growing attention from both the computer vision and com-
pression communities, including standardization efforts by
leading bodies [1]. In lossy coding, an input is encoded and
later reconstructed imperfectly, leading to some degradation,
known as distortion. The goal of traditional lossy codecs is
to minimize the size of the encoding, known as rate, while
incurring as little distortion possible in terms of the human
perception of the reconstructed image. In compression for
machines, however, human perception is no longer a priority,
and the distortion is measured in terms of the performance of
the automated CV models, performed on the decoded repre-
sentation. Most CV tasks require less information to be com-
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pleted successfully than what is present in the full image or
video, meaning that CM codecs can often achieve better rate-
distortion (RD) performance than traditional compression.

Although CM offers significant rate savings, in some ap-
plications it may be necessary to reconstruct the input fully on
occasion. For example, consider an automated traffic camera,
which uses a server-side task model to detect cars, identify
license plates and monitor red-light violations. Whenever a
violation is committed, the raw footage may be required as ev-
idence in any legal proceedings. Recent works [2, 3, 4, 5, 6],
offer a solution to such scenarios that balances the rate-
distortion performance of both the CV task and full input re-
construction. In the scalable coding setting, the encoding is
performed in layers - in the first, “base-layer,” information
needed for automated analysis is encoded and subsequently
decoded and utilized to perform the CV task; in the next,
“enhancement-layer”1 additional information is used along-
side the base-layer encoding to fully reconstruct the image.

In learned compression, a traditional, hand-crafted, com-
pression scheme is replaced with a machine-learning model,
often a deep neural network, trained end-to-end to optimize a
rate-distortion objective of the form:

L = R+ λ ·D. (1)

Here, R is a loss term corresponding to the rate and D is
a distortion loss, while λ is a Lagrange multiplier balanc-
ing the two. Recently, learned compression methods have
greatly improved in performance and popularity, achieving
comparable and sometimes even superior performance to tra-
ditional codecs both for images [7, 8, 9, 10, 11], as well as
videos [12, 13]. The learnable compression approach lends
itself naturally to both CM as well as scalable coding for
humans and machines, since we simply have to adjust the
terms R and D for the desired setting. Notably, learned scal-
able codecs are often trained jointly, meaning a single model
(comprised of the aforementioned two layers) is trained with
a single objective, balancing the optimization of both layers.

Although the joint training has some advantages, such as
creating a base representation which is easy to use for the
enhancement task, it is not without downsides. Most impor-
tantly, it may lead to an overly inflated base representation,
which contains some information not directly utilized by the
task model. In scenarios where the base-layer is needed sig-
nificantly more often than enhancement (such as our traffic
camera), this leads to an overall degradation in rate-distortion

1In some cases, such as [2, 5], there may be multiple enhancement-layers,
corresponding to growing CV task complexity, or growing task accuracy
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Fig. 1: Proposed scalable coding approach - Checkerboard blocks represent the arithmetic encoding and decoding, and correspond to the
base and enhancement bitstreams. The preview codec is trained to recreate a preview image X̂0 from the latent representation of the machine
codec (which can be trained completely separately). The preview image is then inserted into the decoded picture buffer (DPB) of a VVC
codec to allow for efficient inter-prediction of the original image.

performance. An important downside of many of the cur-
rent methods for learned compression is that they require re-
training the model for each desired quality (and thus bitrate)
level. This means that the joint training of scalable models
also introduces a potentially unwanted coupling between the
qualities of the machine analysis task and human perception.

In [8], the authors create a scalable coding for varying
quality of human vision by utilizing a segmentation model
on the encoder side as side information. While this leads to
some benefits in input reconstruction, it cannot be considered
a scalable model for humans and machines, because the en-
tire machine task is performed on the encoder side, and only
it’s corresponding output is encoded. In [5, 6], the base rep-
resentation is used to obtain a low-quality reconstruction of
the input, sometimes known as a preview. The preview is
then subtracted from original input to create a residual which
is encoded using BPG, the intra-coding method used in in
HEVC [14]. An important downside of this approach is that
BPG is optimized for regular images, not residual images,
leading to potential sub-optimality in this setting.

