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Fig. 1. The Relightables System. Our volumetric capture setup combines traditional computer vision pipelines with recent advances in deep learning to achieve

high quality models that can be relight in arbitrary environments.
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We present “The Relightables”, a volumetric capture system for photorealistic
and high quality relightable full-body performance capture. While significant
progress has been made on volumetric capture systems, focusing on 3D
geometric reconstruction with high resolution textures, much less work
has been done to recover photometric properties needed for relighting.
Results from such systems lack high-frequency details and the subject’s
shading is prebaked into the texture. In contrast, a large body of work
has addressed relightable acquisition for image-based approaches, which
photograph the subject under a set of basis lighting conditions and recombine
the images to show the subject as they would appear in a target lighting
environment. However, to date, these approaches have not been adapted
for use in the context of a high-resolution volumetric capture system. Our
method combines this ability to realistically relight humans for arbitrary
environments, with the benefits of free-viewpoint volumetric capture and
new levels of geometric accuracy for dynamic performances. Our subjects
are recorded inside a custom geodesic sphere outfitted with 331 custom color
LED lights, an array of high-resolution cameras, and a set of custom high-
resolution depth sensors. Our system innovates in multiple areas: First, we
designed a novel active depth sensor to capture 12.4 MP depth maps, which
we describe in detail. Second, we show how to design a hybrid geometric and
machine learning reconstruction pipeline to process the high resolution input
and output a volumetric video. Third, we generate temporally consistent
reflectance maps for dynamic performers by leveraging the information
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contained in two alternating color gradient illumination images acquired
at 60 Hz. Multiple experiments, comparisons, and applications show that
The Relightables significantly improves upon the level of realism in placing
volumetrically captured human performances into arbitrary CG scenes.
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1 INTRODUCTION

Capturing high quality, photorealistic 3D models of humans is an
active area of research in the computer vision and machine learn-
ing communities [Balakrishnan et al. 2018; Collet et al. 2015; Dou
et al. 2017; Neverova et al. 2018; Orts-Escolano et al. 2016; Pandey
et al. 2019; Zollhofer et al. 2014]. Indeed, digital 3D humans can be
employed in a variety of applications that range from photography
[Meka et al. 2019; Sun et al. 2019] to avatars in augmented and
virtual reality [Martin-Brualla et al. 2018; Orts-Escolano et al. 2016].
In the last few years, we have witnessed the rise of state-of-the-art
volumetric capture systems such as Collet et al. [2015], as well as
companies and start-ups such as 8i, Omnivor, Intel®, and Metastage.
Although the technology has made incredible progress, and it has
reached a high level of quality, these reconstructions still lack true
photorealism. In particular, despite these systems using high end
studio setups with green screens (e.g., Collet et al. [2015]), they still
struggle to capture high frequency details of performers and they
only recover a fixed illumination condition. This makes these volu-
metric capture systems unsuitable for photorealistic rendering of
performers in arbitrary scenes under different lighting conditions,
which is a prerequisite for many AR/VR/CG applications.

An orthogonal research trend consists of capturing 2D images
of humans under multiple illumination conditions, which enables
full relightability in arbitrary environments. These systems usually
rely on a Light Stage [Debevec et al. 2000], and provide a high de-
gree of photorealism. Unfortunately, these methods do not estimate
the underlying geometry, resulting in a rough proxy rather than
an accurate 3D reconstruction, which either limits the viewpoint
or generates artifacts when rendering new viewpoints [Peers et al.
2006]. Beeler et al. [2010, 2011] have shown impressive facial per-
formance capture results using passive stereo, but their results lack
the reflectance information required for photorealistic relightability.
Ultimately, all of these approaches have been very successful and
represent the foundation of many industrial applications.

