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ABSTRACT Surveillance through digital cameras is increasing exponentially. A majority of these cameras are not smart 

cameras; therefore, they send their video stream to a central server where it is processed and analyzed for any threats. 
Typically, human operators or machine learning algorithms at cloud, analyzed and processed the post-event videos to track 

and locate the perpetrator or victim. The centralized approach leads to two primary shortcomings: 1) the high cost of cloud 

infrastructure; 2) lack of instant tracking and detection of the threat. One solution is to replace these legacy cameras with the 

smart cameras so they can process information locally. Although the solution is costly, it could solve the real time threat 

detection issues. However, the need for a central server remains there, to construct the path of threat, when threat moves 

from one camera view to another. The existing distributed architectures for threat tracking, shifts the load of threat capturing 

and processing from central server to the edge nodes, which in turn reduces the computational power but do not remove the 

role of central server completely. These architectures doesn’t equip each camera of processing and communicating with each 

other. Further, in the existing distributed architectures the local cameras are not able to store the path of the threat 

individually, and transmits the captured trajectory to the central body. This research proposed a second alternative that makes 

use of legacy cameras through additional hardware and software components such that they can process information and 
collaborate locally.  The research addresses the challenge by introducing a low cost distributed threat tracking framework 

that allows the single camera to identify the threat and communicate its information to other cameras without involving the 

central server. The framework stores the information in a lightweight architecture that is inspired by the blockchain storage 

algorithm. The system also allows querying the path traveled by the threat at any stage. To evaluate the system, we 

performed two simulated experiments: one with a central server and another with the proposed distributed system. The 

results of the experiments showed that the time to track the threat through the proposed system was lower than the existing 

centralized system. Moreover, the proposed system predicted the paths of threats with an accuracy of 85.49%. In the future, 

the technique may be improved with reinforcement learning and other machine learning techniques.  

 

INDEX TERMS Video Surveillance, Smart Cameras, distributed computing, software architecture, Peer-
to-peer computing 

 
I. INTRODUCTION 
 

   April 15, 2013, is one of the darkest days in the history of 

the United States of America as it witnessed two disastrous 

explosions. These explosions killed more than three people, 

while hundreds of others received severe injuries. Later, the 
two suspects of the bombing were captured by sifting 

through CCTV videos of several hours [1].  The increased 

terrorist and crime incidents have alarmed nations around 

the globe and necessitated proper surveillance in cities [2].  

Different sensors are being used these days for surveillance 

and especially path tracking of threats. These sensors 

include binary cameras [3], depth data [4], and digital 
cameras [5]. The digital cameras are most important source 

of path tracking due to their high resolution captured 

images, and low cost compared to other sensors. 

A large number of cameras, for surveillance, have been 

installed in all big cities of world by their governments. 

These devices  their continuously capture the video stream 

of the area under their observation [6]. Usually, these 

cameras feed their video stream to cloud infrastructure [7]–

[9] where it is stored, processed and analyzed [10]. To track 

the path of any victim or perpetrator, these videos are 

mailto:ume.habbiba@hotmail.com


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

 

P a g e  2 | 14 

 

processed by the machine learning algorithms [11]–[13] 

and the human operators.  

The existing methods, in literature, for the surveillance 

have many drawbacks. For example, a study [14] has 
revealed that the monitoring of multiple camera views puts 

a significant burden on the human operator that results in 

time consumption, exhausted eyes, and error-prone work 

[15]. The other methods [11]–[13] those employ intelligent 
learning algorithms for the detection and re-identification of 

persons do not offer collaboration and communication 

between cameras. However, these intelligent surveillance 

systems are unable to query about specific threat 

information from their neighboring cameras and fails to live 

track the threats. Other solutions uses the central server 

where the information is processed but these centralize 

systems have three primary challenges: 1) the high cost of 
cloud infrastructure; 2) real time monitoring of threat; and 

3) tracking the path of the object. There is a need for a 

distributed system where nodes can query about threats 

from neighbors and perform live tracking of a threat 

without the involvement of a central server.  

   The goal of this research is to propose a software 

architecture that enables legacy cameras, without an 

expensive cloud infrastructure, to establish ad-hoc networks 

automatically without any human intervention, identify the 

threat, transmit and seek information of the threat from 

neighboring cameras, track the threat movement and allow 
to query threat information from the distributed network 

whenever it is required. We targeted following research 

questions to achieve our goal. 

1) How do you enable legacy cameras so they can 

establish a distributed network automatically without 

the intervention of humans or a centralized system? 

2) How can these modified cameras track the threat from 

archived videos without any time expensive machine 

learning algorithms or human intervention?  

3) How can threat information be stored, co-related, and 

queried from these distributed camera nodes? 