In this paper we propose an improved method for residual
coding in scalable human-machine systems by utilizing inter-
prediction coding from a video codec. Inter-prediction is
used in many video codecs to encode an image (frame) based
on one or more previously decoded frames and thus is far
better suited for residual coding. Our main contributions are:

• Improve the machine-task RD performance of scalable
human-machine image codecs by separately optimizing
base-layer for task performance only, which allows for
close or superior task RD performance compared with cur-
rent state-of-the-art (SOTA) for object detection.

• Propose a method for transforming any ICM codec to
a scalable human-machine codec using residual coding
modes of a video codec.

• Utilize the existing powerful VVC codec to design our
enhancement-layer, achieving competitive RD perfor-
mance for human perception with minimal training.

• Derive a methodology for comparison between two scal-
able human-machine codecs based on Bjøntegaard met-
rics [15], which takes both base and enhancement lay-
ers into account. Using this metric we demonstrate that
our approach outperforms current SOTA scalable human-
machine codecs in many relevant scenarios.

The rest of the paper is presented as follows: Section 2
presents an overview of our proposed method, including de-
tail about our base and enhancement codecs; Section 3 de-
tails our experimental setup, presents results of both layers of
our scalable compression approach, including our proposed
comparison metric; finally, Section 4 provides discussion and
summary of our work.

2. PROPOSED METHOD

Our proposed scalable human-machine image codec, which
is visualised in Fig. 1, is comprised of 3 parts: a base-
layer performing object detection, a preview decoder, and an
enhancement-layer. For the base-layer, we can use any ICM
codec, regardless of the task it performs or the method it em-
ploys to do so, as long as we have access to its decoded repre-
sentation, denoted Ŷbase. We train a preview synthesis model
gprevs to create a preview image, X̂0 = gprevs (Ŷbase), from
the latent base representation. Finally, we utilize an existing
video codec to efficiently encode the input X using our pre-
view image X̂0 as a reference, in a process commonly known
as inter-coding. We use the VVC [16] codec, as implemented
in VTM version 12.3 [17] to perform the inter-coding, al-
though generally any video codec can be used.

2.1. Base Layer

An important advantage to our approach is that it allows
us to separately optimize the base-layer, avoiding the dis-
advantages of joint training, as explained in the introduc-
tion. Even though our scalable approach can utilize any ICM



IEEE ICME Workshop on Coding for Machines, Brisbane, Australia, 2023.

codec as a base-layer, we implement our base-layer to resem-
ble [2], which until recently achieved state-of-the-art RD per-
formance for object detection. We do this by using the same
encoder structure, and discarding the enhancement represen-
tation (which is done by reducing the dimensions of the final
layer of the encoder), while keeping the base-layer decoder
the same as in [2]. For more details, see [2], or Appendix A
of the supplemental material. Of course, unlike [2], we train
the base-layer codec for the base task only, instead of joint
training with the enhancement-layer. Using a nearly identical
base-layer implementation allows to directly showcase the ad-
vantages of training the base-layer to solely optimize the RD
performance of the base task, and avoids confounding these
effects with the differences between base-layer models.

2.2. Enhancement Layer

In order to allow for maximum flexibility, we construct our
enhancement-layer so that is agnostic to the base-layer struc-
ture. In fact, the only input needed for our enhancement-
layer is the decoded base-bitstream after arithmetic decoding,
which in our case is denoted Ŷbase. First, we use a synthesis
transform gprevs to obtain a preview of the input. We structure
this preview synthesis model similarly to the decoder of [10],
which is comprised of residual convolutional blocks, upsam-
pling blocks and sub-pixel convolutions, using a combination
of leaky ReLU and inverse GDN activations.

In the next step, the preview image X̂0 is inserted into
the decoded picture buffer (DPB) of a VVC codec, where it
is used to encode the original image X using inter-coding.
Using currently available implementations of VVC, insert-
ing an image directly into the picture buffer is not possible,
leading us to take the following approach insted. At first,
the preview and input image are converted into YUV444 for-
mat using FFMPEG [18], and joined to create an uncom-
pressed two-frame video sequence. This video is then en-
coded and decoded using VVC reference software VTM (ver-
sion 12.3) [17] set to the low-delay-P coding setting. Be-
cause the preview image is based on the base-layer repre-
sentation, which is already available on the decoder side, it
would not need to be encoded (or decoded) in a practical set-
ting. To account for this, we must ensure that the preview
is encoded with minimal or no loss, without regard to its bi-
trate. In order to ensure the preview image does not suffer
further degradation, we set it to be an intra-frame2 and use
the IntraQPOffset setting of VTM to encode it without
loss (equivalent to QP = 0), regardless of the desired qual-
ity of the enhancement image. Of course, since the process
of encoding the preview frame is only used as a workaround
for implementation reasons, we only count the bit-rate used
for the coding of the second frame (which is reported sepa-
rately by VTM), when evaluating our enhancement-layer. An
example of a full configuration file for VTM for our setup is

