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Figure 1. We demonstrate a simple encoder-decoder architecture to model 3D shapes with multi-view depth maps. Our model can be
used to reconstruct complex 3D objects from a single depth map as shown in the top row. Second row shows the 3D shapes generated by
interpolating latent representations of two 3D shapes, using our viewpoint generator to produce depth maps. Since our model outputs depth

maps, we project the depth maps to point cloud and use [

Abstract

We present a simple yet effective general-purpose frame-
work for modeling 3D shapes by leveraging recent ad-
vances in 2D image generation using CNNs. Using just
a single depth image of the object, we can output a dense
multi-view depth map representation of 3D objects. Our
simple encoder-decoder framework, comprised of a novel
identity encoder and class-conditional viewpoint genera-
tor, generates 3D consistent depth maps. Our experimen-
tal results demonstrate the two-fold advantage of our ap-
proach. First, we can directly borrow architectures that
work well in the 2D image domain to 3D. Second, we can ef-
fectively generate high-resolution 3D shapes with low com-
putational memory. Our quantitative evaluations show that
our method is superior to existing depth map methods for
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reconstructing and synthesizing 3D objects and is competi-
tive with other representations, such as point clouds, voxel
grids, and implicit functions.

1. Introduction

Humans excel at perceiving the 3D structure of a large
variety of objects in very diverse conditions. A combination
of cues from signals such as color, texture, memory, and,
most importantly, disparity from multi-view images enables
3D perception in humans. Biological evidence [51] sug-
gests that the ventral cortex in our brain stores representa-
tions or features of various object configurations used while
performing various tasks related to visual perception. We
can naturally disentangle the identity of the object, and ap-
ply it on top of prior learned or memorized shape of objects.
Some of the recent advances in neural network architectures



primarily based on StyleGAN [26] generator [27, |, 14, 34]
attempt to accomplish the same by learning an initial em-
bedding of say, faces, and adding noise vector to it in subse-
quent convolution layers to generate a new face. Improved
neural network architectures along with large scale datasets
and compute have helped us rapidly advance in the domain
of representing and synthesizing images. However, due to
the curse of dimensionality, we are still far from achieving
such progress with 3D shapes, at scale. Two fundamental
problems prevent us from bridging the gap between 2D and
3D synthesis - (1) finding an appropriate 3D representation
and, (2) the availability of large-scale 3D datasets. In this
paper, we postulate multi-view depth maps as a viable 3D
representation for efficiently storing and generating high-
quality 3D shapes. We show that architectures developed to
work with 2D images can be easily adapted to disentangle
viewpoint from shape or identity information for 3D ob-
jects.

The use of multi-view representation for 3D objects has
existed for a long time [ 1], however, it has been overshad-
owed in favor of representations such as meshes [8, 49, 19],
point clouds [55, 5, 38], voxel grids [52, 53, 42], and more
recently, implicit functions [36, 7, 30, 24, 54]. Deep learn-
ing methods, specifically CNNs, have shown excellent ca-
pabilities for modeling complex data distributions, such as
images. Adopting CNNs to express continuous 3D sur-
faces with complex topologies only seems natural. How-
ever, non-image based 3D representations limit the applica-
tion of CNNs due to several reasons. For example, voxel-
based representations such as dense occupancy grid [52]
grow cubically in memory and processing requirements and
are hard to scale to achieve higher resolutions. Both point
cloud-based and mesh-based representations can provide
high-quality 3D shapes with less memory, however, learn-
ing on these kinds of representations is a challenging task
since they require a new way of defining convolution and
pooling operations. Meshes additionally can efficiently rep-
resent only fixed topology like faces and do not generalize
to simple objects with varying topologies such as chairs and
tables. Multi-view depth maps offer a promising alternative.
They are memory efficient and can be directly used to store
and visualize the 3D object from various viewpoints with-
out explicitly storing the entire 3D object. Learning with
CNNSs on depth maps is relatively trivial. And last but not
the least, with the availability of depth sensors on new gen-
eration smartphones, the amount of RGB-D data available
for learning is only going to explode in the future.

In this work, we propose a framework for learning to re-
construct and synthesize 3D shapes using multi-view depth
maps. We improve upon previously proposed multi-view
approaches [44] in the following manners: (1) we show a
simple way to adopt image-based CNN architectures to ex-
tract the identity of an object from one or more depth maps

or silhouettes using an averaging heuristic, and reconstruct
the entire 3D shape from a single viewpoint, (2) our frame-
work consumes very little memory and can learn from as
few as two viewpoints of an object during training (3) using
a single class conditional model, we show results compet-
itive with methods that learn only using class-specific data
in tasks such as single-view reconstruction.