 
   Our contribution is that we enabled the legacy camera 

with the help of a low-cost hardware to communicate with 

other cameras and detect the threat locally.  Once the local 

camera detects the threat, it stores the relevant threat info 

(such as timestamp when the threat is detected and 

reference frames), predicts the threat direction and informs 

the neighboring cameras about the threat so they can track 

it further. In this way, only the relevant threat information 

is required to be saved, and the upgraded cameras track the 

path that can be accessed later. 

 
 
II. Literature Survey 

   Body tracking, and detection are quite useful in multiple 

fields including robotics [16]–[18], health related issues 

[19], and industrial academic areas [20] but most of the 
applications are in surveillance. Surveillance of a human 

body can be done by different methods in the existing 

literature [21]–[26]. For identification of a threat the feature 

extraction, classification, and face recognition are the most 

important steps and the technique used for these steps 

include: artificial neural network, infrared sensors, and 

human segmentation [27]–[30]. These researches tracks the 
human body by re-identifying it in different cameras, or by 

action recognition made by different body parts of a 

human.  

 

   Chen et al. proposed "City Eyes", a cloud-based 

computational framework for developing intelligent 

surveillance applications [7]. The authors integrated “City 

Eyes” in multiple surveillance systems of different cities 

and showed a reduced time in continuous monitoring of 

surveillance videos. In order to fulfill the QoS requirement 

and to optimize the allocation of VM resources, Hossain et 

al. presented a resource allocation scheme [8]. The scheme 
streamed composite media in a cloud-based video 

surveillance environment. The elastic cloud-based platform 

stored all video streams that were captured and transferred 

by the surveillance cameras. Li et al. investigated the 

processing of massive floating car data (FCD) for traffic 

surveillance in cloud computing environments [9]. 

Empirical studies showed the potential of cloud computing 

for providing various solutions for on-demand geospatial 

data-intensive applications.  

 

   Shao et al. developed an intelligent system with smart 
front-end cameras for surveillance and pre-alarming [31]. 

The smart cameras were able to pre-alarm and store any 

unusual event in the database. Chandana et al. [11] 

proposed a surveillance system using “thing speak” and 

raspberry pi. The raspberry pi enabled the cameras to 

capture the image and detect the motion of a person. The 

images of individuals were captured only after the detection 

of motion signals which in turn reduced the power 

consumption compared to the surveillance system that 

continuously captured the videos.  Abas et al. developed 

“SlugCam”: an outdoor wireless smart camera network [12] 

where nodes were intelligent enough to change their 
monitoring behavior when the passive infrared sensor (PIR) 

detected any motion. Wang et al. demonstrated a paradigm 

of "tweeting" cameras [13]. The software architecture of 

tweeting cameras was able to recognize, detect abnormal 

events through Sony IMX219 8-megapixel sensor. The 

camera also tweeted about exciting events on social media 

and received replies from humans for the learning process. 

 

   For processing and monitoring, Zhang et al. sent data 

captured by cameras to cloud storage [32]. This data 

transmission results in high response latency and bandwidth 
constraints, which in turn proves this solution to be 

inefficient and expensive. To overcome the constraints of 

cloud storage, the researchers, afterward tracked and 

identified threats through intelligent single and multi-

cameras.  Tang et al. tracked the path of a person by re-

identifying him in a monocular video of the crowded scene 

[33]. The authors used a novel graph-based approach for 
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linking and clustering the track of a person. Results showed 

that this method outperformed the existing benchmark. 

Beyer et al. integrated re-identification (ReID) with multi-

target multi-camera tracking [34]. This integration resulted 
in an optimal Bayes filter. This filter avoided the 

requirement of data association and dependency on 

boundary boxes for tracking.  

 

    For detecting and tracking people in-depth images that 

were captured through a time-of-flight camera, 

Stahischmidt proposed a method and an application [35]. 

The detected persons were tracked by a Kalman filter, and 

their adopted trajectories were stored. Images captured by 

the cameras were taken perpendicularly from the top-right 

angle and were stored locally in the camera. The solution 

was centralized as other cameras were not able to process 
the information independently. Tesfaye et al. proposed a 

three-layered hierarchal approach for tracking people in 

multiple non-overlapping cameras [36]. This method took a 

video and set of detections as input and performed within-

camera and across camera tracking. The camera 

communication was not allowed, and the input was not 
taken directly from the cameras.  

   Liem & Gavrila proposed a multi-people position 

tracking algorithm for overlapping cameras [37]. The 

similarity of a person and running track were mapped using 

a set of hints such as motion style and appearance of the 
person. The authors detected foreground maps by using 

background subtraction method. The tracking was done by 

associating these detections to the previously tracked 

individuals. The experiments showed that this system 

outperformed with multi-person datasets having 

overlapping cameras, and track consistency were also 

improved. This system did not allow performing any query 

about a specific threat.  

