
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

P a g e 1 | 14

An Inexpensive Upgradation of Legacy
Cameras Using Software and Hardware
Architecture for Monitoring and Tracking of
Live Threats

Ume Habiba1, Muhammad Awais2, Milhan Khan3, Abdul Jaleel4

1Post-graduate scholar, Department of computer science & engineering, University of Engineering & Technology, Lahore, Pakistan
2Assistant Professor, Department of computer science & engineering, University of Engineering & Technology, Lahore, Pakistan 3Electrical
3PhD. scholar, Department of computer science & engineering, University of Engineering & Technology, Lahore, Pakistan
4Assistant Professor, Department of computer science, Rachna college of University of Engineering & Technology, Pakistan

Corresponding author: (e-mail: ume.habbiba@hotmail.com ; awais.hassan@uet.edu.pk).

ABSTRACT Surveillance through digital cameras is increasing exponentially. A majority of these cameras are not smart

cameras; therefore, they send their video stream to a central server where it is processed and analyzed for any threats.
Typically, human operators or machine learning algorithms at cloud, analyzed and processed the post-event videos to track

and locate the perpetrator or victim. The centralized approach leads to two primary shortcomings: 1) the high cost of cloud

infrastructure; 2) lack of instant tracking and detection of the threat. One solution is to replace these legacy cameras with the

smart cameras so they can process information locally. Although the solution is costly, it could solve the real time threat

detection issues. However, the need for a central server remains there, to construct the path of threat, when threat moves

from one camera view to another. The existing distributed architectures for threat tracking, shifts the load of threat capturing

and processing from central server to the edge nodes, which in turn reduces the computational power but do not remove the

role of central server completely. These architectures doesn’t equip each camera of processing and communicating with each

other. Further, in the existing distributed architectures the local cameras are not able to store the path of the threat

individually, and transmits the captured trajectory to the central body. This research proposed a second alternative that makes

use of legacy cameras through additional hardware and software components such that they can process information and
collaborate locally. The research addresses the challenge by introducing a low cost distributed threat tracking framework

that allows the single camera to identify the threat and communicate its information to other cameras without involving the

central server. The framework stores the information in a lightweight architecture that is inspired by the blockchain storage

algorithm. The system also allows querying the path traveled by the threat at any stage. To evaluate the system, we

performed two simulated experiments: one with a central server and another with the proposed distributed system. The

results of the experiments showed that the time to track the threat through the proposed system was lower than the existing

centralized system. Moreover, the proposed system predicted the paths of threats with an accuracy of 85.49%. In the future,

the technique may be improved with reinforcement learning and other machine learning techniques.

INDEX TERMS Video Surveillance, Smart Cameras, distributed computing, software architecture, Peer-
to-peer computing

I. INTRODUCTION

 April 15, 2013, is one of the darkest days in the history of

the United States of America as it witnessed two disastrous

explosions. These explosions killed more than three people,

while hundreds of others received severe injuries. Later, the
two suspects of the bombing were captured by sifting

through CCTV videos of several hours [1]. The increased

terrorist and crime incidents have alarmed nations around

the globe and necessitated proper surveillance in cities [2].

Different sensors are being used these days for surveillance

and especially path tracking of threats. These sensors

include binary cameras [3], depth data [4], and digital
cameras [5]. The digital cameras are most important source

of path tracking due to their high resolution captured

images, and low cost compared to other sensors.

A large number of cameras, for surveillance, have been

installed in all big cities of world by their governments.

These devices their continuously capture the video stream

of the area under their observation [6]. Usually, these

cameras feed their video stream to cloud infrastructure [7]–

[9] where it is stored, processed and analyzed [10]. To track

the path of any victim or perpetrator, these videos are

mailto:ume.habbiba@hotmail.com

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

P a g e 2 | 14

processed by the machine learning algorithms [11]–[13]

and the human operators.

The existing methods, in literature, for the surveillance

have many drawbacks. For example, a study [14] has
revealed that the monitoring of multiple camera views puts

a significant burden on the human operator that results in

time consumption, exhausted eyes, and error-prone work

[15]. The other methods [11]–[13] those employ intelligent
learning algorithms for the detection and re-identification of

persons do not offer collaboration and communication

between cameras. However, these intelligent surveillance

systems are unable to query about specific threat

information from their neighboring cameras and fails to live

track the threats. Other solutions uses the central server

where the information is processed but these centralize

systems have three primary challenges: 1) the high cost of
cloud infrastructure; 2) real time monitoring of threat; and

3) tracking the path of the object. There is a need for a

distributed system where nodes can query about threats

from neighbors and perform live tracking of a threat

without the involvement of a central server.

 The goal of this research is to propose a software

architecture that enables legacy cameras, without an

expensive cloud infrastructure, to establish ad-hoc networks

automatically without any human intervention, identify the

threat, transmit and seek information of the threat from

neighboring cameras, track the threat movement and allow
to query threat information from the distributed network

whenever it is required. We targeted following research

questions to achieve our goal.

1) How do you enable legacy cameras so they can

establish a distributed network automatically without

the intervention of humans or a centralized system?

2) How can these modified cameras track the threat from

archived videos without any time expensive machine

learning algorithms or human intervention?

3) How can threat information be stored, co-related, and

queried from these distributed camera nodes?

 Our contribution is that we enabled the legacy camera

with the help of a low-cost hardware to communicate with

other cameras and detect the threat locally. Once the local

camera detects the threat, it stores the relevant threat info

(such as timestamp when the threat is detected and

reference frames), predicts the threat direction and informs

the neighboring cameras about the threat so they can track

it further. In this way, only the relevant threat information

is required to be saved, and the upgraded cameras track the

path that can be accessed later.

II. Literature Survey

 Body tracking, and detection are quite useful in multiple

fields including robotics [16]–[18], health related issues

[19], and industrial academic areas [20] but most of the
applications are in surveillance. Surveillance of a human

body can be done by different methods in the existing

literature [21]–[26]. For identification of a threat the feature

extraction, classification, and face recognition are the most

important steps and the technique used for these steps

include: artificial neural network, infrared sensors, and

human segmentation [27]–[30]. These researches tracks the
human body by re-identifying it in different cameras, or by

action recognition made by different body parts of a

human.