2Intra-frames are encoded and decoded without the help of any other
frames in the video, generally requiring the most bits. Additionally, intra-
frames are also commonly encoded at a higher quality then other frames to
ensure they make for a reliable reference.

provided in Appendix C of the supplemental material.

3. EXPERIMENTS

As explained in our proposed method, the training of our base
and enhancement layers can be done separately. Furthermore,
the only trainable portion of our enhancement-layer is the pre-
view synthesis transform, which is quick and relatively simple
to train. We begin by training two versions of our base-layer
corresponding to two popular DNN models for object detec-
tion: YOLOv3 [19] and Faster R-CNN [20]. We pick these
models because they are well-established, well-understood
models and because they were used in previously set bench-
marks for scalable coding for humans and machines [2, 3, 4].
Training is performed using the Lagrangian rate distortion
loss shown in Eq. 1, where the distortion is simply the mean
squared error (MSE) with respect to the same feature layer F .
We choose the same features as [2], and vary the value of λ to
get different points on the RD curve. In the case of Faster R-
CNN, as was the case in [2], the feature layer F is comprised
of a concatenation of several tensors, and an average of their
MSE was used as an objective.

All models were trained in a similar approach to [2, 3],
using two-stage training. At the first stage (300 epochs for
YOLOv3, 500 epochs for Faster R-CNN), randomly cropped
patches of size 256 × 256 are taken from a combination of
the JPEG-AI [21] and CLIC [22] datasets. The ADAM opti-
mizer is used with a fixed learning rate of 10−4. In the sec-
ond stage (350 epochs for YOLOv3, 400 epochs for Faster
R-CNN), equally sized random patches are taken from the
larger VIMEO-90K [23] dataset and a polynomial learning
rate decay is introduced to allow fine-tuned learning.

Training of the preview synthesis is done using a simi-
lar two-stage approach, but requires far fewer epochs to con-
verge. Both the first and second stage are reduced to 50
epochs, with the learning rate decay accelerated to match the
quicker training time. Notably, once the preview synthesis
transform is trained, we can encode the remaining residual
at any desired quality (and corresponding rate) by simply ad-
justing the QP value in the VTM configuration.

3.1. Base Layer Results

To evaluate the base-layer in a comparable way to previ-
ous benchmarks, we follow the approach set in [2]. For the
YOLOv3 model, we test our models on a subset of 5000 im-
ages from the COCO2014 [24] dataset, and use the mean av-
erage precision (mAP) as measured at 50% intersection over
union (IoU), which is denoted as mAP@50, as our accuracy
metric. Our results for YOLOv3 are compared with the best
published settings of 3 previous scalable codecs [2, 3, 4], ref-
ered to as Choi2022, Harell2022, and Ozyilkan2023. For
completeness, we also include two traditional codecs, VVC-
intra [16] and HEVC-intra [14] (also known as BPG), and the
learnable codec of [10] to which we refer to as Cheng20203.

3For human-perception, results are borrowed from [2] were compressed
images were obtained using HM16-20 [25], VTM12.3 [17], and Compres-
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For Faster R-CNN, we use the entire COCO2017 [24] valida-
tion set (which also contains 5000 images), and report the av-
erage mAP over a range of IoU thresholds between 50− 95%
with steps of 5%, which we simply denote mAP4. Available
benchmarks for comparison here are Choi2022, Cheng2020
and the two traditional codecs VVC and HEVC.

Fig. 2: Base-layer object detection evaluation using YOLOv3.

Fig. 3: Base-layer object detection evaluation using Faster R-CNN.