   Bhuvana proposed an object tracking algorithm for 

targeting the bandwidth and energy limitations in the 

information exchanged among surveillance cameras [38]. 

This method restricted the number of cameras participating 
in the information sharing process. The surprise selection 

method enabled the cameras to decide whether their 

information was essential or not. This method showed 

improved tracking accuracy.   

   Wang et al. proposed a surveillance system that enabled 

communication of cameras with edge nodes and reduced 

the computation delay on central servers [39]. The delays 

were reduced because computation and storage resources 

shifted from the centralized data center to the edge nodes. 

These experiments showed that the system was more rapid, 

responsive, and flexible. However, the cameras in this 
network were not enabled with inter-camera 

communication. Jiang et al. proposed a person re-

identification framework based on the orientation of a 

person [40]. Cameras in the framework were enabled with 

inter-camera information exchange i.e., the camera was able 

to share information with its different modules but not with 

other cameras. The camera in the framework shared images 

of the same person based on his discriminative appearance 

features for associating inter-camera trajectory and 

achieving inter-camera Spatio-temporal constraints. The 

communication of camera with different modules helped in 
person re-identification despite occlusions.  

   Kumar et al. developed a person re-identification 

algorithm with distributing computing capabilities in non-

overlapping camera networks [41]. The cameras in the 

system were able to self-process the threats and pass 

relevant information to a primary camera. The primary 

camera was able to query about a particular person from the 

neighborhood cameras. Well, the trajectory of the identified 

or tracked persons was not stored in the system. For 

detecting abnormal events in frames, Wang et al. proposed 

an algorithm for distributed cameras network [42]. The 

authors presented a multi-kernel strategy for benefitting 
from the different views captured by multiple cameras. 

Although this work identified malicious activity, but the 

cameras involved in the network were not able to 

automatically configure and track or store the path of a 

threat.  

The most of available solutions provide surveillance 

through a single camera and with the involvement of cloud 

infrastructure. However, a very low number of researches 

existed that deal with multiple cameras for threat detection 

and tracking. 

  
III. Proposed Method 
 

   For video surveillance, the proposed distributed network 

consists of multiple cameras and each camera is called a 

node. To convert the node into a smart node, we proposed a 
software architecture (Figure 1) that can run on the 

raspberry Pi. Raspberry camera was provided in Camera 

Serial Interface (CSI) of all other cameras which in-turn 

formed a network. The distributed network consists of four 

major components: network manager, threat handler, path 

generator, and controller.   

   Network manager is responsible for storage of all nodes 

and prediction of next location of the threat. Records 

required by network manager are stored in “camera lookup” 

log. Threat handler component stores information about all 

threats and uses the convolution neural network (CNN) for 
threat identification. In case of a threat, the information 

about the threat is communicated to the neighbor nodes. 

The path generator component produces the path against 

the query about a threat. The controller is the major 

component that is responsible for the communication 

among the nodes and the addition of nodes in the network. 

The nodes in the network communicate with each other by 

sending messages in the form of packets. The following 

section provides the details about these components. 

 
A. Network Manager  

 

  A legacy surveillance camera can track the threat up to a 

limited range because of its finite and fixed position [25]-

[26].  Once a camera has identified the threat, it starts 
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monitoring the threat, and when the threat is moving out to 

its field of view, the camera has to inform neighboring 

cameras that the threat is entering into your viewing area. In 

order to achieve the functionality, each camera should be 
aware of its immediate neighbors, Fig 3. There are two 

options one is to configure each camera manually, and a 

human technician provides the information of neighboring 

camera. However, on each node, it requires to add 

information of all neighboring cameras manually that is a 

massive task if new cameras keep coming up, the position 

of some cameras is changed, or they stop working. 

  The most important information is the coverage area and 

view frustum of each camera. Each camera knows its fixed 

location, its field of view (FoV), and coverage distance. 

When a camera gets online, it broadcasts these parameters 

to other cameras.  

From this tuple, C (location, FoV, coverage distance), other 

cameras calculate the two more points B (Eq. 1) and D (Eq. 

2) for each camera such that A, B, D make a triangle of its 

coverage area Fig 3 (a), Fig 3 (b). The blind spot between 
two cameras where no coverage is available is also shown 

in Fig 3. Also receiving the camera calculates the relative 

location of another camera regarding its position Fig 4. 

These relative positions could be from one of four 

quadrants Fig 4. using the function given in Eq. 3; this 

relative location is used by Algorithm 2 while invoking the 

neighboring cameras for a potential threat. Table 1. shows a 

comparison of the proposed system having with the existing 

solutions for threat detection and tracking. 