2. Related Work

Learning good representations of 3D shapes from com-
plex domains such as cars, chairs, humans, clothes, etc. is
a classical problem in 3D Vision. Unlike 2D images, 3D
shapes do not have a standard representation. Traditional
approaches to modeling shape information have focused on
identifying primitives that combine in a meaningful way to
form existing shapes. [0] developed one of the early gen-
erative model for representing shapes as assembly of its
parts. [25] proposed a component-based generative model
that learns the probabilistic relationships between properties
of shape components and relates them to learned underlying
causes of structural variability (latent variables). [22] uses
part-based templates to construct a probabilistic deforma-
tion model for generating shapes.

Recent efforts for 3D reconstruction and generation are
primarily based on neural networks and can be broadly
classified based on the 3D representation used: voxel-
based, mesh-based, point-based, implicit function-based, or
image-based methods. We discuss key recent works for
each category below:

Voxel. Voxel-based representations allow for easily ex-
tending advances in 2D convolutions to 3D convolutions.
Several works [9, 4] have attempted to learn the 3D shapes
by reconstructing the voxel representation of the shape.
3DGAN [52] was the first GAN-based work to synthesize
3D shapes by using a voxel grid to represent the shapes.
Their work is a straight forward extension of DCGAN [39]
to voxel volumes with the use of 3D convolutions. How-
ever, the use of 3D convolutions is very memory intensive
and hard to scale to higher resolution voxel grids, making it
difficult to represent shapes with fine details. Octree-based
methods like [47], [42] make it possible to learn shapes up
to a resolution of 5123 by relieving the compute and mem-
ory limitations of dense voxel methods.

Mesh. Recent works [8, 3, 40] have exploited mesh rep-
resentation of 3D shapes along with Graph Convolution
Networks [20] for modeling human face and body. At-
lasNet [16] and 3D-CODED [17] parameterize the surface
of the 3D shape as a set of simple primitives and learn a
mapping from the set of primitive shapes to the 3D surface.
Such surface-parametric approaches rely on carefully cho-
sen shape primitives and have shown promising results in
reconstruction tasks.

Point Cloud. Point cloud is another way of representing



3D objects and closely matches the raw data from sensors
like LiDARs. Early works [5, 38] show that distinctive 3D
shapes can be learned using point cloud-based representa-
tion. [2] learns the shape embeddings of 3D objects us-
ing an auto-encoder framework and samples new objects
by training a generative model on the learned embeddings.
PointFlow [55] parameterizes 3D shapes as a two-level hier-
archy of distributions, where the first level learns the distri-
bution of shapes, and the second level learns the distribution
of points within the shape using continuous normalizing
flows. Though point cloud-based networks show promising
results, the main limitation of learning with point clouds is
that they lack topological information.

Implicit function. Recently, there has been an increased
interest in using implicit functions to represent 3D shapes.
Implicit functions assign a value to each 3D point. The set
of points representing a specific value represents the shape
of the object. Occupancy Networks [33], IM-Net [7], and
DeepSDF [36] learns the surface of an object represented
as signed distance function (SDF) as a continuous decision
boundary of a neural network. Implicit approaches are typ-
ically low memory and have shown to perform well at vari-
ous tasks, however, the inference is usually very slow since
each point in 3D still needs to be tested for presence or ab-
sence of the object.

Image. Image-based representations have demonstrated
the potential for 3D shape understanding and reconstruc-
tion. Early works [45] show that the view-based descrip-
tors learned using CNN can provide better representations
for 3D shapes compared to the descriptors learned in 3D
space. Owing to the efficient view-based representations of
3D shapes, several works have explored reconstructing 3D
shapes from single or multi-view images. [13] attempted to
generate images given the viewpoint and properties of the
3D shapes, albeit in a deterministic manner. [44] proposed a
VAE-based approach to model 3D shapes using multi-view
depth maps and silhouettes.

In Section 3, we discuss some of the limitations of the
existing image-based methods and how we address them
in our proposed framework. In Section 4, we evaluate our
framework both quantitatively and qualitatively against ap-
proaches using different representations for 3D objects. Fi-
nally, we summarize and discuss future work in Section 5.

3. Our Approach

Existing neural network architectures for learning dis-
tributions over image data are oblivious to the 3D struc-
ture inscribed within images. A major challenge for the
architectures working with depth maps is to generate depth
maps from multiple viewpoints that are consistent in the 3D
space. Soltani et al. [44] resolve the multi-view consistency
by treating depth maps and silhouettes from different view-
points as various channels of the final output. Overall their

model generates a 40 x H x W dimensional output rep-
resenting 20 depth maps and 20 silhouettes, each of size
H x W. We hypothesize that representing a 3D shape as a
40 channel image poses two major challenges. First, a given
spatial coordinate (pixel) in the 40 output channels does not
correspond to the same location in 3D space, as the out-
put channels correspond to different viewpoints. This is in
stark contrast with typical three channel RGB or four chan-
nel RGBD images, where a pixel over all channels corre-
sponds to a single point in 3D space (given by the inter-
section of camera ray with the scene). This also makes the
training more challenging since each convolution filter ag-
gregates features of a small neighborhood to predict fea-
tures at a particular pixel location. However, a 40 channel
pixel representing 20 locations in 3D would require a much
large neighborhood for accurate predictions. Second, hav-
ing to predict all 40 channels simultaneously, makes it very
memory intensive to work with large batch sizes. Smaller
batch sizes often lead to unstable gradients which leads to
the requirement of a small learning rate and longer training
duration [43, 15]. For example, [44] uses a maximum batch
size of 8 and a learning rate of 5 x 107°.

