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ABSTRACT 
Research software is often built as prototypes that never get wide-
spread usage and are left unmaintained after a few papers get 
published. To counteract this trend, we propose a method for build-
ing research software with scale and sustainability in mind so that 
it can organically grow a large userbase and enable longer-term 
research. To illustrate this method, we present the design and imple-
mentation of Python Tutor (pythontutor.com), a code visualization 
tool that is, to our knowledge, one of the most widely-used pieces 
of research software developed within a university lab. Over the 
past decade, it has been used by over ten million people in over 
180 countries. It has also contributed to 55 publications from 35 
research groups in 13 countries. We distilled lessons from working 
on Python Tutor into three sets of design guidelines: 1) user expe-
rience design for scale and sustainability, 2) software architecture 
design for long-term sustainability, and 3) designing a sustainable 
software development workfow within academia. These guidelines 
can enable a student to create long-lasting software that reaches 
many users and facilitates research from many independent groups. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI). 
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1 INTRODUCTION 
This paper has been nearly twelve years in the making. It tells the 
story of Python Tutor, a research software project that we started 
in 2009 and have been developing for over a decade entirely within 
academia. So far it has been used by millions of people in over 180 
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Figure 1: Number of Python Tutor users by location and date, 
estimated by unique IP addresses that have visualized code 
on the site. (There was minimal usage from 2009 to 2012.) 

countries around the world (see Figure 1) and contributed to at least 
55 publications from 35 research groups across 13 countries. 

Why tell this story now? Because software is everywhere in 
modern-day research. Students, postdocs, and lab staf across many 
felds are now working day-to-day as software developers within 
academia. But instead of writing software to produce commercial 
products, they are writing software to discover new knowledge that 
they publish in peer-reviewed papers. For HCI and computing sys-
tems research, this knowledge comes in the form of new interaction 
techniques, system architectures, and algorithms [46, 150]. 

In academic research settings, the actual software artifact is 
usually a prototype built to validate an idea and is not meant to 
be maintained long-term. If researchers want to bring their ideas 
out of the lab and into the world (a process called technology trans-
fer [19, 96]), they often start a company (some HCI examples include 
Tableau [134], Trifacta [63], and AnswerDash [27]) or a community-
oriented nonproft (e.g., the Scratch Foundation [2]). 

But what if research software itself could be designed to gain 
widespread adoption and be sustained across many years of devel-
opment entirely within academia? Is this even feasible? And is it a 
good use of time given that this maintenance work could instead 
be spent on developing new prototypes to explore new frontiers? 
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Table 1: Our ten design guidelines for building scalable and sustainable research software within academia (Sections 6–9) 

Design Guideline Examples from Python Tutor project 

User Experience 

Walk-up-and-use no installation; no accounts or logins; just write code and press ‘Visualize’ to see results 
Should ‘Just Work’ robust enough to have visualized 200 million pieces of code in Python, Java, C, C++, JavaScript, & Ruby 

Sharing, Not Hosting do not store any user-generated content; share URLs and embed visualizations in other sites; this helps 
Python Tutor expand its reach and outsources the hosting and moderation of user-generated content 

Minimize User Options almost no user options or opaque heuristics; simplifes both user experience and software maintenance 

Software Architecture 

Be Stateless web application maintains no state; more robust, secure, and testable; scales with low-cost servers 
Use Old Technologies use older and slower-moving technologies; easier to maintain long-term; can host on low-cost servers 
Minimize Dependencies minimize dependencies on external code; bundle dependencies directly into codebase; stay independent 

by not depending on any external institutions (e.g., schools, companies, MOOCs) 

Development Workflow 

Single Developer single developer to maintain continuity; rarely accept outside code contributions 
Start Specifc do not design as generalizable research from the beginning; start with only Python then slowly expand 

Ignore Most Users most user suggestions lead to feature creep; take precautions to protect against noise and harassment 

We believe this is feasible and has notable benefts: Such soft-
ware directly benefts users and would likely not exist if it were not 
made in academia, because many kinds of useful software are not 
proftable for companies to fund. It also benefts researchers since 
it opens up opportunities for more impactful longer-term research. 
Since researchers can keep full control of their software, their incen-
tives are aligned with doing follow-up research rather than making 
marketable products or fostering a nonproft community. 

In this paper we use our decade-plus of experience working 
on Python Tutor to demonstrate one way to build scalable and 
sustainable software in academia and to show some benefts of 
doing so. Python Tutor (despite its outdated name) is a web-based 
educational tool that visualizes the run-time state of code in Python, 
Java, C, C++, JavaScript, and Ruby in order to help people learn 
programming. Aside from widespread usage (see Figure 1), it has 
also spawned a long lineage of research: Dozens of labs worldwide 
have used its open-source codebase to build new software systems, 
used its large userbase to run empirical studies, and evaluated its 
efcacy as a pedagogical tool in both classroom and online settings. 

We frst present the design and implementation of Python Tu-
tor. Then we refect on our software development experiences to 
distill a set of design guidelines for building scalable and sustainable 
research software in academia. We focus on academia due to the 
especially challenging constraints of this environment: Unlike in 
industry, within academic labs there is often no full-time software 
development staf, no stable long-term funding, and no marketing 
or PR resources to publicize one’s projects to broader audiences. 

Table 1 summarizes our three sets of design guidelines: 1) user ex-
perience design for scale and sustainability, 2) software architecture 
design for long-running research software, and 3) designing a sus-
tainable software development workfow within academia. Many 

of these guidelines go against the best practices for industry and 
open-source software development [24, 37, 68, 89, 117] due to the 
unique resource constraints of academia (e.g., use old technologies, 
minimize dependencies, single developer, ignore most users). 

Our story shows one extreme point along the spectrum of meth-
ods for building research software – one that prioritizes scale and 
long-term sustainability over rapidly producing new ideas. The 
main limitation of our approach is that it is a very inefcient way 
to do research – it took us almost twelve years to write a single 
paper! But even for the majority of researchers who choose faster 
prototyping methods, Table 1 is still a useful way to think about 
design tradeofs throughout the research programming process. 

More broadly, we want to spark discussions about how much 
time should be devoted to maintaining software long-term in an 
academic setting. Through both our own experiences building re-
search software and advising many students on doing so, a common 
question that comes up is: “How much time should I spend on refning 
my software and getting users versus moving onto new projects?” We 
empathize with those students who want to see their thousands of 
hours of programming work have more direct impact on users. But 
we also recognize that the way most HCI and computing systems 
research makes impact is via novel ideas validated by prototypes, 
not via the software itself; over time, some of these ideas difuse into 
widely-used products as industry picks up on the most marketable 
ones (see tire-tracks diagrams [66, 125] for a visual history). In the 
end, the right time balance depends on each individual’s goals. 

In sum, this paper’s contributions are: 

• The design and implementation of Python Tutor, an educa-
tional program visualization tool that is, to our knowledge, 
one of the most widely-used pieces of research software. 
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• Ten design guidelines to help researchers in academia build 
software that can potentially grow a large userbase and be 
sustained across many years of development. 

2 RELATED WORK 

Program visualization systems: Python Tutor [54] continues the 
long lineage of research in program visualization systems for edu-
cation. Sorva et al. analyzed the design of 46 of these systems from 
the 1980s to the 2010s [130]. Although the idea of visualizing run-
time state of programs is now decades-old, Python Tutor’s design 
is novel in three ways: 1) it is the only one to work across multiple 
popular languages (Python, Java, C, C++, JavaScript, Ruby) and to 
formalize a language-independent schema for execution traces (Fig-
ure 3), 2) it is the only one that can visualize memory-unsafe C/C++ 
code that commonly occurs in-the-wild, 3) it is designed for wide-
spread deployment and long-term sustainability, which has made it 
into the most widely-used program visualization system [129, 130]. 