 

 

 
 

 

 
TABLE 1: COMPARISON OF PROPOSED WORK WITH EXISTING SURVEILLANCE SYSTEMS 

 

 Threat path identification or tracking Automatic camera 

management 

Tracked path 

storage 

Information Sharing 

among cameras 

Hybrid system for 

identifying, tracking, 

path storage 

Liem [9] (Automatic) using the 3D 

reconstruction of the scene for 

detection & tracking  

Manual local 

 

None × 

Stahischmidt 

et al. [7] 

Automatic 

(Kalman-based multi-object tracking) 

Manual local none × 

Jiang [12] Automatic through deep learning 

architecture 

Manual local None × 

Wang [11] through elastic dynamically launched 

Virtualized Network Functions 

(VNFs) on edge servers 

Manual Edge cloud 

storage 

With edge nodes × 

Chen [21] PaaS controller (Video Analysis 

Platform-as-a-Service) 

Manual Local Cloud × 

Proposed 

Work 

Through Raspberry pi, and distributed 

classifier 

Automatic  local inter-camera 

information sharing 

 

 
 

Figure 1: Overall system architecture and services 
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Figure 2: System demonstration 
 

 

                                              

                                                                                        Figure 3 (a): Neighboring camera networks

 

                                               (1) 

Here, ‘B’ is the distance of a camera Ci from its left 

neighbor. ‘FOV’ is the field of view of the camera as 

specified by the camera designer. h is the height of the 

camera sensor, and f is the focal length of the camera lens. 

 

        (2) 

  Here, ‘D’ is the distance of a camera Ci from its right 

neighbor. FOV is the field of view of the camera as 
specified by the camera designer. 'h’ is the height of the 

camera sensor.  For calculating the relative position of a 

camera C1 with respect to other camera C2 at first quadrants 

of both cameras are calculated. We proposed a local storage 

table that stores all the information of the neighboring 

cameras Table 2. 
Table 2: Lookup table of C2 

Node ID Angle Distance 

(meters) 

A B D Direction 

C2 232 20 20,15 30,25 18,25 θ3 

C4 180 10 18,20 25, 12 10,20 θ4 

C3 210 60 10,18 12,24 20,25 θ1 
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Suppose Pdir is the predicted direction of the camera. Let Ѳi 

be the quadrant angle of the current camera (Ci) that has 

captured the threat. Let Ѳk, Ѳk+1, Ѳk+2,,,,,,, be the angles of 

all neighbors of Ci. The difference between the angles of 
the current camera and the angle of all other neighbor 

camera is calculated. The camera with a minimum 

difference is regarded as a neighbor of Ci and is sent 

information about the threat and its predicted direction.  

 

 Min {(Ѳi -  Ѳk) (Ѳi – Ѳk+1) ….. (Ѳi  - Ѳn)] = Neighbor    (3)   

 

               Figure 3 (b): Neighboring camera networks 

 

Fig 4. shows the arrangement of cameras in a plane and the 

way with which relative location of a camera is determined 

 

                      Figure 4: Relative location of a camera 

 

Algorithm 1: Node Manager 

Input: Node N 
Output: Acknowledgement (Sender Info) 

Flag=false 

 

foreach (Old_Node in lookupTable.Entries ) do 

 

if (N->IP = Old_Node -> IP ) then 

flag= True //node already added 

sendAcknowledgement(Old_Node) 

endif  

  endfor 

 

if (not flag)  

 pointB = (fov * f) / h  
pointD = (fov * f) / h  

quadrant= FindQuardrant (Longitude, Latitude) 

end if 

Entry = CreateLookupTableEntry 

(N.ID,N.angleBetweenCamera, 

N.distance,N.location,pointA, 

pointB,pointB,Quardent) 

lookupTable.Add (entry) 

return acknowledgement(entry) 
 

 
Threat Handler 

   This module consists of three sub-modules: Threat 

Detection, Threat Communication, and Threat Storage. 

First, we discuss these sub-modules, and then we give a 

complete algorithm for threat handling process. 
 

i) Threat detection 

  The proposed system consists of different camera nodes 

those are connected to form a distributed network.  Each 

camera captures and monitors the scene in its range. The 

camera node consists of a Raspberry Pi that acts as a tiny 

processor and serves as a host for videos processing, 

storage, identification of threats, and further 

communication and warning to the neighbors.  

  Threat detection and identification at early stages prevent 
severe losses.  In order to save the time and to avoid the 

sending of all video streams to the server, the proposed 

system uses this local module to identify the threat. This 

module identifies threats from a video sequence that is 

captured by a camera node in the network. Each 

image/frame captured by a camera node is first 

preprocessed by pre-processor before threat detection or 

identification. The preprocessor follows some steps for 

preparing image for threat identification. These steps are 

mentioned in Fig 5.  

