
Ten Million Users and Ten Years Later: Python Tutor’s
Design Guidelines for Building Scalable and Sustainable

Research Sofware in Academia
Philip J. Guo
UC San Diego

La Jolla, CA, USA

ABSTRACT
Research software is often built as prototypes that never get wide-
spread usage and are left unmaintained after a few papers get
published. To counteract this trend, we propose a method for build-
ing research software with scale and sustainability in mind so that
it can organically grow a large userbase and enable longer-term
research. To illustrate this method, we present the design and imple-
mentation of Python Tutor (pythontutor.com), a code visualization
tool that is, to our knowledge, one of the most widely-used pieces
of research software developed within a university lab. Over the
past decade, it has been used by over ten million people in over
180 countries. It has also contributed to 55 publications from 35
research groups in 13 countries. We distilled lessons from working
on Python Tutor into three sets of design guidelines: 1) user expe-
rience design for scale and sustainability, 2) software architecture
design for long-term sustainability, and 3) designing a sustainable
software development workfow within academia. These guidelines
can enable a student to create long-lasting software that reaches
many users and facilitates research from many independent groups.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).

KEYWORDS
research software, sustainability, Python Tutor, code visualization

ACM Reference Format:
Philip J. Guo. 2021. Ten Million Users and Ten Years Later: Python Tutor’s
Design Guidelines for Building Scalable and Sustainable Research Software
in Academia. In The 34th Annual ACM Symposium on User Interface Software
and Technology (UIST ’21), October 10–14, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 17 pages. https://doi.org/10.1145/3472749.3474819

1 INTRODUCTION
This paper has been nearly twelve years in the making. It tells the
story of Python Tutor, a research software project that we started
in 2009 and have been developing for over a decade entirely within
academia. So far it has been used by millions of people in over 180

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8635-7/21/10.
https://doi.org/10.1145/3472749.3474819

Figure 1: Number of Python Tutor users by location and date,
estimated by unique IP addresses that have visualized code
on the site. (There was minimal usage from 2009 to 2012.)

countries around the world (see Figure 1) and contributed to at least
55 publications from 35 research groups across 13 countries.

Why tell this story now? Because software is everywhere in
modern-day research. Students, postdocs, and lab staf across many
felds are now working day-to-day as software developers within
academia. But instead of writing software to produce commercial
products, they are writing software to discover new knowledge that
they publish in peer-reviewed papers. For HCI and computing sys-
tems research, this knowledge comes in the form of new interaction
techniques, system architectures, and algorithms [46, 150].

In academic research settings, the actual software artifact is
usually a prototype built to validate an idea and is not meant to
be maintained long-term. If researchers want to bring their ideas
out of the lab and into the world (a process called technology trans-
fer [19, 96]), they often start a company (some HCI examples include
Tableau [134], Trifacta [63], and AnswerDash [27]) or a community-
oriented nonproft (e.g., the Scratch Foundation [2]).

But what if research software itself could be designed to gain
widespread adoption and be sustained across many years of devel-
opment entirely within academia? Is this even feasible? And is it a
good use of time given that this maintenance work could instead
be spent on developing new prototypes to explore new frontiers?

1235

https://doi.org/10.1145/3472749.3474819
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3472749.3474819
https://pythontutor.com

UIST ’21, October 10–14, 2021, Virtual Event, USA Philip J. Guo

Table 1: Our ten design guidelines for building scalable and sustainable research software within academia (Sections 6–9)

Design Guideline Examples from Python Tutor project

User Experience

Walk-up-and-use no installation; no accounts or logins; just write code and press ‘Visualize’ to see results
Should ‘Just Work’ robust enough to have visualized 200 million pieces of code in Python, Java, C, C++, JavaScript, & Ruby

Sharing, Not Hosting do not store any user-generated content; share URLs and embed visualizations in other sites; this helps
Python Tutor expand its reach and outsources the hosting and moderation of user-generated content

Minimize User Options almost no user options or opaque heuristics; simplifes both user experience and software maintenance

Software Architecture

Be Stateless web application maintains no state; more robust, secure, and testable; scales with low-cost servers
Use Old Technologies use older and slower-moving technologies; easier to maintain long-term; can host on low-cost servers
Minimize Dependencies minimize dependencies on external code; bundle dependencies directly into codebase; stay independent

by not depending on any external institutions (e.g., schools, companies, MOOCs)

Development Workflow

Single Developer single developer to maintain continuity; rarely accept outside code contributions
Start Specifc do not design as generalizable research from the beginning; start with only Python then slowly expand

Ignore Most Users most user suggestions lead to feature creep; take precautions to protect against noise and harassment

We believe this is feasible and has notable benefts: Such soft-
ware directly benefts users and would likely not exist if it were not
made in academia, because many kinds of useful software are not
proftable for companies to fund. It also benefts researchers since
it opens up opportunities for more impactful longer-term research.
Since researchers can keep full control of their software, their incen-
tives are aligned with doing follow-up research rather than making
marketable products or fostering a nonproft community.

In this paper we use our decade-plus of experience working
on Python Tutor to demonstrate one way to build scalable and
sustainable software in academia and to show some benefts of
doing so. Python Tutor (despite its outdated name) is a web-based
educational tool that visualizes the run-time state of code in Python,
Java, C, C++, JavaScript, and Ruby in order to help people learn
programming. Aside from widespread usage (see Figure 1), it has
also spawned a long lineage of research: Dozens of labs worldwide
have used its open-source codebase to build new software systems,
used its large userbase to run empirical studies, and evaluated its
efcacy as a pedagogical tool in both classroom and online settings.

We frst present the design and implementation of Python Tu-
tor. Then we refect on our software development experiences to
distill a set of design guidelines for building scalable and sustainable
research software in academia. We focus on academia due to the
especially challenging constraints of this environment: Unlike in
industry, within academic labs there is often no full-time software
development staf, no stable long-term funding, and no marketing
or PR resources to publicize one’s projects to broader audiences.

Table 1 summarizes our three sets of design guidelines: 1) user ex-
perience design for scale and sustainability, 2) software architecture
design for long-running research software, and 3) designing a sus-
tainable software development workfow within academia. Many

of these guidelines go against the best practices for industry and
open-source software development [24, 37, 68, 89, 117] due to the
unique resource constraints of academia (e.g., use old technologies,
minimize dependencies, single developer, ignore most users).

Our story shows one extreme point along the spectrum of meth-
ods for building research software – one that prioritizes scale and
long-term sustainability over rapidly producing new ideas. The
main limitation of our approach is that it is a very inefcient way
to do research – it took us almost twelve years to write a single
paper! But even for the majority of researchers who choose faster
prototyping methods, Table 1 is still a useful way to think about
design tradeofs throughout the research programming process.

More broadly, we want to spark discussions about how much
time should be devoted to maintaining software long-term in an
academic setting. Through both our own experiences building re-
search software and advising many students on doing so, a common
question that comes up is: “How much time should I spend on refning
my software and getting users versus moving onto new projects?” We
empathize with those students who want to see their thousands of
hours of programming work have more direct impact on users. But
we also recognize that the way most HCI and computing systems
research makes impact is via novel ideas validated by prototypes,
not via the software itself; over time, some of these ideas difuse into
widely-used products as industry picks up on the most marketable
ones (see tire-tracks diagrams [66, 125] for a visual history). In the
end, the right time balance depends on each individual’s goals.

In sum, this paper’s contributions are:

• The design and implementation of Python Tutor, an educa-
tional program visualization tool that is, to our knowledge,
one of the most widely-used pieces of research software.

1236

Python Tutor’s Design Guidelines for Building Scalable and Sustainable Research Sofware in Academia UIST ’21, October 10–14, 2021, Virtual Event, USA

• Ten design guidelines to help researchers in academia build
software that can potentially grow a large userbase and be
sustained across many years of development.

2 RELATED WORK

Program visualization systems: Python Tutor [54] continues the
long lineage of research in program visualization systems for edu-
cation. Sorva et al. analyzed the design of 46 of these systems from
the 1980s to the 2010s [130]. Although the idea of visualizing run-
time state of programs is now decades-old, Python Tutor’s design
is novel in three ways: 1) it is the only one to work across multiple
popular languages (Python, Java, C, C++, JavaScript, Ruby) and to
formalize a language-independent schema for execution traces (Fig-
ure 3), 2) it is the only one that can visualize memory-unsafe C/C++
code that commonly occurs in-the-wild, 3) it is designed for wide-
spread deployment and long-term sustainability, which has made it
into the most widely-used program visualization system [129, 130].

Building scalable and sustainable software in academia: This
paper uses Python Tutor’s decade-long development process as a
case study to distill a set of design guidelines summarized in Table 1.
To our knowledge, we are the frst to introduce design guidelines
for building scalable and sustainable software within the setting
of academia. In contrast, existing design principles for software
engineering all target either industry settings where there are teams
of full-time developers [24, 68, 89] or geographically-distributed
open-source software development eforts [37, 117].

Aside from Python Tutor, we know of only a few active research
systems in HCI-related felds that have both: 1) independently
grown a large userbase of at least tens of thousands of users with-
out industry/product collaborations (i.e., scalable) and 2) lasted for
a decade or more while being developed inside academia with-
out being turned into commercial products (i.e., sustainable within
academia). These include Vega/Vega-Lite [123], LabintheWild [118],
MovieLens/GroupLens [60], Scratch [87], Racket [44], BlueJ [75],
OpenDSA [47], Runestone [42], and ASSISTments [62]. In addition,
software such as D3 [23], Jupyter [74], and LLVM [82] started in
academia but later grew into open-source projects with a commu-
nity of developers, many of whom are now employed by companies.

Several of these researchers wrote about their feld deployment
experiences [60, 62, 118], but those focus on the specifcs of each
project. Our paper contributes to this discussion by generalizing
our decade-long experiences into high-level design guidelines that
can apply across a broad range of research software.

Challenges of building software in academia: Career incen-
tives can make it hard to sustain long-term software projects within
academia since the main expected output is peer-reviewed publi-
cations. Thus, software is often made just ‘good enough’ to run
experiments and get the needed results for publications [133]. The
reproducible research movement [108, 139] has encouraged aca-
demics to make their code public and reusable so that others can
verify one’s experiments, but there is little career incentive for doing
so [36]. Relatedly, it is hard to hire full-time software developers in
academia since they are able to get higher-paying and more stable
jobs in industry rather than relying on grant funding [102].

Figure 2: Python Tutor lets users (1) write code in six lan-
guages (Python, Java, C, C++, JavaScript, Ruby), (2) step
through its execution forwards and backwards, see the run-
time memory contents of (3) global variables, stack frames,
and (4) heap objects, and (5) see what the program prints.

Within the HCI community, prominent researchers have high-
lighted the challenges of doing systems research. Landay’s widely-
read 2009 blog post [81] pointed out that evaluation criteria for HCI
paper submissions can put systems work at a disadvantage due to
the high amount of implementation efort required to build and
validate end-to-end systems. In 2017 Marquardt et al. organized
a CHI workshop on HCI toolkits [88], where Fogarty articulated
ways that code can be a signifcant contribution [46] while Rä-
dle and Klokmose described the challenges of maintaining toolkit
code longer-term after initial papers get published [116]. Myers
preserves his group’s interactive systems research long-term by
making detailed video recordings [95]. Our paper contributes to
this discussion by presenting design guidelines for building scalable
and sustainable HCI software within these constraints of academia.

3 OVERVIEW OF PYTHON TUTOR
Before describing its technical details, we frst provide an overview
of Python Tutor. This paragraph at the top of its user FAQ page [115]
summarizes what it is designed to do:

Python Tutor is designed to imitate what an instructor
in an introductory programming class draws on the
blackboard:

It’s meant to illustrate small pieces of self-contained
code that runs for not too many steps. [...] If your
code can’t ft on a blackboard or a single presentation
slide, it’s probably too long to visualize efectively in
Python Tutor.

Instructors use it as a teaching tool, and students use it to visually
understand code examples and interactively debug their program-
ming assignments. Figure 2 shows how a typical user (either an
instructor or a student) would interact with it:

(1) Go to pythontutor.com and select a language. Here the user
chose Java and wrote code to recursively create a LinkedList.

1237

pythontutor.com

UIST ’21, October 10–14, 2021, Virtual Event, USA Philip J. Guo

Figure 3: The backend runs the user’s code and produces an
execution trace in a language-independent format specifed
by this schema. (Notation: list<X> means a list of elements
of type X, alternative types are separated by the | delimiter.)

(2) Press ‘Visualize’ to run the code. This code ran for 46 steps,
where each step is one executed line of code. Go to any step
(2a) and see what line of code was being run at that step (2b).

(3) See the frames of all functions/methods on the stack at this
step, each of which shows its local variables. Here at step 41
we see main() along with 4 recursive calls to init().

(4) See all objects on the heap at the current step. Here it shows
a LinkedList instance with first and last felds pointing
to its frst and last Node instances, respectively. Each Node
has a numerical value and a next pointer.

(5) See what has been printed up to this step. Here the print
statement in the Node constructor (line 5) has run 3 times.

The user can navigate forwards and backwards through all execu-
tion steps, and the visualization changes to match the run-time state
of the stack and heap at each step. In this example, the user would
see their custom LinkedList data structure getting incrementally
built up one Node at a time via recursive calls to init() until the
base case is reached when n==0.

4 DESIGN AND IMPLEMENTATION
Python Tutor is a standard web application. When the user writes
code in their web browser and presses ‘Visualize,’ that code gets
sent to the server backend, which runs it using a language-specifc
execution engine. The engine produces an execution trace format-
ted in the schema of Figure 3. That trace is serialized as JSON and
sent back to the user’s browser, where the frontend renders it.

4.1 Backend: Multilingual Run-Time Tracing

Language-independent execution trace: Although this project
started out being only for Python [54], as we expanded to other lan-
guages we realized that run-time state diagrams for many languages
actually look very similar. For instance, although the diagram in
Figure 2 was from Java code, it could have just as well been pro-
duced by Python, C++, Ruby, or JavaScript code, since all of those
languages have the concept of function calls, stack frames, objects,
and pointers. Thus, we created a language-independent execution
trace format that captures the run-time state of code written in a
variety of imperative and object-oriented languages.

