
UmeTrack: Unified multi-view end-to-end hand tracking for VR

SHANGCHEN HAN, PO-CHEN WU, YUBO ZHANG, and BEIBEI LIU,Meta Reality Labs, USA
LINGUANG ZHANG, ZHENG WANG, WEIGUANG SI, and PEIZHAO ZHANG,Meta Reality Labs, USA
YUJUN CAI, TOMAS HODAN, RANDI CABEZAS, and LUAN TRAN,Meta Reality Labs, USA
MUZAFFER AKBAY, TSZ-HO YU, CEM KESKIN, and ROBERT WANG,Meta Reality Labs, USA

Fig. 1. The proposed hand tracking method can effectively incorporate information from multi-view image sequences captured by cameras mounted on a VR
headset (left) and has been successfully deployed in various VR applications (right).

Real-time tracking of 3D hand pose in world space is a challenging problem
and plays an important role in VR interaction. Existing work in this space are
limited to either producing root-relative (versus world space) 3D pose or rely
on multiple stages such as generating heatmaps and kinematic optimization
to obtain 3D pose. Moreover, the typical VR scenario, which involves multi-
view tracking from wide field of view (FOV) cameras is seldom addressed by
these methods. In this paper, we present a unified end-to-end differentiable
framework for multi-view, multi-frame hand tracking that directly predicts
3D hand pose in world space. We demonstrate the benefits of end-to-end
differentiabilty by extending our framework with downstream tasks such
as jitter reduction and pinch prediction. To demonstrate the efficacy of our
model, we further present a new large-scale egocentric hand pose dataset that
consists of both real and synthetic data. Experiments show that our system
trained on this dataset handles various challenging interactive motions, and
has been successfully applied to real-time VR applications.

CCS Concepts: • Computing methodologies;

Additional Key Words and Phrases: motion capture, hand tracking, virtual
reality

ACM Reference Format:
Shangchen Han, Po-chen Wu, Yubo Zhang, Beibei Liu, Linguang Zhang,
Zheng Wang, Weiguang Si, Peizhao Zhang, Yujun Cai, Tomas Hodan, Randi
Cabezas, Luan Tran, Muzaffer Akbay, Tsz-Ho Yu, Cem Keskin, and Robert
Wang. 2022. UmeTrack: Unified multi-view end-to-end hand tracking for
VR. In SIGGRAPH Asia 2022 Conference Papers (SA ’22 Conference Papers),
December 6–9, 2022, Daegu, Republic of Korea. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3550469.3555378

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9470-3/22/12.
https://doi.org/10.1145/3550469.3555378

1 INTRODUCTION
Commercial headsets for virtual and augmented reality (VR/AR),
including Meta Quest, Pico Neo, HTC Vive and the HP Reverb G2
deliver immersive experiences for gaming, communication, pro-
ductivity and fitness. While the first generation of these headsets
primarily relied on controllers for gaming, recent headsets have
shifted towards interactions based on hand tracking to deliver a
more natural experience and cater to applications outside of gaming.

Classical methods for hand tracking, e.g. [Han et al. 2020; Sharp
et al. 2015; Taylor et al. 2016], typically employ multiple stages, first
predicting heatmaps or correspondences and then solving for the 3D
hand pose with a separate optimization. However, these multi-stage
methods are supervised with proxy losses (e.g. heatmap loss) rather
than the actual target metrics (e.g. 3D pose accuracy). A recent line
of research [Cai et al. 2018; Spurr et al. 2021; Zimmermann and Brox
2017] explores single-stage architectures that can be trained end-
to-end to directly predict hand pose. However, these approaches
only make root-relative 3D pose predictions. Many VR interactions
(examples in Figure 1) require absolute 3D root poses and these
methods need to adopt an additional absolute root pose recovery
stage to be applicable for these types of interactions.

Moreover, the hand tracking systems deployed on VR headsets op-
erate on multi-view image sequences captured by wide FOV RGB or
monochrome cameras. However, an architecture that unifies multi-
view fusion, temporal fusion and handling of wide FOV cameras
is still missing. [Han et al. 2020] proposed a relative distance pa-
rameterization to handle images from wide FOV cameras but their
system is designed as a multi-stage pipeline. [Boukhayma et al. 2019;
Zhou et al. 2016, 2020] designed their networks for single-view hand
pose estimation. Incorporating multi-view or temporal information
has been separately studied in previous work [Cai et al. 2019; Chen
et al. 2021; Yang et al. 2020], but never fully unified.

1

ar
X

iv
:2

21
1.

00
09

9v
1

 [
cs

.C
V

]
 3

1
O

ct
 2

02
2

https://doi.org/10.1145/3550469.3555378
https://doi.org/10.1145/3550469.3555378

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Han et al.

In this paper, we propose an end-to-end differentiable architecture
that can predict the absolute 3D hand pose and handle both single-
and multi-view temporal data from wide FOV fisheye cameras. The
end-to-end differentiability allows us to optimize not only pose
accuracy, but also other key aspects of the user/developer experience
including jitter and pinch detection, both of which are critical to
VR interaction. With an end-to-end differentiable framework, we
achieve superior jitter metric through a temporal loss and more
accurate pinch detections through a pinch loss than the stage-of-
the-art multi-stage hand tracking system.
As the proposed method is based on a deep neural network, a

dataset for training and evaluation is essential. To this end, we intro-
duce a large-scale egocentric hand tracking dataset. This dataset was
collected using 4 fisheye monochrome cameras featuring both real
and synthetic data with large variations. Both single-hand motions
as well as challenging hand-hand interactions are included in the
dataset. The dataset also contains dedicated pinch sequences with
annotated pinch events to study the interplay between action recog-
nition and pose estimation tasks. Our proposed method trained on
this dataset shows robust performance on challenging hand mo-
tions and has been successfully deployed in several VR applications
(Figure 1).

This work makes the following contributions:

(1) An end-to-end differentiable architecture that unifies multi-
view fusion, temporal fusion and handling of wide FOV im-
ages while making absolute 3D hand pose predictions. This
unification has only been achieved using multi-stage methods
in previous work.

(2) By leveraging the end-to-end differentiability, we achieve su-
perior jitter metric through a temporal loss and more accurate
pinch detections through a pinch loss than the state-of-the-art
multi-stage hand tracking system.

(3) A new large-scale egocentric dataset featuring single-hand
motions and hand-hand interactions with 1397 real and 1397
synthetic sequences from 53 users. The dataset will be publicly
released.