 Chen et al. proposed "City Eyes", a cloud-based

computational framework for developing intelligent

surveillance applications [7]. The authors integrated “City

Eyes” in multiple surveillance systems of different cities

and showed a reduced time in continuous monitoring of

surveillance videos. In order to fulfill the QoS requirement

and to optimize the allocation of VM resources, Hossain et

al. presented a resource allocation scheme [8]. The scheme
streamed composite media in a cloud-based video

surveillance environment. The elastic cloud-based platform

stored all video streams that were captured and transferred

by the surveillance cameras. Li et al. investigated the

processing of massive floating car data (FCD) for traffic

surveillance in cloud computing environments [9].

Empirical studies showed the potential of cloud computing

for providing various solutions for on-demand geospatial

data-intensive applications.

 Shao et al. developed an intelligent system with smart
front-end cameras for surveillance and pre-alarming [31].

The smart cameras were able to pre-alarm and store any

unusual event in the database. Chandana et al. [11]

proposed a surveillance system using “thing speak” and

raspberry pi. The raspberry pi enabled the cameras to

capture the image and detect the motion of a person. The

images of individuals were captured only after the detection

of motion signals which in turn reduced the power

consumption compared to the surveillance system that

continuously captured the videos. Abas et al. developed

“SlugCam”: an outdoor wireless smart camera network [12]

where nodes were intelligent enough to change their
monitoring behavior when the passive infrared sensor (PIR)

detected any motion. Wang et al. demonstrated a paradigm

of "tweeting" cameras [13]. The software architecture of

tweeting cameras was able to recognize, detect abnormal

events through Sony IMX219 8-megapixel sensor. The

camera also tweeted about exciting events on social media

and received replies from humans for the learning process.

 For processing and monitoring, Zhang et al. sent data

captured by cameras to cloud storage [32]. This data

transmission results in high response latency and bandwidth
constraints, which in turn proves this solution to be

inefficient and expensive. To overcome the constraints of

cloud storage, the researchers, afterward tracked and

identified threats through intelligent single and multi-

cameras. Tang et al. tracked the path of a person by re-

identifying him in a monocular video of the crowded scene

[33]. The authors used a novel graph-based approach for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

P a g e 3 | 14

linking and clustering the track of a person. Results showed

that this method outperformed the existing benchmark.

Beyer et al. integrated re-identification (ReID) with multi-

target multi-camera tracking [34]. This integration resulted
in an optimal Bayes filter. This filter avoided the

requirement of data association and dependency on

boundary boxes for tracking.

 For detecting and tracking people in-depth images that

were captured through a time-of-flight camera,

Stahischmidt proposed a method and an application [35].

The detected persons were tracked by a Kalman filter, and

their adopted trajectories were stored. Images captured by

the cameras were taken perpendicularly from the top-right

angle and were stored locally in the camera. The solution

was centralized as other cameras were not able to process
the information independently. Tesfaye et al. proposed a

three-layered hierarchal approach for tracking people in

multiple non-overlapping cameras [36]. This method took a

video and set of detections as input and performed within-

camera and across camera tracking. The camera

communication was not allowed, and the input was not
taken directly from the cameras.

 Liem & Gavrila proposed a multi-people position

tracking algorithm for overlapping cameras [37]. The

similarity of a person and running track were mapped using

a set of hints such as motion style and appearance of the
person. The authors detected foreground maps by using

background subtraction method. The tracking was done by

associating these detections to the previously tracked

individuals. The experiments showed that this system

outperformed with multi-person datasets having

overlapping cameras, and track consistency were also

improved. This system did not allow performing any query

about a specific threat.

 Bhuvana proposed an object tracking algorithm for

targeting the bandwidth and energy limitations in the

information exchanged among surveillance cameras [38].

This method restricted the number of cameras participating
in the information sharing process. The surprise selection

method enabled the cameras to decide whether their

information was essential or not. This method showed

improved tracking accuracy.

 Wang et al. proposed a surveillance system that enabled

communication of cameras with edge nodes and reduced

the computation delay on central servers [39]. The delays

were reduced because computation and storage resources

shifted from the centralized data center to the edge nodes.

These experiments showed that the system was more rapid,

responsive, and flexible. However, the cameras in this
network were not enabled with inter-camera

communication. Jiang et al. proposed a person re-

identification framework based on the orientation of a

person [40]. Cameras in the framework were enabled with

inter-camera information exchange i.e., the camera was able

to share information with its different modules but not with

other cameras. The camera in the framework shared images

of the same person based on his discriminative appearance

features for associating inter-camera trajectory and

achieving inter-camera Spatio-temporal constraints. The

communication of camera with different modules helped in
person re-identification despite occlusions.

 Kumar et al. developed a person re-identification

algorithm with distributing computing capabilities in non-

overlapping camera networks [41]. The cameras in the

system were able to self-process the threats and pass

relevant information to a primary camera. The primary

camera was able to query about a particular person from the

neighborhood cameras. Well, the trajectory of the identified

or tracked persons was not stored in the system. For

detecting abnormal events in frames, Wang et al. proposed

an algorithm for distributed cameras network [42]. The

authors presented a multi-kernel strategy for benefitting
from the different views captured by multiple cameras.

Although this work identified malicious activity, but the

cameras involved in the network were not able to

automatically configure and track or store the path of a

threat.

The most of available solutions provide surveillance

through a single camera and with the involvement of cloud

infrastructure. However, a very low number of researches

existed that deal with multiple cameras for threat detection

and tracking.

III. Proposed Method

 For video surveillance, the proposed distributed network

consists of multiple cameras and each camera is called a

node. To convert the node into a smart node, we proposed a
software architecture (Figure 1) that can run on the

raspberry Pi. Raspberry camera was provided in Camera

Serial Interface (CSI) of all other cameras which in-turn

formed a network. The distributed network consists of four

major components: network manager, threat handler, path

generator, and controller.

 Network manager is responsible for storage of all nodes

and prediction of next location of the threat. Records

required by network manager are stored in “camera lookup”

log. Threat handler component stores information about all

threats and uses the convolution neural network (CNN) for
threat identification. In case of a threat, the information

about the threat is communicated to the neighbor nodes.

The path generator component produces the path against

the query about a threat. The controller is the major

component that is responsible for the communication

among the nodes and the addition of nodes in the network.