The lack of true photorealism, relightability, and high frequency
details has made volumetric capture pipelines fall short of the vi-
sual quality of traditional digital cinematography. In this paper
we present “The Relightables”: a performance capture system that
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bridges the gap between photorealistic relightable image based
systems and volumetric capture. Specifically, we propose a full,
end-to-end volumetric pipeline from the ground up. Our main cap-
ture setup relies on a Light Stage (a custom geodesic sphere with
331 programmable lights) and novel depth sensors based on active
illumination which generate 60 Hz per-viewpoint depth maps of
4112 X 3008 pixels.

We designed the reconstruction pipeline by combining elements
from traditional geometry pipelines with recent advances in deep
learning. This removes the need for a green screen and allows for
more flexible lighting conditions. In particular, we program our
custom lights to generate two spherical color gradient illumination
patterns as proposed by Fyffe et al. [2009]. These alternating gradient
images are captured at 60 Hz and then used to generate the full
reflectance maps for each 3D frame at a final output rate of 30 Hz.

Multiple experiments, evaluations, and applications show that
our system reaches an unprecedented level of quality for volumetric
reconstructions, and we believe it will set the foundation for the
next generation of content generation for AR/VR/CG applications.

2 RELATED WORK

Performance capture of humans is one of the most active topics in
the field over the last few years. In this section, we present the most
representative methods, which we can categorize as image-based
methods, model based approaches, volumetric capture systems, and
finally machine learning based algorithms.

Image-based Rendering (IBR). The seminal system proposed by
Debevec et al. [1998] paved the way for many followup research
trends on the topic, which are still active and very challenging. These
methods find their culmination in very sophisticated systems such as
the Light Stage proposed by Debevec et al. [2000]. Although capable
of generating very high quality re-rendered images, these systems
usually require multiple shots to infer detailed surface normals and
reflective properties [Debevec et al. 2000].

Another trend solves the texturing of an object with known ge-
ometry using a Conditional Random Field (CRF) model. Lempitsky
and Ivanov [2007] rely on a projective texturing approach, where
multiple images are blended together according to a certain energy
function, whereas Zhou et al. [2005] use a sparse set of correspon-
dences. Despite the impressive results, they do not provide a fully
relightable 3D model but instead generate an improved texture map.

Model Based. These methods usually rely on strong priors by
adding some constraints in the reflectance and/or lighting models
[Barron and Malik 2015; Meka et al. 2017]. Fully parametric models
for geometry, reflectance and illumination have been explored for
human bodies [Theobalt et al. 2007] and faces [Blanz and Vetter
1999; Garrido et al. 2013, 2016; Gotardo et al. 2018; Ichim et al. 2015;
Thies et al. 2016]; however, the results are uncanny and do not cope
well with fine grained details that the parametric model cannot
capture, such as hair and apparel.

For the special case of faces, relighting has been performed under
a diffuse appearance assumption based on radiance environment
maps and ratio-images [Wen et al. 2003]. Other approaches jointly
estimate parametric Bidirectional Reflectance Distribution Function
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(BRDF) models and wavelet-based incident illumination to relight
3D videos of humans [Li et al. 2013b]. Cosine lobe relighting can
be performed analytically based on a pair of spherical gradient
illumination images [Fyffe et al. 2009], but secondary effects such
as shadows are of low quality due to the use of approximations in
modeling the face geometry.

Recently, advances in deep learning [Saito et al. 2017; Yamaguchi
et al. 2018] show how to estimate the parameters of a predefined
reflectance model from single images. Gotardo et al. [2018] extracted
a Spatially Varying Bidirectional Reflectance Distribution Function
(SVBRDF) and geometry from images captured under uniform light-
ing, but their approach is restricted to the skin region. Very recent
work, also tackle the hard problem of extracting the SVBRDF from
a single image using a flash [Li et al. 2018a,b; Nam et al. 2018].
However, all of these methods rely on hand-crafted priors and they
are usually limited to specific parts of the human body. Often they
do not handle specularities and fine grained details and they are
restricted to model low-frequency illumination conditions.