As seen in Fig. 2, our approach, which allows us to
train the base-layer strictly based on task RD performance,
achieves significant improvement over Choi2022 on which
our base-layer is directly based. For example, for object de-
tection using YOLOv3, our model suffers less than 1% degra-
dation in mAP@505 at a rate of 0.58 bits per pixel (bpp),
where [2] was not able to achieve such accuracy even at rates
of over 0.7 bpp. When compared with Harell2022, our model
achieves slightly inferior performance, likely due to the use
of deeper features in the training of Harell2022, which was
proven to be superior, and can be incorporated in our model
in future work. Compared with Ozyilkan2023, our model
achieves superior performance, especially at lower rates, de-
spite utilizing a simpler analysis transform. Our model’s suc-
cess relative to Ozyilkan2023 is likely due to a combination
of the simple entropy model used in [4] and the latter be-
ing trained jointly. Comparing the results for Faster R-CNN,
shown in Fig. 3, we see that our model improves upon the
previous SOTA of Choi2022, maintaining less than 1% of re-
duction in mAP for rates as low as 0.1 bpp.

In order to numerically evaluate task RD performance we

sAI [26] implementations for HEVC, VVC, and Cheng2020, respectively.
4The choice of two different mAP metrics is in order to better compare

with [2], on which our base layer is based
5Compared to original YOLOv3 performance without compression.

use a variant of the Bjøntegaard Delta metrics [15, 27], a
well-established method for comparing rate-accuracy or rate-
distortion curves. Because all base-layers here are used for
CM, we replace the PSNR measurement, traditionally used in
calculating BD-metrics, with mAP or mAP@50. The result-
ing metrics are calculated with respect to an anchor codec,
for which we use Choi2022. BD-Rate estimates the average
rate needed to achieve equivalent mAP as a percentage of the
anchor’s rate; BD-mAP estimates the improvement in mAP
compared to the anchor when using equal bitrate.

Table 1: Base-layer RD Performance Relative to Choi2022

Model YOLOv3 Faster R-CNN
BD-Rate[%] BD-mAP[%] BD-Rate[%] BD-mAP[%]

Proposed –44.87 2.35 –36.6 0.27
Choi2022 [2] 0 0 0 0

Harell2022 [3] –51.39 2.02 - -
Ozyilkan2023 [4] –24.04 1.52 - -

VVC [16] 58.93 –3.15 239.4 –2.33
HEVC [14] 80.24 –4.95 268.0 –3.07

Cheng2020 [10] 51.88 –2.91 305.8 –3.62

From Table 1, we see that our proposed method achieves
significant rate savings compared to the base-layer of
Choi2022 on which it is based, with a BD-Rate improve-
ment of 44.9% for YOLOv3 and 36.6% for Faster R-CNN.
In the case of YOLOv3, our work outperforms Ozyilkan2023
with BD-Rate savings of 24%, and slightly under-performs
Harell2022 in terms of BD-Rate, but achieves higher BD-
mAP than Harell2022. Also, the proposed method sets new
SOTA results for Faster R-CNN.

3.2. Enhancement Layer Results

For brevity we present only RD curve for each of our task-
models, and not the full combination of possible base and en-
hancement qualities, which can be seen in Appendix B of the
supplemental material. In order to obtain a single curve for
each task we limit the presented QP and λ values while at-
tempting to approximately match the mAP and PSNR values
of Choi2022, and measure the required base and enhancement
rates. By building our scalable codec this way, we can be cer-
tain that the comparison of the enhancement-layer is fair in
terms of the base-layer performance. Points of similar PSNR
correspond to similar mAP in the base-layer, and thus repre-
sent an equivalent use-case of the scalable codecs.

The resulting models are evaluated on the Kodak [28]
dataset alongside the same benchmarks used in the base-layer
experiments6, as seen in Fig. 4. Immediately we notice that
the proposed method achieves significantly better enhance-
ment rate-distortion than both Harell2022 and Ozyilkan2023,
which were comparable to it in the base-layer. Once again we
quantify the differences between approaches using the BD-
metrics, this time using the original PSNR to measure ac-

6This time, as in [2], the benchamark results are borrowed directly
from CompressAI [26] where they are obtained using HM16-20 [25],
VTM9.1 [29], and CompressAI implementations for HEVC, VVC, and
Cheng2020, respectively.
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curacy, and select VVC as the anchor, as seen in Table 2.
The proposed method with the YOLOv3 base-layer requires
23.2% more bits than VVC, whereas Harell2022 and Ozy-
ilkan2023 require 83.5% and 62.6% more bits, respectively.