Figure 5: Block diagram of preprocessing procedure 

 

Step 1: (Noise removal): Noise is introduced in an image 

at the time of its acquisition and it is introduced due to 

different factors including inappropriate light settings, 

corrupt image sensor, and dust particles on the camera. We 

used the order statistical filter to remove noise in the 

captured images by the camera [45]. It is a nonlinear filter 

whose response depends on ordering of pixels encompassed 

by the filter area.   



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

 

 

Step 2: (Background Removal): For background removal 

from the frames, we used background subtraction technique 

using concept of running average [46]. In this method, 

video frames were analyzed. A comparison of running 
average of current and previous frames, provides 

background and foreground model. The foreground model 

is extracted from the comparison, by detecting the active 

objects.  

Step 3: (Image Sharpening): For sharpening the images 

with removed background, we used un-sharp mask [47]. 

This technique first uses a blurred version of the original 

image. This blurred version is then subtracted from the 

original image. This subtraction points out the presence of 

the edges, hence creating the un-sharp mask. An increased 

along the edges using the above mask, the product is a 

sharpened image.   

   For proper identification of the threat, there is a need for 

visual features' extraction from the video sequence. The 

essential features are learned and extracted using CNN.  

   CNN models require training on a huge amount of data 

for learning before any usage. This training causes high 

time consumption, and to avoid this; we have used a pre-

trained CNN model.  Fig 6. shows threat identification 

module of the proposed system. For recognizing threats’ 

face, we used visual geometry group (VGG) Face-16 CNN 

[48]. Structure of VGG Face-16 has 13 convolutional 

layers, five pooling layers, and three fully-connected layers. 
VGG Face-16 was trained using a publically available 

dataset [49]. After the convolution operation, CNN 

produces feature maps. The size of these feature maps is 

determined from the width or height of the filter, the width 

or height of the input image (or feature map) before it 

enters the convolutional layer, the amount of padding in the 

convolutional layer, and the number of strides [50]. 

Rectified linear unit (ReLU) layer follows the convolution 

layer, which used polling windows for reducing dimensions 

of obtained features and smoothing the features extraction 

process. For window sliding Partial Least Square method 

(PLS) is used and the features used by Robson et al. [51]. 
The final layer, fully connected layer (FCL) consists of a 

softmax function for normalizing the inputs and yielding 

categorical distribution of each class function.  

ii) Threat Communication and Storage. 

  If the upper layer detects a person as a threat, it predicts 

the exit quadrant where the threat is heading. The quadrants 

are defined with reference to the point of the camera. The 

module uses the direction of the head in the captured set of 

images. This method takes a face as a parameter and returns 

its direction using the corner points of facial features (head, 

nose, eyes). The location of the camera is required to 
predict the quadrant coordinate. We used the method given 

by Xing et al. to find the coordinates of the threat [52]. 

Once the coordinate has been found, the quadrant is 

determined by the following function: 

 

FindQuadrant (longitude, latitude) 
{ 

    if (longitude > 0  && latitude > 0) { quadrant = 1} 

    elseif (longitude < 0  && latitude > 0) { quadrant = 2} 

    elseif (longitude < 0  && latitude < 0) { quadrant = 3} 

 

   elseif (longitude > 0  && latitude < 0) { quadrant = 4} 

}  
   After predicting the threat of future quadrant, the camera 

creates a block with threat hash, its-IP, predicted quadrant, 

predicted direction, current block id, and nearest neighbors 

in the predicted direction. This block-chain based module 

stores the path history of a particular threat. Whenever a 

camera node detects a threat, it creates a block for the threat 

that consists of threat_id, time, and date. Each block 

consists of a hash value, which acts as its unique identifier. 
The time, date (when the camera identified the threat), and 

the block_id of the notifying node play a vital role in the 

calculation of the hash value. The value of the block is 

empty for the first camera that detects the threat; in the 

blockchain, this block is termed as "genesis block." The 

block does not have next camera IP it remains blank until 

the threat enters into the specific camera. After generating 

the genesis block, the system logged information in the 

local database and forwarded the block to all registered 

cameras (present in a lookup table). Now, all the relevant 

cameras have the genesis block for the threat. When a 

camera detects a threat, it broadcast the information to 
cameras so they can discard the genesis block and it also 

informs the parent camera. The parent block appends the IP 

of receiving camera into the block so it can help to create a 

chain for the threat. Now, the second camera repeats the 

process, but this time it creates its block and leaves the next 

camera attribute blank. Once the threat leaves the camera, it 

sends the block information to another camera of the 

predicted quadrant.  