2 RELATED WORK

2.1 Pose estimation using neural networks
Many hand pose estimation methods start by predicting heat maps
to estimate 2D keypoints, typically from a single view [Cai et al.
2020; Iqbal et al. 2018]. To better handle self-occlusion and depth am-
biguity, multi-view data is integrated through triangulation [Simon
et al. 2017] or post-inference optimization [Han et al. 2020; Simon
et al. 2017]. Recent work on multi-view fusion within the network
can be achieved using latent features [He et al. 2020; Iskakov et al.
2019; Remelli et al. 2020]. For instance, Remelli et al. [2020] used
the Feature Transform Layer (FTL) to learn camera geometry-aware
latent features and supervise 3D keypoint positions in an end-to-end
differentiable manner. However, reconstructing the hand pose from
keypoints usually requires an additional optimization stage.
Benefiting from the fast development of learning-based frame-

work, many recent papers [Boukhayma et al. 2019; Spurr et al. 2018;

Theodoridis et al. 2020] provided promising results for the root-
relative 3D hand pose from single images with end-to-end differen-
tiable architectures. However, estimating absolute 3D pose using a
single network still remains limited. For instance, Boukhayma et al.
[2019]; Kulon et al. [2020]; Yang et al. [2020] use a weak perspective
projection camera model which inherently carries depth ambiguity.
[Cai et al. 2019; Chen et al. 2021; Zhou et al. 2020; Zimmermann
and Brox 2017] predict root-relative 3D hand poses and a global
alignment to ground truth is performed before making evaluations.
Moon et al. [2019] proposed a distance-aware architecture to predict
absolute root locations but it is later shown to be insufficient to give
accurate depth predictions [Moon et al. 2020]. Recent work [Cai
et al. 2019; Chen et al. 2021; Hasson et al. 2020; Yang et al. 2020] also
explored using mutli-view information or temporal information to
address ambiguities in single images but they are still limited to
root-relative 3D pose estimation. The architecture proposed in this
paper is designed to incorporate multi-view, temporal information
while predicting absolute 3D hand pose.

2.2 Hand pose datasets
Table 1 presents a summary of the different datasets used for hand
pose estimation. Moon et al. [2020] introduced a large high quality
dataset with challenging hand motions labeled with both manual
annotations and bootstrapping methods using multiple high resolu-
tion RGB cameras. However, the dataset has minimal background
and lighting variation. Christian Zimmermann and Brox [2019] also
used a multi-view capture cage and included more background vari-
ation but the released dataset is restricted to training and evaluating
single-frame, single-view pose estimation methods. Due to the diffi-
culty of obtaining high quality data with large variations, synthetic
datasets [Mueller et al. 2018; Zimmermann and Brox 2017] based
on rendering or image-to-image translations have been proposed.
All the above datasets are limited to outside-in views captured by
narrow FOV cameras, which are not suitable for egocentric hand
tracking for VR/AR.
The available egocentric datasets are either instrumented with

highly visible markers [Garcia-Hernando et al. 2018] or have limited
environmental variation [Kwon et al. 2021]. For collecting multi-
view egocentric dataset, Han et al. [2020] introduced two approaches:
(1) a mobile setup equipped with a single depth sensor where ground
truth is obtained using a depth based hand tracker, and (2) a lab
setup with many motion capture cameras where ground truth is
obtained with a marker-based hand tracker [Han et al. 2018]. Anno-
tations of both approaches are obtained automatically, making them
suitable for large scale data collections. However, the ground truth
quality of (1) is limited by the single-view depth based hand tracker
(which struggles with the ambiguity of hand-hand occlusions) and
(2) contains limited environment and lighting variations. In this
work, we adopt the same marker-based hand tracker for uncompro-
mised ground truth but use synthetic data to improve environment
and lighting variations. Altogether, we contribute the largest and
most diverse egocentric multi-view, multi-frame dataset to date (as
shown in Table 1).

2

UmeTrack: Unified multi-view end-to-end hand tracking for VR SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Pose regression3D feature extractor

shared
weights

Encoder FTL

Multi-view
fusion

Skeleton
encoder

ᾀ

Concat

ᾀ

ᾀ

Regressor-K

SVD

Forward
kinematics

Root 6DoF
Pose

ᾀ
Temporal
module

ᾀ

Skeleton

Joint angles

Pre-defined root
sample points

ᾀ

Root sample
points

Hand pose

Encoder

ᾀ

FTL

Input data Output data Non-trainable module Feature mapTrainable module

Ὅ

Ὅ (optional)

Multi-view data flow Single-view data flow

ᾀ

Fig. 2. This figure shows our architecture for the case of a known hand skeleton. The 3D feature extractor block can take either single-view or multi-view
input data and produce 3D features 𝑧3𝑑 via a feature transform layer (FTL). The pose regression block first generates 𝑧𝑅 which contains 3D information,
temporal context and skeleton features. The known-skeleton regressor (Regressor-K) takes 𝑧𝑅 as input and predicts the absolute 3D hand pose. The whole
network can be trained end-to-end as all the modules and operators are differentiable.

Table 1. Comparing the proposed datasets with existing datasets.

Dataset # frames ego bg variation markerless real large fov hand-hand

FreiHAND [2019] 37K ✗ ✓ ✓ ✓ ✗ ✗

HOnnotate [2020] 78K ✗ ✗ ✓ ✓ ✗ ✗

InterHand2.6M [2020] 2,590K ✗ ✗ ✓ ✓ ✗ ✓

GANerated Hands [2018] 331K ✗ ✓ ✓ ✗ ✗ ✗

H2O [2021] 571K ✓ ✗ ✓ ✓ ✗ ✗

FPHA [2018] 105K ✓ ✓ ✗ ✓ ✗ ✗

Ours (real) 839k ✓ ✗ ✗ ✓ ✓ ✓

Ours (synth) 839k ✓ ✓ ✓ ✗ ✓ ✓

3 METHOD
Preliminaries. Our hand skeleton 𝐻 consists of 20 joints that can

be articulated by a 20 dimensional joint angle vector 𝜃 . Each joint
is defined by a joint position and rotation axis. The global transfor-
mation of the hand is represented by the root transformation 𝑇𝐻
consisting of 6 degrees of freedom (DOFs). With hand skeleton and
predicted joint angles and root transformation, we can animate the
corresponding hand mesh via linear blend skinning (LBS).
We adopt the multi-camera layout using wide FOV fisheye cam-

eras placed on a VR headset by Han et al. [2020]. In this layout, a
hand can be seen by a single camera or multiple cameras depending
on the hand location. As a result, we designed our network to jointly
handle single-view and multi-vew input data. For each frame, the
input to our model is either single-view or multi-view images where
the region of interest (ROI) around a hand is provided.
For real-world usage, our model supports both known and un-

known hand skeletons. If a user has a hand skeleton generated in
advance (i.e. by a scanning system), our model is capable of utilizing
the skeleton information and the output is {𝜃,𝑇𝐻 } in this case. The
corresponding architecture is shown in Figure 2. For new users with-
out prior knowledge of hand skeletons, we calibrate the unknown
hand skeletons by predicting hand scale from multi-view images
and the model output becomes {𝜃,𝑇𝐻 , 𝐻 }.
In the following sections, Section 3.1 describes how we prepare

input images for our model. Section 3.2 gives an overview of our
model when a known hand skeleton is provided. Section 3.3 details
how skeleton calibration is performedwhen the user’s hand skeleton