Building scalable and sustainable software in academia: This 
paper uses Python Tutor’s decade-long development process as a 
case study to distill a set of design guidelines summarized in Table 1. 
To our knowledge, we are the frst to introduce design guidelines 
for building scalable and sustainable software within the setting 
of academia. In contrast, existing design principles for software 
engineering all target either industry settings where there are teams 
of full-time developers [24, 68, 89] or geographically-distributed 
open-source software development eforts [37, 117]. 

Aside from Python Tutor, we know of only a few active research 
systems in HCI-related felds that have both: 1) independently 
grown a large userbase of at least tens of thousands of users with-
out industry/product collaborations (i.e., scalable) and 2) lasted for 
a decade or more while being developed inside academia with-
out being turned into commercial products (i.e., sustainable within 
academia). These include Vega/Vega-Lite [123], LabintheWild [118], 
MovieLens/GroupLens [60], Scratch [87], Racket [44], BlueJ [75], 
OpenDSA [47], Runestone [42], and ASSISTments [62]. In addition, 
software such as D3 [23], Jupyter [74], and LLVM [82] started in 
academia but later grew into open-source projects with a commu-
nity of developers, many of whom are now employed by companies. 

Several of these researchers wrote about their feld deployment 
experiences [60, 62, 118], but those focus on the specifcs of each 
project. Our paper contributes to this discussion by generalizing 
our decade-long experiences into high-level design guidelines that 
can apply across a broad range of research software. 

Challenges of building software in academia: Career incen-
tives can make it hard to sustain long-term software projects within 
academia since the main expected output is peer-reviewed publi-
cations. Thus, software is often made just ‘good enough’ to run 
experiments and get the needed results for publications [133]. The 
reproducible research movement [108, 139] has encouraged aca-
demics to make their code public and reusable so that others can 
verify one’s experiments, but there is little career incentive for doing 
so [36]. Relatedly, it is hard to hire full-time software developers in 
academia since they are able to get higher-paying and more stable 
jobs in industry rather than relying on grant funding [102]. 

Figure 2: Python Tutor lets users (1) write code in six lan-
guages (Python, Java, C, C++, JavaScript, Ruby), (2) step 
through its execution forwards and backwards, see the run-
time memory contents of (3) global variables, stack frames, 
and (4) heap objects, and (5) see what the program prints. 

Within the HCI community, prominent researchers have high-
lighted the challenges of doing systems research. Landay’s widely-
read 2009 blog post [81] pointed out that evaluation criteria for HCI 
paper submissions can put systems work at a disadvantage due to 
the high amount of implementation efort required to build and 
validate end-to-end systems. In 2017 Marquardt et al. organized 
a CHI workshop on HCI toolkits [88], where Fogarty articulated 
ways that code can be a signifcant contribution [46] while Rä-
dle and Klokmose described the challenges of maintaining toolkit 
code longer-term after initial papers get published [116]. Myers 
preserves his group’s interactive systems research long-term by 
making detailed video recordings [95]. Our paper contributes to 
this discussion by presenting design guidelines for building scalable 
and sustainable HCI software within these constraints of academia. 

3 OVERVIEW OF PYTHON TUTOR 
Before describing its technical details, we frst provide an overview 
of Python Tutor. This paragraph at the top of its user FAQ page [115] 
summarizes what it is designed to do: 

Python Tutor is designed to imitate what an instructor 
in an introductory programming class draws on the 
blackboard: 

It’s meant to illustrate small pieces of self-contained 
code that runs for not too many steps. [...] If your 
code can’t ft on a blackboard or a single presentation 
slide, it’s probably too long to visualize efectively in 
Python Tutor. 

Instructors use it as a teaching tool, and students use it to visually 
understand code examples and interactively debug their program-
ming assignments. Figure 2 shows how a typical user (either an 
instructor or a student) would interact with it: 

(1) Go to pythontutor.com and select a language. Here the user 
chose Java and wrote code to recursively create a LinkedList. 
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Figure 3: The backend runs the user’s code and produces an 
execution trace in a language-independent format specifed 
by this schema. (Notation: list<X> means a list of elements 
of type X, alternative types are separated by the | delimiter.) 

(2) Press ‘Visualize’ to run the code. This code ran for 46 steps, 
where each step is one executed line of code. Go to any step 
(2a) and see what line of code was being run at that step (2b). 

(3) See the frames of all functions/methods on the stack at this 
step, each of which shows its local variables. Here at step 41 
we see main() along with 4 recursive calls to init(). 

(4) See all objects on the heap at the current step. Here it shows 
a LinkedList instance with first and last felds pointing 
to its frst and last Node instances, respectively. Each Node 
has a numerical value and a next pointer. 

(5) See what has been printed up to this step. Here the print 
statement in the Node constructor (line 5) has run 3 times. 

The user can navigate forwards and backwards through all execu-
tion steps, and the visualization changes to match the run-time state 
of the stack and heap at each step. In this example, the user would 
see their custom LinkedList data structure getting incrementally 
built up one Node at a time via recursive calls to init() until the 
base case is reached when n==0. 

4 DESIGN AND IMPLEMENTATION 
Python Tutor is a standard web application. When the user writes 
code in their web browser and presses ‘Visualize,’ that code gets 
sent to the server backend, which runs it using a language-specifc 
execution engine. The engine produces an execution trace format-
ted in the schema of Figure 3. That trace is serialized as JSON and 
sent back to the user’s browser, where the frontend renders it. 

4.1 Backend: Multilingual Run-Time Tracing 

Language-independent execution trace: Although this project 
started out being only for Python [54], as we expanded to other lan-
guages we realized that run-time state diagrams for many languages 
actually look very similar. For instance, although the diagram in 
Figure 2 was from Java code, it could have just as well been pro-
duced by Python, C++, Ruby, or JavaScript code, since all of those 
languages have the concept of function calls, stack frames, objects, 
and pointers. Thus, we created a language-independent execution 
trace format that captures the run-time state of code written in a 
variety of imperative and object-oriented languages. 

Figure 4: Our C/C++ engine uses Valgrind [98] to track that 
x points to a heap array of size 25 and that only even-
numbered elements up to 10 are initialized using y to point 
into the middle of it (the rest have ‘?’ for unknown values). 

Figure 3 shows the schema of our execution trace format. Reading 
from the top left, an execution_trace is a list of steps (e.g., the 
trace in Figure 2 has 46 steps). Each step contains the full run-time 
state at that step, such as the contents of global variables, the stack, 
the heap, and what the program has printed out so far. The stack is 
a list of frames, where each frame contains its local variables and 
IDs for handling closures (i.e., nested function scopes) [144]. Each 
variable is a name_to_value mapping: names are usually strings 
but can be arbitrary objects (e.g., Python dictionary key ‘names’ can 
actually be any hashable object [114]). An object has a memory 
address, a type name (e.g., ‘unsigned long’ in C or ‘symbol’ in 
JavaScript), and its data (either a primitive or a collection). 

The right half of Figure 3 shows the kinds of data that objects in 
the execution trace can hold. This includes the usual primitive data 
types (e.g., integers, foating-point numbers, strings) as well as a va-
riety of collections that are built into many programming languages. 
For instance, a sequence is an ordered collection of objects (e.g., 
C/Java array or Python list/tuple), a set is unordered, and class 
and instance are object-oriented programming constructs that 
hold collections of name-to-value mappings (i.e., felds). Python 
dicts and Ruby hashes can be represented as instances. 

Finally, an essential kind of object is a pointer, which is identifed 
by type_name=‘pointer’ and whose data is an integer represent-
ing a memory address of another object. In many languages, what is 
stored in the stack and in collections are actually pointers to objects 
allocated on the heap, so this representation captures those details. 
Language-specifc execution engines: An execution engine runs 
the user’s code on the server and produces an execution trace with 
the schema of Figure 3. We have created fve execution engines so 
far: Python, Java, Ruby, JavaScript, and C/C++. Adding support for 
more languages is a matter of writing new engines for them. 