In this section, we discuss our approach for modeling 3D
shapes using depth maps rendered from multiple viewpoints
surrounding the object. We propose several improvements
to overcome the shortcomings in existing depth maps-based
approaches. We also show that the proposed model can triv-
ially adapt to modern neural network architectures devel-
oped for learning image representation and generation.

3.1. Framework

Our overall framework is surprisingly simple, yet effec-
tive, and depicted in Figure 2. It consists of two com-
ponents: (1) an identity encoder, that extracts viewpoint
independent, shape specific representation of a 3D object,
and (2) a viewpoint conditioned decoder, that generates the
depth map corresponding to the encoded shape as seen from
the given viewpoint. Unlike non-image based representa-
tions for 3D shapes, depth maps allows us to plugin and
benefit from various neural network techniques developed
for image-like data, such as convolutions, self-attention, or
normalization layers. We hope that the simplicity of our
method will bring more focus on image-based representa-
tions of 3D scenes and objects, like 2.5D, in the community.
Next, we discuss each major component in detail.

Discrete Depth Maps. To keep our framework compatible
with literature, we render depth maps and silhouettes from
20 fixed camera viewpoints. As opposed to representing the
depth map and silhouette as a two-channel image, we apply
an 8-bit uniform quantization to the depth map. This ex-
presses the depth in discrete values between 0 and 255, with
0 representing background and 1-255 representing the fore-
ground. Though the maximum precision for depth values
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Figure 2. Architecture: Our Identity Encoder Network takes one or more depth maps of 3D object as input and encodes each of them
into latent vectors. We use expected value of these latent vectors as the identity vector of the object. The decoder or viewpoint generator
network uses this identity vector, category and viewpoint as input to generate depthmap of the object. It consists of an MLP that maps
the identity vector to a style vector. This style vector is added to each block in the Viewpoint Generator Network using adaptive instance

normalization.

is reduced, the quality of shapes is significantly improved
compared to continuous values. Similar approach of dis-
cretizing continuous signals has shown to be effective in
[48, 35, 18]. Please refer to Appendix for additional details.

Identity Encoder. Our encoder takes as input a single
depth map R€*#>W and computes a view independent L-
dimensional embedding of the depth map. During training,
we obtain the disentangled shape identity from the view-
point information using a simple averaging heuristic. We
take two or more randomly sampled viewpoints of the same
object and compute their embedding. We then take the ex-
pected value of this embedding and pass it on to the decoder.
Since the decoding task can require the network to gener-
ate completely different viewpoints, the encoder is forced
to learn identity information of the shape. The encoder
starts with H x W resolution and applies a series of en-
coder blocks, each block reducing the resolution by half,
recursively till we reach 4 x 4 resolution. Each encoder
block consists of 3 convolutional layers and a downsam-
pling layer. In our experiments, we also tried a viewpoint
conditional variation of the encoder. More details of our
identity encoder architecture can be found in Appendix.

Viewpoint Generator. Our framework comprises of a
viewpoint generator that takes shape identity code gener-
ated by the identity encoder and a viewpoint to generate
depth map of the shape as viewed from that viewpoint. The
architecture of our generator is similar to the one in Style-
GAN v2 [26, 27]. Instead of starting with latent, the gener-
ator starts with a constant viewpoint embedding in shape
of 256 x 4 x 4 feature maps. The averaged latent vec-

tor obtained from the identity encoder is passed through a
Multi-layered Perceptron (MLP) to generate a style vector,
which is added to each layer of the viewpoint generator us-
ing AdaIN (Adaptive Instance Normalization) layers. For
more details on the generator architecture, please refer to
Figure 2 and the appendix.

Conditional generation. We extend our framework to be
conditioned on the category of 3D objects. Along with the
viewpoint embedding, we add an additional category em-
bedding in shape of 256 x 4 x 4 feature maps (same size as
viewpoint embedding). This embedding is also learned dur-
ing the training. Figure 6 shows a 2d visualization of this
embedding plotted using TSNE [32].

