
CU-SeeMe VR
Immersive Desktop Teleconferencing

Jefferson Han, Brian Smith

Department of Computer Science

Cornell University

Ithaca, INY 14853

~yh4,bsmith)@cornelL edu

ABSTRACT

Current video-conferencing systems provide a “video-in-

s-window” user interface. This paper presents a

distributed video-conferencing system called CU-SeeMe

VR that embeds live video and audio conferencing in a

virtual space. This paper describes a prototype

implementation of CU-SeeMe VR, including the user

interface, system architecture, and a detailed look at the

enabling technologies. Future directions and the

implications of the virtual reality metaphor are discussed.

KEYWORDS

video-conferencing, virtual reality, cyberspace, ray-

casting, spatial audio, segmentation

INTRODUCTION

CU-SeeMe VR merges the CU-SeeMe video

teleconferencing application [2] with a fast 3D graphics

engine to create an immersive 3D chat environment. Live

video feeds from conference participants are projected

onto 3D walls that roam around in a virtual conference

room. The user freely navigate around the 3D world. The

interface draws on user intuition: the interaction

metaphors in a physicrd conference room carry over to the

virtual world. If you want to talk to someone, you walk

up to them. If someone is offensive or boring, you can

move away. And as in reality, they can follow you around.

This conference room is virtual- two people next to each

other in virtual space could be thousands of miles away in

reality.

Figure 1 shows the CU-SeeMe VR user interface. The

interface consists of 7 regions: the 3D view window, the

chat dialogue, the map view window, the navigation

panel, the local video window, the audio control window,

and the visibility control. The local video window shows

the output of the local camera. The audio control window

shows the level of the microphone and speaker volume.

Permissionto make digital/hard copies of all or part of tlis material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed fnr pro$t or commercial advantage, the. copY-
right notice, the title of the pubbcatlon and Its date appear, and notice is
given that copyright is by permission of the ACM, lnc. To copy othewi%
to republish,to poston serversor to redistributeto lists, reqwresspecific
permission and/or fee.

ACM Multimedia 96, Boston MA USA
@1996 A(JM o-89791 .871 -l/9 fj/11 ..$3.50

199

These controls, which are standard on most video

conferencing systems, are used to tune the parameters clf

the audio/video capture modules. The chat dialogue is

used to transmit textual information. The visibility control

sets a threshold for the video segmentation algorithm,

described later.

The 3D view, map view, and navigation par~el are at the

heart of CU-SeeMe VR. The 3D view shows a projection

of the 3D world from the user’s perspective. The engine

used to generate this view is described below, The map

view window shows a schematic, bird’ s-eye view of the

3D world. It helps the user to understand his position in,

and navigate through, the virtual world. Finally, the

navigation panel allows the user to move around in the 3 D

world. Holding a mouse button down on the upper arrow

moves forward, on the lower arrow moves backwards, cm

the left arrow turns the user’s view to the left, and on the

right arrow turns the user ‘s view to the right. Keyboard

accelerators are also provided for these functions. The

map and 3D view are updated in real-time to reflect the

changed positions.

This interface provides users with a 3D presence in, and

ability to navigate through, a virtual world. other users in

the world are shown as flat planes texture-mapped with

that user’s video stream. As other users move through the

virtual world, the position of their plane is changed.

Simultaneously, the texture map is updated with incoming

video data. These two mechanisms give the effect of a

user “walking” (maybe more like “sliding”) through tlhe

virtual space. Though primitive, the mechanism works

rather well, It works even better when foreground

segmentation (discussed later in the paper) is used to “cut

out” the user’s head from the quadrilateral (you can see a

segmented user on the right side of the 3D view, about the

middle of the window).

In addition to providing 3D graphics, the user interface

also spatializes the audio streams of the participants.
People closer to you in the virtual world are louder than

those far away, left and right stereo channels reflect the

speaker’s relative azimuth (left or right), and a speaker’s

voice gets louder when they face you.