Most engines are implemented atop the standard debugger inter-
face for each respective language. For instance, the Python engine 
uses its debugger module called bdb [113], Java uses the JDI module 
(Java Debug Interface) [104], Ruby uses debug_inspector [86], 
and JavaScript uses the Node.js server-side execution engine and 
debugger protocol [100]. These interfaces all allow an engine to 
programmatically step through each line of code execution one at 
a time, inspect the run-time state of all functions/methods on the 
stack and all in-scope memory objects, and serialize their values to 
a JSON execution trace in the format of Figure 3. 

Our most complex engine is for C/C++ since those languages 
are not memory-safe [17]. That means given a pointer to a block 
of memory, it is impossible to tell: a) whether that memory has 
been initialized or just holds meaningless junk values, b) how many 
elements of data are located there – i.e., is this a single element or an 
array, and what size is the array? Thus, a debugger like GDB cannot 
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Figure 5: Users control whether to: (a) nest all objects inside 
of each other (list is nested inside of the dict), (b) do not nest 
objects [default], (c) do not even nest primitive values. 

produce accurate traces of realistic code. Instead, we built our C/C++ 
engine as a plug-in for Valgrind Memcheck [98], a run-time tool that 
augments every byte of memory with information about whether 
it has been allocated and/or initialized. That way, our engine can 
safely traverse memory to get an accurate trace of the size and 
contents of objects in both the stack and heap (using a technique 
similar to our master’s thesis [52]). Figure 4 shows Python Tutor 
accurately visualizing the size and contents of a partially-flled C 
array, which is not possible to do automatically with GDB. 
Execution sandbox: To protect the server against resource overuse 
and security breaches, all execution engines run in a sandbox. We 
use a combination of Docker [20] and Linux setrlimit [111] sys-
tem calls to create a custom sandbox that limits execution time 
(< 10 seconds) and memory usage (< 200 MB), forbids fle accesses 
beyond module fles that are in the sandbox, and forbids network 
access to prevent user code from launching network-based attacks. 

4.2 Frontend: Execution Trace Visualizer 
Data rendering: The frontend translates each element from Fig-
ure 3’s schema into a visual representation. Thus, it knows how to 
render built-in data types such as numbers, strings, sequences (e.g., 
C/C++/Java arrays, Python lists and tuples), classes, instances (e.g., 
LinkedList and Node from Figure 2), and pointers to any object. 

The frontend renders custom user-defned data structures out of 
these built-in types. For example, the image on the right is copied 
from Figure 2. It shows a LinkedList instance and three Node 
instances, each with two name-to-value mappings (their instance 
felds). This visualization looks like a familiar linked list, but Python 
Tutor has no knowledge about what linked lists are (or any custom 
data structure that is not in Figure 3’s schema); here it simply 
sees instances, felds, and pointers, and renders them using boxes, 
arrows, and text labels. 
Layout algorithm: How does the frontend know how to render the 
data in the above example so that it looks like a linked list? Instead 
of using complex algorithms or heuristics, we implemented a simple 
grid-based layout that works well in practice. Objects are laid out 
vertically in the order they are created (from top to bottom), and 
structurally-identical objects are laid out horizontally from left to 
right. In the above example, the LinkedList instance appears frst, 
then the frst Node appears below it. As more Node instances get 
created, the frontend recognizes that they are structurally-identical 

Figure 6: Daily active users in 2020, from Google Analytics 

(same feld names), so it lays them out horizontally (this is a common 
idiom for linked data). Finally, each row gets nudged to the right 
so that as many pointers as possible point rightward, which helps 
prevent them from overlapping with objects. That is why the three 
Node instances all appear to the right of the LinkedList. 
Layout customizations: The user can drag-and-drop any object to 
move it around the visualization. This makes up for cases where our 
simple grid-based layout looks messy or occludes certain objects. 
They can also hide selected variables and object felds, which can 
remove on-screen clutter when visualizing more complex code. 
Object nesting: We provide three nesting options, illustrated in 
Figure 5: (a) nest all objects, which renders the list inside of the 
dict in this example, (b) do not nest objects, which renders the list 
outside the dict (this is the default since it looks the most sensible 
to us), and (c) do not even nest primitive values such as strings and 
numbers, which renders them all as objects with pointers to them. 
This is pedantically the most ‘correct’ for Python and Ruby since 
primitives are objects, but it often produces too much clutter. 

5 IMPACT OVER THE PAST DECADE 
Since this system was released over a decade ago, instead of doing 
a traditional HCI evaluation [103] we will summarize its impact. 
Large-scale worldwide usage: As Figure 1 shows, the most salient 
impact of Python Tutor has been its scale of worldwide usage: We 
estimate that over ten million people in over 180 countries have 
used it so far, based on unique IP addresses1 that have executed 
code. Figure 6 shows daily usage patterns in a typical year (2020). 
There is a weekly rhythm, peaking on weekdays to around 15,000 
users per day and dropping on weekends to around 8,000. Summers 
have the lowest activity since the fewest classes are in session then. 

How do users fnd Python Tutor? A signifcant percentage of 
trafc (36% in 2020) comes from Google searches for relevant terms 
like ‘visualize code’, ‘python tutor’, ‘java tutor’, etc. In 
addition, the HTTP referer felds [91] in our server logs show that, 
as of March 2021, at least 28,671 webpages from 8,087 diferent do-
main names contain direct URL links to pythontutor.com (fltering 
out outlier domains with fewer than 10 referral visits). Of those, 
there are 504 unique .edu domain names, which approximates the 
number of educational institutions that are using it. These inbound 
links also help our website organically rank well on search engines. 

1Note on estimates: Home IP addresses, though technically dynamic, usually remain 
fxed over several months or more [21]. A single user may use multiple IPs if they 
change locations. But many users often share a single public IP within school networks. 
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Table 2: Number of papers from Google Scholar that have 
directly used Python Tutor in three main ways, and number 
of research groups and countries each came from. (†several 
groups and countries overlapped between categories.) 

# papers # groups countries 

Building new software systems 24 19 9 
Running empirical studies 11 6 1 
Evaluating Python Tutor 20 15 8 

Total 55 35† 13† 

Impact on research: Although widespread usage is personally 
fulflling, what is more signifcant for an academic audience is the 
impact that Python Tutor has had on generating new research 
publications. The former facilitates the latter, though, since our 
work in maintaining this software to last over ten years and serve 
millions of users has enabled it to be used in research settings far 
beyond what is feasible with a prototype. 

To assess research impact, we performed a Google Scholar search 
for publications that mentioned ‘pythontutor.com’ or cited our 
2013 paper [54]. We found around 500 publications with this search 
and read through them. Out of those, we determined that at least 
55 publications directly used Python Tutor as a part of their research. 
These publications came from at least 35 diferent research groups, 
which we inferred based on the name and afliation of each paper’s 
senior author. Although a few of these are colleagues whom we 
shared data with, we did not even know about the majority of these 
researchers and papers until we performed a Google Scholar search 
for this evaluation. Table 2 summarizes our bibliometric analysis 
and shows three main ways that these projects used Python Tutor: 

1) Building new software systems: We found 24 papers from 19 
research groups that used Python Tutor’s open-source codebase to 
build new research software that either extended its features or inte-
grated it into other platforms: TraceDif [135], CodeSkulptor [136], 
VizQuiz [127], CAT-SOOP Detective [61], PILeT [9], UNCode [120], 
JavelinaCode [152, 153], JaguarCode [151], Ladebug [85], Over-
Code [50], CodeInk [124], Omnicode [69], Data Theater [83], Trace 
Table Tutor [122], PCRS [155], OPT+Graph [31], Python Tutor 
Graph Builder [128], CS Circles [112], IMI Python [32], Runestone 
CodeLens [42, 93], concept-driven explanations [13], PITON [38]. 
We were involved in only four of these [50, 69, 83, 124], which indi-
cates that our code is robust enough to enable many other research 
groups to build new software upon it without our help. 