3.2. Loss function and other training details

For each batch of B objects during training, we sam-
ple Vi, depth maps per object. The depth maps are passed
through the encoder to generate viewpoint invariant latent
embeddings for each of the B objects. The generator then
generates V,,,; number of depth maps for randomly selected
viewpoints. We keep Vi, = Vour < Ve = 20 con-
stant throughout the training process. In ablation studies,
we experiment with different values of 1, 2, 3 and 4 for
Vin and Vj,,¢. Since our depth maps are discrete, at the end
of the generator, we apply a softmax to get a probability
distribution over 256 possible depth values. Instead of us-
ing a standard cross-entropy loss, we use a label smoothing
loss [46]. For each ground truth depth value, we create a
pseudo-ground truth distribution with a weight of ¢ = 0.2
distributed uniformly at all locations except for the ground



truth index which has a weight of 1 — ¢ = 0.8. We, fi-
nally minimize KL-Divergence loss between the softmax
predictions & and label-smoothed ground truth x, £(z, &) =
KL [z || £]. We use Adam optimizer [28] with a learning
rate of 0.004, and a batch size of 32, in all our experiments.

3.3. Generative modeling with Implicit MLE

Given the trained identity encoder discussed above, we
further extend our method to generate new 3D shapes by
learning a latent space over the shape priors from the pre-
vious step using Implicit Maximum Likelihood Estimation
(IMLE) [29]. We use IMLE since it addresses the three
main challenges of training a Generative Adversarial Net-
work — mode collapse, vanishing gradients, and training in-
stability. It also claims to generate superior quality images
compared to GANs and VAEs when trained for images [21].

Much similar to GAN, an IMLE uses an implicit model
T to transform a noise vector e to the data distribution. In-
stead of learning from a discriminator, the parameters of
the implicit model are learned by ensuring that in a random
batch of training data samples, every sample is close to at
least one of the transformed noise vectors. Empirically, we
observe that training an IMLE on the depth maps directly
results in blurry depth maps samples. So instead, we train
a simple fully connected IMLE model 7" on latent vectors
obtained from our identity encoder.

Our IMLE adaptation works as follows. Given the shape
identities, at the start of each epoch, we first sample M
noise vectors {ej,ea,...,ep}t. The value of M is cho-
sen to be twice the size of training data. A simple 2
hidden-layer fully connected feed-forward network 7" maps
the noise vectors to 7'(e;) which has the same dimensions
as shape identity vectors. Then, we sample a mini-batch
of K training points. For each shape identity s; in this
mini-batch, nearest-neighbour search finds the closest trans-
formed noise vector 7'(e;).

e; = argmin || T(e;) — sng
e;

The weights of network T are then learned by minimiz-
ing the distance between the nearest-neighbor correspon-
dences

K
T = argminz IIs; — T(el)H%
T =1

Once the model is trained, we can simply sample a vector
e from normal distribution, transform it to map to the distri-
bution of shape vectors with a learned transformation 7'(e).
Finally, the viewpoint generator can then generate depth
maps of this newly generated identity vector as viewed from
different viewpoints, hence generating a new 3D shape.

4. Experiments

We evaluate our model both quantitatively and qualita-
tively on various tasks to compare it against the state-of-
the-art approaches. We consider approaches that use vari-
ous 3D representations, such as point clouds, voxel grids,
implicit functions, and depth maps. We discuss four exper-
iments to test the ability of our framework to learn the dis-
tribution of 3D data: (1) auto-encoding reconstructing seen
and unseen shapes, (2) single view 3D reconstruction, (3)
analyze the smoothness of the embeddings, and (4) sample
new shapes using the learned model. Since most approaches
train an independent model for each category, we also train
independent unconditional models for 6 of the categories of
ShapeNet (airplane, car, chair, lamp, sofa, and table), for
quantitative comparisons. However, for qualitative analy-
ses, we use the class conditional model.

4.1. Dataset

We use ShapeNetCore v2 dataset [4, 53] which consists
of 52472 3D aligned models from 55 categories for all our
experiments. We further use the provided train, validation,
and test splits of 36814, 5306 and 10276 models. To render
depth maps, we follow the same procedure as [44] and place
20 virtual cameras at 20 vertices of a regular dodecahedron
enclosing the object. All cameras are assumed to be located
at a fixed distance of 2.5m from the origin and point towards
the origin. The focal length of the camera used is 50mm and
field of view is 40°. We use Blender [10], an open source
3D model creation and rendering suite to render the depth
maps and silhouettes.

4.2. Baselines

We select a variety of representative baseline approaches
for modeling 3D shapes.
3D-EPN. [12] proposed a voxel-based approach for shape
completion of 3D shapes. Their model consists of a se-
quence of 3D convolution layers to predict missing voxels.
AtlasNet. [16] parameterizes meshes as surface elements,
and tries to auto-encode the mesh or infer the mesh using a
single view of the object.
DeepSDF. [36] learns continuous Signed Distance Func-
tion (SDF) where the zero-level-set of the learned function
represents the shape’s surface. A shape embedding, with a
Gaussian prior, is learned in an auto-decoder setting. At in-
ference time, the latent shape code is estimated using MAP
from the full or partial observations of 3D shape.
Soltani et al. [44] is perhaps closest to our work since they
also work with multi-view depth maps and follow a similar
encoder-decoder approach.
PointFlow. [55] takes a probabilistic approach and learns
a two-level distribution to model 3D data, each learned us-
ing continuous normalizing flow. The first level learns the



Table 1. Overview of baselines

Method Representation Model size (GB) Inference time (s)
3D-EPN [12] Voxel 0.42 -
AtlasNet-25[16]  Mesh 0.17 0.32
DeepSDF [36] SDF 0.01 9.72
Soltani et al. [44]  Multiview Depth 0.39 0.03
PointFlow [55] Point cloud 0.005 18.87

Ours Multiview Depth 0.41 0.01

distribution of shapes and second learns the distribution of
points for a given shape.