Table 2: Enh. Layer RD Performance Relative to VVC

Model Input Reconstruction
BD-Rate[%] BD-PSNR[dB]

Proposed - Faster R-CNN 38.52 -1.40
Proposed - YOLOv3 23.19 -0.84

Choi2022 [2] - Faster R-CNN 30.60 -1.14
Choi2022 [2] - YOLOv3 10.34 -0.42

Harell2022 [3] 83.50 -2.56
Ozyilkan2023 [4] 62.60 -2.27

VVC [16] 0 0
HEVC [14] 30.63 -1.16

Cheng2020 [10] 5.28 -0.22

When comparing with VVC, Cheng2020, and most im-
portantly Choi2022, we see that the proposed method is
slightly less efficient, requiring and average of 23.2% and
38.5% more rate when compared with VVC for the YOLOv3
and Faster R-CNN base-layers, respectively. For comparison,
Cheng2020 requires a mere 5.3% extra, and the Choi2022
scalable codec requires 10.34% and 30.6% corresponding to
the same base-layers. Notably, the Choi2022 model corre-
sponding to Faster R-CNN is actually a 3-layer model, and
uses some rate to enable a second CV task, explaining why
the YOLOv3 equivalent performs slightly better.

Clearly, improving base-layer RD performance comes at
a cost in the enhancement-layer, meaning the best solution
depends on the relevant use case. One way to compare a
scalable codec to a traditional codec, introduced in [30], is
to estimate the relative rate, R, of a scalable codec compared
to the traditional codec based on the frequency of use of the
enhancement-layer:

R = (1− fH) · Rbase

R
+ fH ·

Rbase +Renh

R
. (2)

Here Rbase and Renh correspond to the rates of the two lay-
ers of the scalable codec, while R represents the rate of the
traditional codec, and fH is the fraction of time where human
viewing is required. When the relative rate is smaller than 1
the scalable codec is preferable. Unfortunately, Eq. 2 is in-
adequate when comparing two scalable codecs because the
denominator R is not fixed for either codec. Instead we must
use the following:

R =
(1− fH) ·R(c)

base + fH · (R(c)
base +R

(c)
enh)

(1− fH) ·R(a)
base + fH · (R(a)

base +R
(a)
enh)

. (3)

Where the superscript differentiates between the anchor (a)
and the candidate codec (c). In order to simplify Eq. 3 we
assume a fixed ratio7, denoted ρ, between the rates of the en-
hancement and base layers of the codec in the denominator
(the anchor). Doing this allows us to calculate enhancement

7In jointly trained codecs, this ratio is governed by the training loss and
is often approximately fixed. In subsequent calculations, we estimated it
empirically, by using the average measured rate.

frequency fH where the anchor and candidate codec offer
equivalent performance using BD-Rates, denoted BDR for
both the base and enhancement layers.

f∗H =
BDRbase

BDRbase − ρ ·BDRtotal
, (4)

where both BD-Rates are calculated with respect to the an-
chor codec. If we choose an anchor which performs better
on the enhancement-layer, then the candidate codec will be
preferable in any scenario where human viewing is required
less often then f∗H , which we name the break even frequency.
We select Choi2022 as the anchor codec, resulting in a break-
even frequency for our YOLOv3 model of 77.7% which is
significantly higher (better) than Harell2022 at 40.8% and
Ozyiklan2023 at 30.0%. For Faster R-CNN our model is
preferable to Choi 2022 at any scenario where human viewing
is needed less than 76.1% of the time.

Fig. 4: Benchmark comparison of the enhancement-layer of the pro-
posed scalable codec. To maintain a fair comparison, we first choose
the base-layer model to achieve similar task accuracy as [2], and then
select an appropriate QP value for the enhancement to obtain com-
parable input PSNR.

4. SUMMARY AND DISCUSSION

In this work we have presented VVC+M, a plug and play
framework for converting any compression for machines ap-
proach into a scalable codec. Beginning with any ICM codec
as our base-layer, we construct an enhancement-layer to per-
form input reconstruction. In our approach, we train a synthe-
sis model to generate a preview image based on the machine
codec’s latent representation. Then we utilize the powerful
compression capabilities of the inter-coding mode of VVC to
encode the original image. We propose to do this by inserting
the preview to to VVC’s picture buffer, and detail a practical
method for evaluating this approach using the publicly avail-
able VVC reference software VTM. Using our approach, the
machine codec can be fully optimized for the automated anal-
ysis task, allowing for optimal performance for that scenario.
Additionally, our approach allows for a complete decoupling
between the qualities of the base and enhancement layers by
simply changing the QP value used in VVC. Another im-
portant aspect of our framework is that it can be modified
to be used with any ICM model as well as any inter-coding
approach, including highly efficient codecs designed specifi-
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cally for computationally limited edge devices.
We demonstrate our approach by improving the base-