Perspective crop Square crop
(reference)

Fig. 3. The perspective cropping method generates a virtual perspective
camera for each hand. In this figure, each camera is represented with a
different color: grey for original camera, red for left hand virtual camera and
blue for right hand virtual camera. The solid lines around each hand outline
the crop boundaries. On the right, we show the square crops commonly
used in previous methods for comparison. Note that the square crop of
the right hand is visually more distorted whereas perspective cropping can
correct this distortion.

is unknown. Section 3.4 introduces the loss terms we use for training
our model.

3.1 Perspective cropping for input images
Most existing works [Han et al. 2020] utilize a square crop around a
hand region as the input. Unlike images captured by a physical cam-
era, these cropped images essentially lose the corresponding camera
geometry information (i.e. intrinsics and extrinsics), making them
infeasible for directly estimating absolute 3D pose. To tackle this
issue, inspired by the effectiveness of perspective cropping [Remelli
et al. 2020; Yu et al. 2021], we adopt the same cropping approach (Fig-
ure 3) for generating input images for our model. Specifically, given
a ROI in the original image, we first create a virtual perspective
camera at the same location as the original camera. The extrinsics
matrix is constructed such that the virtual camera’s z-axis points
at the center of the ROI. At train time, the virtual camera’s intrin-
sics matrix is set such that all the ground truth hand keypoints

3

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Han et al.

are projected within the image boundary. At inference time when
ground truth is not available, we rely on the previously tracked
pose to estimate the intrinsics matrix. Once the virtual camera is
created, the warping technique described by [Yu et al. 2021] can
be used to generate the cropped image. By using perspective crop-
ping, we achieved 2 goals: (1) distortions from fisheye images can
be corrected (as shown in Figure 3); (2) the virtual camera provides
essential geometry information for 3D space, which enables direct
hand scale prediction and absolute 3D pose prediction.

3.2 Architecture with known hand skeleton
In this section, we discuss the network architecture with known
hand skeleton, as is shown in Figure 2.

3D feature extractor. Given the input cropped images {𝐼𝑖 }𝑛𝑖=1,
where 𝑁 represents the number of hand crops, we first feed them
into a fully-convolutional encoder to generate the latent features
𝑧𝐼
𝑖
. Here 𝑧𝐼

𝑖
is extracted from the image space without knowing the

camera geometry, which is insufficient for scale prediction or ab-
solute 3D pose prediction. To incorporate 3D structures into the
network, we leverage FTL [Remelli et al. 2020; Worrall et al. 2017]
to generate camera-geometry-aware latent features:

𝑧3𝑑𝑖 = FTL(𝑧𝐼𝑖 |𝑇𝑖,1 ∗ 𝐾
−1
𝑖) . (1)

Here, the image features 𝑧𝐼
𝑖
is first unprojected to 3D space using

the virtual camera intrinsics matrix 𝐾𝑖 , and then transformed from
the 3D space of virtual camera 𝑖 into the 3D space of the reference
camera. In practice, we set virtual camera 1 as the reference camera
and𝑇𝑖,1 denotes the transform from camera 𝑖 to camera 1 (so𝑇1,1 is
identity in particular). By doing so, we integrate the 3D structural
information into the image features and the transformed features
{𝑧3𝑑

𝑖
}𝑛
𝑖=1 are all in the same 3D space.

Our model can handle both single-view (𝑛 = 1) and multi-view
(𝑛 > 1) data. We denote the output of 3D feature extractor as 𝑧3𝑑 . For
single-view input, the features can be directly set with: 𝑧3𝑑 = 𝑧3𝑑1 .
For multi-view input, a multi-view fusion module𝑀𝑉𝐹 is deployed
to fuse features from different camera views:

𝑧3𝑑 = 𝑀𝑉𝐹 (𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑧3𝑑𝑖 , ..., 𝑧3𝑑𝑛)), 𝑖 ∈ [1, 𝑛] . (2)

The output 𝑧3𝑑 of MVF has the same shape as 𝑧3𝑑
𝑖

so that the follow-
ing modules in our model that consume 𝑧3𝑑 as input can be agnostic
to the number of input images. Since 𝑧3𝑑

𝑖
carries the inter-camera

relationships thanks to FTL,𝑀𝑉𝐹 is capable of performing learnable
triangulations in the feature space [Iskakov et al. 2019] and is the
key to our ability to predict hand scale (See Section 3.3 for more
details).

Temporal Module. Given a set of (single-view or multi-view) spa-
tial features 𝑧3𝑑 , we start the pose regression step with a tem-
poral module 𝑇𝐸𝑀 , which fuses 𝑧3𝑑 with the temporal context:
𝑧𝑇𝐸𝑀 = 𝑇𝐸𝑀 (𝑧3𝑑 , ℎ𝑇𝐸𝑀). The temporal module is a recurrent neu-
ral network with hidden states denoted as ℎ𝑇𝐸𝑀 . It aims to learn
temporal consistency, and serves as the key to handling hands under
severe occlusions.

Skeleton Encoder. The task of pose regression is ambiguous with-
out the skeleton data: (1) if the input is a single image, depth ambigu-
ity cannot be resolved without knowing the hand scale, and (2) joint
angles need to be coupled with joint positions and rotation axes
to define hand articulations. When having the prior knowledge of
the skeleton data, we introduce a skeleton encoder 𝑆𝐸 to implicitly
incorporate hand skeleton information into the network. Specifi-
cally, we turn the joint positions (3-dimentional) and rotation axes
(3-dimensional) at the rest hand pose into a feature vector. With 20
joints, we can obtain a 120 dimentional feature vector. The skeleton
encoder SE takes a skeleton 𝐻 as input, performs featurization and
encodes the skeleton features into feature maps: 𝑧𝐻 = 𝑆𝐸 (𝐻).