2) Running empirical studies: 11 papers from 6 research groups 
were empirical studies conducted using Python Tutor’s large user-
base or its data set of code submissions. These projects include 
deploying surveys to the website to reach learners around the world 
[56, 57], measuring learner behavior on the site [33, 137], using a 
pool of concurrent site visitors to tutor one another [55, 59], crowd-
sourcing learners to annotate code snippets [51, 58], design-based 
research with teachers who use it in digital textbooks [43], and 
analyzing a large corpus of code submissions to develop program 
analysis tools for fault localization [28] and program repair [39]. 
These publications (mostly from our own collaborators) show that 

Python Tutor’s widespread usage can provide data to enable novel 
research that is not as feasible in a smaller-scale lab setting. 

3) Evaluating Python Tutor’s efcacy: Lastly, even though this 
paper does not present a user evaluation of Python Tutor, we found 
20 papers from 15 groups that independently evaluated Python 
Tutor across several contexts. We were not involved in any of these 
evaluations. These papers include evaluating the efcacy of Python 
Tutor when used in programming courses [11, 70–72, 119], evalua-
tions of Python Tutor embedded within other interactive systems 
(JavelinaCode [35] and UNCode [121]), how readers interacted 
with Python Tutor visualizations within digital textbooks [10, 40, 
41, 107], comparative evaluations of Python Tutor with other code 
visualization and tutorial systems [7, 15, 45, 67, 73, 94, 110, 130], and 
using it as a case study to evaluate a code annotation toolkit [126]. 
These papers provide evidence that Python Tutor is a compelling 
target for other researchers to run independent evaluations of it. 

6 DESIGN GUIDELINES FOR SCALABLE AND 
SUSTAINABLE RESEARCH SOFTWARE 

In the next three sections we present ten design guidelines that 
we distilled throughout our past decade of work on Python Tutor. 
These are intended to help researchers build software that can grow 
a large userbase and be sustained across many years of development 
within the resource constraints of a university environment. 

Since these guidelines are based on our personal experiences, the 
usual caveats apply: they may not generalize to diferent domains, 
and there are examples of widely-used research software that do 
not meet some of them. When possible, we will present alternative 
approaches that can help generalize these guidelines further. 

7 USER EXPERIENCE DESIGN 
These guidelines show how to build user experiences that attract 
large numbers of users while under the resource constraints of an 
academic setting with no full-time software development team. 

7.1 Walk-up-and-use 
One way to get software to grow a large userbase is to make it 
a walk-up-and-use experience [138] where people can (virtually) 
‘walk up’ and start using it right away. 
No installation or confguration: For software to be walk-up-
and-use, frst-time users must not need to install or confgure any-
thing. At the time of writing (2021) this means creating a web 
application using APIs that are built into modern browsers (i.e., no 
plug-ins) rather than a desktop or mobile app. For Python Tutor, 
users simply visit http://pythontutor.com/, type in their code, and 
press ‘Visualize’ to run and visualize it. While a web-based design 
seems obvious today, back in 2009 when we started developing 
Python Tutor there were no easily-accessible web-based interfaces 
for learning to code. The few research prototypes that existed back 
then were desktop apps. Some used Java to run in the browser, but 
those were dependent on getting Java Web Start [105] and related 
technologies installed as browser plug-ins. Thus, even though early 
versions of Python Tutor had limited functionality, in the early 
2010s it was one of the only free ways to run code in a browser in 
a ‘walk-up-and-use’ manner, so that attracted many early users. 
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No user accounts or logins: Some research software requires 
users to create accounts so that the researchers can track user-
specifc information for their studies. This requirement severely 
limits the number of users in-the-wild who would be willing to 
try out an unknown prototype. It is widely-known that if a user’s 
frst impression of a website or mobile app is seeing an account 
creation or login screen (i.e., a ‘login wall’), the vast majority will 
leave [26]. Implementing accounts via third-party authentication 
(e.g., Google, Facebook, Twitter) may help, but users may still be 
wary of giving an unknown app access to their personal accounts. 
In our experience, not requiring login is the best way to scale to 
the most users. Thus, Python Tutor has no user accounts or logins 
so that users can start visualizing code right away. 

How does Python Tutor collect user-specifc research data with-
out accounts? When a new user visits the site, it generates a new 
UUID [148] (a random 128-bit number) and stores it in their web 
browser’s persistent localStorage data [92]. When that user returns 
to the site later, it will re-use the stored UUID from their local-
Storage. Similarly, for every new browsing session, Python Tutor 
generates a new UUID and stores it in the browser’s sessionStorage. 
Unlike localStorage, sessionStorage gets erased when the current 
browser tab or window closes [92]. All user interactions are tagged 
with user and session UUIDs so we can split server activity logs 
by users and sessions, respectively. This lightweight technique 
trades of some precision for user convenience: It requires no user 
accounts, but it can be imprecise if a user switches browsers. In 
practice, though, many users stick with the same browser for ex-
tended periods of time, or if they switch computers their browser 
state is synced with features such as Google Chrome sync. 

As an alternative, if research software requires more detailed data 
(e.g., user demographics, survey responses), we suggest prompting 
users while they are using it rather than requiring that data upfront. 
This way, users can start getting some immediate value right away 
without frst flling out a lengthy personal information form. An-
other way to get close to walk-up-and-use is to build one’s research 
software as a lightweight extension for popular web apps such as 
Facebook or Twitter, as many social computing systems do [76]. 
This technique bootstraps of the built-in audience of these sites 
and can spread via their social sharing mechanisms. 

7.2 Should ‘Just Work’ 
Making software ‘just work’ as users expect is necessary for grow-
ing a large userbase, even though such implementation details are 
uninteresting from a research perspective (i.e., they do not lead 
to new publications). But if people are disappointed by their frst 
experience, then it is unlikely that they will return or recommend 
it to others. And if they like their initial experiences, then they will 
organically publicize it via word-of-mouth referrals. 

Craftsperson’s mindset vs. researcher’s mindset: HCI research 
prototypes are often user-tested under well-controlled conditions 
with the researchers present to either limit the scope of user inputs 
or to explain away unsupported features. In contrast, Python Tutor 
is being used without our supervision to visualize over 100,000 
pieces of new code every day, so we must ensure it ‘just works’ for 
arbitrary unknown code that users happen to enter into it. This 
means putting in the sustained implementation efort to handle 

complex and ever-evolving language features, error-inducing in-
puts, and arcane edge cases that arise at scale. There is no magic 
here – just a lot of hands-on software crafting work to make our 
code increasingly more robust, to track bugs, and to build up a 
detailed regression test suite over time. 

In this way we have purposefully adopted a craftsperson’s mind-
set rather than a researcher’s mindset: Whereas a research mindset 
optimizes for building MVPs (Minimum Viable Products) to rapidly 
validate and publish novel ideas, a craft ethic requires spending 
long stretches of time to get all of the mundane details right [18, 30]. 
Staying disciplined about limiting the scope of our software (Sec-
tion 9) helps to make this efort sustainable across many years. 

Use production-grade tools: Another way to help make software 
‘just work’ is to build it upon production-grade tools. While this is 
standard practice in industry, within academia many researchers in-
stead choose to build their prototypes upon more ad-hoc tools (e.g., 
those created by fellow researchers) since those can allow them 
to be more expressive and innovative. As an example in Python 
Tutor’s domain, code visualization and tutoring systems are of-
ten built upon “home-grown” frameworks such as hand-written 
language interpreters or AST transformers [12, 97, 110, 131]. This 
bespoke approach lets researchers add fne-grained customizations 
to explore novel ideas such as stepping into expressions within a 
line of code to visualize and explain their detailed semantics. But 
the tradeof is that it makes those systems less likely to ‘just work’ 
when users in-the-wild paste in arbitrarily complex code, since re-
searchers do not have the time to implement all the details required 
to match the many edge cases of real programming languages. 

In contrast, building upon widely-used production-grade tools 
helps make Python Tutor ‘just work’ on a large variety of real 
code, at the expense of being less expressive. Specifcally, it extends 
ofcial versions of programming language interpreters, compilers, 
and debuggers (Section 4.1). We initially experimented with some 
prototype third-party implementations of Python interpreters [1, 
25] to add fner-grained expression-level interactive stepping that 
related tools have [12, 97, 110, 131] (instead of ordinary line-level 
stepping that debuggers provide). But the problem we encountered 
was that those third-party implementations could never match all 
the details of the ofcial Python interpreter and, more frustratingly 
for novices, they produced diferent error messages that often do 
not match what is written in instructional materials and tutorials. 