Figure 4: Our C/C++ engine uses Valgrind [98] to track that
x points to a heap array of size 25 and that only even-
numbered elements up to 10 are initialized using y to point
into the middle of it (the rest have ‘?’ for unknown values).

Figure 3 shows the schema of our execution trace format. Reading
from the top left, an execution_trace is a list of steps (e.g., the
trace in Figure 2 has 46 steps). Each step contains the full run-time
state at that step, such as the contents of global variables, the stack,
the heap, and what the program has printed out so far. The stack is
a list of frames, where each frame contains its local variables and
IDs for handling closures (i.e., nested function scopes) [144]. Each
variable is a name_to_value mapping: names are usually strings
but can be arbitrary objects (e.g., Python dictionary key ‘names’ can
actually be any hashable object [114]). An object has a memory
address, a type name (e.g., ‘unsigned long’ in C or ‘symbol’ in
JavaScript), and its data (either a primitive or a collection).

The right half of Figure 3 shows the kinds of data that objects in
the execution trace can hold. This includes the usual primitive data
types (e.g., integers, foating-point numbers, strings) as well as a va-
riety of collections that are built into many programming languages.
For instance, a sequence is an ordered collection of objects (e.g.,
C/Java array or Python list/tuple), a set is unordered, and class
and instance are object-oriented programming constructs that
hold collections of name-to-value mappings (i.e., felds). Python
dicts and Ruby hashes can be represented as instances.

Finally, an essential kind of object is a pointer, which is identifed
by type_name=‘pointer’ and whose data is an integer represent-
ing a memory address of another object. In many languages, what is
stored in the stack and in collections are actually pointers to objects
allocated on the heap, so this representation captures those details.
Language-specifc execution engines: An execution engine runs
the user’s code on the server and produces an execution trace with
the schema of Figure 3. We have created fve execution engines so
far: Python, Java, Ruby, JavaScript, and C/C++. Adding support for
more languages is a matter of writing new engines for them.

Most engines are implemented atop the standard debugger inter-
face for each respective language. For instance, the Python engine
uses its debugger module called bdb [113], Java uses the JDI module
(Java Debug Interface) [104], Ruby uses debug_inspector [86],
and JavaScript uses the Node.js server-side execution engine and
debugger protocol [100]. These interfaces all allow an engine to
programmatically step through each line of code execution one at
a time, inspect the run-time state of all functions/methods on the
stack and all in-scope memory objects, and serialize their values to
a JSON execution trace in the format of Figure 3.

Our most complex engine is for C/C++ since those languages
are not memory-safe [17]. That means given a pointer to a block
of memory, it is impossible to tell: a) whether that memory has
been initialized or just holds meaningless junk values, b) how many
elements of data are located there – i.e., is this a single element or an
array, and what size is the array? Thus, a debugger like GDB cannot

1238

Python Tutor’s Design Guidelines for Building Scalable and Sustainable Research Sofware in Academia UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 5: Users control whether to: (a) nest all objects inside
of each other (list is nested inside of the dict), (b) do not nest
objects [default], (c) do not even nest primitive values.

produce accurate traces of realistic code. Instead, we built our C/C++
engine as a plug-in for Valgrind Memcheck [98], a run-time tool that
augments every byte of memory with information about whether
it has been allocated and/or initialized. That way, our engine can
safely traverse memory to get an accurate trace of the size and
contents of objects in both the stack and heap (using a technique
similar to our master’s thesis [52]). Figure 4 shows Python Tutor
accurately visualizing the size and contents of a partially-flled C
array, which is not possible to do automatically with GDB.
Execution sandbox: To protect the server against resource overuse
and security breaches, all execution engines run in a sandbox. We
use a combination of Docker [20] and Linux setrlimit [111] sys-
tem calls to create a custom sandbox that limits execution time
(< 10 seconds) and memory usage (< 200 MB), forbids fle accesses
beyond module fles that are in the sandbox, and forbids network
access to prevent user code from launching network-based attacks.

4.2 Frontend: Execution Trace Visualizer
Data rendering: The frontend translates each element from Fig-
ure 3’s schema into a visual representation. Thus, it knows how to
render built-in data types such as numbers, strings, sequences (e.g.,
C/C++/Java arrays, Python lists and tuples), classes, instances (e.g.,
LinkedList and Node from Figure 2), and pointers to any object.

The frontend renders custom user-defned data structures out of
these built-in types. For example, the image on the right is copied
from Figure 2. It shows a LinkedList instance and three Node
instances, each with two name-to-value mappings (their instance
felds). This visualization looks like a familiar linked list, but Python
Tutor has no knowledge about what linked lists are (or any custom
data structure that is not in Figure 3’s schema); here it simply
sees instances, felds, and pointers, and renders them using boxes,
arrows, and text labels.
Layout algorithm: How does the frontend know how to render the
data in the above example so that it looks like a linked list? Instead
of using complex algorithms or heuristics, we implemented a simple
grid-based layout that works well in practice. Objects are laid out
vertically in the order they are created (from top to bottom), and
structurally-identical objects are laid out horizontally from left to
right. In the above example, the LinkedList instance appears frst,
then the frst Node appears below it. As more Node instances get
created, the frontend recognizes that they are structurally-identical

Figure 6: Daily active users in 2020, from Google Analytics

(same feld names), so it lays them out horizontally (this is a common
idiom for linked data). Finally, each row gets nudged to the right
so that as many pointers as possible point rightward, which helps
prevent them from overlapping with objects. That is why the three
Node instances all appear to the right of the LinkedList.
Layout customizations: The user can drag-and-drop any object to
move it around the visualization. This makes up for cases where our
simple grid-based layout looks messy or occludes certain objects.
They can also hide selected variables and object felds, which can
remove on-screen clutter when visualizing more complex code.
Object nesting: We provide three nesting options, illustrated in
Figure 5: (a) nest all objects, which renders the list inside of the
dict in this example, (b) do not nest objects, which renders the list
outside the dict (this is the default since it looks the most sensible
to us), and (c) do not even nest primitive values such as strings and
numbers, which renders them all as objects with pointers to them.
This is pedantically the most ‘correct’ for Python and Ruby since
primitives are objects, but it often produces too much clutter.

5 IMPACT OVER THE PAST DECADE
Since this system was released over a decade ago, instead of doing
a traditional HCI evaluation [103] we will summarize its impact.
Large-scale worldwide usage: As Figure 1 shows, the most salient
impact of Python Tutor has been its scale of worldwide usage: We
estimate that over ten million people in over 180 countries have
used it so far, based on unique IP addresses1 that have executed
code. Figure 6 shows daily usage patterns in a typical year (2020).
There is a weekly rhythm, peaking on weekdays to around 15,000
users per day and dropping on weekends to around 8,000. Summers
have the lowest activity since the fewest classes are in session then.

How do users fnd Python Tutor? A signifcant percentage of
trafc (36% in 2020) comes from Google searches for relevant terms
like ‘visualize code’, ‘python tutor’, ‘java tutor’, etc. In
addition, the HTTP referer felds [91] in our server logs show that,
as of March 2021, at least 28,671 webpages from 8,087 diferent do-
main names contain direct URL links to pythontutor.com (fltering
out outlier domains with fewer than 10 referral visits). Of those,
there are 504 unique .edu domain names, which approximates the
number of educational institutions that are using it. These inbound
links also help our website organically rank well on search engines.

1Note on estimates: Home IP addresses, though technically dynamic, usually remain
fxed over several months or more [21]. A single user may use multiple IPs if they
change locations. But many users often share a single public IP within school networks.

1239

pythontutor.com

UIST ’21, October 10–14, 2021, Virtual Event, USA Philip J. Guo

Table 2: Number of papers from Google Scholar that have
directly used Python Tutor in three main ways, and number
of research groups and countries each came from. (†several
groups and countries overlapped between categories.)

papers # groups countries

Building new software systems 24 19 9
Running empirical studies 11 6 1
Evaluating Python Tutor 20 15 8

Total 55 35† 13†

Impact on research: Although widespread usage is personally
fulflling, what is more signifcant for an academic audience is the
impact that Python Tutor has had on generating new research
publications. The former facilitates the latter, though, since our
work in maintaining this software to last over ten years and serve
millions of users has enabled it to be used in research settings far
beyond what is feasible with a prototype.

To assess research impact, we performed a Google Scholar search
for publications that mentioned ‘pythontutor.com’ or cited our
2013 paper [54]. We found around 500 publications with this search
and read through them. Out of those, we determined that at least
55 publications directly used Python Tutor as a part of their research.
These publications came from at least 35 diferent research groups,
which we inferred based on the name and afliation of each paper’s
senior author. Although a few of these are colleagues whom we
shared data with, we did not even know about the majority of these
researchers and papers until we performed a Google Scholar search
for this evaluation. Table 2 summarizes our bibliometric analysis
and shows three main ways that these projects used Python Tutor:

1) Building new software systems: We found 24 papers from 19
research groups that used Python Tutor’s open-source codebase to
build new research software that either extended its features or inte-
grated it into other platforms: TraceDif [135], CodeSkulptor [136],
VizQuiz [127], CAT-SOOP Detective [61], PILeT [9], UNCode [120],
JavelinaCode [152, 153], JaguarCode [151], Ladebug [85], Over-
Code [50], CodeInk [124], Omnicode [69], Data Theater [83], Trace
Table Tutor [122], PCRS [155], OPT+Graph [31], Python Tutor
Graph Builder [128], CS Circles [112], IMI Python [32], Runestone
CodeLens [42, 93], concept-driven explanations [13], PITON [38].
We were involved in only four of these [50, 69, 83, 124], which indi-
cates that our code is robust enough to enable many other research
groups to build new software upon it without our help.

2) Running empirical studies: 11 papers from 6 research groups
were empirical studies conducted using Python Tutor’s large user-
base or its data set of code submissions. These projects include
deploying surveys to the website to reach learners around the world
[56, 57], measuring learner behavior on the site [33, 137], using a
pool of concurrent site visitors to tutor one another [55, 59], crowd-
sourcing learners to annotate code snippets [51, 58], design-based
research with teachers who use it in digital textbooks [43], and
analyzing a large corpus of code submissions to develop program
analysis tools for fault localization [28] and program repair [39].
These publications (mostly from our own collaborators) show that

Python Tutor’s widespread usage can provide data to enable novel
research that is not as feasible in a smaller-scale lab setting.

3) Evaluating Python Tutor’s efcacy: Lastly, even though this
paper does not present a user evaluation of Python Tutor, we found
20 papers from 15 groups that independently evaluated Python
Tutor across several contexts. We were not involved in any of these
evaluations. These papers include evaluating the efcacy of Python
Tutor when used in programming courses [11, 70–72, 119], evalua-
tions of Python Tutor embedded within other interactive systems
(JavelinaCode [35] and UNCode [121]), how readers interacted
with Python Tutor visualizations within digital textbooks [10, 40,
41, 107], comparative evaluations of Python Tutor with other code
visualization and tutorial systems [7, 15, 45, 67, 73, 94, 110, 130], and
using it as a case study to evaluate a code annotation toolkit [126].
These papers provide evidence that Python Tutor is a compelling
target for other researchers to run independent evaluations of it.

6 DESIGN GUIDELINES FOR SCALABLE AND
SUSTAINABLE RESEARCH SOFTWARE

In the next three sections we present ten design guidelines that
we distilled throughout our past decade of work on Python Tutor.
These are intended to help researchers build software that can grow
a large userbase and be sustained across many years of development
within the resource constraints of a university environment.

Since these guidelines are based on our personal experiences, the
usual caveats apply: they may not generalize to diferent domains,
and there are examples of widely-used research software that do
not meet some of them. When possible, we will present alternative
approaches that can help generalize these guidelines further.

7 USER EXPERIENCE DESIGN
These guidelines show how to build user experiences that attract
large numbers of users while under the resource constraints of an
academic setting with no full-time software development team.

7.1 Walk-up-and-use
One way to get software to grow a large userbase is to make it
a walk-up-and-use experience [138] where people can (virtually)
‘walk up’ and start using it right away.
No installation or confguration: For software to be walk-up-
and-use, frst-time users must not need to install or confgure any-
thing. At the time of writing (2021) this means creating a web
application using APIs that are built into modern browsers (i.e., no
plug-ins) rather than a desktop or mobile app. For Python Tutor,
users simply visit http://pythontutor.com/, type in their code, and
press ‘Visualize’ to run and visualize it. While a web-based design
seems obvious today, back in 2009 when we started developing
Python Tutor there were no easily-accessible web-based interfaces
for learning to code. The few research prototypes that existed back
then were desktop apps. Some used Java to run in the browser, but
those were dependent on getting Java Web Start [105] and related
technologies installed as browser plug-ins. Thus, even though early
versions of Python Tutor had limited functionality, in the early
2010s it was one of the only free ways to run code in a browser in
a ‘walk-up-and-use’ manner, so that attracted many early users.

1240

http://pythontutor.com/
https://pythontutor.com

Python Tutor’s Design Guidelines for Building Scalable and Sustainable Research Sofware in Academia UIST ’21, October 10–14, 2021, Virtual Event, USA

No user accounts or logins: Some research software requires
users to create accounts so that the researchers can track user-
specifc information for their studies. This requirement severely
limits the number of users in-the-wild who would be willing to
try out an unknown prototype. It is widely-known that if a user’s
frst impression of a website or mobile app is seeing an account
creation or login screen (i.e., a ‘login wall’), the vast majority will
leave [26]. Implementing accounts via third-party authentication
(e.g., Google, Facebook, Twitter) may help, but users may still be
wary of giving an unknown app access to their personal accounts.
In our experience, not requiring login is the best way to scale to
the most users. Thus, Python Tutor has no user accounts or logins
so that users can start visualizing code right away.