Regressor-K. The last learnable module is Regressor-K ("K" repre-
sents "known hand skeleton"). The input to Regressor-K is:

𝑧𝑅 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑧𝑇𝐸𝑀 , 𝑧𝐻), (3)

where the concatenated feature 𝑧𝑅 contains 3D space information,
temporal context and hand skeleton data. Regressor-K takes 𝑧𝑅 as
input and predicts 20 joint angles 𝜃 and 3D root points 𝑣 which
encodes the root transform 𝑇𝐻,1 in the reference camera space. To
decode𝑇𝐻,1 from 𝑣 , we use Singular Value Decomposition [Sorkine-
Hornung and Rabinovich 2016] to align pre-defined 3D root points
in the local hand coordinate system to the predicted 3D root points
𝑣 . More details on decoding𝑇𝐻,1 can be found in the supplementary
material. Then we recover the root transform 𝑇𝐻 into the world
coordinate system using the extrinsics of the reference camera. The
output {𝜃,𝑇𝐻 } can be used to render the hand and drive applications
in VR.

3.3 Calibration for unknown hand skeleton
We pose the hand skeleton calibration problem as a hand scale
calibration task similar to [Han et al. 2020]. The calibrated hand
scale can be used to scale a reference hand skeleton. Calibration of
more parameters for a hand similar to [Romero et al. 2017] will be a
future extension of the proposed method. For hand scale calibration,
our method relies on Regressor-U ("U" represents "unknown hand
skeleton"). The differences between Regressor-K and Regressor-
U are shown in Figure 4. As shown in Figure 4 (b), Regressor-U
requires the temporal features 𝑧𝑇𝐸𝑀 being computed from multi-
view data since single-view data inherently carries scale ambiguity,
making scale calibration an ill-posed problem. Regressor-U outputs
an additional hand scale estimation which can be used to generate
the calibrated hand skeleton 𝐻 . The final output of Regressor-U is
{𝜃,𝑇𝐻 , 𝐻 }. During training, both Regressor-K and Regressor-U can
be trained jointly in an end-to-end manner. During inference, our
model can dynamically decide which regressor to use depending on
whether the skeleton data is provided.

3.4 Loss functions
The network is trained using a combination of three loss terms: pose
loss, temporal loss and pinch loss.

4

UmeTrack: Unified multi-view end-to-end hand tracking for VR SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Concat Regressor-K
ᾀ

ᾀ

Single/multi-view
ᾀ

Regressor-U

multi-view
ᾀ

Hand scale

ᾀ

Root sample
points Joint angles

ᾀ

Root sample
points Joint angles

(a) Pose regression with known hand skeleton

(b) Pose regression with unknown hand skeleton

Fig. 4. we provide two regressors for (a) known and (b) unknown hand
skeletons. (a) Regressor-K is used when a known hand skeleton is provided.
Regressor-K is capable of handling 𝑧𝑇𝐸𝑀 computed from either single-view
or multi-view data and requires a known hand skeleton for computing 𝑧𝐻 .
(b) Regressor-U is used when the hand skeleton is unknown. Regressor-
U requires 𝑧𝑇𝐸𝑀 being computed from multi-view data and predicts an
additional hand scale that can be used to generate the estimated skeleton.

Pose loss. The pose loss consists of a set of regression losses to
supervise the hand poses:

𝐿𝑝𝑜𝑠𝑒 =

𝐽∑︁
𝑗

| |𝑝 𝑗 (𝜃,𝑇𝐻 , 𝐻) − 𝑝 𝑗 (𝜃,𝑇𝐻 , 𝐻) | |1+ (4)

𝜆𝜃 | |𝜃 − 𝜃 | |1 + 𝜆𝑤 | |𝑤 (𝑇𝐻) −𝑤 (𝑇𝐻) | |1, (5)

where 𝑝 𝑗 (.) is a function that computes the 𝑗-th keypoint position
using forward kinematics and 𝑤 is a function that gets the trans-
lation component from 𝑇𝐻 . We use the hat symbol to denote the
network prediction. In the case a hand skeleton is known, 𝐻 is
the same as the groud truth skeleton 𝐻 . If the hand skeleton is
unknown, 𝐻 is predicted by Regressor-U. We set the loss weights
𝜆𝜃 = 0.05, 𝜆𝑤 = 0.5 in our experiments.

Temporal loss. The temporal loss enforces smoothness of the pre-
dicted pose sequence by penalizing acceleration:

𝐿𝑡𝑒𝑚𝑝 =

𝑇∑︁
𝑡

(| |𝑎𝑐𝑐 (𝜃, 𝑡)) | |1 + ||𝑎𝑐𝑐 (𝑇𝐻 , 𝑡) | |1) (6)

where 𝑎𝑐𝑐 (𝑥, 𝑡) = 𝑥𝑡+1 + 𝑥𝑡−1 − 2𝑥𝑡 is a function computing the
acceleration of a given signal 𝑥 at frame 𝑡 . Similar losses are harder
to incorporate for previous end-to-end methods that predict root-
relative hand poses since root transformation is unavailable in those
methods.

Pinch loss. Reliable detection of pinch is critical because pinch is
used for selection in VR interaction. The design of our pinch loss is
based on the observation that the distance between the thumb and
index fingertips is small while pinching:

𝐿𝑝𝑖𝑛𝑐ℎ = 𝑙 ·min(𝑑 (𝜃,𝑇𝐻 , 𝐻) − 𝜖1, 0)+ (7)

(1 − 𝑙) ·min(𝜖2 − 𝑑 (𝜃,𝑇𝐻 , 𝐻), 0)), (8)
where 𝑙 is an annotated binary pinch label and 𝑑 is a function that
computes distance between the thumb and index fingertips. 𝜖1 is
a distance threshold that corresponds to a high chance of a pinch
event. 𝜖2 is a “safe" distance threshold that means a pinch event is
unlikely to happen. 𝜖1 and 𝜖2 are chosen to be 0.01 and 0.02 meters
respectively.

The final loss is a linear combination of the above losses:

𝐿 = 𝐿𝑝𝑜𝑠𝑒 + 𝜆𝑡𝐿𝑡𝑒𝑚𝑝 + 𝜆𝑝𝐿𝑝𝑖𝑛𝑐ℎ, (9)

where we set weights 𝜆𝑡 = 0.05, 𝜆𝑝 = 0.4 in experiments.