7.3 Sharing, Not Hosting 
Research software that explores online interactions [76] often host 
their own user-generated content such as user profles, images, 
discussion posts, and chat logs. While this makes sense for a time-
limited feld deployment to collect high-fdelity study data, we have 
found that it is impractical at the scale of usage that Python Tutor 
has reached. Thus, we believe academic projects should not host 
any user-generated content if they want to sustain a large userbase. 

The main reason why hosting content is impractical at scale 
is due to the need for moderation to remove objectionable con-
tent [49, 109]. Gillespie eloquently conveys this challenge in his 
book Custodians of the Internet [49] (page 9): “Content moderation is 
hard. This should be obvious, but it is easily forgotten. Moderation is 
hard because it is resource intensive and relentless; because it requires 
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making difcult and often untenable distinctions; because it is wholly 
unclear what the standards should be; and because one failure can 
incur enough public outrage to overshadow a million quiet successes.” 

With millions of users, even on the most wholesome of websites 
like those for learning to code, it is inevitable that malicious users 
will post spammy, obscene, abusive, harassing, and even illegal 
content. For instance, learn-to-code websites often allow users to 
upload images or animations to put into their coding projects, which 
then get displayed in public galleries; and they also host on-site 
discussion forums for learners to help one another. Moderating 
such user-generated content requires massive amounts of human 
labor. At one extreme, companies like Facebook and Twitter hire 
tens of thousands of contractors [34, 99] to do this work. Even 
though academic projects are not nearly at this scale, if they grow a 
signifcant userbase then they will require members of the research 
team (or outside volunteers) to moderate. For Python Tutor, we did 
not feel comfortable hiring students for this sort of labor and also 
did not have the energy to do it on our own. 

Thus, we decided not to host any user-generated content on 
the Python Tutor site, such as user-written code, discussion posts, 
Q&A, or tutorials. This decision also simplifed compliance with 
policies ranging from university IRBs all the way to international 
data privacy laws, which made it logistically easier to sustain this 
project across many years. 

We understand that some academic projects need to rely on user-
generated content to address their research questions. So how can 
they get the benefts of user-generated content without the burdens 
of hosting and moderating it? The approach that has worked well 
for Python Tutor is to outsource content hosting to other websites by 
letting its visualizations be easily shared and embedded across the 
web. Thus, our content philosophy is sharing, not hosting. 

URL sharing and embedding: Users can share the current state 
of any Python Tutor visualization by generating a URL. This URL 
encodes their current code, options, and the execution step they 
are now viewing. Over the past decade users have posted these 
URLs all over the web when asking and answering programming 
questions, such as on MOOC discussion forums, Stack Overfow, 
GitHub Issues threads, and Slack and Discord chat communities. In 
this way, we outsource the work of content moderation to those 
sites, which each have their own policies and moderators. 

Similarly, instructors can generate an iframe URL to embed 
Python Tutor visualizations into their own websites, which lets 
them integrate visualizations into online textbooks, course lessons, 
and web-based lecture slides. This feature lets us outsource the 
work of instructional content creation to domain experts rather 
than doing it ourselves. 

Free organic advertising across the web: Our sharing, not host-
ing approach has had another serendipitous beneft: Without any 
intervention from us, Python Tutor URLs have been posted across 
over 28,671 webpages from 8,087 unique domains over the past 
decade (see Section 5). In addition, 16,050 webpages from 1,764 
domains have embedded Python Tutor visualizations within them 
as iframe embeds. All of those webpages are advertising Python 
Tutor for free since their users will see Python Tutor URLs posted 
there, click on them, and then discover our website. 

Imagine if we had decided to host our own user-generated con-
tent like many other learn-to-code websites do. Then not only 
would we be burdened with doing content moderation, but Python 
Tutor URLs would not have organically spread as far and wide 
across the web. We credit this simple design decision as the main 
reason why Python Tutor usage has grown steadily over the past 
decade without us putting any time or money into advertising. This 
is critical since we as academics do not have the marketing or PR 
resources that companies do. 

That said, the main downside of our approach is that user-
generated content is dispersed across the web on a variety of third-
party sites that we do not control. Thus, researchers who take our 
approach should be prepared to scrape third-party sites and deal 
with lower-fdelity research data. As an alternative approach, one 
elegant compromise is to outsource content hosting but to direct 
users to use a specifc website with a dedicated tag. For instance, the 
creators of D3 [23] ask users to post all questions and discussions 
on Stack Overfow with a ‘d3.js’ tag rather than maintaining 
their own in-house discussion forum [132]. As another alternative, 
if content hosting is absolutely necessary, we recommend using 
an externally-managed cloud service such as an enterprise Stack 
Overfow [4] or Slack instance [3] to get some protections via those 
paid platforms. We also recommend not having this content be 
publicly visible or indexed by search engines, since private online 
communities are less likely to require as much content moderation. 

7.4 Minimize User Options 
As software gets more widely-used over time, it is inevitable that 
users will ask for custom options to meet their needs. Thus, it is un-
surprising that decades-old software (e.g., Photoshop, MS Word) ac-
cumulate thousands of options, often hidden within deeply-nested 
menus [79, 80]. This level of complexity is unsustainable for aca-
demic projects that do not have full-time software development 
staf. Thus, we suggest minimizing the number of user options. 

Throughout the past decade, we have received many requests 
for options to customize how Python Tutor visualizations look, 
since there is no single “right” way to display the run-time state 
of code. We have rejected nearly all of these requests since every 
added option both harms user experience and increases our soft-
ware maintenance burden. Options harm user experience in two 
ways: 1) they overwhelm users, especially novices, with choices to 
make [5, 78], and 2) they make Python Tutor visualizations harder 
to comprehend at a glance, since viewers also need to check and 
understand which options were set when rendering a given visu-
alization. Also, options burden developers by making their code 
more complex and harder to test; each binary toggle option could 
double the number of code paths to test. 

Ideally, Python Tutor would have no user-specifed options so 
that there would be only one canonical way for it to visualize a given 
piece of code. We tried to stick to this ideal, but we added three 
options for early power users (object nesting policy, show/hide 
exited frames, pointers as arrows vs. text). The weight of those 
early decisions still burden us today since the code to implement 
them percolated throughout our codebase. We do not feel com-
fortable removing those options since that would break backward 
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compatibility. Many people have posted URLs of old Python Tutor 
visualizations with those options, so we do not want to break them. 

One alternative to user options is to use heuristics to activate 
certain settings. For Python Tutor, we considered heuristics for au-
tomatically hiding “uninteresting” elements such as boilerplate ob-
jects from modules imported by user code. We also tried heuristics 
for rendering certain kinds of more advanced data structures with 
better aesthetic layouts (e.g., binary trees, force-directed graphs). 
However, those heuristics were hard to design, had too many special 
cases, and hindered usability since they were completely opaque 
to users. Instead we opted for a more transparent solution: render 
all objects using a simple grid-based layout (see Section 4.2). Then 
we let users customize visualizations by manually dragging objects 
around the canvas or hiding elements to make their own custom 
layouts. In sum, along with minimizing user options, we also sug-
gest not having opaque heuristics that feel like “magic” to users, 
since those can lead to confusing experiences for novices. 

8 SOFTWARE ARCHITECTURE DESIGN 
We discussed outward-facing user experience issues in the last 
section, so now we turn inward to consider the technical architec-
ture of software systems. These three guidelines can help research 
software developed in academia be more scalable and sustainable. 

8.1 Be Stateless 
Web-based research software often maintains server state, most 
commonly embodied by CRUD (Create-Read-Update-Delete) web 
app architectures [146]. In our experience it is hard to scale these 
web apps to large numbers of users when maintaining them within 
an academic lab without professional I.T. staf. Thus, we encourage 
researchers to aim for a stateless architecture by adopting our 
design guidelines in Section 7 such as no user accounts, storing 
state in users’ browsers if needed, and our Sharing, Not Hosting 
approach of outsourcing content hosting to other websites. 