How does Python Tutor collect user-specifc research data with-
out accounts? When a new user visits the site, it generates a new
UUID [148] (a random 128-bit number) and stores it in their web
browser’s persistent localStorage data [92]. When that user returns
to the site later, it will re-use the stored UUID from their local-
Storage. Similarly, for every new browsing session, Python Tutor
generates a new UUID and stores it in the browser’s sessionStorage.
Unlike localStorage, sessionStorage gets erased when the current
browser tab or window closes [92]. All user interactions are tagged
with user and session UUIDs so we can split server activity logs
by users and sessions, respectively. This lightweight technique
trades of some precision for user convenience: It requires no user
accounts, but it can be imprecise if a user switches browsers. In
practice, though, many users stick with the same browser for ex-
tended periods of time, or if they switch computers their browser
state is synced with features such as Google Chrome sync.

As an alternative, if research software requires more detailed data
(e.g., user demographics, survey responses), we suggest prompting
users while they are using it rather than requiring that data upfront.
This way, users can start getting some immediate value right away
without frst flling out a lengthy personal information form. An-
other way to get close to walk-up-and-use is to build one’s research
software as a lightweight extension for popular web apps such as
Facebook or Twitter, as many social computing systems do [76].
This technique bootstraps of the built-in audience of these sites
and can spread via their social sharing mechanisms.

7.2 Should ‘Just Work’
Making software ‘just work’ as users expect is necessary for grow-
ing a large userbase, even though such implementation details are
uninteresting from a research perspective (i.e., they do not lead
to new publications). But if people are disappointed by their frst
experience, then it is unlikely that they will return or recommend
it to others. And if they like their initial experiences, then they will
organically publicize it via word-of-mouth referrals.

Craftsperson’s mindset vs. researcher’s mindset: HCI research
prototypes are often user-tested under well-controlled conditions
with the researchers present to either limit the scope of user inputs
or to explain away unsupported features. In contrast, Python Tutor
is being used without our supervision to visualize over 100,000
pieces of new code every day, so we must ensure it ‘just works’ for
arbitrary unknown code that users happen to enter into it. This
means putting in the sustained implementation efort to handle

complex and ever-evolving language features, error-inducing in-
puts, and arcane edge cases that arise at scale. There is no magic
here – just a lot of hands-on software crafting work to make our
code increasingly more robust, to track bugs, and to build up a
detailed regression test suite over time.

In this way we have purposefully adopted a craftsperson’s mind-
set rather than a researcher’s mindset: Whereas a research mindset
optimizes for building MVPs (Minimum Viable Products) to rapidly
validate and publish novel ideas, a craft ethic requires spending
long stretches of time to get all of the mundane details right [18, 30].
Staying disciplined about limiting the scope of our software (Sec-
tion 9) helps to make this efort sustainable across many years.

Use production-grade tools: Another way to help make software
‘just work’ is to build it upon production-grade tools. While this is
standard practice in industry, within academia many researchers in-
stead choose to build their prototypes upon more ad-hoc tools (e.g.,
those created by fellow researchers) since those can allow them
to be more expressive and innovative. As an example in Python
Tutor’s domain, code visualization and tutoring systems are of-
ten built upon “home-grown” frameworks such as hand-written
language interpreters or AST transformers [12, 97, 110, 131]. This
bespoke approach lets researchers add fne-grained customizations
to explore novel ideas such as stepping into expressions within a
line of code to visualize and explain their detailed semantics. But
the tradeof is that it makes those systems less likely to ‘just work’
when users in-the-wild paste in arbitrarily complex code, since re-
searchers do not have the time to implement all the details required
to match the many edge cases of real programming languages.

In contrast, building upon widely-used production-grade tools
helps make Python Tutor ‘just work’ on a large variety of real
code, at the expense of being less expressive. Specifcally, it extends
ofcial versions of programming language interpreters, compilers,
and debuggers (Section 4.1). We initially experimented with some
prototype third-party implementations of Python interpreters [1,
25] to add fner-grained expression-level interactive stepping that
related tools have [12, 97, 110, 131] (instead of ordinary line-level
stepping that debuggers provide). But the problem we encountered
was that those third-party implementations could never match all
the details of the ofcial Python interpreter and, more frustratingly
for novices, they produced diferent error messages that often do
not match what is written in instructional materials and tutorials.

7.3 Sharing, Not Hosting
Research software that explores online interactions [76] often host
their own user-generated content such as user profles, images,
discussion posts, and chat logs. While this makes sense for a time-
limited feld deployment to collect high-fdelity study data, we have
found that it is impractical at the scale of usage that Python Tutor
has reached. Thus, we believe academic projects should not host
any user-generated content if they want to sustain a large userbase.

The main reason why hosting content is impractical at scale
is due to the need for moderation to remove objectionable con-
tent [49, 109]. Gillespie eloquently conveys this challenge in his
book Custodians of the Internet [49] (page 9): “Content moderation is
hard. This should be obvious, but it is easily forgotten. Moderation is
hard because it is resource intensive and relentless; because it requires

1241

UIST ’21, October 10–14, 2021, Virtual Event, USA Philip J. Guo

making difcult and often untenable distinctions; because it is wholly
unclear what the standards should be; and because one failure can
incur enough public outrage to overshadow a million quiet successes.”

With millions of users, even on the most wholesome of websites
like those for learning to code, it is inevitable that malicious users
will post spammy, obscene, abusive, harassing, and even illegal
content. For instance, learn-to-code websites often allow users to
upload images or animations to put into their coding projects, which
then get displayed in public galleries; and they also host on-site
discussion forums for learners to help one another. Moderating
such user-generated content requires massive amounts of human
labor. At one extreme, companies like Facebook and Twitter hire
tens of thousands of contractors [34, 99] to do this work. Even
though academic projects are not nearly at this scale, if they grow a
signifcant userbase then they will require members of the research
team (or outside volunteers) to moderate. For Python Tutor, we did
not feel comfortable hiring students for this sort of labor and also
did not have the energy to do it on our own.

Thus, we decided not to host any user-generated content on
the Python Tutor site, such as user-written code, discussion posts,
Q&A, or tutorials. This decision also simplifed compliance with
policies ranging from university IRBs all the way to international
data privacy laws, which made it logistically easier to sustain this
project across many years.

We understand that some academic projects need to rely on user-
generated content to address their research questions. So how can
they get the benefts of user-generated content without the burdens
of hosting and moderating it? The approach that has worked well
for Python Tutor is to outsource content hosting to other websites by
letting its visualizations be easily shared and embedded across the
web. Thus, our content philosophy is sharing, not hosting.

URL sharing and embedding: Users can share the current state
of any Python Tutor visualization by generating a URL. This URL
encodes their current code, options, and the execution step they
are now viewing. Over the past decade users have posted these
URLs all over the web when asking and answering programming
questions, such as on MOOC discussion forums, Stack Overfow,
GitHub Issues threads, and Slack and Discord chat communities. In
this way, we outsource the work of content moderation to those
sites, which each have their own policies and moderators.

Similarly, instructors can generate an iframe URL to embed
Python Tutor visualizations into their own websites, which lets
them integrate visualizations into online textbooks, course lessons,
and web-based lecture slides. This feature lets us outsource the
work of instructional content creation to domain experts rather
than doing it ourselves.

Free organic advertising across the web: Our sharing, not host-
ing approach has had another serendipitous beneft: Without any
intervention from us, Python Tutor URLs have been posted across
over 28,671 webpages from 8,087 unique domains over the past
decade (see Section 5). In addition, 16,050 webpages from 1,764
domains have embedded Python Tutor visualizations within them
as iframe embeds. All of those webpages are advertising Python
Tutor for free since their users will see Python Tutor URLs posted
there, click on them, and then discover our website.

Imagine if we had decided to host our own user-generated con-
tent like many other learn-to-code websites do. Then not only
would we be burdened with doing content moderation, but Python
Tutor URLs would not have organically spread as far and wide
across the web. We credit this simple design decision as the main
reason why Python Tutor usage has grown steadily over the past
decade without us putting any time or money into advertising. This
is critical since we as academics do not have the marketing or PR
resources that companies do.

That said, the main downside of our approach is that user-
generated content is dispersed across the web on a variety of third-
party sites that we do not control. Thus, researchers who take our
approach should be prepared to scrape third-party sites and deal
with lower-fdelity research data. As an alternative approach, one
elegant compromise is to outsource content hosting but to direct
users to use a specifc website with a dedicated tag. For instance, the
creators of D3 [23] ask users to post all questions and discussions
on Stack Overfow with a ‘d3.js’ tag rather than maintaining
their own in-house discussion forum [132]. As another alternative,
if content hosting is absolutely necessary, we recommend using
an externally-managed cloud service such as an enterprise Stack
Overfow [4] or Slack instance [3] to get some protections via those
paid platforms. We also recommend not having this content be
publicly visible or indexed by search engines, since private online
communities are less likely to require as much content moderation.

7.4 Minimize User Options
As software gets more widely-used over time, it is inevitable that
users will ask for custom options to meet their needs. Thus, it is un-
surprising that decades-old software (e.g., Photoshop, MS Word) ac-
cumulate thousands of options, often hidden within deeply-nested
menus [79, 80]. This level of complexity is unsustainable for aca-
demic projects that do not have full-time software development
staf. Thus, we suggest minimizing the number of user options.

Throughout the past decade, we have received many requests
for options to customize how Python Tutor visualizations look,
since there is no single “right” way to display the run-time state
of code. We have rejected nearly all of these requests since every
added option both harms user experience and increases our soft-
ware maintenance burden. Options harm user experience in two
ways: 1) they overwhelm users, especially novices, with choices to
make [5, 78], and 2) they make Python Tutor visualizations harder
to comprehend at a glance, since viewers also need to check and
understand which options were set when rendering a given visu-
alization. Also, options burden developers by making their code
more complex and harder to test; each binary toggle option could
double the number of code paths to test.

Ideally, Python Tutor would have no user-specifed options so
that there would be only one canonical way for it to visualize a given
piece of code. We tried to stick to this ideal, but we added three
options for early power users (object nesting policy, show/hide
exited frames, pointers as arrows vs. text). The weight of those
early decisions still burden us today since the code to implement
them percolated throughout our codebase. We do not feel com-
fortable removing those options since that would break backward

1242

Python Tutor’s Design Guidelines for Building Scalable and Sustainable Research Sofware in Academia UIST ’21, October 10–14, 2021, Virtual Event, USA

compatibility. Many people have posted URLs of old Python Tutor
visualizations with those options, so we do not want to break them.

One alternative to user options is to use heuristics to activate
certain settings. For Python Tutor, we considered heuristics for au-
tomatically hiding “uninteresting” elements such as boilerplate ob-
jects from modules imported by user code. We also tried heuristics
for rendering certain kinds of more advanced data structures with
better aesthetic layouts (e.g., binary trees, force-directed graphs).
However, those heuristics were hard to design, had too many special
cases, and hindered usability since they were completely opaque
to users. Instead we opted for a more transparent solution: render
all objects using a simple grid-based layout (see Section 4.2). Then
we let users customize visualizations by manually dragging objects
around the canvas or hiding elements to make their own custom
layouts. In sum, along with minimizing user options, we also sug-
gest not having opaque heuristics that feel like “magic” to users,
since those can lead to confusing experiences for novices.

8 SOFTWARE ARCHITECTURE DESIGN
We discussed outward-facing user experience issues in the last
section, so now we turn inward to consider the technical architec-
ture of software systems. These three guidelines can help research
software developed in academia be more scalable and sustainable.

8.1 Be Stateless
Web-based research software often maintains server state, most
commonly embodied by CRUD (Create-Read-Update-Delete) web
app architectures [146]. In our experience it is hard to scale these
web apps to large numbers of users when maintaining them within
an academic lab without professional I.T. staf. Thus, we encourage
researchers to aim for a stateless architecture by adopting our
design guidelines in Section 7 such as no user accounts, storing
state in users’ browsers if needed, and our Sharing, Not Hosting
approach of outsourcing content hosting to other websites.

Python Tutor embodies this stateless philosophy: its server does
not maintain any persistent state. Users type code into their browser,
that code gets sent to the server to run, and then the server returns
a visualization to the browser. The server does not store any in-
formation about users or sessions (although each user’s browser
stores UUIDs for logging). Users can also visit specially-generated
URLs that contain prewritten code and see the corresponding vi-
sualizations (Section 7.3). Since all the state is encapsulated in the
URL string, again the server does not need to store any state.

This stateless architecture has made it possible for us to maintain
nearly 100% uptime of the Python Tutor web application over many
years without hiring I.T. staf (or learning much about I.T. ourselves).
Some benefts include:

• Simplicity: no need to maintain database software or to pay
for more storage space as usage grows over time.

• Low-cost: easier to fnd low-cost server hosting, which re-
duces the need to apply for external funding

• Security: can be more secure since many storage-based at-
tacks (e.g., SQL injection) are not possible.

• Privacy: does not store user accounts or personal data, no
worries about data privacy laws in diferent countries.

• Scale: easy to scale horizontally by replicating the backend
code across multiple servers (we currently have four).

• Reliability: no bugs related to server being in an inconsistent
state, can easily re-image server to roll back code changes.

• Testing: easy to test since there is no state, test cases simply
map user code and options to expected visualizations.

• Bug reporting: users can generate a URL to send reproducible
bug reports since all relevant state is in the URL.

If it is absolutely critical for a web app to maintain its own state,
we recommend isolating its stateful part into a well-encapsulated
component with a clean API [140]. That way, the app’s processes
remain “stateless and share-nothing” [141], which conform to this
guideline from well-known industry best practices for scalable
web apps: “Execute the app as one or more stateless processes” [141].
Also consider paying for a database-as-a-service provider, which
outsources some of the logistics of scale and security to specialists.

8.2 Use Old Technologies
Software technologies change rapidly, so there is no guarantee
that software written today will still work a few years from now.
This is especially true for research software in academia that is
written by students, which tends to go unmaintained after they
graduate [116, 139]. Think of how hard it is to obtain, compile,
install, confgure, and run research prototypes from ten or more
years ago. Given these realities, in our experience one way to create
long-lasting sustainable software in academia is to use older and
more stable technologies that have stood the test of time [90].