layer of [2], which until recently represented the state-of-the-
art ICM model for object detection. Our codec shows signifi-
cant rate savings in the base-layer of up to 44.9%, approach-
ing or improving SOTA compression for this task. As can be
expected, the improvement of base-layer performance comes
at the cost of some degradation in the enhancement-layer rate-
distortion. In order to evaluate the overall benefit of our ap-
proach, we propose a method of calculating the relative rate
of two scalable codecs, based on the frequency of use of the
enhancement-layer. We find that our model outperforms all
comparable codecs whenever the full input reconstruction is
needed less than 76-77% of the time.
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[26] J. Bégaint, F. Racapé, S. Feltman, and A. Pushparaja, “Com-
pressAI: a PyTorch library and evaluation platform for end-to-
end compression research,” arXiv preprint:2011.03029, 2020.

[27] J. Boyce, K. Suehring, X. Li, and V. Seregin, “JVET com-
mon test conditions and software reference configurations,” in
ISO/IEC JTC1/SC29/WG11, JVET-J1010, Apr. 2018.

[28] “Kodak lossless true color image suite (PhotoCD PCD0992),”
http://r0k.us/graphics/kodak, accessed: 2019-03-19.

[29] “VVC reference software (VTM 9.1),” [Online]: https://vcgit.
hhi.fraunhofer.de/jvet/VVCSoftware VTM/-/tags/VTM-9.1,
accessed: 2021-12-10.
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SUPPLEMENT TO
VVC+M: PLUG AND PLAY SCALABLE IMAGE CODING FOR HUMANS AND MACHINE

A. BASE LAYER DETAILS

As mentioned in Section 2.1, our base-layer implementation is made as similar as possible to [2], and can be seen in Figure 5.
On the encoder side, an inputX is passed to an analysis transform gbasea which is comprised of residual convolutional blocks and
downsampling blocks, followed by leaky ReLU and generalized divisive normalization (GDN) activations [31]. The resulting
latent representation Ybase is then further analyzed by a fully convolutional network ha to create the side information Z, which
is quantized to Ẑ. Next the side information itself is encoded using an entropy bottleneck model [7], followed by quantization
and an arithmetic encoder. The quantized side information is then passed to a hyper-synthesis network, similarly to [9, 10],
to produce initial parameter estimates for the distribution of the latent representation Ybase (a Gaussian distribution in [2, 9]
and our work, and a Gaussian mixture model in [10]). Alongside the initial estimates, an autoregressive context model [9] is
employed to obtain further parameter estimates directly from previously encoded elements of Ybase. An entropy parameter
estimation block, made of several 1 × 1 convolutional blocks is then used to merge the two density parameter estimates and
calculate the necessary probability estimates for an arithmetic encoding of the quantized representation Ŷbase.

Analysis
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Encoder

Q
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Context
Model EP

Hyper
Synthesis

AE

Encoder

Side Bitstream

Base Bitstream

AD

Hyper
Synthesis

AD

Context
Model EP
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Task-Backend

LST Task-Model

Fig. 5: Base-layer encoder and decoder implementation - Q stands for quantization; EP is the entropy parameter estimation blocks; AE and
AD are arithmetic encoding and decoding, respectively; and LST is the latent-space transform.

On the decoder side, the side information bitstream is analysed first, recreating Ẑ using an arithmetic decoder. Using exact
copies of the hyper-synthesis network and the autoregressive context model, the side information is used to sequentially estimate
and the density of each element Ŷbase subsequently reconstruct it from the main bitstream using a second arithmetic decoder.
Having recreated the latent representation, we then transform it using a latent-space transform (LST), which is identical to that
presented in [2], to match the dimensions of some feature layer F in the task model. The LST itself is comprised of similar
layers to those of the synthesis transform in [9, 10], including upsampling and residual blocks using inverse GDN activations.
Finally, the reconstructed features, F̂ are passed to the remaining layers of the task model to obtain the desired task labels.