Figure 1: The CU-SeeMe VR User Interface

The system is backwards compatible with vanilla CU-

SeeMe. Regular CU-SeeMe clients are immobile, so we

map them onto a fixed, rotating multi-faceted cylinder in

the environment. Regular CU-SeeMe permits the

participation of users without video (“lurkers”) that

communicate through audio and text. For these users, we

use a default bitmap as a texture map. We also use this

bitmap for a normal video client’s “backside.” Without

this mechanism, it is hard to figure out which side of a

client you are seeing from a distance.

The rest of this paper describes the design and

implementation of CU-SeeMe VR. We first briefly review

related work (section 2) and CU-SeeMe, the video-

conferencing software on which our prototype is based

(section 3). We then describe the system architecture, key

algorithms, and performance of the system are described

(section 4), Finally, we discuss limitations, applications,

and implications of both the

reality metaphor (section 5).

technology and-~e virtual

200

RELATED WORK

CU-SeeMe VR combines elements of both computer

graphics and video-conferencing. Both these subjects have

a long and rich history.

The MBONE suite of video conferencing tools (vie, vat,

nv) are among the most well-known [5] [9]. Hewitt [4]

provides an exhaustive review of current video

conferencing products and standards. These tools provide

“video in a window” as the primary mode of interaction.

They are patterned after broadcast or telephone
technology: users rendezvous by listening to a broadcast

or calling each other explicitly. Fish, Kraut, and Chalfonte

have experimented with a video wall installed in two parts

of the same laboratory [8] to provide an environment more

conducive to informal interactions than other tools. CU-

SeeMe VR also provides an environment that encourages

informal, chance meetings.

The Virtual Reality Modeling Language (VRML) is an

Internet specification for 3D environments [3]. Models

can be downloaded and viewed interactively using VRML

browsers. Black Sun Interactive [7] is among the

companies that has used VRML as a basis for an

interactive environment similar to CU-SeeMe VR. These

product include support for audio, but conference

participants are represented by cartoon characters called

avatars, which leads to fairly unrealistic and awkward

interactions (e.g., a user presses F3 to smile). Many

vendors believe that such products will become more

widespread in the near future as operating system vendors

include support for 3D graphics. Examples of such

support is OpenGL, QuickDraw 3D, and Direct3D. Third

party vendors are expected to include hardware support

for these primitives in the near future.

More advanced research has explored the integration of

video-con ferencing into CAVE virtual reality

environments [12]. Such environment allow

geographically remote scientists to explore a virtual space

together. The usage of such environments is limited by the

equipment required (high end graphics workstations and

an expensive, dedicated VR facility). Recent work on

interactive building walk-throughs [6] shows that for real-

time rendering of very complex spaces (millions of

polygons) is possible.

CU-SEEME OVERVIEW

This section briefly reviews the architecture of CU-

SeeMe, the video conferencing engine on which CU-

SeeMe VR is based.

CU-SeeMe is a desktop video-conferencing system

developed at Cornell University that was designed to

accommodate multiparty conferences over the Internet on

low-cost personal computers [2]. It is available for both

Macintosh and Windows, and is designed to run on as

many computers as possible to allow for as much

interaction as possible. Because CU-SeeMe can run on

low-end PC machines with minimal network connectivity,

it has enjoyed extremely widespread usagel. Its

audio/video transport engine at the heart of CU-SeeMe

VR. Although our current implementation uses CU-

SeeMe, the ideas in this paper can be applied to other

video conferencing systems as well.

CU-SeeMe clients can be connected in a point-to-point

fashion or through a central rejZector. The reflector

multiplexes multiple video streams over a single

connection and gives the conference a star topology. For

multiparty conferences, connecting to a reflector reduces

the number of independent connections from nz to 2n,

where n is the number of clients in the conference. Over
the years, the reflector has grown to include other

1 The CU-SeeMe software is downloaded by about 1,000

users per week from the Cornell FTP site.

operations, such as unwanted data pruning, bandwidth

management, and transcoding. The reflector model also

imposes limitations on the scalability of the system.

These limitations are discussion in section 5.

The reflector serves another purpose: it promotes socia,l

interaction by providing a common place to which users

may connect. Users rendezvous at well-known reflector

sites to meet other people. This support for casuaJ

interaction has made the program very popular.