4.3. Metrics

We use the following to compare a pair of point clouds:
Chamfer Distance (CD): is the sum of distances between
points from a set to its nearest neighbors in the other set.
Earth Mover’s Distance (EMD): is used for measuring op-
timal transport distance between two discrete distributions.

Both CD and EMD don’t work well if large holes exist
in either source or target models. EMD is relatively slower
to compute and we have used a small sample of 500 points
from each point cloud in all our evaluations. For CD, we use
30000 points and compute the distance in both directions in
order to make it symmetric. The reported CD is multiplied
by 103,

We follow the protocols of [36] to evaluate our model’s
capability in several ways. To compare against other ap-
proaches quantitatively, we project the depth maps gener-
ated by model to 3D point clouds. Specifically, we measure
(1) how well our model can faithfully reconstruct unseen
3D shapes with a single latent vector while preserving the
geometric details, and (2) if our model can extrapolate com-
plete 3D structure from a single viewpoint information. We
also analyze (1) the latent space learned by the model both
in terms of smoothness, and (2) semantics of the category
embeddings learned by the model. Finally we show the gen-
erative capabilities of the model, using an IMLE approach
as discussed in Section 3.3.

4.4. Results

Auto-encoding. We first evaluate the model’s ability to
represent a given 3D shape with a fixed latent vector size.
We follow [36] and compute mean and median CD, and
mean EMD between ground truth point clouds and recon-
structed point clouds obtained from depth maps. Note that
our model optimization is done in 2D depth map space and
not for either of these metrics but we are able to perform
competitively against other voxel and mesh-based methods.
Table 2 shows point cloud and SDF based approaches per-
form better at these reconstruction metrics. The trade-off is
reduced performance in single view reconstruction as dis-
cussed next. Figure 3 shows the reconstruction results on
the test set.

Single View 3D Reconstruction. Next, we consider the

Table 2. Reconstruction on test data. We measure the reconstruc-
tion performance of different techniques on the test dataset. [36]
and [55] outperforms the reconstruction in majority of the cases.

CD, mean chair sofa table lamp plane car

AtlasNet-Sph [16]  0.75 045 073 238 0.19 -

AtlanNet-25 [16] 037 041 033 118 0.22 -
DeepSDF [36] 020 013 055 083 0.14 -
Soltani et al. [44] 132 0.88 - 320 1.82 -
PointFlow [55] 0.75 - - - 0.07 0.40
Ours 069 057 133 219 044  0.36
CD, median chair  sofa  table lamp plane  car

AtlasNet-Sph[16]  0.51 033 039 218 0.08 -

AtlanNet-25[16] 028 031 020 099 007 -
DeepSDF [36] 007 009 0.07 022 0.04 -
Soltani et al. [44] 1.28 0.76 - 199 171 -
PointFlow [55] 0.55 - - - 0.05 0.36
Ours. 034 028 038 089 023 0.19
EMD, mean chair sofa table lamp plane car

AtlasNet-Sph[16]  0.071 0.050 0.060 0.085 0.038 -
AtlanNet-25[16] 0.064 0.063 0.073 0.062 0.041 -
DeepSDF [36] 0.049 0.047 0.050 0.059 0.033 -
Soltani etal. [44]  0.139 0.072 0.075 0.096 0.063 -
PointFlow [55] 0.078 - - - 0.039  0.066
Ours 0.077 0.078 0.049 0.099 0.056 0.046

Table 3. Shape reconstruction from a single viewpoint

CD, mean chair sofa table lamp plane  car
3D-EPN [12] 283 218 - - 2.19 -
DeepSDF [36] 2.11 1.59 - - 1.16 -
Soltani et al. [44].  1.89  3.07 199 7.18 2.71 -
Ours 1.05 085 226 272 0.63 059
CD, median chair  sofa table lamp plane  car
3D-EPN [12] 225 203 - - 1.63 -
DeepSDF [30] 1.28 0.82 - - 0.37 -
Soltani et al. [44] 1.58 129 141 316 227 -
Ours 049 042 062 100 026 0.25
EMD, mean chair sofa table lamp plane  car
3D-EPN [12] 0.084 0.071 - - 0.063 -