The nodes in the network communicate with each other by

sending messages in the form of packets. The following

section provides the details about these components.

A. Network Manager

 A legacy surveillance camera can track the threat up to a

limited range because of its finite and fixed position [25]-

[26]. Once a camera has identified the threat, it starts

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

P a g e 4 | 14

monitoring the threat, and when the threat is moving out to

its field of view, the camera has to inform neighboring

cameras that the threat is entering into your viewing area. In

order to achieve the functionality, each camera should be
aware of its immediate neighbors, Fig 3. There are two

options one is to configure each camera manually, and a

human technician provides the information of neighboring

camera. However, on each node, it requires to add

information of all neighboring cameras manually that is a

massive task if new cameras keep coming up, the position

of some cameras is changed, or they stop working.

 The most important information is the coverage area and

view frustum of each camera. Each camera knows its fixed

location, its field of view (FoV), and coverage distance.

When a camera gets online, it broadcasts these parameters

to other cameras.

From this tuple, C (location, FoV, coverage distance), other

cameras calculate the two more points B (Eq. 1) and D (Eq.

2) for each camera such that A, B, D make a triangle of its

coverage area Fig 3 (a), Fig 3 (b). The blind spot between
two cameras where no coverage is available is also shown

in Fig 3. Also receiving the camera calculates the relative

location of another camera regarding its position Fig 4.

These relative positions could be from one of four

quadrants Fig 4. using the function given in Eq. 3; this

relative location is used by Algorithm 2 while invoking the

neighboring cameras for a potential threat. Table 1. shows a

comparison of the proposed system having with the existing

solutions for threat detection and tracking.

TABLE 1: COMPARISON OF PROPOSED WORK WITH EXISTING SURVEILLANCE SYSTEMS

 Threat path identification or tracking Automatic camera

management

Tracked path

storage

Information Sharing

among cameras

Hybrid system for

identifying, tracking,

path storage

Liem [9] (Automatic) using the 3D

reconstruction of the scene for

detection & tracking

Manual local

None ×

Stahischmidt

et al. [7]

Automatic

(Kalman-based multi-object tracking)

Manual local none ×

Jiang [12] Automatic through deep learning

architecture

Manual local None ×

Wang [11] through elastic dynamically launched

Virtualized Network Functions

(VNFs) on edge servers

Manual Edge cloud

storage

With edge nodes ×

Chen [21] PaaS controller (Video Analysis

Platform-as-a-Service)

Manual Local Cloud ×

Proposed

Work

Through Raspberry pi, and distributed

classifier

Automatic local inter-camera

information sharing

Figure 1: Overall system architecture and services

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

P a g e 5 | 14

Figure 2: System demonstration

 Figure 3 (a): Neighboring camera networks

 (1)

Here, ‘B’ is the distance of a camera Ci from its left

neighbor. ‘FOV’ is the field of view of the camera as

specified by the camera designer. h is the height of the

camera sensor, and f is the focal length of the camera lens.

 (2)

 Here, ‘D’ is the distance of a camera Ci from its right

neighbor. FOV is the field of view of the camera as
specified by the camera designer. 'h’ is the height of the

camera sensor. For calculating the relative position of a

camera C1 with respect to other camera C2 at first quadrants

of both cameras are calculated. We proposed a local storage

table that stores all the information of the neighboring

cameras Table 2.
Table 2: Lookup table of C2

Node ID Angle Distance

(meters)

A B D Direction

C2 232 20 20,15 30,25 18,25 θ3

C4 180 10 18,20 25, 12 10,20 θ4

C3 210 60 10,18 12,24 20,25 θ1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

Suppose Pdir is the predicted direction of the camera. Let Ѳi

be the quadrant angle of the current camera (Ci) that has

captured the threat. Let Ѳk, Ѳk+1, Ѳk+2,,,,,,, be the angles of

all neighbors of Ci. The difference between the angles of
the current camera and the angle of all other neighbor

camera is calculated. The camera with a minimum

difference is regarded as a neighbor of Ci and is sent

information about the threat and its predicted direction.

 Min {(Ѳi - Ѳk) (Ѳi – Ѳk+1) ….. (Ѳi - Ѳn)] = Neighbor (3)

 Figure 3 (b): Neighboring camera networks

Fig 4. shows the arrangement of cameras in a plane and the

way with which relative location of a camera is determined

 Figure 4: Relative location of a camera

Algorithm 1: Node Manager

Input: Node N
Output: Acknowledgement (Sender Info)

Flag=false

foreach (Old_Node in lookupTable.Entries) do

if (N->IP = Old_Node -> IP) then

flag= True //node already added

sendAcknowledgement(Old_Node)

endif

 endfor

if (not flag)

 pointB = (fov * f) / h
pointD = (fov * f) / h

quadrant= FindQuardrant (Longitude, Latitude)

end if

Entry = CreateLookupTableEntry

(N.ID,N.angleBetweenCamera,

N.distance,N.location,pointA,

pointB,pointB,Quardent)

lookupTable.Add (entry)

return acknowledgement(entry)

Threat Handler

 This module consists of three sub-modules: Threat

Detection, Threat Communication, and Threat Storage.

First, we discuss these sub-modules, and then we give a

complete algorithm for threat handling process.

i) Threat detection

 The proposed system consists of different camera nodes

those are connected to form a distributed network. Each

camera captures and monitors the scene in its range. The

camera node consists of a Raspberry Pi that acts as a tiny

processor and serves as a host for videos processing,

storage, identification of threats, and further

communication and warning to the neighbors.

 Threat detection and identification at early stages prevent
severe losses. In order to save the time and to avoid the

sending of all video streams to the server, the proposed

system uses this local module to identify the threat. This

module identifies threats from a video sequence that is

captured by a camera node in the network. Each

image/frame captured by a camera node is first

preprocessed by pre-processor before threat detection or

identification. The preprocessor follows some steps for

preparing image for threat identification. These steps are

mentioned in Fig 5.

Figure 5: Block diagram of preprocessing procedure

Step 1: (Noise removal): Noise is introduced in an image

at the time of its acquisition and it is introduced due to

different factors including inappropriate light settings,

corrupt image sensor, and dust particles on the camera. We

used the order statistical filter to remove noise in the

captured images by the camera [45]. It is a nonlinear filter

whose response depends on ordering of pixels encompassed

by the filter area.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

Step 2: (Background Removal): For background removal

from the frames, we used background subtraction technique

using concept of running average [46]. In this method,

video frames were analyzed. A comparison of running
average of current and previous frames, provides

background and foreground model. The foreground model

is extracted from the comparison, by detecting the active

objects.