Specifcally, despite massive advances in server-side web frame-
works in the 30+ years since the dawn of the web, the Python Tutor
backend still uses CGI (Common Gateway Interface): “Developed in
the early 1990s, CGI was the earliest common method available that
allowed a Web page to be interactive.” [145]. Its backend is a simple
Python CGI script served via the Apache webserver, which has also
been around since nearly the start of the web. As a result, Python
Tutor can run on practically any hosting provider, even very low-
cost ones, since most Linux distributions come with Apache+CGI.
Over the past 12 years we have had to migrate Python Tutor across
several providers, and Apache+CGI ‘just works’ right away. Host-
ing costs started at around $10 USD per month, and it is currently
around $50 per month since we added a few backup servers.

The Python Tutor frontend is built with similarly old technolo-
gies – most notably base JavaScript with jQuery. When we started
this project in 2009, there were no modern frontend frameworks [8]
(e.g., React, Angular, Vue). Fortunately, browser developers have
been meticulous about maintaining backward compatibility (i.e.,
“don’t break the web” [149]) so that plain JavaScript from decades
ago still runs today. And so far, native web technologies (HTML,
CSS, JavaScript) have outlasted all third-party browser plug-ins
(e.g., Flash, Silverlight, Java Web Start) over the past three decades.

One good argument for upgrading to newer technologies is that
they can be more scalable [77]. For instance, modern server-side
frameworks like Node.js and Deno (which use a single main thread
with efcient OS event notifcations) can handle many more concur-
rent requests than old-fashioned Apache+CGI (which forks a sepa-
rate OS process for every incoming request). While this is important
for industry-level workloads, academic projects (even widely-used

1243

UIST ’21, October 10–14, 2021, Virtual Event, USA Philip J. Guo

ones) are unlikely to require such scalability. For instance, Python
Tutor gets up to 10 incoming http requests per second, which is up
to one million requests per day. That is well within range of what
Apache+CGI can comfortably handle on a low-cost shared-hosting
provider with no manual performance tuning.

8.3 Minimize Dependencies
Software dependencies: Software often depends on libraries and
the underlying operating system that it runs upon. And these de-
pendencies will inevitably upgrade over the years, sometimes in
non-backward-compatible ways [29]. As a result, it can be hard to
keep software with dependencies functioning properly over the
span of a decade or more. Thus, we recommend making research
software as self-contained as possible with the fewest dependencies.

For Python Tutor, we have both tried to minimize the number
of dependencies and, when they are unavoidable, we have bundled
the dependencies directly into our code repository. For instance,
we bundle all necessary libraries into our codebase instead of in-
stalling them from package managers (e.g., pip, npm). We even go
as far as including specifc compiled versions of programming lan-
guage implementations (e.g., a specifc version of the Java virtual
machine, the Ruby interpreter, etc.) to ensure that our visualizer
backend will continue running into the foreseeable future. We then
protect against operating system upgrades by encapsulating our
development tools inside of Docker images [20]. This approach
totally goes against software development best practices, since it
“pins” our dependencies at older versions that do not receive bug-fx
or security updates [16, 142]. We do update every few years, but we
value long-term stability over always getting the latest software.

Despite our best eforts, we know dependencies are inevitable,
especially when doing web development for modern HCI research.
Even a single ‘npm install’ command can pull in hundreds of
JavaScript libraries from across the internet [29]. To cope with the
pervasive use of dependencies, we highly recommend using tools
such as Docker to create a reproducible and standardized develop-
ment environment with specifc pinned versions of all dependencies
installed inside of Docker images. Always specify the exact version
numbers of everything and cache them. This way, research team
members can work with the exact same development environment
whether they are on Mac, Windows, or Linux.

Institutional dependencies: As an analogy to software dependen-
cies, not depending on external institutions also makes it easier for
one’s research software to sustain over time. For online education
software such as Python Tutor, it may be tempting to partner with a
university, a popular MOOC provider (e.g., Coursera, edX, Udacity),
or educational technology companies. Over the past decade, we
have explored collaboration opportunities with all these types of
institutions. But ultimately we found that we could be a lot more ag-
ile if we operated independently and focused on directly providing
value to users on our own website. Institutional partnerships take
a lot of bureaucratic and logistical fnessing, and they might result
in at most thousands of new users. In contrast, making the core
service work better and facilitating organic word-of-mouth growth
across the web has let us reach several orders of magnitude more
users with much less efort. Since we have full control over the
Python Tutor website, we can launch new features, experiments,

and research studies as we wish without frst coordinating with the
bureaucracies of any external institutions.

That said, we see the value of academic researchers partnering
with external institutions to broaden their reach. But it is important
to keep in mind that the priorities of such institutions shift over
time and that those shifts are not always favorable for individual
researchers who want to publish academic papers. Tread carefully.

9 SOFTWARE DEVELOPMENT WORKFLOWS
Our fnal three design guidelines are about optimizing the process
of developing research software within academia.

9.1 Single Developer
Academia is an unfavorable setting for creating software that can
reach many users and last across many years because:

• It is hard to hire long-term software development staf using
grants, which often fund research and not software.

• Professional developers can get better working conditions
in industry (e.g., higher pay, larger cohort of peers).

• Thus, students are often the implementers of research soft-
ware, and they are by defnition short-term. Undergrad and
master’s students must split their time with a full course
load and extracurriculars. Ph.D. students (rightly!) priori-
tize publishing new papers to build their careers rather than
maintaining old software for their advisors.

Given these constraints, the way we have kept Python Tutor
development going throughout the past decade is by not relying
on a team of student or staf developers. Instead, we adopted a
single-developer workfow where the project’s creator (this paper’s
author) is the only person who works on the software.

Having a single developer greatly simplifes our workfow since
there is no need to coordinate with others. Although one person
cannot possibly implement software that is as sophisticated as
that of a team, this constraint forces us to simplify our design
in ways that let Python Tutor scale well (e.g., no user accounts,
few user options, no content hosting, stateless architecture). It also
completely avoids “design by committee” [147] and better preserves
the classic notion of conceptual integrity from Turing Award winner
Fred Brooks [24]: “I will contend that conceptual integrity is the most
important consideration in system design. It is better to have a system
omit certain anomalous features and improvements, but to refect one
set of design ideas, than to have one that contains many good but
independent and uncoordinated ideas.”

Our single-developer workfow also saves on personnel costs,
which are usually far more expensive than equipment costs for
typical software projects. Hiring even one undergraduate student
for a summer costs at least $8,000 USD (an NSF REU [101]), which
is more than we have spent in total over the past decade on server
hosting costs (see Section 8 for how we have kept server costs
low). Also, it can be hard to get grant funding for research software
development, so one must often fnd such funding from indirect
sources, which can be time-consuming to wrangle. Not needing
to hire any personnel means that we spend less time applying for
funding and more time on actual software development work.

That said, we have experimented with the more traditional model
of supervising students on developing Python Tutor features. But

1244

Python Tutor’s Design Guidelines for Building Scalable and Sustainable Research Sofware in Academia UIST ’21, October 10–14, 2021, Virtual Event, USA

even after multiple attempts we have not yet been able to get stu-
dents to contribute production-quality code that we felt comfortable
deploying to the real site. For instance, several students have at-
tempted to extend Python Tutor to support more languages or to
create new kinds of visualizations. In all of those cases, they were
able to make a prototype that worked well enough for cool demos,
but they could not sustain the long-term efort necessary to make
it ‘just work’ on the many edge cases that come up when deployed
to a live website with tens of thousands of daily users. Such tedious
bug-fxing work does not advance their careers at all, so rational
students do not stick around long enough to see it through when
they have much more appealing work opportunities available.

Relatedly, one can foster an open-source community of external
contributors. We have also attempted to do this in the past by being
open to external contributions via GitHub pull requests. Like our
experiences with student contributors, though, we have found it
even harder to shepherd unknown volunteers from the internet
to make code contributions that can handle the many edge cases
required to ‘just work’ in production. Managing a distributed devel-
opment efort with volunteers can be far harder than managing a
co-located team. More broadly, it can involve setting up formal gov-
ernance structures [154], managing contributor expectations [65],
arbitrating community disputes over project direction [64], and
many other time-consuming tasks [37, 48].

The only two exceptions to our single-developer workfow were
one colleague adding support for Python 3 (which difers from
Python 2) and another creating the Java backend. They were full-
time instructors of Python and Java, respectively, who used Python
Tutor in their teaching, so both were well-qualifed to extend it.

Our single-developer workfow is unusual, even within academia.
Its obvious weakness is having a bus factor of 1: this project dies if
we stop working on it [143]. Thus, a more typical arrangement for
long-running academic software projects is for the PI (e.g., faculty)
to become a software architect and supervise successive generations
of students on doing the implementation and maintenance work.
This can be viable if there are good processes in place to hand
of between student generations every few years. Otherwise the
default is for a project to languish after the main student graduates.
An alternative model is to raise funding to hire (even part-time)
staf programmers to ensure better continuity. In all those cases, we
recommend having the smallest possible team since we as academics
are not experts at managing larger software development teams.

9.2 Start Specifc
Software-based researchers often strive to build systems containing
high-level ideas that are likely to generalize, since those make for
more compelling academic papers. However, we believe that trying
to be too general actually hinders scale and sustainability. To build
long-lasting software that can organically grow a large userbase,
one must instead start specifc.

In 2009 we created Python Tutor with a very specifc goal in mind:
to provide a convenient way for students and instructors (such as
ourselves) to walk through Python code step-by-step and see the
values of variables. That frst release had no visual afordances such
as pointers or data structure renderings – it simply printed out
values in plain text in an HTML table! It was basically a convenient

web-based version of the built-in Python pdb debugger [113]. But
even though that frst version was very simplistic, it met a concrete
user need and spread quickly via word-of-mouth.

Since Python became popular throughout the 2000s as a language
for both teaching and software development, we focused specifcally
on it to hone in on a fast-growing user population. Our userbase
grew throughout the early 2010s as more computer science courses
switched to using Python and as more online education initiatives
launched. As usage continued to rise we generalized by adding
other popular languages (Java, JavaScript, C, C++, Ruby), but we
believe Python Tutor initially got widespread usage because we
started out so specifc.

As a counterfactual, imagine if in 2009 we had tried to design a
generalizable system upfront that could visualize code in multiple
languages using sophisticated visual representations. Or, even more
ambitiously, we could design a general-purpose toolkit [46, 84, 88] for
building run-time code visualizations. While this type of idea could
lead to a viable grant proposal or research paper, in practice it would
have taken a tremendous amount of implementation work to even
get a frst working release out. And since we would need to split
our eforts to support multiple programming languages and visual
representations, it would be hard to put in the engineering efort
required to make it ‘just work’ in the wild. Finally, we would not be
close enough to any specifc user population to iterate meaningfully
with them.

Thus, it is ironic that a project which has contributed to dozens
of research papers (Table 2) would likely not have gotten of the
ground if we had tried to design it as generalizable research from
the beginning. Instead we started it as a super-specifc and non-
researchy project to ft a niche user need and then only generalized
later as it built momentum. We defnitely did not start this project
thinking about how we were going to get papers published from it.

On a mundane but amusing note, even the ultra-specifc name
of our software helped grow its userbase. It turned out that the
original title of the website – “Python Tutor: visualize Python code
execution” – was great for SEO (Search Engine Optimization) since
lots of people were searching for Python help in the early 2010s
as the language grew in popularity in schools and workplaces. We
continued this trend by creating landing pages for the fve other
languages with equally-boring names like “Java Tutor: visualize
Java code execution.” For reference, in 2020 (last year) 36% of visitors
to pythontutor.com came from Google keyword searches. If we had
instead designed a generalizable system at the start, we would have
also named it something generic, so it would be hard for people
to discover via web searches. Companies spend lots of money on
SEO and brand marketing, but we accidentally stumbled upon an
approach (specifc names like Python Tutor, Java Tutor, C++ Tutor,
etc.) that grew our userbase with zero money spent on advertising.

9.3 Ignore Most Users
A central tenet of HCI is user-centered design [6] – working closely
with people to discover and meet their needs. We followed this
standard process when iterating with a few early users, but as
Python Tutor gained a large userbase over the years we found it
more important to do exactly the opposite: ignore most users.

1245

pythontutor.com

UIST ’21, October 10–14, 2021, Virtual Event, USA Philip J. Guo

Hyperfocus: In order to keep software running for over ten years,
especially in a resource-constrained academic setting, it is extremely
important to tightly focus its scope. The quoted paragraph at the
beginning of Section 3 lays out the hyperfocused scope of Python
Tutor: it just emulates what programming instructors manually
draw on the board when explaining code execution, nothing more.

Over the past decade we have received many feature requests
from users via personal emails, GitHub Issues, and user surveys.
And we have ignored most of them since they are outside of this
hyperfocused scope, so implementing them would lead to fea-
ture creep [14] and make our software harder to maintain over
time. Some frequent suggestions include turning Python Tutor
into a full-blown web-based IDE, supporting visual debugging of
larger-scale production code, adding learning management system
(LMS) features like managing student assignments, exams, grad-
ing, and school I.T. systems integration, and hosting galleries of
user-generated content. While these features make sense for a com-
mercial product, they would add too much maintenance burden for
an academic project. Instead we felt that our time was much better
spent on the craft of making a few core features work well.

More broadly, we have not let user sentiments guide our high-
level project direction. This quote from the creator of the Clojure
programming language captures our feelings well: “Soon there were
dozens, then hundreds, then thousands of people asking questions,
looking for clarifcations and guidance, and most challengingly, de-
siring input into the project. When I open sourced Clojure, what I
thought I was doing was sharing something I had created in a way,
open source, that would provide no barriers to adoption. What I dis-
covered was that open source engenders presumptions of collaborative
development, which can be at odds with maintaining a singularity of
vision.” [65] In sum, we encourage HCI researchers to push back
against pervasive trends of community-driven and user-centered
design. You are all the experts in your own respective domains, so
lean harder on that expertise to maintain your singularity of vision!

Protecting against harassment: Lastly, even if most people are
well-meaning, with millions of users there are bound to be ones
who communicate online in negative ways. In our experience, this
behavior has ranged from expressions of entitlement (e.g., “you need
to fx MY bug right now!”) to various forms of online harassment
directed at us (e.g., threatening messages, trying to fnd our personal
information, contacting our employer to demand our attention).