CU-SeeMe’s transport mechanism is a best-effort protocc~l

built on top of UDP. It includes a robust auxiliary

transport mechanism that allows data types other than

audio and video (e.g. text) to be used in a conference. The

protocol provides two modes of operation for auxiliary

data: best-effort streaming and reliable transport. In CU-

SeeMe VR, position data is sent over this auxiliary data

stream using best-effort transport.

The CU-SeeMe codec utilizes lossless intra-frame

compression on 8x8 pixel blocks of 4-bit, 160x120 gray-

scale video. It also uses conditional replenishment onlly

blocks that have changed beyond a specified threshold

value are sent as part of a frame update. Standard codecs

(e.g., Intel DVI) are utilized for 8 bit, 8kHz-sampk?d

audio,

VR CLIENT IMPLEMENTATION

This section describes the implementation of the CIJ-

SeeMe VR system. Our architecture has three parts, the

rejlector, whose role was discussed above, the sender,

which captures, compresses, and sends audio, video, and

auxiliary data to the reflector, and the receiver, which

decodes and displays audio, video, and auxiliary data from

the reflector. We use an unmodified reflector. Our sender

uses the capture, compression, and transport protocols of

CU-SeeMe. The only modification we made to the sender

was to add an auxiliary data stream containing the user’s

position in the virtual space. This design allows

unmodified CU-SeeMe clients to receive and decode data

sent by a CU-SeeMe VR application, since they ignore the

auxiliary data stream.

The receiver’s software architecture is more complex, and

is shown in figure 2. The receiver splits the video stream

into audio, video, and 3D position streams (other auxiliary

data, such as textual “chat” data, is not shown). 3D

position data consists of two triples. One triple specifies

the user’s position (x, y, z), and the other thriple specifies

a normal vector (nx, ny, nz) that gives the: direction the

user is facing. These triples are recorded in a table,
indexed by user id. Video data is decoded by the CU-

SeeMe video codec and saved in a video buffer. A

separate video buffer is maintained for each user. The 3D

201

Video Stream

Video
Buffers

L To Display To Speaker J

Figure 2: Receiver Architecture

graphics engine combines the decoded video data with the

model of the virtual world and the 3D position of each

user to render the image on the user’s display. To the

codec, the video buffers are target images. To the

graphics engine, they are texture maps. The graphics

engine is discussed below.

The audio decoding pipeline is analogous. The audio

decoder places decompressed audio data into an audio

buj%er, one per user. The audio mixer and spatializer uses

the user position information to attenuate and mix the

audio data to create a single audio output stream that is

sent to the speaker. The spatializing and mixing

algorithms are discussed below.

Grephics Engine
The 3D graphics engine renders the virtual world on the

user’s display. Although full-scale VR is still not practical

on today’s machines, we can provide a reasonable

approximation using a technique called ray-casting. Since

ray-casting is described in detail elsewhere [1], we will

only sketch the algorithm here.

Ray-casting is a technique for extremely fast rendering of

so-called “first-person” 3D scenes. First-person scenes are

mostly-static environments viewed through a single

camera that is free to move about in 3-space, but cannot

pitch or roll. This constraint is acceptable beeause people

generally can not fly and rarely tilt their heads. Ray
casting places additional constraints on the environment

polygons (walls) in the scene must be orthogonal to the

floor and non-intersecting. Despite these restrictions, such

environments can appear rather realistic by suitable use of

texture maps on the walls. The popular PC video game

“Doom/’ for example, uses ray-casting techniques. A

sample image generated by our ray-casting engine is

shown in figure 3.

Ray-casting is based on the principle of forward-ray-

tracing, where the visi~ility of each pixel in the rendered

image is determined by intersecting a view ray with the

primitives of the environment. However, instead of

computing this intersection for every pixel in the image,

which is very expensive, it is computed only once for

every vertical column of pixels. This is sufficient because

the environment is constrained to have only vertical, non-

intersecting walls.