DeepSDF [36] 0.071  0.059 - - 0.049 -
Soltani et al. [44]  0.150 0.091 0.086 0.143 0.083 -
Ours 0.091 0.090 0.067 0.109 0.064 0.056

problem of recovering the 3D object from a given depth
map from a single viewpoint. Our model can trivially per-
form this task since encoder encodes view independent rep-
resentation of the object and decoder can use the encoded
latent vector to generate depth maps from any viewpoint.
For quantitative evaluation, we take the single viewpoint
depth map of objects from test split and compute CD and
EMD loss between the full ground truth and predicted 3D
point clouds. Table 3 shows that our method outperforms all
other methods in Singe View Reconstruction task with CD
as distance metric. Our method is close second (and better
than other multi-view depth baseline) when we use EMD.
Figure 4 shows the results of single view constructions us-



Figure 3. Reconstruction on test objects. We evaluate our model’s ability to encode geometry of 3D shapes with its latent representation.
Each row represents 3D shapes from different categories. Odd columns are the input objects and even columns are the reconstructions. We
render depth maps of input objects from different viewpoints. Our encoder encodes each of the depth map independently and outputs a
latent code. We average the latent code over all the viewpoints of the object. Finally we use our generator to use the same latent code and
generate multiple viewpoints from the latent code. Final output depth maps are projected back to 3D. Last two columns shows some of the

failure cases likely because of lack of similar samples in training data.
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Figure 4. Single View Reconstruction. Given a single input depth map, we show reconstructions of complete 3D object using our
approach. Odd columns are the input depth maps, even columns are the full 3D reconstructions viewed from a canonical viewpoint.

ing our model.

3D shape interpolation. We choose spherical over linear
interpolation for analyzing the latent space as recommended
by [27]. Figure 5 shows samples generated by interpolat-
ing between two random objects picked from the test data.
Learned class embeddings Our class conditional model

learns embeddings for each of the class. Figure 6 shows a

TSNE [32] plot of the embeddings in two dimensions. We
can immediately observe that object classes that look visu-
ally similar appear closer in the embedding space.

3D Shape Synthesis. We train an IMLE-based model on
the shape identities obtained from the trained identity en-
coder. Once the model is trained, we use it to sample the
shape identities of new 3D objects. The viewpoint gener-
ator maps the shape identities to the depth map of the ob-



Figure 5. Shape Interpolation. The latent representations learned by our model are smooth. In this figure, we interpolate between two test
objects (left-most and right-most column) by generating the intermediate 3D objects from the spherical interpolation of the latent codes.
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Figure 6. Word embeddings learned by our model for various class
objects. We see that visually similar categories cluster together,
even if they are not semantically similar. E.g., airplane, rocket and
vessel are together, mailbox and microwave are also together.

ject as viewed from the given viewpoint. Figure 7 shows a
few generated 3D objects for two categories, along with the
nearest neighbors for each generated sample. We observe
that the generated samples are diverse and differ from their
closest neighbors in the training set.

Samples

N1

NN2

Figure 7. Two NN to generated 3D models: our model produces
3D models that differ from the two closest train samples.

5. Conclusion and Limitations

To summarize, we provide a simple framework to en-
code 3D shapes and generate 3D consistent depth maps for
objects. Our approach is fairly generic and can be extended
to work with a variety of image-based neural network tech-
niques. For single view reconstruction, our method outper-
forms existing approaches that use different representations
for 3D objects such as meshes, point clouds, implicit func-
tions, and depth maps. That said, our method also faces the
same limitations as faced by image-based architectures. It
is data-hungry and requires multiple viewpoints generated
from a large number of training objects in canonical pose



to generalize well. We address this shortcoming by training
a single class conditional model on all training objects, but
generalizing to work well on a new category with few sam-
ples remains an open problem. Another limitation is that it
can only model surfaces. More architectural changes may
be required for the model to adapt to the 3D solid volumes,
textures, etc., which we will explore in the future.
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A. Implementation Details

Here we provide various implementation details of our
model. Although our architecture is class-conditional (i.e.,
can take object category as an input to generate category
specific shapes), most of the baselines we have used in
our paper are not. We found extending existing methods
to be class-conditional to be a non-trivial exercise, and
hence, trained separate models for separate categories for
our method for quantitative evaluations.

We trained our models for 100,000 iterations with batch
size of 24 and V;,, = V,,,,+ = 2 for the results reported in the
paper. Section B has more discussion regarding the choice
of these hyperparameters. We also use Adam [28] optimizer
with hyperparameters 81 = 0, fo = 0.99 and learning rate
4 x 1073, We use a single 24 GB GPU (NVIDIA P6000) in
all our experiments.

For our generative model, we train an IMLE-based
model [29, 21] for 100 epochs with a batch size of 128.
A simple 2-layer fully-connected neural network with each
128 units is used to map the 64-dimensional noise vec-
tors to 512-dimensional shape identity vectors. We use
Adam [28] optimizer with learning rate 102 and B; = 0.5
and B2 = 0.999 to learn the network weights.