Step 3: (Image Sharpening): For sharpening the images

with removed background, we used un-sharp mask [47].

This technique first uses a blurred version of the original

image. This blurred version is then subtracted from the

original image. This subtraction points out the presence of

the edges, hence creating the un-sharp mask. An increased

along the edges using the above mask, the product is a

sharpened image.

 For proper identification of the threat, there is a need for

visual features' extraction from the video sequence. The

essential features are learned and extracted using CNN.

 CNN models require training on a huge amount of data

for learning before any usage. This training causes high

time consumption, and to avoid this; we have used a pre-

trained CNN model. Fig 6. shows threat identification

module of the proposed system. For recognizing threats’

face, we used visual geometry group (VGG) Face-16 CNN

[48]. Structure of VGG Face-16 has 13 convolutional

layers, five pooling layers, and three fully-connected layers.
VGG Face-16 was trained using a publically available

dataset [49]. After the convolution operation, CNN

produces feature maps. The size of these feature maps is

determined from the width or height of the filter, the width

or height of the input image (or feature map) before it

enters the convolutional layer, the amount of padding in the

convolutional layer, and the number of strides [50].

Rectified linear unit (ReLU) layer follows the convolution

layer, which used polling windows for reducing dimensions

of obtained features and smoothing the features extraction

process. For window sliding Partial Least Square method

(PLS) is used and the features used by Robson et al. [51].
The final layer, fully connected layer (FCL) consists of a

softmax function for normalizing the inputs and yielding

categorical distribution of each class function.

ii) Threat Communication and Storage.

 If the upper layer detects a person as a threat, it predicts

the exit quadrant where the threat is heading. The quadrants

are defined with reference to the point of the camera. The

module uses the direction of the head in the captured set of

images. This method takes a face as a parameter and returns

its direction using the corner points of facial features (head,

nose, eyes). The location of the camera is required to
predict the quadrant coordinate. We used the method given

by Xing et al. to find the coordinates of the threat [52].

Once the coordinate has been found, the quadrant is

determined by the following function:

FindQuadrant (longitude, latitude)
{

 if (longitude > 0 && latitude > 0) { quadrant = 1}

 elseif (longitude < 0 && latitude > 0) { quadrant = 2}

 elseif (longitude < 0 && latitude < 0) { quadrant = 3}

 elseif (longitude > 0 && latitude < 0) { quadrant = 4}

}
 After predicting the threat of future quadrant, the camera

creates a block with threat hash, its-IP, predicted quadrant,

predicted direction, current block id, and nearest neighbors

in the predicted direction. This block-chain based module

stores the path history of a particular threat. Whenever a

camera node detects a threat, it creates a block for the threat

that consists of threat_id, time, and date. Each block

consists of a hash value, which acts as its unique identifier.
The time, date (when the camera identified the threat), and

the block_id of the notifying node play a vital role in the

calculation of the hash value. The value of the block is

empty for the first camera that detects the threat; in the

blockchain, this block is termed as "genesis block." The

block does not have next camera IP it remains blank until

the threat enters into the specific camera. After generating

the genesis block, the system logged information in the

local database and forwarded the block to all registered

cameras (present in a lookup table). Now, all the relevant

cameras have the genesis block for the threat. When a

camera detects a threat, it broadcast the information to
cameras so they can discard the genesis block and it also

informs the parent camera. The parent block appends the IP

of receiving camera into the block so it can help to create a

chain for the threat. Now, the second camera repeats the

process, but this time it creates its block and leaves the next

camera attribute blank. Once the threat leaves the camera, it

sends the block information to another camera of the

predicted quadrant.

Algorithm 2: Threat Handler

Input: VideoFrame frame
pFrame = preprocess (frame)

featureMap = GetFeatures(pFrame)

isThreat = Model.Classify(featureMap)

 if (not isThreat) return

 else

 Direction = PredictThreatDiretion (pFrame)

 Position=PredictThreatPosition(PFrame)

 Quadrant = FindQuadrant (longitude, latitude)

 NewHash=generateHash(Node.IP,threat)

 Old_Block =threatBlocks.find(pFrame) //if threat is
 already communicated by any other camera

 ParentBlock = GensisBlock

 if Old_Block !=Null //Threat BlockAlready Exist

 Old_Block.NextBlockHash=newHash

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

SendAcknowlegment(Old_Block.senderIP,OldBlock.HashI

D,newHash)

 ParentBlock= Old_Block.HashID

 End if

B. Threat Path Generator

 After threat identification, the node stores the information

of threat into the local database in the form of a block.
However, the block does not store the path of the threat; the

block only contains the location of the next block and its

Hash ID.

 For path construction, the node queries the path of a

specific threat from another node where the threat has

moved. For the purpose, a distributed query can be passed

using the BlockID that is to be tracked, IP address of the

current node from where the query is to be made and

previous path of the threat if any. A node N can broadcast

a query to its neighbor node, about a specific threat having

blockID. The neighbor checks the log for BlockID. If a
neighbor finds a threat in its log, it appends its location into

the path and checks whether the next block is null or not. If

it is not null, it calls the function construct path for the next

camera. If it is null, the sequence of blocks is returned to

the inquiring camera.

PreProcess(FindImage)

Input: QueryStarter,Sender,BlockID,Path

Output: ForwardQuery/SendResults

Found=false
For each B in Blocks

 If (B.ParentBlock==BlockID)

 Found=true

 Path.Append(NodeID,B.BlockID)

 SendQuery(B.NextNodeID,B.NextBlockID)

 End if

 If (Not Found)

 SendResult (OueryStarter,Path)

 End if

End For

Algorithm 4a: Path Generator

Method Generate Threat Path Request

Input: Preprocessed-Image

Output:

 RBlock=null

 For Block B in threatBlocks

 If B.frame == Preprocessed_Image

 Rblock=B
 End if

 End For

 If Rblock !=null

 Path.append(Current.NodeID,RBlock.BlockID)

 Path=SendQuery(RBlock.NextNodeID,RBlock

 .NextBlockID,Path)

Wait For Response

Print Path.