In our project’s early years we embraced user-centered design:
we made our name and email address visible on the Python Tutor
website, and we encouraged users to post bug reports and feature re-
quests to its public GitHub Issues page. While this was constructive
for the frst few years, as our userbase grew over time the incoming
noise of user demands became too overwhelming. Here we echo
the sentiments of the creator of D3, a widely-used visualization
toolkit that started in academia [23], in his ten-year retrospective:
“I have deep reservations about the way GitHub and other platforms
enable [public issue threads] by default, establishing the unreasonable
expectation that unpaid maintainers must immediately, politely, and
substantively respond to any and all requests for help. Yes, I can turn
of issues, but as a community we need to rethink our norms if we are
serious about addressing maintainer burnout.” [22]

To protect ourselves from increased noise and occasional harass-
ment, in 2020 we removed our name and email address from the
Python Tutor website and turned of the public GitHub Issues bug
tracker so users can no longer comment in publicly-visible threads.
Instead we direct all users to send feedback and bug reports to a
private Google Form text box. This lets frustrated users vent in
an anonymous text box but prevents abusive messages from being
publicly visible or landing in our personal email inbox. Since doing
so we have found that we can work on this project quietly at our
own pace without a continual stream of incoming user inputs.

10 CONCLUSION: PERSONAL REFLECTIONS
I’ll switch to frst-person to end on a more personal note. As a
mid-career academic (I am now an associate professor), one of the
most common questions I get from students who work on HCI and
computing-related research is: “Should I spend the time to make
my research software more robust, usable, scalable, etc., and aim for
widespread adoption?” The obvious tradeof is that the students who
spend more time polishing up their software will have less time
and energy to devote to their next paper-producing projects. And
what ultimately counts for career advancement within academia
is producing generalizable knowledge via research publications,
not creating widely-used software. Thus, the candid answer I give
is: “Probably not. You should get prototypes working well enough to
validate your research ideas and maybe make them a bit more robust
so you can build on them for follow-up papers. But don’t aim for
widespread adoption from the start, since there’s no proven formula for
getting users. Focus on what will help you make the best discoveries.”

Note that even I didn’t aim for widespread adoption from the
start (see Section 9.2: Start Specifc). I created Python Tutor in late
2009 as a procrastination side project during my Ph.D., which was
totally unrelated to my dissertation research [53]. Almost nobody
used it for the frst few years that I put it online. But then a series
of lucky external factors contributed to organic user growth, most
notably the launch of MOOCs and other popular learn-to-code
initiatives around 2012. Only then did I think about making the
software more robust and scalable to ride that huge incoming wave.

However, that was also the time when I fnished my Ph.D. and
started a tenure-track career path. From 2012–2020 I was a postdoc
then an assistant professor, which meant that throughout most of
my past decade of work on Python Tutor, I had to carefully balance
my time spent on software development versus time spent working
with my students toward new research. I was well-aware that it
would both be unwise for my own career to spend too much time on
software development, and it would also be unfair to my students
who wanted to publish new papers to launch their own careers.
The ten design guidelines in this paper helped me strike a fne
balance between maintaining widely-used research sofware
and sustaining an early-stage academic career.

My pragmatic compromise was to diversify my project portfolio
while keeping Python Tutor running in the background without
too much extra efort (aided by these ten design guidelines). As a
result, I was able to use it as a platform to launch new research
projects when serendipitous collaboration opportunities arose (see
Section 5), but I did not solely rely on it for building my early-
faculty career. When I applied for tenure around 2020, only 25% of

1246

Python Tutor’s Design Guidelines for Building Scalable and Sustainable Research Sofware in Academia UIST ’21, October 10–14, 2021, Virtual Event, USA

the papers that I published as an assistant professor were based on
Python Tutor, so most of my lab’s projects were on diferent topics.

Refecting back on the past decade, the way I’ve been able to
keep this project going for so long is by ‘sneaking it into’ a more
traditional Ph.D., postdoctoral, and early faculty career path. There
would be no way for me back as a grad student to somehow get a
magical ten-year grant to build Python Tutor since the idea wasn’t
at all novel – code visualization tools had existed for nearly 30
years even back then [130]. In fact, I doubt that I could even get
long-term funding nowadays to work on a new research software
project with similar ideals – focused on providing direct value to
users rather than on producing publishable papers right away.

So why try to do this in academia at all? Wouldn’t this kind of
‘product-oriented’ software development work be better done at a
company? No. In my experience, there are many kinds of highly-
useful software that do not have marketable value, so companies do
not fund their development. A code visualization tool like Python
Tutor is one of them. Over the past decade I have been closely
tracking what technology companies have developed in terms of
tools for learning to code. Even with billions of dollars of collective
funding (within big companies, from VCs for startups, and from phi-
lanthropists for nonprofts like Khan Academy), to my knowledge
no company has ever built its own code visualization tool. (But a few
have integrated Python Tutor into their products.) This suggests
that such tools are not marketable and will likely not be developed
in industry. But clearly they have proven to be very useful for both
learners and researchers, as Python Tutor has shown with its mil-
lions of users and dozens of papers built upon it. I believe if Python
Tutor wasn’t developed in academia, then it wouldn’t exist. An
alternative is to develop it as an open-source side project while
working in an industry job (which I seriously considered), but such
indie eforts can be immensely hard to sustain long-term [37].

And that’s why I think academia could become the best place
to support long-term hybrid research+product work like Python
Tutor. But we’re not nearly there yet since current mechanisms
for funding, publication, and career advancement make this path
tricky to navigate. In the coming years, I hope we can work toward
incentivizing such projects because I believe academia can lead the
way in fostering this sort of impactful long-term work that is hard
to sustain in typical industry or open-source settings.

More broadly, zooming out beyond my own story: Should we
even aim to design research software for scale and sustainability?
Or are shorter-term prototypes better for demonstrating exciting
new ideas that industry can later pick up on if there is enough
market interest? How much should academia value research soft-
ware that gains a large userbase? Specifcally, how should we weigh
the more tangible impacts of widespread usage versus the more
intellectual impacts of the underlying research ideas? Likewise,
should we make software-related contributions count more in hir-
ing and promotion decisions? Or is it actually unfair (and a sign
of technocentrism [106]) to privilege the role of software so much,
since many types of valuable research contributions [150] are not
as software-driven? There are no simple answers to these questions,
but we should defnitely discuss them now as software continues to
pervade more and more domains of research in the coming years.
Students, postdocs, and lab staf across many felds are working

day-to-day as research software developers, so they deserve our
thoughtful consideration on these hard questions.

ACKNOWLEDGMENTS
Long before starting Python Tutor, I spent my formative years as a
student surrounded by mentors who valued making high-quality
research software that scaled and sustained over time. My under-
graduate research advisors Eric Klopfer and Michael Ernst have
maintained long-running software in their labs for over two decades,
and they instilled in me the value of making even my early projects
‘just work’ for actual users. My Ph.D. advisor Dawson Engler led by
example as well and always pushed me to get my software analysis
tools working on real code (the title of this paper is an homage to
his 2010 paper, “A Few Billion Lines of Code Later ...” [19]). Also, my
other Ph.D. committee members Margo Seltzer and Jefrey Heer are
both well-known for pioneering widely-used open-source software
in their respective felds. All of these role models have tremen-
dously infuenced my research tastes as a student, even as I ended
up branching out to very diferent lines of work.

Special thanks to all the people who encouraged me to get Python
Tutor of the ground in its fragile early years. Brad Miller, Suzanne
Rivoire, and Peter Wentworth were amongst the frst instructors
who used it and gave me hope that others might like it too. Pe-
ter Wentworth and his students made an early port to Python 3,
and John DeNero worked closely with me to get it working well
enough for widespread deployment in 2012. David Pritchard and
Will Gwozdz created the Java visualizer backend shortly afterward.
Peter Norvig, Anant Agarwal, and Rob Miller generously gave me
the resources, time, and support to keep this project going during
my critical postdoctoral years before I started my frst faculty job.

Thanks to all the Python Tutor users around the world who gave
me feedback and encouraged me to keep at it through the years.
Aside from everyone above, I also want to thank Ned Batchelder, Jen-
nifer Campbell, Irene Chen, Frédo Durand, David Evans, Paul Gries,
Adam Hartz, Sean Lip, Tomás Lozano-Pérez, Bertram Ludäscher,
Fernando Pérez, Andrew Petersen, and Guido van Rossum.

More broadly, discussions with Nadia Eghbal about her work [37]
have deeply infuenced my thinking and helped me refect on the
challenges of open-source software maintenance. Professors such
as John Regehr and Cristian Cadar have inspired me with how they
have maintained widely-used research software in their labs over
the past decade.

Thanks to Ian Drosos, Jim Hollan, and Sam Lau for feedback on
drafts. Finally, thanks to the UIST reviewers and PC members for
supporting this very nontraditional paper.

This material is based upon work supported by the National
Science Foundation under Grant No. NSF IIS-1845900.

REFERENCES
[1] 2015. Skulpt: Python. Client Side. https://skulpt.org/. Accessed: 2021-04-01.
[2] 2021. Scratch Foundation. https://www.scratchfoundation.org/. Accessed:

2021-04-01.
[3] 2021. Slack for Enterprises. https://slack.com/enterprise. Accessed: 2021-04-01.
[4] 2021. Stack Overfow for Teams Pricing and Plans. https://stackoverfow.com/

teams/pricing. Accessed: 2021-04-01.
[5] Dan Abramov. 2017. The melting pot of JavaScript. https://increment.com/

development/the-melting-pot-of-javascript/. Accessed: 2021-04-01.
[6] Chadia Abras, Diane Maloney-Krichmar, Jenny Preece, et al. 2004. User-centered

design. Bainbridge, W. Encyclopedia of Human-Computer Interaction. Thousand

1247

https://skulpt.org/
https://www.scratchfoundation.org/
https://slack.com/enterprise
https://stackoverflow.com/teams/pricing
https://stackoverflow.com/teams/pricing
https://increment.com/development/the-melting-pot-of-javascript/
https://increment.com/development/the-melting-pot-of-javascript/

UIST ’21, October 10–14, 2021, Virtual Event, USA Philip J. Guo

Oaks: Sage Publications 37, 4 (2004), 445–456.
[7] Michel Adam, Moncef Daoud, and Patrice Frison. 2019. Direct Manipulation ver-

sus Text-Based Programming: An Experiment Report. In Proceedings of the 2019
ACM Conference on Innovation and Technology in Computer Science Education
(Aberdeen, Scotland Uk) (ITiCSE ’19). Association for Computing Machinery,
New York, NY, USA, 353–359. https://doi.org/10.1145/3304221.3319738

[8] Kamran Ahmed. [n.d.]. Developer Roadmaps: Step by step guides and paths to
learn diferent tools or technologies. https://roadmap.sh/. Accessed: 2021-04-01.

[9] Bedour Alshaigy, Samia Kamal, Faye Mitchell, Clare Martin, and Arantza Aldea.
2015. PILeT: An Interactive Learning Tool To Teach Python. In Proceedings of
the Workshop in Primary and Secondary Computing Education (London, United
Kingdom) (WiPSCE ’15). Association for Computing Machinery, New York, NY,
USA, 76–79. https://doi.org/10.1145/2818314.2818319

[10] Christine Alvarado, Briana B. Morrison, Barbara Ericson, Mark Guzdial, Brad
Miller, and David L. Ranum. 2012. Performance and use evaluation of an electronic
book for introductory Python programming. Technical Report GT-IC-12-02.
Georgia Institute of Technology.

[11] Luís Alves, Dušan Gajić, Pedro Rangel Henriques, Vladimir Ivančević, Vladimir
Ivković, Maksim Lalić, Ivan Luković, Maria João Varanda Pereira, Srđan Popov,
and Paula Correia Tavares. 2020. C Tutor usage in relation to student achieve-
ment and progress: A study of introductory programming courses in Portugal
and Serbia. Computer Applications in Engineering Education 28, 5 (2020), 1058–
1071.

[12] Aivar Annamaa. 2015. Introducing Thonny, a Python IDE for Learning Program-
ming. In Proceedings of the 15th Koli Calling Conference on Computing Education
Research (Koli, Finland) (Koli Calling ’15). Association for Computing Machinery,
New York, NY, USA, 117–121. https://doi.org/10.1145/2828959.2828969

[13] Mohammadreza Azadmanesh and Matthias Hauswirth. 2017. Concept-Driven
Generation of Intuitive Explanations of Program Execution for a Visual Tutor.
In 2017 IEEE Working Conference on Software Visualization (VISSOFT). IEEE
Computer Society, Los Alamitos, CA, USA, 64–73. https://doi.org/10.1109/
VISSOFT.2017.22

[14] Nick Babich. 2020. Feature Creep: What Causes It and How to Avoid It. https:
//www.shopify.com/partners/blog/feature-creep. Accessed: 2021-04-01.

[15] Valerie Barr and Deborah Trytten. 2016. Using Turing’s Craft Codelab to Support
CS1 Students as They Learn to Program. ACM Inroads 7, 2 (May 2016), 67–75.
https://doi.org/10.1145/2903724

[16] Niccolo Belli. 2019. How should you pin dependencies and why? https://the-
guild.dev/blog/how-should-you-pin-dependencies-and-why. Accessed: 2021-
04-01.

[17] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic Memory
Safety for Unsafe Languages. In Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Ottawa, Ontario, Canada)
(PLDI ’06). Association for Computing Machinery, New York, NY, USA, 158–168.
https://doi.org/10.1145/1133981.1134000

[18] Ron Berger. 2003. An Ethic of Excellence: Building a Culture of Craftsmanship
with Students. Heinemann.

[19] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
Commun. ACM 53, 2 (Feb. 2010), 66–75. https://doi.org/10.1145/1646353.1646374

[20] Carl Boettiger. 2015. An Introduction to Docker for Reproducible Research.
SIGOPS Oper. Syst. Rev. 49, 1 (Jan. 2015), 71–79. https://doi.org/10.1145/2723872.
2723882

[21] Dana Bojcic. [n.d.]. How often do IP addresses change? (Example). https:
//www.vicimediainc.com/often-ip-addresses-change/. Accessed: 2021-04-01.