 

Algorithm 2: Threat Handler 

Input: VideoFrame frame 
pFrame = preprocess (frame) 

featureMap = GetFeatures(pFrame) 

isThreat = Model.Classify(featureMap) 

 

  if (not isThreat) return  

  else 

  Direction = PredictThreatDiretion (pFrame) 

  Position=PredictThreatPosition(PFrame) 

  Quadrant = FindQuadrant (longitude, latitude) 

  NewHash=generateHash(Node.IP,threat) 

  Old_Block =threatBlocks.find(pFrame)  //if threat is 
                 already communicated by any other camera 

  ParentBlock = GensisBlock 

        if  Old_Block !=Null //Threat BlockAlready Exist 

        Old_Block.NextBlockHash=newHash 
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SendAcknowlegment(Old_Block.senderIP,OldBlock.HashI

D,newHash) 

       ParentBlock= Old_Block.HashID 

      End if 

B. Threat Path Generator 

  After threat identification, the node stores the information 

of threat into the local database in the form of a block. 
However, the block does not store the path of the threat; the 

block only contains the location of the next block and its 

Hash ID.  

   For path construction, the node queries the path of a 

specific threat from another node where the threat has 

moved. For the purpose, a distributed query can be passed 

using the BlockID that is to be tracked, IP address of the 

current node from where the query is to be made and 

previous path of the threat if any.  A node N can broadcast 

a query to its neighbor node, about a specific threat having 

blockID. The neighbor checks the log for BlockID. If a 
neighbor finds a threat in its log, it appends its location into 

the path and checks whether the next block is null or not. If 

it is not null, it calls the function construct path for the next 

camera. If it is null, the sequence of blocks is returned to 

the inquiring camera.  

 

 

PreProcess(FindImage) 

 

Input: QueryStarter,Sender,BlockID,Path 

Output: ForwardQuery/SendResults 

Found=false 
For each B in Blocks 

 If (B.ParentBlock==BlockID) 

  Found=true 

  Path.Append(NodeID,B.BlockID) 

 

 SendQuery(B.NextNodeID,B.NextBlockID) 

 End if  

 

 If (Not Found)  

  SendResult (OueryStarter,Path) 

 End if 

End For  

 

Algorithm 4a: Path Generator 

Method Generate Threat Path Request 

 

Input: Preprocessed-Image 

Output:  

 RBlock=null 

 For Block B in threatBlocks 

  If B.frame == Preprocessed_Image 

   Rblock=B 
  End if 

 End For 

 If Rblock !=null 

 

 Path.append(Current.NodeID,RBlock.BlockID) 

 

 Path=SendQuery(RBlock.NextNodeID,RBlock 

               .NextBlockID,Path) 

Wait For Response 

 

Print Path. 

 End If  

 
   Fig 7. Shows how the path of a particular threat is stored 

in each camera installed in the way where the threat has 

passed. For example, in order to query about a particular 

threat (John), the inquiring camera sends the BlockID to its 

neighbor cameras. If the neighbor cameras do not find the 

threat information, they forward the request further to their 

neighbors. In another case, the inquired camera will go for 

the current ID of the threat. The current id contains 

information about the cameras by which the threat was 

being captured plus the id of latest camera that has spotted 
the threat.  

 
C. Controller:  

Each message created in the proposed system is exchanged 

with neighbor cameras through the controller.  This 

component uses the services of Raspberry Pi. Raspberry Pi 

is attached to each monitoring camera, provides a dedicated 

socket for continuously listening to the requests from its 

neighbors. Requests from the neighbors can be one of the 

three types: threat alert, a new node broadcast, and 

distributed query. Whenever a message about a particular 

threat is received from the neighbor camera, the 

communication layer redirects the message to threat handler 

module of the current camera. Also, when a node is 
injected, it broadcasts  "add" request to all nodes in the 

network. The listening socket on Raspberry Pi of receiving 

nodes forwards the request to its node manager for the 

addition of the new node into the routing table. In case the 

request is of the distributed query, the listening service 

forwards it to the path manager. 

 

Algorithm 5: Controller 

 

1: Input: Req_Service 

 

2: if (Service = add or remove node (N)) then 

3: NetworkManager (N) 

4:    if (Service = Monitor_Threat (Threat_ID) ) 

5:    ThreatHandler (Threat_ID) 

 

6:           if (Service = Query (Threat_ID) ) then 

7:           PathGenerator (Threat_ID) 

 

8:           endif 

9:    endif  

10: endif 
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Figure 6: Convolution neural network layer 

  

  Figure 7: Block chain demonstration of threat information 

 

 
IV. Experimentation 

A. Experimental Setup 

    Our experimental setup consisted of the 35 surveillance 

cameras installed at various locations of a university 

campus. We used raspberry Pi 3B+ with Raspbian Jessie 

OS booted from a 64G microSD card as in intelligent 

module to be attached to each camera. The cameras in this 

setup were installed at the incoming and exit points of eight 

departments of the university. In total, a hundred video 

clips were passed to the Raspberry module in which one 
hundred and fifteen threats were explicitly simulated. These  

 

threats were people who performed abnormal and 

ambiguous activities.  The dataset used for classifying 

threats through classifier on central server and the one 

running on Raspberry Pi is “Behave” [53]. This dataset 

consists of view of people acting out in different situations. 