4 DATASET
For training our pipeline in a supervised manner, a large scale multi-
view egocentric dataset with challenging interactive hand motion
is required. As seen in Table 1, existing datasets for hand tracking
tasks are either infeasible for egocentric viewpoints or lack the chal-
lenging hand-hand motions, which are crutial for VR applications.
To this end, we propose a new real-world large-scale egocentric
dataset, with 1397 sequences for 53 users. For each user, we get
the ground truth hand skeleton and mesh from a scanning system.
Each sequence has 15 seconds and is captured at 30fps. Each frame
contains 4 VGA images captured from 4 wide FOV monochrome
cameras on a VR headset. We set up a motion capture system with
36 cameras to track marker locations. Markers (3mm) were placed
on each user’s hands and a marker based hand tracker [Han et al.
2018] was used to obtain the ground truth motions. In each frame,
a hand with ground truth label could appear in 1 or 2 views.

The dataset is divided into two protocols: a separate-hand proto-
col focusing on individual hand motions and a hand-hand protocol
focusing on inter-hand interactions. Within the separate-hand proto-
col, 192 sequences contain pinch motion. Pinch events are manually
annotated, resulting in 38003 pinch labels.

In addition to the real data, we rendered a synthetic dataset with
the same hand motions as the real dataset using the Unity game
engine. Each sequence is rendered using a different background and
each frame is rendered using a different lighting configuration. As
a result, the synthetic dataset provides much larger variations in
environment and lighting. Samples of the real and synthetic data
can be found in our supplementary video. As shown in Table 1, this
dataset is the largest egocentric dataset to our knowledge dedicated
to hand tracking in VR.

5 EVALUATION
To evaluate the accuracy of our system, we use mean-per-joint-
position-error (MPJPE) which computes the average 3D Euclidean
distance in millimeters between the estimated and ground truth key-
points inworld space.We use themean-per-joint-position-acceleration
(MPJPA) metric to measure tracking jitter similar to [Han et al. 2020]
using the following equation:

𝑚𝑝 𝑗𝑝𝑎(𝜃,𝑇𝐻 , 𝐻) =
1

𝑇 · 𝐽

𝑇∑︁
𝑡

𝐽∑︁
𝑗

| |𝑎𝑐𝑐 (𝑝 𝑗 (𝜃,𝑇𝐻 , 𝐻), 𝑡) | |2 (10)

Lower MPJPE indicates better accuracy and lower MPJPA indicates
less jittery tracking. We compare our method to the state-of-the-art
multi-stage hand tracking method for VR by [Han et al. 2020] to
understand the benefit of end-to-end differentiability brought by
our pipeline.

5.1 Implementation details
Data augmentation. We perform data augmentation by perturb-

ing the camera intrinsics and extrinsics during training: (1) adding

5

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Han et al.

noise to the look-at direction when creating extrinsics of the virtual
camera, (2) randomly applying in-plane rotation to the camera ex-
trinsics, and (3) random scaling to the focal lengths. Note that we
can’t use the commonly used affine transforms to augment input
images since they would cause a mismatch between virtual camera
parameters and image data.
We implemented our method in PyTorch [Paszke et al. 2017].

For fair comparisons with Han et al. [2020], we use the same input
resolution (96× 96 monochrome image) and the same backbone for
image encoder. All the modules in our model are jointly trained in
an end-to-end manner using 9 GPUs with a batch size of 144. We
first train the network for 200 epochs using the Adam optimizer
with a learning rate of 0.0002 without temporal or pinch loss. The
network is then trained for another 200 epochs with all the loss
terms enabled. Inference with our model using 4 images (both hands
are seen by 2 cameras) takes ∼10ms on a PC with a NVIDIA GTX
2080 Super. We provide more details on the layers used for each
module in the supplementary material.
Empirically, we found that a network trained on synthetic data

shows better robustness to challenging environments whereas a
network trained on real data gives better metrics on the test split
of the real dataset. To leverage the benefits of both, we train both
our method and the keypoint network by [Han et al. 2020] on the
combined real and synthetic data for fair comparison. Metrics are
reported on the test split of the real data.

5.2 Ablation study
In this section, we perform ablation study on the modules and loss
functions. Pinch loss is not included and will be discussed later in
section 5.4. We compare results under MPJPE andMPJPAmetrics on
the separate-hand protocol, which are summarized in Table 2. With-
out FTL, our model can barely learn to predict 3D hand pose and
the corresponding model performs the worst (49.8mm MPJPE). The
skeleton encoder extracts critical hand scale and joint features, with-
out which, the network accuracy degrades (13.4mm MPJPE). With-
out the temporal module, the network loses the temporal context
and performs slightly worse in MPJPE and much worse in MPJPA.
Adding 𝐿𝑡𝑒𝑚𝑝 without the temporal module improves MPJPA (5.10
to 4.39) but leads to noticeable degradation in MPJPE (9.5 mm to
10.0mm). When using the full model, the model trained with 𝐿𝑡𝑒𝑚𝑝

shows slightly degraded MPJPE (9.4mm vs. 9.3mm) but performs
much better in MPJPA metric (2.61 vs. 3.52) than the model trained
without 𝐿𝑡𝑒𝑚𝑝 . To further validate the benefit of 𝐿𝑡𝑒𝑚𝑝 , we compare
the model trained with 𝐿𝑡𝑒𝑚𝑝 to using a one-euro filter [Casiez
et al. 2012] for post-processing. The one-euro filter parameters were
tuned to produce identical MPJPA metric and it performed much
worse in MPJPE metric (10.1mm vs. 9.4mm). Based on these obser-
vations, we consider 𝐿𝑡𝑒𝑚𝑝 brings enough benefit to MPJPA metric
and we adopt the full model trained with both 𝐿𝑝𝑜𝑠𝑒 and 𝐿𝑡𝑒𝑚𝑝 for
hand tracking task.
Figure 5 visualizes some sample results using our method. In

particular, hands that are severely occluded by each other can be
reasonably tracked (row 3, 5 in Figure 5). Another observation we
made was the temporal module is the key to handling challenging
occlusions by another object. To show this, we provide an example

Table 2. Ablation study for different modules and loss functions. For each
model, "|" separates the model architecture (left) and loss functions used for
training (right). Model annotated with "(One-Euro)" refers to using one-euro
filter to post-process the tracked poses. Best model is highlighted in bold.

model MPJPE MPJPA
w/o FTL | 𝐿𝑝𝑜𝑠𝑒 49.8 6.29
w/o skeleton encoder | 𝐿𝑝𝑜𝑠𝑒 13.4 4.07
w/o temporal module | 𝐿𝑝𝑜𝑠𝑒 9.5 5.10
w/o temporal module | 𝐿𝑝𝑜𝑠𝑒 + 𝐿𝑡𝑒𝑚𝑝 10.2 4.39
full model | 𝐿𝑝𝑜𝑠𝑒 9.3 3.52
full model | 𝐿𝑝𝑜𝑠𝑒 (One-Euro) 10.1 2.67
full model | Lpose + Ltemp 9.4 2.61

Image Ground truth
 keypoints

Ground truth
hand pose

Predicted
keypoints

Predicted
hand pose

Fig. 5. Qualitative results on our evaluation dataset.

in Figure 6 where the full model is able to maintain a plausible pose
when the hand is occluded by a paper whereas the model without
the temporal module completely fails.