The intersection list is then sorted by depth, and the

vertical span in screen space representing each wall is

computed using the traditional perspeetive-divide

transformation. Rasterization proceeds in reverse depth

order (from back to front), so that nearer walls are drawn

over and occlude farther walls. This approach is called the
Painter’s Algorithm [10] and is sub-optimal. Two better

ways would be to render front to back, keeping track of

spans that have been written and masking those sections

out, or to use a pre-computed data structure such as BSP

trees [11].

Because all walls are orthogonal to the ground plane, and

the viewer has zero pitch, every pixel in a vertical span

has the same distance from the viewpoint. Thus, there is

no need for a time-consuming perspective divide per

202

We found that the best way to make a sound appear to

come from the left, using external speakers, is to simply

play it through only the left speaker. We proceed to pan a

sound from left to right by increasing the right channel

volume and decreasing the left using a sinusoidal function

of the sounds angle from the forward facing direction.

This
Figure 3: Ray-Casting Engine Output

pixel -- one divide suffices for the entire vertical span,

Each span is then rendered with a texture map into the

frame buffer. The rasterization of the texture-map is also

extremely fast because the portion of the texture copied to

the screen is a simple scaling of the texture image. Floors

(planes which are parallel to the ground plane) take

advantage of similar optimizations. A user’s video is

integrated into scene by texture mapping it onto a plane

whose position is determined from the 3D table

information.

Audio Mixer/Spatializer
Sound directionality provides a strong cue for localizing

sources of sound, or in this case, the voices of participants

in cyberspace, especially when multiple sources are active

at the same time. Thus, our conferencing engine includes

and audio spatializer.

A complete solution to the spatial audio problem uses

real-time convolutions to simulate the diffractive effects

of the environment and the pinnae of our ears [13].

Implementations utilizing this approach require dedicated

hardware for real-time performance and are not suitable

for our application. We therefore explored the use of

other cues to spatialize audio. We experimented with

amplitude and phase differentials (i.e., differing volumes

and arrival times of a sound to each ear),

atmospheric/distance attenuation, and voice directionality.

In our first experiment, we modified the relative phase of

the left and right audio channels to simulate the phase

differential of a sound arriving to each ear. This phase

differential is obtained by calculating the arrival times as a

function of the angle of the sound source from the

forward-facing direction, the source distance, and the

inter-ear distance. We found that this cue is not

significant, unless the phase distance is exaggerated so
greatly that the sound is perceived as two distinct sounds,

which is then interpreted as an echo.

source and each ear, which creates a small amplitude

differential. Again, we found this model gave no

perceptible cue, since most of the amplitude differential is

overwhelmed by the cross-talk between the left and right

channels of the speakers.

function is then composite with a distance attenuation

factor to achieve the final effect. The following formulas

give the attenuation of the left and right channels.

VL = (l+Sh(e))/(2(?)

VR = (l-Sin(e))/ (2?)

where e is the angle between the direction the receiver is

facing and the sound source, and d is the distance between

the source and receiver.

Our final consideration is transmitter directionality.

People often direct their voice at a specific person or

audience, since their voice is louder in that direction. ‘To

simulate this effect, the receiver attenuates audio as a

function of the angle between the source’s normal vector

and the vector between the source and destination. We

have found that a cardioid function of this angle works

well:

~[1-a)
attenuation = a+ (cos(0)+l)o-—

2
where a is the minimum amplitude received (from directly

behind). Figure 4 graphs this function.

Figure 4: Cardioid Attenuation

Similarly, we tried incorporating the inverse-square

attenuation due to the differing distance between a sound

203

Figure 5: Goal of Segmentation a)Background b) Captured Image

These techniques provide source attenuation, but do not

create a convincing environment. A more complete

solution would include other effects, such as echo and

reverberation. It would consider absorption and reflection

from each object in the environment. A limited form of

acoustical ray tracing may be possible to do in real-time

for a simple model [14]. We are experimenting with this

approach.

Foreground Segmentation
In a 3D environment, we would like to see participants

m

A

visualized not as rigid planes of pixels, but as silhouettes.