 End If

 Fig 7. Shows how the path of a particular threat is stored

in each camera installed in the way where the threat has

passed. For example, in order to query about a particular

threat (John), the inquiring camera sends the BlockID to its

neighbor cameras. If the neighbor cameras do not find the

threat information, they forward the request further to their

neighbors. In another case, the inquired camera will go for

the current ID of the threat. The current id contains

information about the cameras by which the threat was

being captured plus the id of latest camera that has spotted
the threat.

C. Controller:

Each message created in the proposed system is exchanged

with neighbor cameras through the controller. This

component uses the services of Raspberry Pi. Raspberry Pi

is attached to each monitoring camera, provides a dedicated

socket for continuously listening to the requests from its

neighbors. Requests from the neighbors can be one of the

three types: threat alert, a new node broadcast, and

distributed query. Whenever a message about a particular

threat is received from the neighbor camera, the

communication layer redirects the message to threat handler

module of the current camera. Also, when a node is
injected, it broadcasts "add" request to all nodes in the

network. The listening socket on Raspberry Pi of receiving

nodes forwards the request to its node manager for the

addition of the new node into the routing table. In case the

request is of the distributed query, the listening service

forwards it to the path manager.

Algorithm 5: Controller

1: Input: Req_Service

2: if (Service = add or remove node (N)) then

3: NetworkManager (N)

4: if (Service = Monitor_Threat (Threat_ID))

5: ThreatHandler (Threat_ID)

6: if (Service = Query (Threat_ID)) then

7: PathGenerator (Threat_ID)

8: endif

9: endif

10: endif

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

Figure 6: Convolution neural network layer

 Figure 7: Block chain demonstration of threat information

IV. Experimentation

A. Experimental Setup

 Our experimental setup consisted of the 35 surveillance

cameras installed at various locations of a university

campus. We used raspberry Pi 3B+ with Raspbian Jessie

OS booted from a 64G microSD card as in intelligent

module to be attached to each camera. The cameras in this

setup were installed at the incoming and exit points of eight

departments of the university. In total, a hundred video

clips were passed to the Raspberry module in which one
hundred and fifteen threats were explicitly simulated. These

threats were people who performed abnormal and

ambiguous activities. The dataset used for classifying

threats through classifier on central server and the one

running on Raspberry Pi is “Behave” [53]. This dataset

consists of view of people acting out in different situations.

The data is captured at 25 frames per second. The
resolution is 640x480. The videos clips are provided in the

dataset that can be classified as frames. These frames are

available as a set of JPEG single image files. The normal

behavior of the person are labelled as meet, walk together,

split, and ignore. While the abnormal behavior is labeled as:

fight, and chase.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

VOLUME XX, 2017 9

B. Experiment I: Threat identification through a
centralized network of cameras

 The first experiment was performed to assess the time

taken in identifying a threat by a centralized system. In this

experiment, the hundred multiple video clips, collected

through installed cameras in the experimental environment,

were fed to the central server for the analysis. A classifier

running on a central server identified threats was trained on

multiple datasets [53] of videos containing normal and

abnormal behavior of the people. The same classifier was

also used for the distributed system in experiment II.
Moreover, the communication among the camera nodes

was not allowed in this first experiment.

C. Experiment II: Threat Identification through

proposed system

 The second experiment was performed to analyze the
time taken to identify a threat via proposed distributed

system and the accuracy of the path prediction. In this

experiment, the proposed framework was used to track and

identify the threats. Threats were identified by services

provided by Raspberry module attached with each camera

node. The classifier on Raspberry pi was trained on

multiple datasets [53] of videos containing normal and

abnormal behavior of the people. After detection of a threat,

the camera predicted and forwarded threat's face to the

relevant nearest neighbor for live tracking of the threat.

Message passing among camera nodes was in the form of
packets and the number of packets received by the receiver

node were logged and compared with the number of

original packets sent.

 Also, three nodes were added in to the distributed

network at location L1, L2, L3 respectively, where the

configuration of each camera was updated automatically.

The added nodes sent requests, containing their IP and

location (longitude, latitude), to the neighbor nodes. The

neighbor nodes were automatically configured to add the

received IP in their routing table.

V. Results

VGG 16 used for threat detection was classified using the

dataset “Behave” [50], and the abnormal activities e.g.
chase and fight were detected using this dataset. VGG 16

achieved 96% accuracy for classifying the threats in above

dataset. These results were compared with those of HMM

[5], SVM [54], HMM based GMM [55], and the

comparison is listed down in Table 3.

Table 3: Comparison of VGG-16 with existing techniques

Technique Applied Classification accuracy achieved

VGG-16 96.09%

HMM based GMM 84%

SVM 94.9

HMM using depth Silhouettes

Context features

83.92

Table 4. lists down the processing time to identify 115

threats in experiment 1 and experiment 2. Path tracked by

the proposed system for a specific threat was matched with

the original path followed by a threat which was already
known and stored in the system. Table 5. lists down paths

predicted by the proposed system for a few sample threats

and with the original paths adopted by the threats. The

locations in the university campus, where a camera node is

installed, is named as L1, L2, L3,... LN.

Table 4: Sample Threat tracking time for both experiments

Time is taken to identify

different threats in the

experiment I

Time is taken to identify

different threats in experiment

II

1302 seconds 1000 seconds

1477 1112

1132 899

1298 990

Table 5: Sample paths of threats predicted by the proposed system

 Location Path

Predicted

Original

Path

Is-

Accurate

Threat 1 L1 A-B-D-L-G A-B-D-L-H No

Threat 2 L2 A-B-C-L-H A-B-C-L-H Yes

Threat 3 L3 B-C-D-L-G B-C-D-L-G Yes

Threat 4 L4 F-G-H-E-F F-G-G-E-E No

The system predicted paths of 85.49% threats precisely the

same as their original path.

Figure 8: Graphical comparison of threat identification time of

centralized and proposed system

Figure 8. shows a graphical comparison of the time taken

by the centralized and proposed system to identify random

threats.

Table 6. shows a comparison between the routing tables

updated manually by the human operator in case of addition

of three nodes at location L5, L7, L2,.and routing tables

updated automatically in case of the same addition.