[22] Mike Bostock. 2021. 10 Years of Open-Source Visualization. https://observablehq.
com/@mbostock/10-years-of-open-source-visualization. Accessed: 2021-04-01.

[23] Michael Bostock, Vadim Ogievetsky, and Jefrey Heer. 2011. D3 data-driven
documents. IEEE transactions on visualization and computer graphics 17, 12
(2011), 2301–2309.

[24] Frederick P. Brooks. 1975. The Mythical Man-Month: Essays on Software Engi-
neering (1st ed.). Addison-Wesley Longman Publishing Co., Inc., USA.

[25] Brython. [n.d.]. A Python 3 implementation for client-side web programming.
https://brython.info/. Accessed: 2021-04-01.

[26] Raluca Budiu. 2014. Login Walls Stop Users in Their Tracks. https://www.
nngroup.com/articles/login-walls/. Accessed: 2021-04-01.

[27] Parmit K. Chilana, Amy J. Ko, and Jacob Wobbrock. 2015. From User-Centered
to Adoption-Centered Design: A Case Study of an HCI Research Innova-
tion Becoming a Product. In Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI
’15). Association for Computing Machinery, New York, NY, USA, 1749–1758.
https://doi.org/10.1145/2702123.2702412

[28] Benjamin Cosman, Madeline Endres, Georgios Sakkas, Leon Medvinsky, Yao-
Yuan Yang, Ranjit Jhala, Kamalika Chaudhuri, and Westley Weimer. 2020. PABLO:
Helping Novices Debug Python Code Through Data-Driven Fault Localization.

In Proceedings of the 51st ACM Technical Symposium on Computer Science Educa-
tion (Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery,
New York, NY, USA, 1047–1053. https://doi.org/10.1145/3328778.3366860

[29] Russ Cox. 2019. Surviving Software Dependencies. Commun. ACM 62, 9 (Aug.
2019), 36–43. https://doi.org/10.1145/3347446

[30] Matthew B. Crawford. 2009. Shop Class as Soulcraft: An Inquiry into the Value of
Work. Penguin Books.

[31] Habibie Ed Dien and Yudistira Dwi Wardhana Asnar. 2018. OPT+Graph: Detec-
tion of Graph Data Structure on Program Visualization Tool to Support Learning.
In 2018 5th International Conference on Data and Software Engineering (ICoDSE).
IEEE.

[32] Marija Djokic-Petrovic, David Pritchard, Milos Ivanovic, and Vladimir Cv-
jetkovic. 2016. IMI Python: Upgraded CS Circles Web-Based Python Course.
Comput. Appl. Eng. Educ. 24, 3 (May 2016), 464–480. https://doi.org/10.1002/
cae.21724

[33] Ian Drosos, Philip J. Guo, and Chris Parnin. 2017. HappyFace: Identifying and
Predicting Frustrating Obstacles for Learning Programming at Scale. In Proceed-
ings of the IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC ’17). 171–179. https://doi.org/10.1109/VLHCC.2017.8103465

[34] Elizabeth Dwoskin, Jeanne Whalen, and Regine Cabato. 2019. Content
moderators at YouTube, Facebook and Twitter see the worst of the web —
and sufer silently. Washington Post – https://www.washingtonpost.com/
technology/2019/07/25/social-media-companies-are-outsourcing-their-dirty-
work-philippines-generation-workers-is-paying-price/. Accessed: 2021-04-01.

[35] Brandon Earwood, Jeong Yang, and Young Lee. 2016. Impact of static and
dynamic visualization in improving object-oriented programming concepts. In
2016 IEEE Frontiers in Education Conference (FIE). IEEE.

[36] Florian Echtler and Maximilian Häußler. 2018. Open Source, Open Science, and
the Replication Crisis in HCI. In Extended Abstracts of the 2018 CHI Conference
on Human Factors in Computing Systems (Montreal QC, Canada) (CHI EA ’18).
Association for Computing Machinery, New York, NY, USA, 1–8. https://doi.
org/10.1145/3170427.3188395

[37] Nadia Eghbal. 2020. Working in Public: The Making and Maintenance of Open
Source Software. Stripe Press.

[38] Elvina Elvina, Oscar Karnalim, Mewati Ayub, and Maresha Caroline Wijanto.
2018. Combining program visualization with programming workspace to assist
students for completing programming laboratory task. Journal of Technology
and Science Education 8, 4 (2018), 268–280. https://doi.org/10.3926/jotse.420

[39] Madeline Endres, Georgios Sakkas, Benjamin Cosman, Ranjit Jhala, and West-
ley Weimer. 2019. InFix: Automatically Repairing Novice Program Inputs.
In Proceedings of the 34th IEEE/ACM International Conference on Automated
Software Engineering (San Diego, California) (ASE ’19). IEEE Press, 399–410.
https://doi.org/10.1109/ASE.2019.00045

[40] Barbara Ericson, Steven Moore, Briana Morrison, and Mark Guzdial. 2015. Us-
ability and Usage of Interactive Features in an Online Ebook for CS Teachers.
In Proceedings of the Workshop in Primary and Secondary Computing Education
(London, United Kingdom) (WiPSCE ’15). Association for Computing Machinery,
New York, NY, USA, 111–120. https://doi.org/10.1145/2818314.2818335

[41] Barbara J. Ericson, Mark J. Guzdial, and Briana B. Morrison. 2015. Analysis of In-
teractive Features Designed to Enhance Learning in an Ebook. In Proceedings of
the Eleventh Annual International Conference on International Computing Educa-
tion Research (Omaha, Nebraska, USA) (ICER ’15). Association for Computing Ma-
chinery, New York, NY, USA, 169–178. https://doi.org/10.1145/2787622.2787731

[42] Barbara J. Ericson and Bradley N. Miller. 2020. Runestone: A Platform for
Free, On-Line, and Interactive Ebooks. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE ’20).
Association for Computing Machinery, New York, NY, USA, 1012–1018. https:
//doi.org/10.1145/3328778.3366950

[43] Barbara J. Ericson, Kantwon Rogers, Miranda Parker, Briana Morrison, and
Mark Guzdial. 2016. Identifying Design Principles for CS Teacher Ebooks
through Design-Based Research. In Proceedings of the 2016 ACM Conference
on International Computing Education Research (Melbourne, VIC, Australia)
(ICER ’16). Association for Computing Machinery, New York, NY, USA, 191–200.
https://doi.org/10.1145/2960310.2960335

[44] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi,
Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. 2015. The Racket Man-
ifesto. In 1st Summit on Advances in Programming Languages (SNAPL 2015).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[45] Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Benedict du
Boulay, Matthias Hauswirth, Arto Hellas, Felienne Hermans, Colleen Lewis, An-
dreas Mühling, Janice L. Pearce, and Andrew Petersen. 2020. Notional Machines
in Computing Education: The Education of Attention. In Proceedings of the Work-
ing Group Reports on Innovation and Technology in Computer Science Education
(Trondheim, Norway) (ITiCSE-WGR ’20). Association for Computing Machinery,
New York, NY, USA, 21–50. https://doi.org/10.1145/3437800.3439202

[46] James Fogarty. 2017. Code and Contribution in Interactive Systems Research. In
CHI Workshop on HCITools: Strategies and Best Practices for Designing, Evaluating
and Sharing Technical HCI Toolkits.

1248

https://doi.org/10.1145/3304221.3319738
https://roadmap.sh/
https://doi.org/10.1145/2818314.2818319
https://doi.org/10.1145/2828959.2828969
https://doi.org/10.1109/VISSOFT.2017.22
https://doi.org/10.1109/VISSOFT.2017.22
https://www.shopify.com/partners/blog/feature-creep
https://www.shopify.com/partners/blog/feature-creep
https://doi.org/10.1145/2903724
https://the-guild.dev/blog/how-should-you-pin-dependencies-and-why
https://the-guild.dev/blog/how-should-you-pin-dependencies-and-why
https://doi.org/10.1145/1133981.1134000
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
https://www.vicimediainc.com/often-ip-addresses-change/
https://www.vicimediainc.com/often-ip-addresses-change/
https://observablehq.com/@mbostock/10-years-of-open-source-visualization
https://observablehq.com/@mbostock/10-years-of-open-source-visualization
https://brython.info/
https://www.nngroup.com/articles/login-walls/
https://www.nngroup.com/articles/login-walls/
https://doi.org/10.1145/2702123.2702412
https://doi.org/10.1145/3328778.3366860
https://doi.org/10.1145/3347446
https://doi.org/10.1002/cae.21724
https://doi.org/10.1002/cae.21724
https://doi.org/10.1109/VLHCC.2017.8103465
https://www.washingtonpost.com/technology/2019/07/25/social-media-companies-are-outsourcing-their-dirty-work-philippines-generation-workers-is-paying-price/
https://www.washingtonpost.com/technology/2019/07/25/social-media-companies-are-outsourcing-their-dirty-work-philippines-generation-workers-is-paying-price/
https://www.washingtonpost.com/technology/2019/07/25/social-media-companies-are-outsourcing-their-dirty-work-philippines-generation-workers-is-paying-price/
https://doi.org/10.1145/3170427.3188395
https://doi.org/10.1145/3170427.3188395
https://doi.org/10.3926/jotse.420
https://doi.org/10.1109/ASE.2019.00045
https://doi.org/10.1145/2818314.2818335
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1145/3328778.3366950
https://doi.org/10.1145/3328778.3366950
https://doi.org/10.1145/2960310.2960335
https://doi.org/10.1145/3437800.3439202

Python Tutor’s Design Guidelines for Building Scalable and Sustainable Research Sofware in Academia UIST ’21, October 10–14, 2021, Virtual Event, USA

[47] Eric Fouh, Ville Karavirta, Daniel A. Breakiron, Sally Hamouda, Simin Hall,
Thomas L. Naps, and Cliford A. Shafer. 2014. Design and architecture of an
interactive eTextbook–The OpenDSA system. Science of computer programming
88 (2014), 22–40.

[48] R. Stuart Geiger, Dorothy Howard, and Lilly Irani. 2021. The Labor of Main-
taining and Scaling Free and Open-Source Software Projects. Proc. ACM
Hum.-Comput. Interact. 5, CSCW1, Article 175 (April 2021), 28 pages. https:
//doi.org/10.1145/3449249

[49] Tarleton Gillespie. 2018. Custodians of the Internet: Platforms, content moderation,
and the hidden decisions that shape social media. Yale University Press.

[50] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C.
Miller. 2015. OverCode: Visualizing Variation in Student Solutions to Program-
ming Problems at Scale. ACM Trans. Comput.-Hum. Interact. 22, 2, Article 7
(March 2015), 35 pages. https://doi.org/10.1145/2699751

[51] Mitchell Gordon and Philip J. Guo. 2015. Codepourri: Creating visual coding
tutorials using a volunteer crowd of learners. In Proceedings of the IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC ’15). 13–21.
https://doi.org/10.1109/VLHCC.2015.7357193

[52] Philip J. Guo. 2006. A Scalable Mixed-Level Approach to Dynamic Analysis of C
and C++ Programs. Master’s thesis. MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA.

[53] Philip J. Guo. 2012. Software Tools to Facilitate Research Programming. Ph.D.
Dissertation. Stanford University.

[54] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-based Program
Visualization for CS Education. In Proceedings of the 44th ACM Technical Sym-
posium on Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13).
ACM, New York, NY, USA, 579–584. https://doi.org/10.1145/2445196.2445368

[55] Philip J. Guo. 2015. Codeopticon: Real-Time, One-To-Many Human Tutoring for
Computer Programming. In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). Association
for Computing Machinery, New York, NY, USA, 599–608. https://doi.org/10.
1145/2807442.2807469

[56] Philip J. Guo. 2017. Older Adults Learning Computer Programming: Motivations,
Frustrations, and Design Opportunities. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17).
Association for Computing Machinery, New York, NY, USA, 7070–7083. https:
//doi.org/10.1145/3025453.3025945

[57] Philip J. Guo. 2018. Non-Native English Speakers Learning Computer Program-
ming: Barriers, Desires, and Design Opportunities. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada)
(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/3173574.3173970

[58] Philip J. Guo, Julia M. Markel, and Xiong Zhang. 2020. Learnersourcing at
Scale to Overcome Expert Blind Spots for Introductory Programming: A Three-
Year Deployment Study on the Python Tutor Website. In Proceedings of the
Seventh ACM Conference on Learning @ Scale (Virtual Event, USA) (L@S ’20).
Association for Computing Machinery, New York, NY, USA, 301–304. https:
//doi.org/10.1145/3386527.3406733

[59] Philip J. Guo, Jefery White, and Renan Zanelatto. 2015. Codechella: Multi-user
program visualizations for real-time tutoring and collaborative learning. In
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC ’15). 79–87. https://doi.org/10.1109/VLHCC.2015.7357201

[60] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets:
History and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (Dec. 2015),
19 pages. https://doi.org/10.1145/2827872

[61] Adam J. Hartz. 2012. CAT-SOOP: A Tool for Automatic Collection and Assessment
of Homework Exercises. Master’s thesis. Massachusetts Institute of Technology.

[62] Neil T. Hefernan and Cristina Lindquist Hefernan. 2014. The ASSISTments
ecosystem: Building a platform that brings scientists and teachers together for
minimally invasive research on human learning and teaching. International
Journal of Artifcial Intelligence in Education 24, 4 (2014), 470–497.

[63] Joseph M. Hellerstein, Jefrey Heer, and Sean Kandel. 2018. Self-Service Data
Preparation: Research to Practice. IEEE Data Eng. Bull. 41, 2 (2018), 23–34.

[64] Rich Hickey. 2018. Open Source is Not About You. https://gist.github.com/
richhickey/1563cddea1002958f96e7ba9519972d9. Accessed: 2021-04-01.