For this effect, a background-foreground segmentation ~)After median filter

d) Thresbolded difference

ft Final cumnusite

step is required, which outputs a binary opacity mask that

the graphics engine can use, as shown in figure 5. Figure 6: Steps in Segmentation

Segmentation is performed by the sending client. Our

segmentation algorithm is based on the following

simplifying assumptions, which are reasonable for our

application:

● The camera is fixed and stationary.

. The background is static.

● Anything that is not the background is the

foreground

With these assumptions, we can use a simple thresholded-

difference approach to segmentation. First, the user

captures an image of the unobstructed background. Then,

for each image we encode, we compute the absolute

difference between the background image and the current

image. This difference image is the converted to a binary

image using a manually set threshold: all difference values

above the threshold value are set to 1, all others are set to

The segmented image is encoded in the final bitstream by

defining pixel value O to be background (i.e., transparent),

and by changing foreground pixels with value O to 11. A

flag in the auxiliary data stream indicates that the stream

is segmented. This encoding gives us backwards

compatibility with regular CU-SeeMe clients. Figure 7

shows a sample screen shot with segmentation active.

The segmentation algorithm can be further improved by

using a color video input source. Although the CU-SeeMe

video codec discards color information, we can use color

information to discriminate between the foreground and

background. We have experimented with several color

distance metrics, such as distance in UV space and

normalized chroma (WY, VN). We are also exploring

the use of multiresolution techniques to segmentation.

Evaluating differences at coarser resolutions should help

remove artifacts as well as improve performance.

O. The binary image is filtered using a 3x3 median filter Performance Optimizstions
to remove noise and gaps. To compute the median of a

binary image, we tally up the number of white and black
The current implementation renders the 3D scene at about

22 frames/second on a 66MHz PPC601 machine (the
pixeIs in the window of interest. The larger of the two is
the median value.

lowest end PowerPC). This performance is obtained
This process is further sped up using through standard code-level tricks, such as appropriate use

lookup-tables on 8 or 16 pixels at time. Figure 6 shows of look-up tables (LUTS) and bit-twiddling operations, and
sample output from this algorithm, along with the processor specific optimization, such as
intermediate images.

The slowest step in this process is the median filter. We

have tried approximating the 2D median filter operation as

2 ID operations. Of course, this decomposition is invalid, 1 This approach works because CU-SeeMe’s uses lossless
but the result is similar to the desired effect and is faster to compression. With Iossy compression, a different
compute. approach, such as sending the matte image explicitly, must

be used.

204

Figure 7: Screen Shot with Segmentation Active

instruction scheduling to keep the execution units of the

processor busy. We also use several tricks to improve

cache performance.

For instance, large LUTS and large environmental texture

bitmaps can hurt cache performance. To address the latter

problem, we precompute scaled-down copies of such

textures at power of 2 reductions in size, and access the

nearest resolution version when rendering. This technique

both improves cache performance and provides limited

anti-aliasing of the texture.

Another performance optimization is interlacing. Instead

of updating the entire 3D window every frame when the

viewer is moving, we only update every other row in an

alternating, interlacing manner. This method utilizes the

eye’s deereased sensitivity to detail in motion and

increased sensitivity to frame rate. It doubles the

rendering speed and also provides a degree of motion blur.

In addition to performance optimization in the renderer,

the VR environment allows us to employ optimization

that reduce the required network bandwidth and the load

introduced by video decoding. While a space may be

inhabited by many users, a given user only interacts with

those in hidher immediate vicinity. Thus, for all users

outside of a certain “visibility” radius, the system removes

the request for their AV streams from the reflector. This

pruning technique conserves both network and CPU

resources. However, we do not shut off ,the AV streams

for those participants that are within the radius, but out of

the field of view, or have their “backs” towards us,

because the user can pan faster than the time it takes for

the conferencing mechanism to reestablish a video stream.