0

200

400

600

800

1000

1200

1400

1600

Threat 1 Threat 2 Threat 3 Threat 4

Comparison of time taken to identify threats between centralized and

proposed system

centralized system Proposed System

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

VOLUME XX, 2017 9

Table 6: Manually updated routing table vs automatically updated routing tables

The manually updated routing table The automatically updated routing table

Dest Area Hop Cost Next

Hops

Network

address

interface Dest Area Hop

Cost

Next

Hops

Network address Interface

N1 1 4 RT1 10.0.10.0 Eth1 N1 1 4 RT1 10.0.10.0 Eth1

N2 1 4 RT4 255.0.100.1 Eth0 N2 1 4 RT4 255.0.100.1 Eth0

N3 0 3 RT3 192.168.0.100 Eth2 N3 0 3 RT3 192.168.0.100 Eth2

N4 0 1 RT2 192.168.10.1 Eth1 N1 0 0 RT2 192.168.10.1 Eth1

The error rate of the automatically updated routing table
through the proposed system was 0.012%. The average

time is taken by a camera to update its routing tables

automatically was reduced to 4.5 seconds then the human

operator who took an average of 8 minutes to update the

routing table of a camera.

VI. Discussion

 In this research, we have proposed low-cost system

architecture for identifying and tracking threats through a
distributed network of video surveillance cameras and IoT

sensors. A Raspberry Pi module was attached to each

camera node which offered various services through the

software modules. All cameras were connected in a

distributed network, and the proposed architecture enabled

these cameras to identify and track the threats locally. At

first, when a camera node identified a threat, it assigned an

identification number to the threat. Then, the camera node

predicted the next direction of the threat. Data about the

identified threat is forwarded to the neighbor node in the

same direction where the threat is moving. Communication
among nodes helped neighbor cameras to track the path of

threat using threat and path management services of

Raspberry Pi.

 The proposed solution offers a service that allows the

cameras to automatically form a distributed network

without any human assistance (experiment II). The node

manager module was responsible for updating the routing

tables of each node in case of an addition of a new camera

in the network. When a node is added into the system, it

broadcast the add request to other cameras in the network.

After receiving the request, the nodes in the neighbor

update their routing tables for any matching node with the
same IP as of the requested node. The routing table stores

the location (longitude, latitude), direction, and IP address

of neighbors. The routing tables of all devices were updated

when three new nodes were added into the distributed

network at the location L5, L7, L2. The manually updated

tables were compared with the automatically updated

routing tables; the later showed an error rate of 0.012%.

This dynamic insertion of nodes reduced the extra effort for

manually updating the routing table associated with each

camera from 8 minutes to 4.5 seconds. However, the

removal of a node was not available in the system.
 Raspberry Pi on each camera in the distributed network

enabled local threat identification and tracking. The future

direction of each threat was predicted and the current
information about the threat was stored in the local storage

of the camera. The proposed system predicted paths

adopted by the threats (Experiment II) with an accuracy of

85.49% as of the actual paths of the threats (Table 5). The

high accuracy of the proposed system was due to the local

monitoring and threat information storage by each camera

rather than a centralized unit.

Threat information about each threat was saved in the local

storage associated with each camera along with the threat

id. Information about each threat can be queried through

each camera. A query about a specific threat was forwarded
to the nodes in the direction where the threat was moving.

A camera that identified the threat logged the data in the

system, predicted the next direction of the threat and

forwarded the query to the neighboring node in the same

direction. The same process continued until the threat was

not available in the frame of any camera in the network.

Distributed query, reduced the average time taken to

identify a threat (Table 4) as the identification was made

through distributed nodes (experiment II) rather than the

central system (experiment I).

The proposed system has reduced the overall time cost for

identifying and tracking the path of the threat. It has also
reduced the need and cost of data transmission and

receiving from/to the centralized server. Blockchain based

data logging about each threat, and the processing

capability of each node has reduced the overall cost of data

submission and retrieval from a centralized server.

VII. Conclusion

Based on the discussion above, we can conclude that

instead of replacing hundreds of thousand cameras, the

capabilities of these cameras should be enhanced with the

proposed software architecture that can run on low-cost

smart hardware. The proposed software architecture and

sensors give cameras the capability to communicate with

neighboring cameras, identify and track the threats without

the need for costly cloud-based infrastructure. Moreover,
we came to the conclusion that a distributed system is better

than a centralized system due to time and cost factors. This

strongly adheres to the results of the experiment. The

proposed system also comes up with some limitations i.e. it

does not consider the fast rotations in the captured images.

If a video frame contains immediate rotation of faces, the

proposed system will fail to identify them. The proposed

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

VOLUME XX, 2017 9

system does not provide coverage / surveillance in blind

spots. The network in the proposed system does not provide

continuous coverage i.e. if a threat is recognized first by a

camera, the next time the threat appears in the same camera,
it will not be recognized by this camera. The study can be

extended to reduce the error rate in path prediction of the

threat together with passing an alert message concerning

authorities after identifying a threat.

Miss. Ume Habiba is a post Graduate student of

computer science at Computer Science and

Engineering Department at the University of

Engineering and Technology, Lahore, Pakistan.

She is also working as a research assistant in UET

Lahore. Her research interests include

Gamification and adaptive learning.

Dr. Muhammad Awais Awais is Gold Medalist

of Punjab University in MCS computer science. He

has completed his PhD. Computer Science from

University of Engineering & Technology, Lahore,

Pakistan. He is currently working as an assistant

professor at Computer Science and Engineering

Department at the University of Engineering and

Technology. His research interest includes Artificial

Intelligence, Reinforcement Learning, Adaptive eLearning Systems, and

Affective Computing.

 Muhammad Milhan Afzal is serving as a

Lecturer in the Computer Science department of

the University of Agriculture, Faisalabad,

Pakistan and a Ph.D. scholar at University of

Engineering and Technology Lahore, Pakistan.

His research interests are Blockchain, Software

Metric, and Software Design.

 Dr. Abdul jaleel received the B.S. degree in

Computer Science and Engineering from UET,

2006. He completed M.S. in Computer Science

in 2010 and then received Ph.D. degree in

Computer Science from the same university in

2019. He is working as Assistant Professor at

the same college. His research interest includes

the development of self-managing software

applications.