Python Tutor embodies this stateless philosophy: its server does 
not maintain any persistent state. Users type code into their browser, 
that code gets sent to the server to run, and then the server returns 
a visualization to the browser. The server does not store any in-
formation about users or sessions (although each user’s browser 
stores UUIDs for logging). Users can also visit specially-generated 
URLs that contain prewritten code and see the corresponding vi-
sualizations (Section 7.3). Since all the state is encapsulated in the 
URL string, again the server does not need to store any state. 

This stateless architecture has made it possible for us to maintain 
nearly 100% uptime of the Python Tutor web application over many 
years without hiring I.T. staf (or learning much about I.T. ourselves). 
Some benefts include: 

• Simplicity: no need to maintain database software or to pay 
for more storage space as usage grows over time. 

• Low-cost: easier to fnd low-cost server hosting, which re-
duces the need to apply for external funding 

• Security: can be more secure since many storage-based at-
tacks (e.g., SQL injection) are not possible. 

• Privacy: does not store user accounts or personal data, no 
worries about data privacy laws in diferent countries. 

• Scale: easy to scale horizontally by replicating the backend 
code across multiple servers (we currently have four). 

• Reliability: no bugs related to server being in an inconsistent 
state, can easily re-image server to roll back code changes. 

• Testing: easy to test since there is no state, test cases simply 
map user code and options to expected visualizations. 

• Bug reporting: users can generate a URL to send reproducible 
bug reports since all relevant state is in the URL. 

If it is absolutely critical for a web app to maintain its own state, 
we recommend isolating its stateful part into a well-encapsulated 
component with a clean API [140]. That way, the app’s processes 
remain “stateless and share-nothing” [141], which conform to this 
guideline from well-known industry best practices for scalable 
web apps: “Execute the app as one or more stateless processes” [141]. 
Also consider paying for a database-as-a-service provider, which 
outsources some of the logistics of scale and security to specialists. 

8.2 Use Old Technologies 
Software technologies change rapidly, so there is no guarantee 
that software written today will still work a few years from now. 
This is especially true for research software in academia that is 
written by students, which tends to go unmaintained after they 
graduate [116, 139]. Think of how hard it is to obtain, compile, 
install, confgure, and run research prototypes from ten or more 
years ago. Given these realities, in our experience one way to create 
long-lasting sustainable software in academia is to use older and 
more stable technologies that have stood the test of time [90]. 

Specifcally, despite massive advances in server-side web frame-
works in the 30+ years since the dawn of the web, the Python Tutor 
backend still uses CGI (Common Gateway Interface): “Developed in 
the early 1990s, CGI was the earliest common method available that 
allowed a Web page to be interactive.” [145]. Its backend is a simple 
Python CGI script served via the Apache webserver, which has also 
been around since nearly the start of the web. As a result, Python 
Tutor can run on practically any hosting provider, even very low-
cost ones, since most Linux distributions come with Apache+CGI. 
Over the past 12 years we have had to migrate Python Tutor across 
several providers, and Apache+CGI ‘just works’ right away. Host-
ing costs started at around $10 USD per month, and it is currently 
around $50 per month since we added a few backup servers. 

The Python Tutor frontend is built with similarly old technolo-
gies – most notably base JavaScript with jQuery. When we started 
this project in 2009, there were no modern frontend frameworks [8] 
(e.g., React, Angular, Vue). Fortunately, browser developers have 
been meticulous about maintaining backward compatibility (i.e., 
“don’t break the web” [149]) so that plain JavaScript from decades 
ago still runs today. And so far, native web technologies (HTML, 
CSS, JavaScript) have outlasted all third-party browser plug-ins 
(e.g., Flash, Silverlight, Java Web Start) over the past three decades. 

One good argument for upgrading to newer technologies is that 
they can be more scalable [77]. For instance, modern server-side 
frameworks like Node.js and Deno (which use a single main thread 
with efcient OS event notifcations) can handle many more concur-
rent requests than old-fashioned Apache+CGI (which forks a sepa-
rate OS process for every incoming request). While this is important 
for industry-level workloads, academic projects (even widely-used 
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ones) are unlikely to require such scalability. For instance, Python 
Tutor gets up to 10 incoming http requests per second, which is up 
to one million requests per day. That is well within range of what 
Apache+CGI can comfortably handle on a low-cost shared-hosting 
provider with no manual performance tuning. 

8.3 Minimize Dependencies 
Software dependencies: Software often depends on libraries and 
the underlying operating system that it runs upon. And these de-
pendencies will inevitably upgrade over the years, sometimes in 
non-backward-compatible ways [29]. As a result, it can be hard to 
keep software with dependencies functioning properly over the 
span of a decade or more. Thus, we recommend making research 
software as self-contained as possible with the fewest dependencies. 

For Python Tutor, we have both tried to minimize the number 
of dependencies and, when they are unavoidable, we have bundled 
the dependencies directly into our code repository. For instance, 
we bundle all necessary libraries into our codebase instead of in-
stalling them from package managers (e.g., pip, npm). We even go 
as far as including specifc compiled versions of programming lan-
guage implementations (e.g., a specifc version of the Java virtual 
machine, the Ruby interpreter, etc.) to ensure that our visualizer 
backend will continue running into the foreseeable future. We then 
protect against operating system upgrades by encapsulating our 
development tools inside of Docker images [20]. This approach 
totally goes against software development best practices, since it 
“pins” our dependencies at older versions that do not receive bug-fx 
or security updates [16, 142]. We do update every few years, but we 
value long-term stability over always getting the latest software. 

Despite our best eforts, we know dependencies are inevitable, 
especially when doing web development for modern HCI research. 
Even a single ‘npm install’ command can pull in hundreds of 
JavaScript libraries from across the internet [29]. To cope with the 
pervasive use of dependencies, we highly recommend using tools 
such as Docker to create a reproducible and standardized develop-
ment environment with specifc pinned versions of all dependencies 
installed inside of Docker images. Always specify the exact version 
numbers of everything and cache them. This way, research team 
members can work with the exact same development environment 
whether they are on Mac, Windows, or Linux. 

Institutional dependencies: As an analogy to software dependen-
cies, not depending on external institutions also makes it easier for 
one’s research software to sustain over time. For online education 
software such as Python Tutor, it may be tempting to partner with a 
university, a popular MOOC provider (e.g., Coursera, edX, Udacity), 
or educational technology companies. Over the past decade, we 
have explored collaboration opportunities with all these types of 
institutions. But ultimately we found that we could be a lot more ag-
ile if we operated independently and focused on directly providing 
value to users on our own website. Institutional partnerships take 
a lot of bureaucratic and logistical fnessing, and they might result 
in at most thousands of new users. In contrast, making the core 
service work better and facilitating organic word-of-mouth growth 
across the web has let us reach several orders of magnitude more 
users with much less efort. Since we have full control over the 
Python Tutor website, we can launch new features, experiments, 

and research studies as we wish without frst coordinating with the 
bureaucracies of any external institutions. 

That said, we see the value of academic researchers partnering 
with external institutions to broaden their reach. But it is important 
to keep in mind that the priorities of such institutions shift over 
time and that those shifts are not always favorable for individual 
researchers who want to publish academic papers. Tread carefully. 

9 SOFTWARE DEVELOPMENT WORKFLOWS 
Our fnal three design guidelines are about optimizing the process 
of developing research software within academia. 

9.1 Single Developer 
Academia is an unfavorable setting for creating software that can 
reach many users and last across many years because: 

• It is hard to hire long-term software development staf using 
grants, which often fund research and not software. 

• Professional developers can get better working conditions 
in industry (e.g., higher pay, larger cohort of peers). 

• Thus, students are often the implementers of research soft-
ware, and they are by defnition short-term. Undergrad and 
master’s students must split their time with a full course 
load and extracurriculars. Ph.D. students (rightly!) priori-
tize publishing new papers to build their careers rather than 
maintaining old software for their advisors. 