Backwards Compatibility
While the VR client presents a departure from the native

user interface of CU-SeeMe, we maintain compatibility

with regular CU-SeeMe users. We consider this

compatibility important, since it gives us access to the

large installed base of CU-SeeMe users. The compatibility

is hi-directional: regular CU-SeeMe clients can conned to

VR clients, and vice-versa. To the non-VR client, a VIR

client behaves like a regular, non-VR client. The

additional data stream which conveys 31> positional

information is ignored by that client. A VR. client maps

non-VR clients onto a rotating, multifaceted cylinder.

This scheme conserves network bandwidth, since at any

point in time, only a maximum of half of the non-VIR

users are visible. 1

CU-SeeMe permits the participation of users without

video (“lurkers”) that communicate through audio and

text. For these users, using both types of clients, we use a

default bitmap as a texture map, We also use this bitmap

(mirrored) for a normal video client’s “backside”.

Without this mechanism, it is difficult to determine which

side of a client you are seeing.

LIMITATIONS, ISSUES, AND APPLICATIONIS
Technical t-imitations
CU-SeeMe VR has several limitations. Some limitations

can be overcome by adding features; others will require

changes in the system architecture. Here, we list the

major limitations and our plans to overcome them.

One limitation is that the current system does not allow a

large number of users. If more than 10-20 users are in a

virtual space, the client will be overwhelmed with video

data. To create a virtual world with thousands of users,

perhaps in different rooms, new mechanisms to prune

unwanted video data must be developed. One solution 10

this problem is to use’ IP-multicast to truncate the video

broadcast. This can be accomplished by mapping rooms in

virtual space to distinct IP-multicast addresses. As a user

walks into a new room, they will ‘connect to the IP-

multicast address associated with the room. They will see,

and be seen by, other users in the room.

Another limitation of the current system is that it uses a

fixed file to define the virtual environment. We plan to

use scene servers to store the virtual environment

associated with a location. Clients can download 3D scene

descriptions (probably as VRML data) from the scene

servers. Since the scene can be changed by other users

(another extension we plan to implement), updates to the

scene will be coordinated through the scene servers.

These changes will be broadcast on an IP-multicast

channel,

Transfer of scene data on initial connection will suffice

for small, simple environments. However, downloading

large, complex environments with elaborate textures and

detailed polygon lists will cause unacceptable delays. We

can overcome this problem by progressively transferring

205

scene data and prioritizing the transmission based on the

users visibility and/or field of view. Because this scene

data is relatively permanent, caching it should be

effective.

Aside from storing the state of the environment, scene

servers may eventually perform more sophisticated

computations, such as, computing a global illumination

model for the environment, or generating data for a

procedurally animated 3D object.

A third limitation of the current system is the low quality

rendering of the virtual world. Although expedient,

representing other users as flat video planes is not very

rerdistic or satisfying, We are investigating mapping a

user’s video onto a three dimensional model of the user

(an avatar). Doing so gives rise to many interesting

problems that we are just beginning to explore. We would

like to compose video captured from multiple camera

angles (e.g., front, sides, and back) onto the avatar, so the

user can be seen from the front, side, and back. We would

also like to adjust the lighting of the video so it is

consistent with the virtual world. And, we must control

the avatar so that if, for example, the user tilts their head,

the head of the avatar also tilts, Two approaches to this

problem are sensors, such as data gloves, and computer

vision techniques that track the orientation of the person

from the video data. A full discussion of these issues is

beyond the scope of this paper.

Limitations of the VR Metaphor
Aside from the technical limitations and problems

described in the preceding paragraphs, the effect of the

VR metaphor on user interactions is unknown. We have

performed only limited user testing to date, and although

anecdotal evidence indicates that users are enthusiastic

about the new metaphor, the effect of the VR environment

on user communications and productivity remains to be

seen.

Many important interactions are chance – they occur

because one person runs into another in the hrdl (or at the

coffee machine) and strikes up a conversation. A

limitation of current video conferencing systems is that

they do not encourage such casual interactions. We

hypothesize that the VR environment will facilitate such

chance meetings as users explore and navigate through the

virtual space.