The data is captured at 25 frames per second. The 
resolution is 640x480. The videos clips are provided in the 

dataset that can be classified as frames. These frames are 

available as a set of JPEG single image files. The normal 

behavior of the person are labelled as meet, walk together, 

split, and ignore. While the abnormal behavior is labeled as: 

fight, and chase. 
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B. Experiment I: Threat identification through a 
centralized network of cameras 
 

  The first experiment was performed to assess the time 

taken in identifying a threat by a centralized system. In this 

experiment, the hundred multiple video clips, collected 

through installed cameras in the experimental environment, 

were fed to the central server for the analysis. A classifier 

running on a central server identified threats was trained on 

multiple datasets [53]  of videos containing normal and 

abnormal behavior of the people. The same classifier was 

also used for the distributed system in experiment II. 
Moreover, the communication among the camera nodes 

was not allowed in this first experiment.  

 
C. Experiment II: Threat Identification through 

proposed system  
 

   The second experiment was performed to analyze the 
time taken to identify a threat via proposed distributed 

system and the accuracy of the path prediction. In this 

experiment, the proposed framework was used to track and 

identify the threats. Threats were identified by services 

provided by Raspberry module attached with each camera 

node. The classifier on Raspberry pi was trained on 

multiple datasets [53] of videos containing normal and 

abnormal behavior of the people. After detection of a threat, 

the camera predicted and forwarded threat's face to the 

relevant nearest neighbor for live tracking of the threat. 

Message passing among camera nodes was in the form of 
packets and the number of packets received by the receiver 

node were logged and compared with the number of 

original packets sent.   

   Also, three nodes were added in to the distributed 

network at location L1, L2, L3 respectively, where the 

configuration of each camera was updated automatically. 

The added nodes sent requests, containing their IP and 

location (longitude, latitude), to the neighbor nodes. The 

neighbor nodes were automatically configured to add the 

received IP in their routing table.  

 
V. Results 

VGG 16 used for threat detection was classified using the 

dataset “Behave” [50], and the abnormal activities e.g. 
chase and fight were detected using this dataset. VGG 16 

achieved 96% accuracy for classifying the threats in above 

dataset. These results were compared with those of HMM 

[5], SVM [54], HMM based GMM [55], and the 

comparison is listed down in Table 3. 

Table 3:  Comparison of VGG-16 with existing techniques 

Technique Applied Classification accuracy achieved 

VGG-16 96.09% 

HMM based GMM 84% 

SVM 94.9 

HMM using depth Silhouettes 

Context features 

83.92 

Table 4. lists down the processing time to identify 115 

threats in experiment 1 and experiment 2. Path tracked by 

the proposed system for a specific threat was matched with 

the original path followed by a threat which was already 
known and stored in the system. Table 5. lists down paths 

predicted by the proposed system for a few sample threats 

and with the original paths adopted by the threats. The 

locations in the university campus, where a camera node is 

installed, is named as L1, L2, L3,... LN. 
 

Table 4:  Sample Threat tracking time for both experiments 

Time is taken to identify 

different threats in the 

experiment I  

Time is taken to identify 

different threats in experiment 

II 

1302 seconds 1000 seconds 

1477 1112 

1132 899 

1298 990 

 

Table 5: Sample paths of threats predicted by the proposed system 

 Location Path 

Predicted 

Original 

Path 

Is-

Accurate 

Threat 1  L1 A-B-D-L-G A-B-D-L-H No 

Threat 2  L2 A-B-C-L-H A-B-C-L-H Yes 

Threat 3  L3 B-C-D-L-G B-C-D-L-G Yes 

Threat 4 L4 F-G-H-E-F F-G-G-E-E No 

The system predicted paths of 85.49% threats precisely the 

same as their original path. 

Figure 8: Graphical comparison of threat identification time of 

centralized and proposed system 

 

Figure 8. shows a graphical comparison of the time taken 

by the centralized and proposed system to identify random 

threats. 