Given these constraints, the way we have kept Python Tutor 
development going throughout the past decade is by not relying 
on a team of student or staf developers. Instead, we adopted a 
single-developer workfow where the project’s creator (this paper’s 
author) is the only person who works on the software. 

Having a single developer greatly simplifes our workfow since 
there is no need to coordinate with others. Although one person 
cannot possibly implement software that is as sophisticated as 
that of a team, this constraint forces us to simplify our design 
in ways that let Python Tutor scale well (e.g., no user accounts, 
few user options, no content hosting, stateless architecture). It also 
completely avoids “design by committee” [147] and better preserves 
the classic notion of conceptual integrity from Turing Award winner 
Fred Brooks [24]: “I will contend that conceptual integrity is the most 
important consideration in system design. It is better to have a system 
omit certain anomalous features and improvements, but to refect one 
set of design ideas, than to have one that contains many good but 
independent and uncoordinated ideas.” 

Our single-developer workfow also saves on personnel costs, 
which are usually far more expensive than equipment costs for 
typical software projects. Hiring even one undergraduate student 
for a summer costs at least $8,000 USD (an NSF REU [101]), which 
is more than we have spent in total over the past decade on server 
hosting costs (see Section 8 for how we have kept server costs 
low). Also, it can be hard to get grant funding for research software 
development, so one must often fnd such funding from indirect 
sources, which can be time-consuming to wrangle. Not needing 
to hire any personnel means that we spend less time applying for 
funding and more time on actual software development work. 

That said, we have experimented with the more traditional model 
of supervising students on developing Python Tutor features. But 
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even after multiple attempts we have not yet been able to get stu-
dents to contribute production-quality code that we felt comfortable 
deploying to the real site. For instance, several students have at-
tempted to extend Python Tutor to support more languages or to 
create new kinds of visualizations. In all of those cases, they were 
able to make a prototype that worked well enough for cool demos, 
but they could not sustain the long-term efort necessary to make 
it ‘just work’ on the many edge cases that come up when deployed 
to a live website with tens of thousands of daily users. Such tedious 
bug-fxing work does not advance their careers at all, so rational 
students do not stick around long enough to see it through when 
they have much more appealing work opportunities available. 

Relatedly, one can foster an open-source community of external 
contributors. We have also attempted to do this in the past by being 
open to external contributions via GitHub pull requests. Like our 
experiences with student contributors, though, we have found it 
even harder to shepherd unknown volunteers from the internet 
to make code contributions that can handle the many edge cases 
required to ‘just work’ in production. Managing a distributed devel-
opment efort with volunteers can be far harder than managing a 
co-located team. More broadly, it can involve setting up formal gov-
ernance structures [154], managing contributor expectations [65], 
arbitrating community disputes over project direction [64], and 
many other time-consuming tasks [37, 48]. 

The only two exceptions to our single-developer workfow were 
one colleague adding support for Python 3 (which difers from 
Python 2) and another creating the Java backend. They were full-
time instructors of Python and Java, respectively, who used Python 
Tutor in their teaching, so both were well-qualifed to extend it. 

Our single-developer workfow is unusual, even within academia. 
Its obvious weakness is having a bus factor of 1: this project dies if 
we stop working on it [143]. Thus, a more typical arrangement for 
long-running academic software projects is for the PI (e.g., faculty) 
to become a software architect and supervise successive generations 
of students on doing the implementation and maintenance work. 
This can be viable if there are good processes in place to hand 
of between student generations every few years. Otherwise the 
default is for a project to languish after the main student graduates. 
An alternative model is to raise funding to hire (even part-time) 
staf programmers to ensure better continuity. In all those cases, we 
recommend having the smallest possible team since we as academics 
are not experts at managing larger software development teams. 

9.2 Start Specifc 
Software-based researchers often strive to build systems containing 
high-level ideas that are likely to generalize, since those make for 
more compelling academic papers. However, we believe that trying 
to be too general actually hinders scale and sustainability. To build 
long-lasting software that can organically grow a large userbase, 
one must instead start specifc. 

In 2009 we created Python Tutor with a very specifc goal in mind: 
to provide a convenient way for students and instructors (such as 
ourselves) to walk through Python code step-by-step and see the 
values of variables. That frst release had no visual afordances such 
as pointers or data structure renderings – it simply printed out 
values in plain text in an HTML table! It was basically a convenient 

web-based version of the built-in Python pdb debugger [113]. But 
even though that frst version was very simplistic, it met a concrete 
user need and spread quickly via word-of-mouth. 

Since Python became popular throughout the 2000s as a language 
for both teaching and software development, we focused specifcally 
on it to hone in on a fast-growing user population. Our userbase 
grew throughout the early 2010s as more computer science courses 
switched to using Python and as more online education initiatives 
launched. As usage continued to rise we generalized by adding 
other popular languages (Java, JavaScript, C, C++, Ruby), but we 
believe Python Tutor initially got widespread usage because we 
started out so specifc. 

As a counterfactual, imagine if in 2009 we had tried to design a 
generalizable system upfront that could visualize code in multiple 
languages using sophisticated visual representations. Or, even more 
ambitiously, we could design a general-purpose toolkit [46, 84, 88] for 
building run-time code visualizations. While this type of idea could 
lead to a viable grant proposal or research paper, in practice it would 
have taken a tremendous amount of implementation work to even 
get a frst working release out. And since we would need to split 
our eforts to support multiple programming languages and visual 
representations, it would be hard to put in the engineering efort 
required to make it ‘just work’ in the wild. Finally, we would not be 
close enough to any specifc user population to iterate meaningfully 
with them. 

Thus, it is ironic that a project which has contributed to dozens 
of research papers (Table 2) would likely not have gotten of the 
ground if we had tried to design it as generalizable research from 
the beginning. Instead we started it as a super-specifc and non-
researchy project to ft a niche user need and then only generalized 
later as it built momentum. We defnitely did not start this project 
thinking about how we were going to get papers published from it. 

On a mundane but amusing note, even the ultra-specifc name 
of our software helped grow its userbase. It turned out that the 
original title of the website – “Python Tutor: visualize Python code 
execution” – was great for SEO (Search Engine Optimization) since 
lots of people were searching for Python help in the early 2010s 
as the language grew in popularity in schools and workplaces. We 
continued this trend by creating landing pages for the fve other 
languages with equally-boring names like “Java Tutor: visualize 
Java code execution.” For reference, in 2020 (last year) 36% of visitors 
to pythontutor.com came from Google keyword searches. If we had 
instead designed a generalizable system at the start, we would have 
also named it something generic, so it would be hard for people 
to discover via web searches. Companies spend lots of money on 
SEO and brand marketing, but we accidentally stumbled upon an 
approach (specifc names like Python Tutor, Java Tutor, C++ Tutor, 
etc.) that grew our userbase with zero money spent on advertising. 

9.3 Ignore Most Users 
A central tenet of HCI is user-centered design [6] – working closely 
with people to discover and meet their needs. We followed this 
standard process when iterating with a few early users, but as 
Python Tutor gained a large userbase over the years we found it 
more important to do exactly the opposite: ignore most users. 
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Hyperfocus: In order to keep software running for over ten years, 
especially in a resource-constrained academic setting, it is extremely 
important to tightly focus its scope. The quoted paragraph at the 
beginning of Section 3 lays out the hyperfocused scope of Python 
Tutor: it just emulates what programming instructors manually 
draw on the board when explaining code execution, nothing more. 

Over the past decade we have received many feature requests 
from users via personal emails, GitHub Issues, and user surveys. 
And we have ignored most of them since they are outside of this 
hyperfocused scope, so implementing them would lead to fea-
ture creep [14] and make our software harder to maintain over 
time. Some frequent suggestions include turning Python Tutor 
into a full-blown web-based IDE, supporting visual debugging of 
larger-scale production code, adding learning management system 
(LMS) features like managing student assignments, exams, grad-
ing, and school I.T. systems integration, and hosting galleries of 
user-generated content. While these features make sense for a com-
mercial product, they would add too much maintenance burden for 
an academic project. Instead we felt that our time was much better 
spent on the craft of making a few core features work well. 