Another open question relates to the utility and limitations

of the spatial metaphor. For example, if four people stand
in a circle in the virtual environment, each will get a good

view of the person opposite and foreshortened or missing
views of the people to the left and right. However, such a

limitation is not inherent in the technology, but rather in

the spatial metaphor, since each client could synthesize a

scene that shows the other 3 participants side by side. This

solution, however, breaks the spatial metaphor. The real

question is which is more importanfi the communication

or the metaphor? We hope to find the answer to such

questions with experience in using the system.

Another issue is the mixing of real and synthetic worlds.

In the prototype, users are embedded in a completely

synthetic world. An interesting question is how to embed

a real world into the synthetic world. For example, one

might build a virtual “department” with a hallway that has

“windows” into oftices. Each window would show video

captured by a camera on the wall in a real office. Thus, to

check if Dave is in his office, you could simply walk

down the virtual corridor and look in Dave’s window. If

he is there, you might walk down the hall to talk to him.

Applications
Several intriguing applications of this technology come to

mind:

. Virtual Museums. Participants can observe exhibits

and converse with others in the gallery. The exhibits

can be static, like paintings, or dynamic, like

animation or kinetic art.

. Shopping Malls. Businesses can setup shop in scene

servers. Users are free to roam around in the mall,

browsing for items of interest. The shopkeeper, also

logged in, can answer customer’s questions.

. Grunes. The combination of video conferencing and

virtual reality is a good basis for so-called multi-user

dungeon (MUD) games. Scene servers can acts as a

rendezvous sites and store the state of the game.

Other games, such as “Clue” (where users can search

for items around a complex indoor setting), will also

be richer in this environment.

CONCLUSIONS
We have presented the design and implementation of a

prototype virtual reality conferencing system, Many open

questions and problems are posed by such a system, and

remain to be studied. These problems include technical

problems, such as rendering a more realistic environment,

and questions involving the utility and limitations of the

VR metaphor. We hope to flesh out the questions and
issues raised by this system, and gain some insight into

their answers, in future work.

ACKNOWLEDGEMENTS

We wish to acknowledge the support of Tim Dorcey, and

the rest of the CU-SeeMe development team.

REFERENCES
1. Seminatore, M.. A Ray-Casting Engine in C++, in

Dr. Dobb’s Journal, 232 (July 1995)

206

2. Dorcey, T. CU-SeeMe Desktop Video Conferencing

Software, in Connexions 9,3 (March 1995)

3. Raggett D., Extending WWW to Support Platform

Independent Virtual Reality, in Proceedings of the 5th

Joint European Networking Conference (JENC5), 464

(June 1994) pp.2

4. Hewitt K., Desktop Video Conferencing Product

Survey, http:/Avww3.ncsu. edu/dox/video

5. Eriksson, H., MBone: the Multicast Backbone,

Communications of the ACM 37, 8 (Aug. 1994), pp.

54-60,

6. Sequin, C. H. and Bukowski, R. W., Interactive

Virtual Building Environments, in Proc. of Pacific

Graphics ’95. (Aug. 21-24, 1995) pp. 159-79,527.

7, Black Sun Interactive, http:/Avww.blacksun. com

8. Fish, R., Kraut, R., and Chalfonte B., The

VideoWindow System in Informal Communications,

Cscw ’90, pp. 1-11

9. McCanne, S. and Jacobson, V., vie: A ji’exible

Framework for Packet Video, in Proc. of Multimedia

95, (San Francisco, Nov, 1995). ACM Press

10. Foley, J., and Van Dam, A., Fundamentals of

Interactive Computer Graphics, Addison-Wesley.

11. H. Fuchs, Z. Kedem, B. Naylor, On Visible Surface

Generation by a Priori Tree Structures, in Computer

Graphics 14,3 (June 1980), pp. 124-133.

12. Gillilan, R., Cells and Smallec Exploring the

Machinery of Life, demonstration at

SUPERCOMPUTING ’95, (San Diego, Dec. 1995).

http://www,tc.cornell .edu/-ramidonlmultinnedia.htrnl

13. Begault, D., 3-D Sound for Virtual IReality and

Multimedia Academic Press, Boston, 1994.

14. Takala, T. and Hahn, J., Sound Rendering, in

Computer Graphics 26,2 (July 1992)

207