[65] Rich Hickey. 2020. A History of Clojure. Proc. ACM Program. Lang. 4, HOPL,
Article 71 (June 2020), 46 pages. https://doi.org/10.1145/3386321

[66] Mark D. Hill. 2016. The "Tire Tracks" Diagram Corrected and Humanized by
National Academy Workshop Report. https://cccblog.org/2016/07/27/the-tire-
tracks-diagram-corrected-and-humanized-by-national-academy-workshop-
report/. Accessed: 2021-04-01.

[67] Ryosuke Ishizue, Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki
Fukazawa. 2018. PVC: Visualizing C Programs on Web Browsers for Novices. In
Proceedings of the 49th ACM Technical Symposium on Computer Science Education
(Baltimore, Maryland, USA) (SIGCSE ’18). Association for Computing Machinery,
New York, NY, USA, 245–250. https://doi.org/10.1145/3159450.3159566

[68] Ralph Johnson and John Vlissides. 1995. Design patterns. Elements of Reusable
Object-Oriented Software Addison-Wesley, Reading (1995).

[69] Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A Novice-Oriented Live
Programming Environment with Always-On Run-Time Value Visualizations. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing
Machinery, New York, NY, USA, 737–745. https://doi.org/10.1145/3126594.
3126632

[70] Oscar Karnalim and Mewati Ayub. 2017. The Efectiveness of a Program Visual-
ization Tool on Introductory Programming: A Case Study with PythonTutor.
CommIT (Communication and Information Technology) Journal 11, 2 (2017),
67–76.

[71] Oscar Karnalim and Mewati Ayub. 2017. The use of Python Tutor on pro-
gramming laboratory session: Student perspectives. Kinetik: Game Technology,
Information System, Computer Network, Computing, Electronics, and Control
(2017), 327–336.

[72] Oscar Karnalim and Mewati Ayub. 2018. A Quasi-Experimental Design to Eval-
uate the Use of PythonTutor on Programming Laboratory Session. International
Journal of Online Engineering 14, 2 (2018).

[73] Ada S. Kim and Amy J. Ko. 2017. A Pedagogical Analysis of Online Cod-
ing Tutorials. In Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17). As-
sociation for Computing Machinery, New York, NY, USA, 321–326. https:
//doi.org/10.1145/3017680.3017728

[74] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E. Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B. Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a publishing format for
reproducible computational workfows. Vol. 2016.

[75] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg. 2003.
The BlueJ system and its pedagogy. Computer Science Education 13, 4 (2003),
249–268.

[76] Robert E. Kraut and Paul Resnick. 2012. Building successful online communities:
Evidence-based social design. The MIT Press.

[77] KRAZAM. 2020. Microservices. https://www.youtube.com/watch?v=
y8OnoxKotPQ. Accessed: 2021-04-01.

[78] Steve Krug. 2014. Don’t Make Me Think, Revisited: A Common Sense Approach to
Web Usability (3rd ed.). New Riders Publishing, USA.

[79] Benjamin Lafreniere, Andrea Bunt, and Michael Terry. 2014. Task-Centric Inter-
faces for Feature-Rich Software. In Proceedings of the 26th Australian Computer-
Human Interaction Conference on Designing Futures: The Future of Design (Sydney,
New South Wales, Australia) (OzCHI ’14). Association for Computing Machinery,
New York, NY, USA, 49–58. https://doi.org/10.1145/2686612.2686620

[80] Benjamin Lafreniere, Parmit K. Chilana, Adam Fourney, and Michael A. Terry.
2015. These Aren’t the Commands You’re Looking For: Addressing False Feed-
forward in Feature-Rich Software. In Proceedings of the 28th Annual ACM Sym-
posium on User Interface Software & Technology (Charlotte, NC, USA) (UIST
’15). Association for Computing Machinery, New York, NY, USA, 619–628.
https://doi.org/10.1145/2807442.2807482

[81] James Landay. 2009. I give up on CHI/UIST. http://dubfuture.blogspot.com/
2009/11/i-give-up-on-chiuist.html. Accessed: 2021-04-01.

[82] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization (Palo Alto, California) (CGO ’04). IEEE Computer Society, USA,
75.

[83] Sam Lau and Philip J. Guo. 2020. Data Theater: A Live Programming Environ-
ment for Prototyping Data-Driven Explorable Explanations. In Workshop on
Live Programming (LIVE ’20).

[84] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–17. https://doi.org/10.1145/3173574.3173610

[85] Andrew Luxton-Reilly, Emma McMillan, Elizabeth Stevenson, Ewan Tempero,
and Paul Denny. 2018. Ladebug: An Online Tool to Help Novice Programmers
Improve Their Debugging Skills. In Proceedings of the 23rd Annual ACM Con-
ference on Innovation and Technology in Computer Science Education (Larnaca,
Cyprus) (ITiCSE 2018). Association for Computing Machinery, New York, NY,
USA, 159–164. https://doi.org/10.1145/3197091.3197098

[86] John Mair. 2013. debug_inspector: A Ruby wrapper for the MRI 2.0 de-
bug_inspector API. https://github.com/banister/debug_inspector. Accessed:
2020-10-10.

[87] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn
Eastmond. 2010. The Scratch Programming Language and Environment. ACM
Trans. Comput. Educ. 10, 4, Article 16 (Nov. 2010), 15 pages. https://doi.org/10.
1145/1868358.1868363

[88] Nicolai Marquardt, Steven Houben, Michel Beaudouin-Lafon, and Andrew D.
Wilson. 2017. HCITools: Strategies and Best Practices for Designing, Evaluating
and Sharing Technical HCI Toolkits. In Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems (Denver, Colorado,

1249

https://doi.org/10.1145/3449249
https://doi.org/10.1145/3449249
https://doi.org/10.1145/2699751
https://doi.org/10.1109/VLHCC.2015.7357193
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2807442.2807469
https://doi.org/10.1145/2807442.2807469
https://doi.org/10.1145/3025453.3025945
https://doi.org/10.1145/3025453.3025945
https://doi.org/10.1145/3173574.3173970
https://doi.org/10.1145/3386527.3406733
https://doi.org/10.1145/3386527.3406733
https://doi.org/10.1109/VLHCC.2015.7357201
https://doi.org/10.1145/2827872
https://gist.github.com/richhickey/1563cddea1002958f96e7ba9519972d9
https://gist.github.com/richhickey/1563cddea1002958f96e7ba9519972d9
https://doi.org/10.1145/3386321
https://cccblog.org/2016/07/27/the-tire-tracks-diagram-corrected-and-humanized-by-national-academy-workshop-report/
https://cccblog.org/2016/07/27/the-tire-tracks-diagram-corrected-and-humanized-by-national-academy-workshop-report/
https://cccblog.org/2016/07/27/the-tire-tracks-diagram-corrected-and-humanized-by-national-academy-workshop-report/
https://doi.org/10.1145/3159450.3159566
https://doi.org/10.1145/3126594.3126632
https://doi.org/10.1145/3126594.3126632
https://doi.org/10.1145/3017680.3017728
https://doi.org/10.1145/3017680.3017728
https://www.youtube.com/watch?v=y8OnoxKotPQ
https://www.youtube.com/watch?v=y8OnoxKotPQ
https://doi.org/10.1145/2686612.2686620
https://doi.org/10.1145/2807442.2807482
http://dubfuture.blogspot.com/2009/11/i-give-up-on-chiuist.html
http://dubfuture.blogspot.com/2009/11/i-give-up-on-chiuist.html
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3197091.3197098
https://github.com/banister/debug_inspector
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363

UIST ’21, October 10–14, 2021, Virtual Event, USA Philip J. Guo

USA) (CHI EA ’17). Association for Computing Machinery, New York, NY, USA,
624–627. https://doi.org/10.1145/3027063.3027073

[89] Steve McConnell. 2004. Code Complete, Second Edition. Microsoft Press, USA.
[90] Dan McKinley. 2018. Choose Boring Technology. http://boringtechnology.club/.

Accessed: 2021-04-01.
[91] MDN Web Docs. 2021. referer. https://developer.mozilla.org/en-US/docs/Web/

HTTP/Headers/Referer. Accessed: 2021-04-01.
[92] MDN Web Docs. 2021. Web Storage API. https://developer.mozilla.org/en-

US/docs/Web/API/Web_Storage_API. Accessed: 2021-04-01.
[93] Bradley N. Miller and David L. Ranum. 2012. Beyond PDF and EPub: Toward

an Interactive Textbook. In Proceedings of the 17th ACM Annual Conference on
Innovation and Technology in Computer Science Education (Haifa, Israel) (ITiCSE
’12). Association for Computing Machinery, New York, NY, USA, 150–155. https:
//doi.org/10.1145/2325296.2325335

[94] Pedro Moraes and Leopoldo Teixeira. 2019. Willow: A Tool for Interactive
Programming Visualization to Help in the Data Structures and Algorithms
Teaching-Learning Process. In Proceedings of the XXXIII Brazilian Symposium on
Software Engineering (Salvador, Brazil) (SBES 2019). Association for Computing
Machinery, New York, NY, USA, 553–558. https://doi.org/10.1145/3350768.
3351303

[95] Brad Myers. 2021. CMU Myers Group Videos: Videos created by Brad Myers
and his students at the HCII, SCS, CMU. https://www.youtube.com/playlist?
list=PL3856C8FlIWfr_tX8CMUhOJvl34ylClgb. Accessed: 2021-04-01.

[96] National Academies of Sciences, Engineering, and Medicine. 2020. Information
Technology Innovation: Resurgence, Confuence, and Continuing Impact. The
National Academies Press, Washington, DC. https://doi.org/10.17226/25961

[97] Greg L. Nelson, Benjamin Xie, and Amy J. Ko. 2017. Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program Tracing in CS1.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research (Tacoma, Washington, USA) (ICER ’17). Association for Computing
Machinery, New York, NY, USA, 2–11. https://doi.org/10.1145/3105726.3106178

[98] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation (San
Diego, California, USA) (PLDI ’07). Association for Computing Machinery, New
York, NY, USA, 89–100. https://doi.org/10.1145/1250734.1250746

[99] Casey Newton. 2019. The Trauma Floor: The Secret Lives of Facebook
Moderators in America. The Verge – https://www.theverge.com/2019/2/
25/18229714/cognizant-facebook-content-moderator-interviews-trauma-
working-conditions-arizona. Accessed: 2021-04-01.

[100] Node.js v15.13.0 documentation. [n.d.]. Debugger. https://nodejs.org/api/
debugger.html. Accessed: 2021-04-01.

[101] NSF. 2020. Dear Colleague Letter: Research Experiences for Undergraduates
(REU) and Research Experiences for Teachers (RET) Supplemental Funding in
Computer and Information Science and Engineering. https://www.nsf.gov/
pubs/2021/nsf21028/nsf21028.jsp. Accessed: 2021-04-01.

[102] Society of Research Software Engineering. [n.d.]. https://society-rse.org/. Ac-
cessed: 2021-04-01.

[103] Dan R. Olsen. 2007. Evaluating User Interface Systems Research. In Proceedings
of the 20th Annual ACM Symposium on User Interface Software and Technology
(Newport, Rhode Island, USA) (UIST ’07). Association for Computing Machinery,
New York, NY, USA, 251–258. https://doi.org/10.1145/1294211.1294256

[104] Oracle Java Documentation. 2020. Java Debug Interface. https://docs.oracle.com/
javase/7/docs/jdk/api/jpda/jdi/index.html?overview-summary.html. Accessed:
2021-04-01.

[105] Oracle Java Documentation. 2021. Java Web Start. https://docs.oracle.com/
javase/8/docs/technotes/guides/javaws/. Accessed: 2021-04-01.

[106] Seymour Papert. 1988. A critique of technocentrism in thinking about the school
of the future. In Children in the information age. Elsevier, 3–18.

[107] Miranda C. Parker, Kantwon Rogers, Barbara J. Ericson, and Mark Guzdial.
2017. Students and Teachers Use An Online AP CS Principles EBook Difer-
ently: Teacher Behavior Consistent with Expert Learners. In Proceedings of the
2017 ACM Conference on International Computing Education Research (Tacoma,
Washington, USA) (ICER ’17). Association for Computing Machinery, New York,
NY, USA, 101–109. https://doi.org/10.1145/3105726.3106189

[108] Roger D. Peng and Stephanie C. Hicks. 2020. Reproducible Research: A Retro-
spective. arXiv:2007.12210 [stat.OT]

[109] Whitney Phillips. 2015. This is why we can’t have nice things: Mapping the
relationship between online trolling and mainstream culture. The MIT Press.

[110] Josh Pollock, Jared Roesch, Doug Woos, and Zachary Tatlock. 2019. Theia:
Automatically Generating Correct Program State Visualizations. In Proceedings
of the 2019 ACM SIGPLAN Symposium on SPLASH-E (Athens, Greece) (SPLASH-
E 2019). Association for Computing Machinery, New York, NY, USA, 46–56.
https://doi.org/10.1145/3358711.3361625

[111] POSIX Programmer’s Manual. [n.d.]. setrlimit. https://linux.die.net/man/3/
setrlimit. Accessed: 2021-04-01.

[112] David Pritchard and Troy Vasiga. 2013. CS Circles: An in-Browser Python
Course for Beginners. In Proceeding of the 44th ACM Technical Symposium on

Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13). Association
for Computing Machinery, New York, NY, USA, 591–596. https://doi.org/10.
1145/2445196.2445370

[113] Python 3.9.2 documentation. [n.d.]. Python bdb – debugger framework. https:
//docs.python.org/3/library/bdb.html. Accessed: 2021-04-01.

[114] Python 3.9.2 documentation. [n.d.]. Python Built-in Types: Mapping Types –
dict. https://docs.python.org/3/library/stdtypes.html#typesmapping. Accessed:
2021-04-01.

[115] Python Tutor. 2021. FAQ and Unsupported Features. http://pythontutor.com/
faq.html. Accessed: 2021-04-01.

[116] Roman Rädle and Clemens Nylandsted Klokmose. 2017. Paper accepted, toolkit
abandoned. In CHI Workshop on HCITools: Strategies and Best Practices for De-
signing, Evaluating and Sharing Technical HCI Toolkits.

[117] Eric S. Raymond. 2001. The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly & Associates, Inc., USA.