B. ENHANCEMENT LAYER ABLATION STUDY

As explained in Section 2.2, our proposed approach allows for controlling the base-layer quality separately from that of the
enhancement-layer. Thus, we are able to produce an entire RD curve for each base-layer model, simply by changing the QP
parameter used in VVC, as can be seen in Figures 6, 7. Furthermore, it is important to evaluate whether or not the enhancement-
layer is preferable to simply re-transmitting the entire image. To show this comparison, we also include RD curves where only
the rate of the enhancement-layer is measured, alongside the VVC-intra baseline. Additionally, we also include the figure of
our final configuration used for comparison with other benchmarks in Section 3.2, and the RD-curve for the preview only.

Observing the results in both figures, we clearly see that in every configuration, our enhancement-layer is slightly better
than the baseline of simply using VVC-intra. Interestingly, we see that as currently constructed base representation is not very
well-suited for input reconstruction, leading to poor RD-curve for the preview. Furthermore, we can see that the rate used on
the base representation does not get fully utilized by the enhancement-layer (as is generally the case). One possible solution for
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this problem would be to include a small input reconstruction loss while training the base-layer, weighted far more lightly than
the task loss. An alternative solution may be to train the preview layers using a proxy loss for the VVC-inter coding, in place
of the current MSE, similar to the approach taken in [32].

Fig. 6: Rate-distortion curves for all combinations of YOLOv3 base-layer models and enhancement-layer QP values.

Fig. 7: Rate-distortion curves for all combinations of Faster R-CNN base-layer models and enhancement-layer QP values.
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C. EXAMPLE VTM CONFIGURATION FILE

Below is an example configuration file corresponding to QP = 28. Please note that some lines have been split to multiple
lines to prevent overflow onto the margins. Such lines are highlighted in the color blue, and must be used as a single line when
utilized in practice to configure VTM.
#======== File I/O =====================
BitstreamFile : str.bin
ReconFile : rec.yuv

#======== Profile ================
Profile : auto

#======== Unit definition ================
MaxCUWidth : 64 # Maximum coding unit width in pixel
MaxCUHeight : 64 # Maximum coding unit height in pixel

#======== Coding Structure =============
IntraPeriod : -1 # Period of I-Frame ( -1 = only first)
DecodingRefreshType : 0 # Random Accesss 0:none, 1:CRA, 2:IDR, 3:Recovery Point SEI
GOPSize : 1 # GOP Size (number of B slice = GOPSize-1)

IntraQPOffset : -28
LambdaFromQpEnable : 1 # see JCTVC-X0038 for suitable parameters for IntraQPOffset, QPoffset,
QPOffsetModelOff, QPOffsetModelScale when enabled
# Type POC QPoffset QPOffsetModelOff QPOffsetModelScale CbQPoffset CrQPoffset QPfactor tcOffsetDiv2
betaOffsetDiv2 CbTcOffsetDiv2 CbBetaOffsetDiv2 CrTcOffsetDiv2 CrBetaOffsetDiv2 temporal id
#ref pics active L0 #ref pics L0 reference pictures L0 #ref pics active L1 #ref pics L1 reference pictures L1
Frame1: P 1 0 -6.5 0.2590 0 0 1.0 0 0 0 0 0 0 0 1 1 1 0 0

#=========== Motion Search =============
FastSearch : 1 # 0:Full search 1:TZ search
SearchRange : 64 # (0: Search range is a Full frame)
BipredSearchRange : 4 # Search range for bi-prediction refinement
HadamardME : 1 # Use of hadamard measure for fractional ME
FEN : 1 # Fast encoder decision
FDM : 1 # Fast Decision for Merge RD cost

#======== Quantization =============
QP : 28 # CU-based multi-QP optimization
MaxCuDQPSubdiv : 0 # Maximum subdiv for CU luma Qp adjustment
DeltaQpRD : 0 # Slice-based multi-QP optimization
RDOQ : 1 # RDOQ
RDOQTS : 1 # RDOQ for transform skip