More broadly, we have not let user sentiments guide our high-
level project direction. This quote from the creator of the Clojure 
programming language captures our feelings well: “Soon there were 
dozens, then hundreds, then thousands of people asking questions, 
looking for clarifcations and guidance, and most challengingly, de-
siring input into the project. When I open sourced Clojure, what I 
thought I was doing was sharing something I had created in a way, 
open source, that would provide no barriers to adoption. What I dis-
covered was that open source engenders presumptions of collaborative 
development, which can be at odds with maintaining a singularity of 
vision.” [65] In sum, we encourage HCI researchers to push back 
against pervasive trends of community-driven and user-centered 
design. You are all the experts in your own respective domains, so 
lean harder on that expertise to maintain your singularity of vision! 

Protecting against harassment: Lastly, even if most people are 
well-meaning, with millions of users there are bound to be ones 
who communicate online in negative ways. In our experience, this 
behavior has ranged from expressions of entitlement (e.g., “you need 
to fx MY bug right now!” ) to various forms of online harassment 
directed at us (e.g., threatening messages, trying to fnd our personal 
information, contacting our employer to demand our attention). 

In our project’s early years we embraced user-centered design: 
we made our name and email address visible on the Python Tutor 
website, and we encouraged users to post bug reports and feature re-
quests to its public GitHub Issues page. While this was constructive 
for the frst few years, as our userbase grew over time the incoming 
noise of user demands became too overwhelming. Here we echo 
the sentiments of the creator of D3, a widely-used visualization 
toolkit that started in academia [23], in his ten-year retrospective: 
“I have deep reservations about the way GitHub and other platforms 
enable [public issue threads] by default, establishing the unreasonable 
expectation that unpaid maintainers must immediately, politely, and 
substantively respond to any and all requests for help. Yes, I can turn 
of issues, but as a community we need to rethink our norms if we are 
serious about addressing maintainer burnout.” [22] 

To protect ourselves from increased noise and occasional harass-
ment, in 2020 we removed our name and email address from the 
Python Tutor website and turned of the public GitHub Issues bug 
tracker so users can no longer comment in publicly-visible threads. 
Instead we direct all users to send feedback and bug reports to a 
private Google Form text box. This lets frustrated users vent in 
an anonymous text box but prevents abusive messages from being 
publicly visible or landing in our personal email inbox. Since doing 
so we have found that we can work on this project quietly at our 
own pace without a continual stream of incoming user inputs. 

10 CONCLUSION: PERSONAL REFLECTIONS 
I’ll switch to frst-person to end on a more personal note. As a 
mid-career academic (I am now an associate professor), one of the 
most common questions I get from students who work on HCI and 
computing-related research is: “Should I spend the time to make 
my research software more robust, usable, scalable, etc., and aim for 
widespread adoption?” The obvious tradeof is that the students who 
spend more time polishing up their software will have less time 
and energy to devote to their next paper-producing projects. And 
what ultimately counts for career advancement within academia 
is producing generalizable knowledge via research publications, 
not creating widely-used software. Thus, the candid answer I give 
is: “Probably not. You should get prototypes working well enough to 
validate your research ideas and maybe make them a bit more robust 
so you can build on them for follow-up papers. But don’t aim for 
widespread adoption from the start, since there’s no proven formula for 
getting users. Focus on what will help you make the best discoveries.” 

Note that even I didn’t aim for widespread adoption from the 
start (see Section 9.2: Start Specifc). I created Python Tutor in late 
2009 as a procrastination side project during my Ph.D., which was 
totally unrelated to my dissertation research [53]. Almost nobody 
used it for the frst few years that I put it online. But then a series 
of lucky external factors contributed to organic user growth, most 
notably the launch of MOOCs and other popular learn-to-code 
initiatives around 2012. Only then did I think about making the 
software more robust and scalable to ride that huge incoming wave. 

However, that was also the time when I fnished my Ph.D. and 
started a tenure-track career path. From 2012–2020 I was a postdoc 
then an assistant professor, which meant that throughout most of 
my past decade of work on Python Tutor, I had to carefully balance 
my time spent on software development versus time spent working 
with my students toward new research. I was well-aware that it 
would both be unwise for my own career to spend too much time on 
software development, and it would also be unfair to my students 
who wanted to publish new papers to launch their own careers. 
The ten design guidelines in this paper helped me strike a fne 
balance between maintaining widely-used research sofware 
and sustaining an early-stage academic career. 

My pragmatic compromise was to diversify my project portfolio 
while keeping Python Tutor running in the background without 
too much extra efort (aided by these ten design guidelines). As a 
result, I was able to use it as a platform to launch new research 
projects when serendipitous collaboration opportunities arose (see 
Section 5), but I did not solely rely on it for building my early-
faculty career. When I applied for tenure around 2020, only 25% of 
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the papers that I published as an assistant professor were based on 
Python Tutor, so most of my lab’s projects were on diferent topics. 

Refecting back on the past decade, the way I’ve been able to 
keep this project going for so long is by ‘sneaking it into’ a more 
traditional Ph.D., postdoctoral, and early faculty career path. There 
would be no way for me back as a grad student to somehow get a 
magical ten-year grant to build Python Tutor since the idea wasn’t 
at all novel – code visualization tools had existed for nearly 30 
years even back then [130]. In fact, I doubt that I could even get 
long-term funding nowadays to work on a new research software 
project with similar ideals – focused on providing direct value to 
users rather than on producing publishable papers right away. 

So why try to do this in academia at all? Wouldn’t this kind of 
‘product-oriented’ software development work be better done at a 
company? No. In my experience, there are many kinds of highly-
useful software that do not have marketable value, so companies do 
not fund their development. A code visualization tool like Python 
Tutor is one of them. Over the past decade I have been closely 
tracking what technology companies have developed in terms of 
tools for learning to code. Even with billions of dollars of collective 
funding (within big companies, from VCs for startups, and from phi-
lanthropists for nonprofts like Khan Academy), to my knowledge 
no company has ever built its own code visualization tool. (But a few 
have integrated Python Tutor into their products.) This suggests 
that such tools are not marketable and will likely not be developed 
in industry. But clearly they have proven to be very useful for both 
learners and researchers, as Python Tutor has shown with its mil-
lions of users and dozens of papers built upon it. I believe if Python 
Tutor wasn’t developed in academia, then it wouldn’t exist. An 
alternative is to develop it as an open-source side project while 
working in an industry job (which I seriously considered), but such 
indie eforts can be immensely hard to sustain long-term [37]. 

And that’s why I think academia could become the best place 
to support long-term hybrid research+product work like Python 
Tutor. But we’re not nearly there yet since current mechanisms 
for funding, publication, and career advancement make this path 
tricky to navigate. In the coming years, I hope we can work toward 
incentivizing such projects because I believe academia can lead the 
way in fostering this sort of impactful long-term work that is hard 
to sustain in typical industry or open-source settings. 

More broadly, zooming out beyond my own story: Should we 
even aim to design research software for scale and sustainability? 
Or are shorter-term prototypes better for demonstrating exciting 
new ideas that industry can later pick up on if there is enough 
market interest? How much should academia value research soft-
ware that gains a large userbase? Specifcally, how should we weigh 
the more tangible impacts of widespread usage versus the more 
intellectual impacts of the underlying research ideas? Likewise, 
should we make software-related contributions count more in hir-
ing and promotion decisions? Or is it actually unfair (and a sign 
of technocentrism [106]) to privilege the role of software so much, 
since many types of valuable research contributions [150] are not 
as software-driven? There are no simple answers to these questions, 
but we should defnitely discuss them now as software continues to 
pervade more and more domains of research in the coming years. 
Students, postdocs, and lab staf across many felds are working 

day-to-day as research software developers, so they deserve our 
thoughtful consideration on these hard questions. 
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