References:

[1] J. C. Klontz and A. K. Jain, “A case study on unconstrained

facial recognition using the boston marathon bombings

suspects,” Michigan State Univ. Tech. Rep, vol. 119, no. 120, p.

1, 2013.

[2] S. Ojha and S. Sakhare, “Image processing techniques for object

tracking in video surveillance-A survey,” in 2015 International

Conference on Pervasive Computing (ICPC), 2015, pp. 1–6.

[3] D. Koller, G. Klinker, E. Rose, D. E. Breen, R. T. Whitaker, and

M. Tuceryan, “Real-time vision-based camera tracking for

augmented reality applications.,” in VRST, 1997, vol. 97, pp. 87–

94.

[4] A. Jalal, S. Kamal, and D. Kim, “A Depth Video-based Human

Detection and Activity Recognition using Multi-features and

Embedded Hidden Markov Models for Health Care Monitoring

Systems.,” International Journal Interactive Multimedie

Artificial Intelligence, vol. 4, no. 4, 2017.

[5] A. Jalal, S. Kamal, and D. Kim, “Individual detection-tracking-

recognition using depth activity images,” in 2015 12th

International Conference on Ubiquitous Robots and Ambient

Intelligence (URAI), 2015, pp. 450–455.

[6] Z. Xu, L. Mei, C. Hu, and Y. Liu, “The big data analytics and

applications of the surveillance system using video structured

description technology,” Cluster Computing, vol. 19, no. 3, pp.

1283–1292, 2016.

[7] Y.-L. Chen, T.-S. Chen, L.-C. Yin, T.-W. Huang, S.-Y. Wang,

and T.-C. Chieuh, “City eyes: An unified computational

framework for intelligent video surveillance in cloud

environment,” in 2014 IEEE International Conference on

Internet of Things (iThings), and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and

Social Computing (CPSCom), 2014, pp. 324–327.

[8] M. S. Hossain, M. M. Hassan, M. Al Qurishi, and A. Alghamdi,

“Resource allocation for service composition in cloud-based

video surveillance platform,” in 2012 IEEE international

conference on multimedia and expo workshops, 2012, pp. 408–

412.

[9] Q. Li, T. Zhang, and Y. Yu, “Using cloud computing to process

intensive floating car data for urban traffic surveillance,”

International Journal of Geographical Information Science, vol.

25, no. 8, pp. 1303–1322, 2011.

[10] D. J. Neal and S. Rahman, “Video surveillance in the cloud?,”

arXiv Prepr. arXiv1512.00070, 2015.

[11] R. Chandana, S. Jilani, and S. J. Hussain, “Smart surveillance

system using thing speak and Raspberry Pi,” International

Journal of Advanced Research in Computer and Communication

Engineering, vol. 4, no. 7, pp. 214–218, 2015.

[12] K. Abas, K. Obraczka, and L. Miller, “Solar-powered, wireless

smart camera network: An IoT solution for outdoor video

monitoring,” Computer Communications, vol. 118, pp. 217–233,

2018.

[13] Y. Wang, C. von der Weth, T. Winkler, and M. Kankanhalli,

“Tweeting Camera: A New Paradigm of Event-based Smart

Sensing Device,” in Proceedings of the 10th International

Conference on Distributed Smart Camera, 2016, pp. 210–211.

[14] R. Du, S. Bista, and A. Varshney, “Video fields: fusing multiple

surveillance videos into a dynamic virtual environment,” in

Proceedings of the 21st International Conference on Web3D

Technology, 2016, pp. 165–172.

[15] T. Sieberth, R. Wackrow, and J. H. Chandler, “Automatic

detection of blurred images in UAV image sets,” ISPRS Journal

of Photogrammetry and Remote Sensing, vol. 122, pp. 1–16,

2016.

[16] M. S. Bakli, M. A. Sakr, and T. H. A. Soliman, “A

spatiotemporal algebra in Hadoop for moving objects,” Geo-

spatial Information Science, vol. 21, no. 2, pp. 102–114, 2018.

[17] A. Jalal, M. A. K. Quaid, and K. Kim, “A Wrist Worn

Acceleration Based Human Motion Analysis and Classification

for Ambient Smart Home System,” Journal of Electrical

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

VOLUME XX, 2017 9

Engineering and Technology, pp. 1–7, 2019.

[18] A. Jalal and M. Mahmood, “Students’ behavior mining in e-

learning environment using cognitive processes with information

technologies,” Education and Information Technologies, pp. 1–

25, 2019.

[19] A. Jalal, M. A. K. Quaid, and M. A. Sidduqi, “A Triaxial

acceleration-based human motion detection for ambient smart

home system,” in 2019 16th International Bhurban Conference

on Applied Sciences and Technology (IBCAST), 2019, pp. 353–

358.

[20] A. Jalal and S. Kamal, “Improved Behavior Monitoring and

Classification Using Cues Parameters Extraction from Camera

Array Images.,” International Journal of Interactive Multimedia

Artificial Intelligence, vol. 5, no. 5, 2019.

[21] Q. Huang, J. Yang, and Y. Qiao, “Person re-identification across

multi-camera system based on local descriptors,” in 2012 Sixth

International Conference on Distributed Smart Cameras

(ICDSC), 2012, pp. 1–6.

[22] A. Jalal, Y. Kim, S. Kamal, A. Farooq, and D. Kim, “Human

daily activity recognition with joints plus body features

representation using Kinect sensor,” in 2015 International

Conference on Informatics, Electronics & Vision (ICIEV), 2015,

pp. 1–6.

[23] H. Yoshimoto, N. Date, and S. Yonemoto, “Vision-based real-

time motion capture system using multiple cameras,” in

Proceedings of IEEE International Conference on Multisensor

Fusion and Integration for Intelligent Systems, MFI2003., 2003,

pp. 247–251.

[24] A. Jalal and S. Kamal, “Real-time life logging via a depth

silhouette-based human activity recognition system for smart

home services,” in 2014 11th IEEE International Conference on

Advanced Video and Signal Based Surveillance (AVSS), 2014,

pp. 74–80.

[25] A. Jalal and S. Kim, “The mechanism of edge detection using

the block matching criteria for the motion estimation,” 한국 HCI

학회 학술대회, pp. 484–489, 2005.