[118] Katharina Reinecke and Krzysztof Z. Gajos. 2015. LabintheWild: Conducting
Large-Scale Online Experiments With Uncompensated Samples. In Proceedings
of the 18th ACM Conference on Computer Supported Cooperative Work & Social
Computing (Vancouver, BC, Canada) (CSCW ’15). Association for Computing
Machinery, New York, NY, USA, 1364–1378. https://doi.org/10.1145/2675133.
2675246

[119] Ruan Reis, Gustavo Soares, Melina Mongiovi, and Wilkerson L Andrade. 2019.
Evaluating Feedback Tools in Introductory Programming Classes. In 2019 IEEE
Frontiers in Education Conference (FIE). IEEE.

[120] Felipe Restrepo-Calle, Jhon J Ramírez-Echeverry, and Fabio A González. 2018.
UNCode: Interactive System for Learning and Automatic Evaluation of Com-
puter Programming Skills. In EDULEARN18 Proceedings (Palma, Spain) (10th
International Conference on Education and New Learning Technologies). IATED,
6888–6898. https://doi.org/10.21125/edulearn.2018.1632

[121] Felipe Restrepo-Calle, Jhon J Ramírez-Echeverry, and Fabio A González. 2020.
Using an interactive software tool for the formative and summative evaluation
in a computer programming course: an experience report. Global Journal of
Engineering Education 22, 3 (2020).

[122] Zak Risha and Peter Brusilovsky. 2020. Making it Smart: Converting Static Code
into an Interactive Trace Table. In Proceedings of Sixth SPLICE Workshop.

[123] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jefrey
Heer. 2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions
on Visualization and Computer Graphics 23, 1 (Jan. 2017), 341–350. https:
//doi.org/10.1109/TVCG.2016.2599030

[124] Jeremy Scott, Philip J. Guo, and Randall Davis. 2014. A Direct Manipulation
Language for Explaining Algorithms. In Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC ’14). IEEE, 45–48.

[125] Ben Shneiderman. 2017. The Growth of HCI and User Interface/Experience
Design: Presented as a Tire-Tracks Diagram. https://medium.com/@benbendc/a-
tire-tracks-diagram-for-e75be51b9bda. Accessed: 2021-04-01.

[126] Teemu Sirkiä. 2018. Jsvee & Kelmu: Creating and tailoring program animations
for computing education. Journal of Software: Evolution and Process 30, 2 (2018),
e1924.

[127] Rebecca Smith, Terry Tang, Joe Warren, and Scott Rixner. 2019. Auto-Generating
Visual Exercises for Learning Program Semantics. In Proceedings of the 2019
ACM Conference on Innovation and Technology in Computer Science Education
(Aberdeen, Scotland Uk) (ITiCSE ’19). Association for Computing Machinery,
New York, NY, USA, 360–366. https://doi.org/10.1145/3304221.3319741

[128] Diogo Soares, Maria João Varanda Pereira, and Pedro Rangel Henriques. 2021.
Integrating a Graph Builder into Python Tutor. In Second International Computer
Programming Education Conference (ICPEC 2021) (Open Access Series in Informat-
ics (OASIcs), Vol. 91), Pedro Rangel Henriques, Filipe Portela, Ricardo Queirós,
and Alberto Simões (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 6:1–6:15. https://doi.org/10.4230/OASIcs.ICPEC.2021.6

[129] Juha Sorva. 2020. personal communication.
[130] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A Review of Generic Program

Visualization Systems for Introductory Programming Education. ACM Trans.
Comput. Educ. 13, 4, Article 15 (Nov. 2013), 64 pages. https://doi.org/10.1145/
2490822

[131] Juha Sorva and Teemu Sirkiä. 2010. UUhistle: A Software Tool for Visual Program
Simulation. In Proceedings of the 10th Koli Calling International Conference on
Computing Education Research (Koli, Finland) (Koli Calling ’10). Association for
Computing Machinery, New York, NY, USA, 49–54. https://doi.org/10.1145/
1930464.1930471

[132] StackOverfow. [n.d.]. Questions tagged [d3.js]. https://stackoverfow.com/tags/
d3.js/. Accessed: 2021-04-01.

[133] William Stein. 2019. Should I Resign From My Full Professor Job To Work
Fulltime On Cocalc? https://blog.cocalc.com/2019/04/12/should-i-resign-from-
my-full-professor-job-to-work-fulltime-on-cocalc.html. Accessed: 2021-04-01.

[134] Chris Stolte, Diane Tang, and Pat Hanrahan. 2008. Polaris: A System for Query,
Analysis, and Visualization of Multidimensional Databases. Commun. ACM 51,
11 (Nov. 2008), 75–84. https://doi.org/10.1145/1400214.1400234

1250

https://doi.org/10.1145/3027063.3027073
http://boringtechnology.club/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://doi.org/10.1145/2325296.2325335
https://doi.org/10.1145/2325296.2325335
https://doi.org/10.1145/3350768.3351303
https://doi.org/10.1145/3350768.3351303
https://www.youtube.com/playlist?list=PL3856C8FlIWfr_tX8CMUhOJvl34ylClgb
https://www.youtube.com/playlist?list=PL3856C8FlIWfr_tX8CMUhOJvl34ylClgb
https://doi.org/10.17226/25961
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1145/1250734.1250746
https://www.theverge.com/2019/2/25/18229714/cognizant-facebook-content-moderator-interviews-trauma-working-conditions-arizona
https://www.theverge.com/2019/2/25/18229714/cognizant-facebook-content-moderator-interviews-trauma-working-conditions-arizona
https://www.theverge.com/2019/2/25/18229714/cognizant-facebook-content-moderator-interviews-trauma-working-conditions-arizona
https://nodejs.org/api/debugger.html
https://nodejs.org/api/debugger.html
https://www.nsf.gov/pubs/2021/nsf21028/nsf21028.jsp
https://www.nsf.gov/pubs/2021/nsf21028/nsf21028.jsp
https://society-rse.org/
https://doi.org/10.1145/1294211.1294256
https://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html?overview-summary.html
https://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html?overview-summary.html
https://docs.oracle.com/javase/8/docs/technotes/guides/javaws/
https://docs.oracle.com/javase/8/docs/technotes/guides/javaws/
https://doi.org/10.1145/3105726.3106189
https://arxiv.org/abs/2007.12210
https://doi.org/10.1145/3358711.3361625
https://linux.die.net/man/3/setrlimit
https://linux.die.net/man/3/setrlimit
https://doi.org/10.1145/2445196.2445370
https://doi.org/10.1145/2445196.2445370
https://docs.python.org/3/library/bdb.html
https://docs.python.org/3/library/bdb.html
https://docs.python.org/3/library/stdtypes.html#typesmapping
http://pythontutor.com/faq.html
http://pythontutor.com/faq.html
https://doi.org/10.1145/2675133.2675246
https://doi.org/10.1145/2675133.2675246
https://doi.org/10.21125/edulearn.2018.1632
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://medium.com/@benbendc/a-tire-tracks-diagram-for-e75be51b9bda
https://medium.com/@benbendc/a-tire-tracks-diagram-for-e75be51b9bda
https://doi.org/10.1145/3304221.3319741
https://doi.org/10.4230/OASIcs.ICPEC.2021.6
https://doi.org/10.1145/2490822
https://doi.org/10.1145/2490822
https://doi.org/10.1145/1930464.1930471
https://doi.org/10.1145/1930464.1930471
https://stackoverflow.com/tags/d3.js/
https://stackoverflow.com/tags/d3.js/
https://blog.cocalc.com/2019/04/12/should-i-resign-from-my-full-professor-job-to-work-fulltime-on-cocalc.html
https://blog.cocalc.com/2019/04/12/should-i-resign-from-my-full-professor-job-to-work-fulltime-on-cocalc.html
https://doi.org/10.1145/1400214.1400234

Python Tutor’s Design Guidelines for Building Scalable and Sustainable Research Sofware in Academia UIST ’21, October 10–14, 2021, Virtual Event, USA

[135] Ryo Suzuki, Gustavo Soares, Andrew Head, Elena Glassman, Ruan Reis, Melina
Mongiovi, Loris D’Antoni, and Bjoern Hartmann. 2017. TraceDif: Debugging
unexpected code behavior using trace divergences. In Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC ’17).
IEEE, 107–115.

[136] Terry Tang, Scott Rixner, and Joe Warren. 2014. An Environment for Learning
Interactive Programming. In Proceedings of the 45th ACM Technical Symposium
on Computer Science Education (Atlanta, Georgia, USA) (SIGCSE ’14). Association
for Computing Machinery, New York, NY, USA, 671–676. https://doi.org/10.
1145/2538862.2538908

[137] Kyle Thayer, Philip J. Guo, and Katharina Reinecke. 2018. The Impact of Culture
on Learner Behavior in Visual Debuggers. In Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC ’18).

[138] The Glossary of Human Computer Interaction. [n.d.]. Walk-up-and-use
system. https://www.interaction-design.org/literature/book/the-glossary-of-
human-computer-interaction/walk-up-and-use-system. Accessed: 2021-04-01.

[139] Chat Wacharamanotham, Lukas Eisenring, Steve Haroz, and Florian Echtler.
2020. Transparency of CHI Research Artifacts: Results of a Self-Reported Survey.
In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York,
NY, USA, 1–14. https://doi.org/10.1145/3313831.3376448

[140] Adam Wiggins. 2017. The Twelve-Factor App: IV. Backing services. https:
//12factor.net/backing-services. Accessed: 2021-04-01.

[141] Adam Wiggins. 2017. The Twelve-Factor App: VI. Processes. https://12factor.
net/processes. Accessed: 2021-04-01.

[142] Gentoo Linux Wiki. 2021. Why not bundle dependencies. https://wiki.gentoo.
org/wiki/Why_not_bundle_dependencies. Accessed: 2021-04-01.

[143] Wikipedia. 2021. Bus factor. https://en.wikipedia.org/wiki/Bus_factor. Accessed:
2021-04-01.

[144] Wikipedia. 2021. Closure (computer programming). https://en.wikipedia.org/
wiki/Closure_(computer_programming). Accessed: 2021-04-01.

[145] Wikipedia. 2021. Common Gateway Interface. https://en.wikipedia.org/wiki/
Common_Gateway_Interface. Accessed: 2021-04-01.

[146] Wikipedia. 2021. Create, read, update and delete. https://en.wikipedia.org/wiki/
Create,_read,_update_and_delete. Accessed: 2021-04-01.

[147] Wikipedia. 2021. Design by committee. https://en.wikipedia.org/wiki/Design_
by_committee. Accessed: 2021-04-01.

[148] Wikipedia. 2021. Universally unique identifer. https://en.wikipedia.org/wiki/
Universally_unique_identifer. Accessed: 2021-04-01.

[149] Allen Wirfs-Brock and Brendan Eich. 2020. JavaScript: The First 20 Years.
Proc. ACM Program. Lang. 4, HOPL, Article 77 (June 2020), 189 pages. https:
//doi.org/10.1145/3386327

[150] Jacob O. Wobbrock. 2016. Research Contribution Types in Human-Computer
Interaction. The Information School, University of Washington (2016).

[151] Jeong Yang, Young Lee, and Kai H. Chang. 2018. Evaluations of JaguarCode: A
web-based object-oriented programming environment with static and dynamic
visualization. Journal of Systems and Software 145 (2018), 147–163. https:
//doi.org/10.1016/j.jss.2018.07.037

[152] Jeong Yang, Young Lee, and David Hicks. 2016. Synchronized static and dynamic
visualization in a web-based programming environment. In 2016 IEEE 24th
International Conference on Program Comprehension (ICPC). IEEE.

[153] Jeong Yang, Young Lee, David Hicks, and Kai H Chang. 2015. Enhancing object-
oriented programming education using static and dynamic visualization. In 2015
IEEE Frontiers in Education Conference (FIE). IEEE.

[154] Amy X. Zhang, Grant Hugh, and Michael S. Bernstein. 2020. PolicyKit: Building
Governance in Online Communities. In Proceedings of the 33rd Annual ACM Sym-
posium on User Interface Software and Technology. Association for Computing Ma-
chinery, New York, NY, USA, 365–378. https://doi.org/10.1145/3379337.3415858

[155] Daniel Zingaro, Yuliya Cherenkova, Olessia Karpova, and Andrew Petersen. 2013.
Facilitating Code-Writing in PI Classes. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (Denver, Colorado, USA) (SIGCSE
’13). Association for Computing Machinery, New York, NY, USA, 585–590. https:
//doi.org/10.1145/2445196.2445369

1251

https://doi.org/10.1145/2538862.2538908
https://doi.org/10.1145/2538862.2538908
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/walk-up-and-use-system
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/walk-up-and-use-system
https://doi.org/10.1145/3313831.3376448
https://12factor.net/backing-services
https://12factor.net/backing-services
https://12factor.net/processes
https://12factor.net/processes
https://wiki.gentoo.org/wiki/Why_not_bundle_dependencies
https://wiki.gentoo.org/wiki/Why_not_bundle_dependencies
https://en.wikipedia.org/wiki/Bus_factor
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Design_by_committee
https://en.wikipedia.org/wiki/Design_by_committee
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://doi.org/10.1145/3386327
https://doi.org/10.1145/3386327
https://doi.org/10.1016/j.jss.2018.07.037
https://doi.org/10.1016/j.jss.2018.07.037
https://doi.org/10.1145/3379337.3415858
https://doi.org/10.1145/2445196.2445369
https://doi.org/10.1145/2445196.2445369

	Abstract
	1 Introduction
	2 Related Work
	3 Overview of Python Tutor
	4 Design and implementation
	4.1 Backend: Multilingual Run-Time Tracing
	4.2 Frontend: Execution Trace Visualizer

	5 Impact over the past decade
	6 Design Guidelines for Scalable and Sustainable Research Software
	7 User Experience Design
	7.1
	7.2
	7.3
	7.4

	8 Software Architecture Design
	8.1
	8.2
	8.3

	9 Software Development Workflows
	9.1
	9.2
	9.3

	10 Conclusion: personal reflections
	Acknowledgments
	References