Table 6. shows a comparison between the routing tables 

updated manually by the human operator in case of addition 

of three nodes at location L5, L7, L2,.and routing tables 

updated automatically in case of the same addition. 
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Table 6: Manually updated routing table vs automatically updated    routing tables 

 

The manually updated routing table  The automatically updated routing table  

Dest Area Hop Cost Next      

Hops 

Network 

address 

interface Dest Area Hop 

Cost 

Next  

Hops 

Network address Interface 

N1 1 4 RT1 10.0.10.0 Eth1 N1 1 4 RT1 10.0.10.0 Eth1 

N2 1 4 RT4 255.0.100.1 Eth0 N2 1 4 RT4 255.0.100.1 Eth0 

N3 0 3 RT3 192.168.0.100 Eth2 N3 0 3 RT3 192.168.0.100 Eth2 

N4 0 1 RT2 192.168.10.1 Eth1 N1 0 0 RT2 192.168.10.1 Eth1 

 

The error rate of the automatically updated routing table 
through the proposed system was 0.012%. The average 

time is taken by a camera to update its routing tables 

automatically was reduced to 4.5 seconds then the human 

operator who took an average of 8 minutes to update the 

routing table of a camera. 

 
VI. Discussion 

   In this research, we have proposed low-cost system 

architecture for identifying and tracking threats through a 
distributed network of video surveillance cameras and IoT 

sensors. A Raspberry Pi module was attached to each 

camera node which offered various services through the 

software modules. All cameras were connected in a 

distributed network, and the proposed architecture enabled 

these cameras to identify and track the threats locally. At 

first, when a camera node identified a threat, it assigned an 

identification number to the threat. Then, the camera node 

predicted the next direction of the threat. Data about the 

identified threat is forwarded to the neighbor node in the 

same direction where the threat is moving. Communication 
among nodes helped neighbor cameras to track the path of 

threat using threat and path management services of 

Raspberry Pi. 

   The proposed solution offers a service that allows the 

cameras to automatically form a distributed network 

without any human assistance (experiment II). The node 

manager module was responsible for updating the routing 

tables of each node in case of an addition of a new camera 

in the network. When a node is added into the system, it 

broadcast the add request to other cameras in the network. 

After receiving the request, the nodes in the neighbor 

update their routing tables for any matching node with the 
same IP as of the requested node. The routing table stores 

the location (longitude, latitude), direction, and IP address 

of neighbors. The routing tables of all devices were updated 

when three new nodes were added into the distributed 

network at the location L5, L7, L2. The manually updated 

tables were compared with the automatically updated 

routing tables; the later showed an error rate of 0.012%. 

This dynamic insertion of nodes reduced the extra effort for 

manually updating the routing table associated with each 

camera from 8 minutes to 4.5 seconds. However, the 

removal of a node was not available in the system.  
   Raspberry Pi on each camera in the distributed network 

enabled local threat identification and tracking. The future  

 

direction of each threat was predicted and the current 
information about the threat was stored in the local storage 

of the camera. The proposed system predicted paths 

adopted by the threats (Experiment II) with an accuracy of 

85.49% as of the actual paths of the threats (Table 5). The 

high accuracy of the proposed system was due to the local 

monitoring and threat information storage by each camera 

rather than a centralized unit.  

Threat information about each threat was saved in the local 

storage associated with each camera along with the threat 

id. Information about each threat can be queried through 

each camera. A query about a specific threat was forwarded 
to the nodes in the direction where the threat was moving. 

A camera that identified the threat logged the data in the 

system, predicted the next direction of the threat and 

forwarded the query to the neighboring node in the same 

direction. The same process continued until the threat was 

not available in the frame of any camera in the network. 

Distributed query, reduced the average time taken to 

identify a threat (Table 4) as the identification was made 

through distributed nodes (experiment II) rather than the 

central system (experiment I).  

The proposed system has reduced the overall time cost for 

identifying and tracking the path of the threat. It has also 
reduced the need and cost of data transmission and 

receiving from/to the centralized server. Blockchain based 

data logging about each threat, and the processing 

capability of each node has reduced the overall cost of data 

submission and retrieval from a centralized server.   

 
VII. Conclusion  

Based on the discussion above, we can conclude that 

instead of replacing hundreds of thousand cameras, the 

capabilities of these cameras should be enhanced with the 

proposed software architecture that can run on low-cost 

smart hardware. The proposed software architecture and 

sensors give cameras the capability to communicate with 

neighboring cameras, identify and track the threats without 

the need for costly cloud-based infrastructure. Moreover, 
we came to the conclusion that a distributed system is better 

than a centralized system due to time and cost factors. This 

strongly adheres to the results of the experiment. The 

proposed system also comes up with some limitations i.e. it 

does not consider the fast rotations in the captured images. 

If a video frame contains immediate rotation of faces, the 

proposed system will fail to identify them. The proposed 
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system does not provide coverage / surveillance in blind 

spots. The network in the proposed system does not provide 

continuous coverage i.e. if a threat is recognized first by a 

camera, the next time the threat appears in the same camera, 
it will not be recognized by this camera. The study can be 

extended to reduce the error rate in path prediction of the 

threat together with passing an alert message concerning 

authorities after identifying a threat.  
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