[26] A. Jalal and M. A. Zeb, “Security and QoS optimization for

distributed real time environment,” in 7th IEEE International

Conference on Computer and Information Technology (CIT

2007), 2007, pp. 369–374.

[27] D. Singh and C. K. Mohan, “Graph formulation of video

activities for abnormal activity recognition,” Pattern

Recognition, vol. 65, pp. 265–272, 2017.

[28] K. Kim, A. Jalal, and M. Mahmood, “Vision-Based Human

Activity Recognition System Using Depth Silhouettes: A Smart

Home System for Monitoring the Residents,” Journal of

Electrical Engineering and Technology, pp. 1–7, 2019.

[29] M. Mahmood, A. Jalal, and M. A. Sidduqi, “Robust Spatio-

Temporal Features for Human Interaction Recognition Via

Artificial Neural Network,” in 2018 International Conference on

Frontiers of Information Technology (FIT), 2018, pp. 218–223.

[30] A. Jalal, S. Kamal, and C. A. Azurdia-Meza, “Depth maps-based

human segmentation and action recognition using full-body plus

body color cues via recognizer engine,” Journal of Electrical

Engineering and Technology, vol. 14, no. 1, pp. 455–461, 2019.

[31] Z. Shao, J. Cai, and Z. Wang, “Smart monitoring cameras driven

intelligent processing to big surveillance video data,” IEEE

Trans. Big Data, vol. 4, no. 1, pp. 105–116, 2017.

[32] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework: Data

processing and sharing for hybrid cloud-edge analytics,” IEEE

Transactions on Parallel and Distributed Systems, vol. 29, no. 9,

pp. 2004–2017, 2018.

[33] S. Tang, M. Andriluka, B. Andres, and B. Schiele, “Multiple

people tracking by lifted multicut and person re-identification,”

in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017, pp. 3539–3548.

[34] L. Beyer, S. Breuers, V. Kurin, and B. Leibe, “Towards a

principled integration of multi-camera re-identification and

tracking through optimal bayes filters,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition

Workshops, 2017, pp. 29–38.

[35] C. Stahlschmidt, A. Gavriilidis, J. Velten, and A. Kummert,

“Applications for a people detection and tracking algorithm

using a time-of-flight camera,” Multimedia Tools and

Applications, vol. 75, no. 17, pp. 10769–10786, 2016.

[36] Y. T. Tesfaye, E. Zemene, A. Prati, M. Pelillo, and M. Shah,

“Multi-target Tracking in Multiple Non-overlapping Cameras

Using Fast-Constrained Dominant Sets,” International Journal

of Computer Vision, pp. 1–18, 2019.

[37] M. C. Liem and D. M. Gavrila, “Joint multi-person detection and

tracking from overlapping cameras,” Computer Vision and

Image Understanding, vol. 128, pp. 36–50, 2014.

[38] V. P. Bhuvana, M. Schranz, C. S. Regazzoni, B. Rinner, A. M.

Tonello, and M. Huemer, “Multi-camera object tracking using

surprisal observations in visual sensor networks,” EURASIP

Journal on Advances in Signal Processing, vol. 2016, no. 1, p.

50, 2016.

[39] J. Wang, J. Pan, and F. Esposito, “Elastic urban video

surveillance system using edge computing,” in Proceedings of

the Workshop on Smart Internet of Things, 2017, p. 7.

[40] N. Jiang, S. Bai, Y. Xu, C. Xing, Z. Zhou, and W. Wu, “Online

inter-camera trajectory association exploiting person re-

identification and camera topology,” in 2018 ACM Multimedia

Conference on Multimedia Conference, 2018, pp. 1457–1465.

[41] K. A. Shiva Kumar, K. R. Ramakrishnan, and G. N. Rathna,

“Distributed person of interest tracking in camera networks,” in

Proceedings of the 11th International Conference on Distributed

Smart Cameras, 2017, pp. 131–137.

[42] T. Wang, J. Chen, P. Honeine, and H. Snoussi, “Abnormal event

detection via multikernel learning for distributed camera

networks,” International Journal of Distributed Sensor

Networks, vol. 11, no. 9, p. 989450, 2015.

[43] X. Wang, “Intelligent multi-camera video surveillance: A

review,” Pattern Recognition. Lett., vol. 34, no. 1, pp. 3–19,

2013.

[44] L. Esterle, P. R. Lewis, R. McBride, and X. Yao, “The future of

camera networks: Staying smart in a chaotic world,” in

Proceedings of the 11th International Conference on Distributed

Smart Cameras, 2017, pp. 163–168.

[45] R. Verma and J. Ali, “A comparative study of various types of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2964778, IEEE Access

VOLUME XX, 2017 9

image noise and efficient noise removal techniques,”

International Journal of Advanced Research in Computer

Science and Software Engineering, vol. 3, no. 10, 2013.

[46] H. Soleimani and S. Zafar, “Review - Moving object detection

using background subtraction,” 2018.

[47] H. Singh and J. S. Sodhi, “Image enhancement using sharpen

filters,” International Journal of Latest Trends in Engineering

and Technology, vol. 2, no. 2, pp. 84–94, 2013.

[48] “VGG Face-16 CNN Model.” .

[49] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller,

“Labeled faces in the wild: A database forstudying face

recognition in unconstrained environments,” 2008.

[50] “CS231n Convolutional Neural Networks for Visual

Recognition.” .

[51] W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis,

“Human detection using partial least squares analysis,” in 2009

IEEE 12th International Conference on Computer Vision

(ICCV), 2009, pp. 24–31.

[52] Y. Xing, H. Nagahashi, and X. Zhang, “A 3D Dynamic

Visualization Surveillance System,” International Journal of

Computer Science Issues, vol. 13, no. 05, pp. 36–44, 2016.

[53] A. Laghaee, “BEHAVE Interactions Test Case Scenarios,” 2007.

.

[54] H. Wu, W. Pan, X. Xiong, and S. Xu, “Human activity

recognition based on the combined svm&hmm,” in 2014 IEEE

International Conference on Information and Automation

(ICIA), 2014, pp. 219–224.

[55] L. Piyathilaka and S. Kodagoda, “Gaussian mixture based HMM

for human daily activity recognition using 3D skeleton features,”

in 2013 IEEE 8th conference on industrial electronics and

applications (ICIEA), 2013, pp. 567–572.