5.3 Comparison to previous multi-stage method
Known hand skeleton. We compare our model trained with both

𝐿𝑝𝑜𝑠𝑒 and 𝐿𝑡𝑒𝑚𝑝 to Han et al. [2020] using the ground truth skele-
tons provided by the dataset. Metrics on separate-hand and hand-
hand protocols are reported in Table 3. On both protocols, our
method outperforms [Han et al. 2020] in MPJPE (9.4mm vs. 9.9mm
on separate-hand; 10.5mm vs 10.8mm on hand-hand). More details
on the performance of each method at different error thresholds
can be found in Figure 7(a) and (b). In particular, in Figure 7(a),
the curve for our method crossed with the curve for [Han et al.
2020] at 9.5mm error threshold. This suggests our method produces

6

UmeTrack: Unified multi-view end-to-end hand tracking for VR SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Table 3. Comparison with the multi-stage method [Han et al. 2020] on separate-hand and hand-hand protocols. For each of our models, loss functions used for
training are specified after "|".

Method
Known hand skeleton Unknown hand skeleton

separate-hand hand-hand separate-hand hand-hand

MPJPE MPJPA MPJPE MPJPA MPJPE MPJPA MPJPE MPJPA
[Han et al. 2020] 9.9 3.48 10.8 3.33 12.9 3.46 13.6 3.33
Ours | 𝐿𝑝𝑜𝑠𝑒 + 𝐿𝑡𝑒𝑚𝑝 9.4 2.61 10.5 2.73 11.2 2.57 12.0 2.69
Ours | 𝐿𝑝𝑜𝑠𝑒 + 𝐿𝑡𝑒𝑚𝑝 + 𝐿𝑝𝑖𝑛𝑐ℎ 9.4 2.65 10.6 2.68 11.4 2.60 12.2 2.65

Image
With

temporal

t-
5

t

Without
temporal

Fig. 6. The model without temporal module predicts a reasonable pose
at frame (t-5) but completely fails at frame t due to severe occlusion. In
contrast, the model with temporal module predicts a plausible hand pose
at frame t by leveraging the temporal context.

(a) (b)

separate-hand hand-hand

Fig. 7. PCK curves on separate-hand and hand-hand protocols. Legends
including “(K)” refer to evaluation for known hand skeletons and legends
with “(U)” refer to evaluation for unknown hand skeletons.

fewer outliers (error > 9.5mm) at the cost of degraded capability
in precise localization (error < 9.5mm). A similar phenomenon can
also be seen in Figure 7(b). With respect to the MPJPA metric, our
method consistently outperforms Han et al. [2020] (2.61 vs. 3.48 on
separate-hand; 2.68 vs. 3.33 on hand-hand).

Unknown hand skeleton. When the user’s hand skeleton is not
provided, we perform a hand scale calibration for both our method
and [Han et al. 2020]. Hand scale calibration in [Han et al. 2020]
is achieved by gathering multiple multi-view frames and using an
optimization method to solve for the hand scale. In our work, we

Table 4. Comparison on pinchmetrics. For each of ourmodels, loss functions
used for training are specified after "|".

model precision (%) recall (%)
[Han et al. 2020] 96.5 95.0
Ours | 𝐿𝑝𝑜𝑠𝑒 + 𝐿𝑡𝑒𝑚𝑝 92.2 90.8
Ours | 𝐿𝑝𝑜𝑠𝑒 + 𝐿𝑡𝑒𝑚𝑝 + 𝐿𝑝𝑖𝑛𝑐ℎ 97.3 97.3

calibrate the hand scale by averaging scale predictions of the first
30 frames. To gather metrics, we first run both methods to perform
scale calibration to obtain calibrated hand skeletons. We then re-
run inference using the calibrated hand skeletons. In Table 3, our
method consistently outperforms [Han et al. 2020] in MPJPE metric
by a large margin (11.2mm vs. 12.9mm on separate-hand; 12.0mm
vs. 13.6mm on hand-hand), indicating the effectiveness of our end-
to-end differentiable architecture.

5.4 Pinch evaluation
In this section, we compare the precision and recall metrics [LeCun
et al. 2015] for pinch detection. A pinch detector based on index-
thumb fingertip distance thresholding is used for both methods. The
threshold is the same as used in our designed 𝐿𝑝𝑖𝑛𝑐ℎ . As shown in
Table 4, our model trained without 𝐿𝑝𝑖𝑛𝑐ℎ gives worse metrics than
Han et al. [2020]. This could be related to the observation made
in Section 5.3 that our method is less capable of precise localiza-
tion. After incorporating 𝐿𝑝𝑖𝑛𝑐ℎ for training, though the MPJPE is
slightly degraded as shown in Table 3, the pinch detection accuracy
is significantly boosted. In Table 4, our model trained with 𝐿𝑝𝑖𝑛𝑐ℎ
outperforms Han et al. [2020] (97.3% vs. 96.5% in precision; 97.3%
vs. 95.0% in recall). We’d like to emphasize our model provides a
framework for studying the interplay between pose estimation and
many other downstream tasks such as pinch detection. These tasks
are much harder to be jointly optimized in multi-stage methods.

6 CONCLUSION
We have presented an end-to-end differentiable architecture de-
signed for hand tracking in VR. It unifies multi-view, temporal
fusion and handling of wide FOV images while making absolute 3D
hand pose predictions. We demonstrate end-to-end differentiability
makes it easier to optimize for downstream tasks like jitter reduc-
tion and pinch detection compared to multi-stage non-differentiable
pipelines. A new large-scale egocentric dataset is introduced. We
demonstrate compelling VR experiences in the supplementary video
with our model trained on this new datset.

7

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Han et al.

Limitations and future work. Hand-hand interactions remain a
challenge for our method. A potential solution is joint regression
of both hand poses and designing hand-hand interaction losses (i.e.
loss that prevents inter-penetration). Compared to [Han et al. 2020],
we discovered our method is less capable of precise localizations.
We hypotheize this to be a limitation with the direct pose regression
approach. By borrowing ideas from the multi-stage method, our
model can potentially incorporate heatmap regression and numer-
ical optimization as differentiable components during training to
achieve more precise hand tracking.