A.l. Identity Encoder

Table 4 shows the detailed architecture of identity en-
coder. We follow an architecture similar to StyleGANv?2
discriminator, although any architecture can be easily
plugged-in. Our encoder takes in a single depth map input,
discretized in 256 bins, and applies 1 x 1 convolutions in
its first layer. It follows up with 4 residual blocks each con-
sisting of 3 convolutional layers each downsizing the fea-
ture maps by a factory of 2. The residual connections have
been shown helpful in design of various classifiers (unlike
the generator network, where till now skip connections have
shown limited benefits). The final block in the encoder con-
sists of two fully-connected layers and it generates a 512
dimension identity embedding of the input depth map.

A.2. Viewpoint Generator

Table 5 shows the detailed architecture of viewpoint gen-
erator. The generator is conditional on class and view-
point embeddings. Each of the embeddings consists of a
256 x 4 x 4 feature map. These feature maps, stacked to-
gether, act as a 512 x 4 x 4 dimensional input to the gen-
erator. From here the feature maps pass through a series
of modulated convolutional layers. Each modulated convo-
lution scales the image according to the style generated by
the ‘Style block’. Input to this style block is the embedding
generated by encoder. A sequence of fully-connected layers
apply an affine transform on this embedding to generate the
style. All upsampling layers are simple bilinear upsampling
transform.

Table 4. Encoder architecture - All ‘convolutional’ layers are
represented as Conv2d(Cin, Cout, kernel_size, stride, padding). All
‘fully-connected’ layers are represented as Linear(Cin, Cout)-
LeakyReLU for Leaky Rectified Linear Units with a negative slope
of 0.2. ‘SkipConv2d’ layers deNotes applying ‘Conv2d’ to the
output of the previous block and adding it to the output of previ-
ous layer.

Block

Layers

Conv2d(256, 256, 1,1,0)
LeakyReLU

Conv2d(256, 256, 3,1, 1)
LeakyReLLU
Conv2d(256, 512, 3,2,0)
LeakyReLU
SkipConv2d(256,512,1,2,0)

Conv2d(512,512,3,1,1)
LeakyReLLU
Conv2d(512,512, 3,2,0)
LeakyReLU
SkipConv2d(512,512,1,2,0)

Conv2d(512,512,3,1,1)
LeakyReLLU
Conv2d(512,512, 3,2,0)
LeakyReLU
SkipConv2d(512,512,1,2,0)

Conv2d(512,512,3,1,1)
LeakyReLLU
Conv2d(512,512, 3,2,0)
LeakyReLLU
SkipConv2d(512,512,1,2,0)

Conv2d(513,512,3,1,1)
LeakyReLLU
Linear(8192, 512)
Linear(512, 512)

conv

ResBlock

ResBlock

ResBlock

ResBlock

final

A.3. On Image to Image Translation

Generating a new view-point from an existing view-
point of an image is under-constrained problem. Recent
Image-to-Image translation advances [23, 50, 37, 31] have
shown impressive results in transforming images, particu-
larly in case of domain transfer. Richardson et al. [41] in-
dicate that much of improvements in image translation do-
main can be attributed to the use of encoder-decoder bottle-
neck with large and wide spatial dimensions. While these
bottlenecks allow network to perform impressively in do-
main transfer tasks, it introduces a strong locality bias. This
means the network fails to learn simple non-local transfor-
mations such as rotating the face along camera axis.

In our work, we chose to have a bottleneck with spatial
dimension of 1 x 1 to remove this locality bias, while at the



same time generating output depthmaps of high quality.

A.4. Choice for Generative model

Implicit Maximum Likelihood Estimation [29] is a re-
cently introduced technique to learn the weights of an im-
plicit generative model without an adversarial loss. IMLE
overcomes the three main challenges with Generative Ad-
versarial Networks (GANs) - mode collapse, vanishing gra-
dients, and training instability [29, 21]. We found that the
generative model trained using IMLE gave superior results,
both qualitative and quantitative, compared to other gener-
ative modeling techniques such as Variational AutoEncoder
(VAE) and GAN.

B. Ablation studies

In this section, we discuss various ablation experi-
ments we conducted to analyse different components of our
model. For all ablation experiments, we vary only the men-
tioned hyperparameters while keeping the rest constant. We
train the model for only 75000 iterations (approximately 15
epochs for the chair class) for faster experimentation.

Discretizing Depth. We first want to see how varying the
resolution for depth affects the performance of our model.
Table 6 and 7 shows the reconstruction from all view-points
and single view-point respectively, for different resolutions
of the model. At first glance, it seems surprising that lower
resolution seem to perform better in terms of reconstruction
metrics. However, we attribute this finding to the fact that
higher resolution models contain more parameter and need
longer training to reach their best performance.