#=========== Deblock Filter ============
LoopFilterOffsetInPPS : 1 # Dbl params: 0=varying params in SliceHeader, param = base param +
GOP offset param; 1 (default) =constant params in PPS, param = base param)
LoopFilterDisable : 0 # Disable deblocking filter (0=Filter, 1=No Filter)
LoopFilterBetaOffset div2 : 0 # base param: -12 12
LoopFilterTcOffset div2 : 0 # base param: -12 12
LoopFilterCbBetaOffset div2 : 0 # base param: -12 12
LoopFilterCbTcOffset div2 : 0 # base param: -12 12
LoopFilterCrBetaOffset div2 : 0 # base param: -12 12
LoopFilterCrTcOffset div2 : 0 # base param: -12 12
DeblockingFilterMetric : 0 # blockiness metric (automatically configures deblocking parameters in
bitstream). Applies slice-level loop filter offsets (LoopFilterOffsetInPPS and LoopFilterDisable must
be 0)

#=========== Misc. ============
InternalBitDepth : 10 # codec operating bit-depth

#=========== Coding Tools =================
SAO : 1 # Sample adaptive offset (0: OFF, 1: ON)
TransformSkip : 1 # Transform skipping (0: OFF, 1: ON)
TransformSkipFast : 1 # Fast Transform skipping (0: OFF, 1: ON)
TransformSkipLog2MaxSize : 5
SAOLcuBoundary : 0 # SAOLcuBoundary using non-deblocked pixels (0: OFF, 1: ON)

#=========== TemporalFilter =================
TemporalFilter : 0 # Enable/disable GOP Based Temporal Filter
TemporalFilterFutureReference : 0 # Enable/disable reading future frames
TemporalFilterStrengthFrame4 : 0.4 # Enable filter at every 4th frame with strength

#============ Rate Control ======================
RateControl : 0 # Rate control: enable rate control
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TargetBitrate : 1000000 # Rate control: target bitrate, in bps
KeepHierarchicalBit : 2 # Rate control: 0: equal bit allocation; 1: fixed ratio bit allocation; 2:
adaptive ratio bit allocation
LCULevelRateControl : 1 # Rate control: 1: LCU level RC; 0: picture level RC
RCLCUSeparateModel : 1 # Rate control: use LCU level separate R-lambda model
InitialQP : 0 # Rate control: initial QP
RCForceIntraQP : 0 # Rate control: force intra QP to be equal to initial QP

#============ VTM settings ======================
SEIDecodedPictureHash : 0
CbQpOffset : 0
CrQpOffset : 0
SameCQPTablesForAllChroma : 1
QpInValCb : 17 22 34 42
QpOutValCb : 17 23 35 39
ReWriteParamSets : 1

#============ NEXT ====================

# General
CTUSize : 128
LCTUFast : 1
DualITree : 1 # separate partitioning of luma and chroma channels for I-slices
MinQTLumaISlice : 8
MinQTChromaISliceInChromaSamples: 4 # minimum QT size in chroma samples for chroma separate tree
MinQTNonISlice : 8
MaxMTTHierarchyDepth : 3
MaxMTTHierarchyDepthISliceL : 3
MaxMTTHierarchyDepthISliceC : 3
MTS : 1
MTSIntraMaxCand : 3
MTSInterMaxCand : 4
SBT : 1
ISP : 1
Affine : 1
SbTMVP : 1
MaxNumMergeCand : 6
LMChroma : 1 # use CCLM only
DepQuant : 1
IMV : 1
ALF : 1
CIIP : 1
IBC : 0 # turned off in CTC
AllowDisFracMMVD : 1
AffineAmvr : 0
LMCSEnable : 1 # LMCS: 0: disable, 1:enable
LMCSSignalType : 0 # Input signal type: 0:SDR, 1:HDR-PQ, 2:HDR-HLG
LMCSUpdateCtrl : 2 # LMCS model update control: 0:RA, 1:AI, 2:LDB/LDP
LMCSOffset : 1 # chroma residual scaling offset
MRL : 1
MIP : 0
JointCbCr : 1 # joint coding of chroma residuals (if available): 0: disable, 1: enable
PROF : 1
ChromaTS : 1

# Fast tools
PBIntraFast : 1
ISPFast : 0
FastMrg : 1
AMaxBT : 1
FastMIP : 0
FastLocalDualTreeMode : 2

# Encoder optimization tools
AffineAmvrEncOpt : 0
MmvdDisNum : 6
ALFAllowPredefinedFilters : 1
ALFStrengthTargetLuma : 1.0
ALFStrengthTargetChroma : 1.0
CCALFStrengthTarget : 1.0
### DO NOT ADD ANYTHING BELOW THIS LINE ### ### DO NOT DELETE THE EMPTY LINE BELOW ###
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