REFERENCES
Adnane Boukhayma, Rodrigo de Bem, and Philip HS Torr. 2019. 3d hand shape and

pose from images in the wild. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 10843–10852.

Yujun Cai, Liuhao Ge, Jianfei Cai, Nadia Magnenat Thalmann, and Junsong Yuan. 2020.
3D hand pose estimation using synthetic data and weakly labeled RGB images. IEEE
transactions on pattern analysis and machine intelligence 43, 11 (2020), 3739–3753.

Yujun Cai, Liuhao Ge, Jianfei Cai, and Junsong Yuan. 2018. Weakly-supervised 3d
hand pose estimation from monocular rgb images. In Proceedings of the European
Conference on Computer Vision (ECCV). 666–682.

Yujun Cai, Liuhao Ge, Jun Liu, Jianfei Cai, Tat-Jen Cham, Junsong Yuan, and Na-
dia Magnenat Thalmann. 2019. Exploiting spatial-temporal relationships for 3d pose
estimation via graph convolutional networks. In Proceedings of the IEEE International
Conference on Computer Vision. 2272–2281.

Géry Casiez, Nicolas Roussel, and Daniel Vogel. 2012. 1 € filter: a simple speed-based
low-pass filter for noisy input in interactive systems. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (2012).

Liangjian Chen, Shih-Yao Lin, Yusheng Xie, Yen-Yu Lin, and Xiaohui Xie. 2021. MVHM:
A Large-Scale Multi-View Hand Mesh Benchmark for Accurate 3D Hand Pose
Estimation. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV)
(2021), 836–845.

Jimei Yang Bryan RusselMaxArgus Christian Zimmermann, DuyguCeylan and Thomas
Brox. 2019. FreiHAND: A Dataset for Markerless Capture of Hand Pose and Shape
from Single RGB Images. In IEEE International Conference on Computer Vision (ICCV).
"https://lmb.informatik.uni-freiburg.de/projects/freihand/"

Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul Baek, and Tae-Kyun Kim. 2018.
First-Person Hand Action Benchmark with RGB-D Videos and 3D Hand Pose Anno-
tations. In Proceedings of Computer Vision and Pattern Recognition (CVPR).

Shreyas Hampali, Mahdi Rad,Markus Oberweger, and Vincent Lepetit. 2020. HOnnotate:
A Method for 3D Annotation of Hand and Object Poses. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Shangchen Han, Beibei Liu, Randi Cabezas, Christopher Twigg, Peizhao Zhang, Jeff
Petkau, Tsz-Ho Yu, Chun-Jung Tai, Muzaffer Akbay, Zheng Wang, Asaf Nitzan,
Gang Dong, Yuting Ye, Lingling Tao, Chengde Wan, and Robert Wang. 2020. MEgA-
Track: monochrome egocentric articulated hand-tracking for virtual reality. ACM
Transactions on Graphics 39 (07 2020). https://doi.org/10.1145/3386569.3392452

Shangchen Han, Beibei Liu, Robert Wang, Yuting Ye, Christopher D. Twigg, and Kenrick
Kin. 2018. Online Optical Marker-based Hand Tracking with Deep Labels. ACM
Trans. Graph. 37, 4, Article 166 (July 2018), 10 pages. https://doi.org/10.1145/3197517.
3201399

Yana Hasson, Bugra Tekin, Federica Bogo, Ivan Laptev, Marc Pollefeys, and Cordelia
Schmid. 2020. Leveraging photometric consistency over time for sparsely supervised
hand-object reconstruction. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 571–580.

Yihui He, Rui Yan, Katerina Fragkiadaki, and Shoou-I Yu. 2020. Epipolar Transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
7779–7788.

Umar Iqbal, Pavlo Molchanov, Thomas Breuel, Juergen Gall, and Jan Kautz. 2018. Hand
Pose Estimation via Latent 2.5 D Heatmap Regression. In Proceedings of European
Conference on Computer Vision.

Karim Iskakov, Egor Burkov, Victor Lempitsky, and Yury Malkov. 2019. Learnable
Triangulation of Human Pose. In International Conference on Computer Vision (ICCV).

Dominik Kulon, Riza Alp Guler, Iasonas Kokkinos, Michael M. Bronstein, and Stefanos
Zafeiriou. 2020. Weakly-Supervised Mesh-Convolutional Hand Reconstruction in
the Wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Taein Kwon, Bugra Tekin, Jan Stuhmer, Federica Bogo, and Marc Pollefeys. 2021.
H2O: Two Hands Manipulating Objects for First Person Interaction Recognition.
In ICCV 2021. https://www.microsoft.com/en-us/research/publication/h2o-two-
hands-manipulating-objects-for-first-person-interaction-recognition/

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature 521,
7553 (2015), 436–444.

Gyeongsik Moon, Juyong Chang, and Kyoung Mu Lee. 2019. Camera Distance-aware
Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image.
In The IEEE Conference on International Conference on Computer Vision (ICCV).

Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori, and Kyoung Mu Lee. 2020.
InterHand2.6M: A Dataset and Baseline for 3D Interacting Hand Pose Estimation
from a Single RGB Image. In European Conference on Computer Vision (ECCV).

Franziska Mueller, Florian Bernard, Oleksandr Sotnychenko, Dushyant Mehta, Srinath
Sridhar, Dan Casas, and Christian Theobalt. 2018. GANerated Hands for Real-Time
3D Hand Tracking from Monocular RGB. In Proceedings of Computer Vision and
Pattern Recognition (CVPR). 11 pages. https://handtracker.mpi-inf.mpg.de/projects/
GANeratedHands/

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic differentiation in PyTorch. (2017).

Edoardo Remelli, Shangchen Han, Sina Honari, Pascal Fua, and Robert Wang. 2020.
Lightweight Multi-View 3D Pose Estimation Through Camera-Disentangled Rep-
resentation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Javier Romero, Dimitrios Tzionas, and Michael J. Black. 2017. Embodied Hands: Mod-
eling and Capturing Hands and Bodies Together. ACM Transactions on Graphics,
(Proc. SIGGRAPH Asia) 36, 6 (Nov. 2017).

Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Taylor, Jamie Shotton, David
Kim, Christoph Rhemann, Ido Leichter, Alon Vinnikov, Yichen Wei, et al. 2015.
Accurate, robust, and flexible real-time hand tracking. In Proceedings of the 33rd
annual ACM conference on human factors in computing systems. 3633–3642.

Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser Sheikh. 2017. Hand Keypoint
Detection in Single Images using Multiview Bootstrapping. In CVPR.

Olga Sorkine-Hornung and Michael Rabinovich. 2016. Least-Squares Rigid Motion
Using SVD. Technical note.

Adrian Spurr, Aneesh Dahiya, Xi Wang, Xucong Zhang, and Otmar Hilliges. 2021.
Self-Supervised 3D Hand Pose Estimation from monocular RGB via Contrastive
Learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
11230–11239.

Adrian Spurr, Jie Song, Seonwook Park, and Otmar Hilliges. 2018. Cross-modal deep
variational hand pose estimation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 89–98.

Jonathan Taylor, Lucas Bordeaux, Thomas Cashman, Bob Corish, Cem Keskin, Toby
Sharp, Eduardo Soto, David Sweeney, Julien Valentin, Benjamin Luff, et al. 2016. Ef-
ficient and precise interactive hand tracking through joint, continuous optimization
of pose and correspondences. ACM Transactions on Graphics (TOG) 35, 4 (2016),
1–12.

Thomas Theodoridis, Theocharis Chatzis, Vassilios Solachidis, Kosmas Dimitropoulos,
and Petros Daras. 2020. Cross-modal variational alignment of latent spaces. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops. 960–961.

Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow.
2017. Interpretable transformations with encoder-decoder networks. In Proceedings
of the IEEE International Conference on Computer Vision. 5726–5735.

John Yang, Hyung Jin Chang, Seungeui Lee, and Nojun Kwak. 2020. SeqHAND: RGB-
Sequence-Based 3D Hand Pose and Shape Estimation. CoRR abs/2007.05168 (2020).
arXiv:2007.05168 https://arxiv.org/abs/2007.05168

Frank Yu, Mathieu Salzmann, P. Fua, and Helge Rhodin. 2021. PCLs: Geometry-aware
Neural Reconstruction of 3D Pose with Perspective Crop Layers. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2021), 9060–9069.

Xingyi Zhou, Xiao Sun, Wei Zhang, Shuang Liang, and Yichen Wei. 2016. Deep
Kinematic Pose Regression. CoRR abs/1609.05317 (2016). arXiv:1609.05317 http:
//arxiv.org/abs/1609.05317

Yuxiao Zhou, Marc Habermann, Weipeng Xu, Ikhsanul Habibie, Christian Theobalt, and
Feng Xu. 2020. Monocular Real-Time Hand Shape and Motion Capture Using Multi-
Modal Data. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Christian Zimmermann and Thomas Brox. 2017. Learning to estimate 3d hand pose from
single rgb images. In Proceedings of the IEEE International Conference on Computer
Vision. 4903–4911.

A NETWORK ARCHITECTURE DETAILS
The input shape, output shape, hidden state shape and the layers
used for each module are shown in Table 5. The encoder uses the
same resnet as [Han et al. 2020] to ensure fair comparisons. The
last layer of the encoder is a 1 × 1 convolution layer for dimen-
sionality reduction purpose. Multi-view fusion uses multiple 1 × 1

8

"https://lmb.informatik.uni-freiburg.de/projects/freihand/"
https://doi.org/10.1145/3386569.3392452
https://doi.org/10.1145/3197517.3201399
https://doi.org/10.1145/3197517.3201399
https://www.microsoft.com/en-us/research/publication/h2o-two-hands-manipulating-objects-for-first-person-interaction-recognition/
https://www.microsoft.com/en-us/research/publication/h2o-two-hands-manipulating-objects-for-first-person-interaction-recognition/
https://handtracker.mpi-inf.mpg.de/projects/GANeratedHands/
https://handtracker.mpi-inf.mpg.de/projects/GANeratedHands/
https://arxiv.org/abs/2007.05168
http://arxiv.org/abs/1609.05317
http://arxiv.org/abs/1609.05317

UmeTrack: Unified multi-view end-to-end hand tracking for VR SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Table 5. Architecture table

Module Input Output Hidden state Layers
Encoder 1 × 96 × 96 72 × 6 × 6 NA resnet + Conv11

Multi-view fusion 144 × 6 × 6 72 × 6 × 6 NA (Conv11 + ReLU) ×2 + Conv11
Temporal module 72 × 6 × 6 72 × 6 × 6 18 × 6 × 6 (Conv11 + ReLU) ×2 + Conv11
Skeleton encoder 120 4 × 6 × 6 NA linear + reshape

Regressor-K 76 × 6 × 6 41 NA residual blocks × 2 + Pool
Regressor-U 72 × 6 × 6 42 NA residual blocks × 2 + Pool

convolutions and ReLU layers. Each 1 × 1 convolution serves the
purpose of feature fusion and dimensionality reduction. The output
shape of the multi-view fusion module is the same as the output
shape of the encoder. The temporal module is a recurrent neural
network with a hidden state using 1×1 convolution and ReLU as the
building blocks. Both Regressor-K and Regressor-U are built from

residual blocks. The output of Regressor-K contains 20 dimensional
joint angles and 21 dimensional root point coordinates. Regressor-U
outputs a 1 dimensional hand scale parameter in addition to joint
angle and root point outputs.
For root transform prediction, we pre-define 7 points for repre-

senting a transformation in the hand local space: 𝑣𝐻 = {[0, 0, 0]𝑇 ,
[1, 0, 0]𝑇 , [0, 1, 0]𝑇 , [0, 0, 1]𝑇 , [1, 1, 0]𝑇 , [1, 0, 1]𝑇 , [0, 1, 1]𝑇 }. And the
task of a regressor is to predict the location of these points denoted
as 𝑣 in the reference camera space. The root transformation can be
recovered using Singular Value Decomposition [Sorkine-Hornung
and Rabinovich 2016] by solving the following equation:

𝑇𝐻 = min
𝑇𝐻

∑︁
𝑖

| |𝑇𝐻 ∗ 𝑣𝐻,𝑖 − 𝑣𝑖 | |22 (11)

9

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pose estimation using neural networks
	2.2 Hand pose datasets

	3 Method
	3.1 Perspective cropping for input images
	3.2 Architecture with known hand skeleton
	3.3 Calibration for unknown hand skeleton
	3.4 Loss functions

	4 Dataset
	5 Evaluation
	5.1 Implementation details
	5.2 Ablation study
	5.3 Comparison to previous multi-stage method
	5.4 Pinch evaluation

	6 Conclusion
	References
	A Network architecture details