Varying V;, and V,,;. Next we analyze our choice of
Vin and V4 for all the experiments we performed. Hav-
ing smaller V;,, allows for having larger batch sizes, and
hence, model to see more variety of shapes in a mini-batch.
However, having larger V;,, allows for model to learn bet-
ter encodings from various viewpoints of same shape. We
found that V;,, = V,,+ = 2 as a good balance between
quantity and quality of mini-batch. Table 8 and 9 demon-
strate quantitatively the impact of varying V;,, and V,,; on
reconstruction metrics.

Orthographic vs Perspective. We further study the im-
pact of perspective and orthographic depth map outputs. We
observed that model learns faster and shows better perfor-
mance with orthographic projection outputs. We hypothe-
size that orthographic depth outputs contain more points to
learn from within a single image. Table 10 and 11 demon-
strate the differences between the two projections.

C. Generative Modeling

Figures 8, 9, 10, 11, 12, 13 show few generated depth
maps as well as the reconstructed point clouds from differ-
ent categories using IMLE. Our model can generate diverse
and sharp 3D consistent depth maps for various categories.



Figure 8. Synthesized chair objects Each row shows the depth maps of the object from 20 views and corresponding 3D shape



Figure 9. Synthesized table objects Each row shows the depth maps of the object from 20 views and corresponding 3D shape



Figure 10. Synthesized airplane objects Each row shows the depth maps of the object from 20 views and corresponding 3D shape



Figure 11. Synthesized sofa objects Each row shows the depth maps of the object from 20 views and corresponding 3D shape



Figure 12. Synthesized lamp objects Each row shows the depth maps of the object from 20 views and corresponding 3D shape



Figure 13. Synthesized car objects Each row shows the depth maps of the object from 20 views and corresponding 3D shape



Table 5. Generator architecture. Following the architecture sim-
ilar to [26], we first apply a sequence of fully connected layers
representing an affine transform of encoder output to a style vec-
tor. Instead of using a constant learned input, we use a class and
viewpoint conditional embedding in the beginning of generator.
These are followed by a series of Modulated Convolution layers,
each represented in the table as ModConv(Cin, Cou, kernel, up-
sample, downsample). A modulated convolution layer scales the
input feature maps of the layers with incoming style vectors. Refer
to Table 4 for rest of the notations.

Block | Layers

PixelNorm()
Linear(512, 512)
Linear(512, 512)
Linear(512, 512)
Style Linear(512, 512)
Linear(512, 512)
Linear(512, 512)
Linear(512, 512)
Linear(512, 512)

Viewpoint Embedding ‘ Embedding(20, 4096)

Class Embedding ‘ Embedding(55, 4096)

ModConv(512, 512, 3, No, No)

convl LeakyReLU

to_rgbl ‘ ModConv(512, 256, 1,No, No)

ModConv(512,512, 3, Yes, No)
LeakyReLLU
ModConv(512,512, 3,No, No)
LeakyReLLU
ModConv (512,512, 3, Yes, No)
LeakyReLU
ModConv(512,512, 3,No, No)
LeakyReLU
ModConv(512, 512, 3, Yes, No)
LeakyReLLU
ModConv (512,512, 3,No, No)
LeakyReLU
ModConv(512, 256, 3, Yes, No)
LeakyReLU
ModConv(256, 256, 3, No, No)
LeakyReLLU

StyledConv

UpSample()
ModConv(512, 256, 1,No, No)
UpSample()
ModConv(512, 256, 1, No, No)
UpSample()
ModConv(512, 256, 1,No, No)
UpSample()
ModConv(256, 256, 1, No, No)

to_rgbs

Table 6. Reconstruction on test data (chair) with varying depth
resolution

precision (2¥) CD (mean) CD (median) EMD
5 0.62 0.34 0.0632
6 0.65 0.33 0.0676
7 0.73 0.34 0.0732
8 0.87 0.38 0.0853

Table 7. Single View Reconstruction (chair) with varying depth
resolution

precision (2*) CD (mean) CD (median) EMD
5 0.76 0.45 0.0737
6 0.94 0.49 0.0791
7 1.03 0.40 0.0860
8 1.25 0.56 0.0989

Table 8. Reconstruction on test data (chair) with varying Vi,

Batch Size V; CD (mean) CD (median) EMD
48 1 0.98 0.42 0.0925
24 2 0.87 0.38 0.0853
16 3 0.91 0.45 0.0908
12 4 0.96 0.43 0.0855

Table 9. Single View Reconstruction (chair) with varying V;,,

Batch Size V; CD (mean) CD (median) EMD
48 1 1.25 0.55 0.0988
24 2 1.25 0.56 0.0989
16 3 1.45 0.72 0.1079
12 4 1.46 0.70 0.1036

Table 10. Reconstruction on test data (chair) with varying projec-
tion

Projection CD (mean) CD (median) EMD
Orthographic 0.87 0.38 0.0853
Perspective 1.1 0.72 0.0886

Table 11. Single View Reconstruction (chair) with varying projec-
tion

Projection CD (mean) CD (median) EMD
Orthographic 0.87 0.38 0.0853
Perspective 1.7 0.97 0.1019