Volumetric Capture. These sophisticated systems usually rely on
a well orchestrated studio setup such as by Collet et al. [2015],
Prada et al. [2017], Starck and Hilton [2007], and Tanco and Hilton
[2000], where hundreds of cameras are carefully placed to cover
the full capture volume. They often employ a green screen with a
fixed illumination condition to simplify the segmentation and re-
construction problems. In particular, the method by Collet et al.
[2015] relies on multi-view depth prediction from multiple sources
(active illumination, RGB, and shape from silhouette) to generate
rough point clouds. Next, they use Poisson Surface Reconstruction
(PSR) [Kazhdan and Hoppe 2013] to retrieve a mesh, followed by
multiple post-processing stages. Lastly, a tracking algorithm pro-
duces temporally consistent meshes that can be easily compressed
and streamed. Prada et al. [2017] extended the previous work to
support texture tracking. Despite the high quality reached by these
frameworks, they still lack true photo-realism due to the fixed light-
ing conditions.

An orthogonal trend consists of real-time estimation of a tempo-
rally consistent (tracked) model of the performer [Dou et al. 2016;
Du et al. 2019; Newcombe et al. 2015; Orts-Escolano et al. 2016;
Zollhofer et al. 2014]. Recent advances in high speed 3D capture
sensors [Fanello et al. 2017a,b; Kowdle et al. 2018; Tankovich et al.
2018] provide robust high speed-tracking by reducing inter-frame
motion [Dou et al. 2017; Guo et al. 2018]. These methods, however,
still suffer from both geometric and texture inconsistency, as shown
by Dou et al. [2017] and Martin-Brualla et al. [2018]. Despite the
incredible efforts, these real-time systems usually lag their offline
counterparts in terms of realism.

Machine Learning. Very recent advances in deep learning have
enabled realistic synthesis of humans [Balakrishnan et al. 2018; Chan
et al. 2018; Ma et al. 2017, 2018; Neverova et al. 2018; Pandey et al.
2019; Si et al. 2018; Zhao et al. 2017]. Zhao et al. [2017] use coarse-to-
fine Generative Adversarial Networks (GANSs) to synthesize images
that are still relatively blurry. Ma et al. [2017] rely on a pose detector
in the input, which helps to disentangle appearance from pose,
resulting in improved sharpness. More recent extensions of the
method [Ma et al. 2018; Si et al. 2018] try to disentangle pose and

appearance. Other trends rely on a dense UV map to re-render the
target from a novel viewpoint [Neverova et al. 2018].

The very recent work of Pandey et al. [2019] showed how to dis-
entangle appearance, pose, and viewpoint, generating compelling
renderings from arbitrary views using just a single sensor. In Lom-
bardi et al. [2019] authors provide an elegant solution to combine
mesh based rendering with neural rendering by learning a 3D vol-
ume representation from multiple RGB images. However, all these
methods usually assume a fixed lighting condition.

Our Approach. The proposed system is a unique combination
of traditional geometrical computer vision pipelines enhanced by
recent machine learning advances, showing how to obtain high qual-
ity relightable volumetric videos of humans. Similar to IBR methods,
our system relies on a Light Stage, which we use to generate two
spherical gradient illumination conditions that are the key to gener-
ating fully relightable 3D models. Different from IBR methods, we
do not compute proxy geometry, but we augment the Light Stage
with multiple custom depth sensors that can capture high resolution
(4112 x 3008) depth maps at 60 Hz. Given the complexity of the
studio setup, we do not rely on a green screen to perform segmen-
tation and to guide the reconstruction, but we rather employ a deep
learning based segmentation to retrieve precise silhouettes. We then
formulate the mesh tracking as a labeling problem and we compute
an “optimal” tracked path by solving an a Markov Random Field
(MRF) inference problem. As such, the proposed solution largely
avoids heuristics used in related work.

We demonstrate the effectiveness of the proposed method in
multiple scenarios and applications, showing results that are, for
the first time, comparable with the ones obtained with image based
renderings, without suffering from their limitations.

3 THE RELIGHTABLES

The Relightables system has three main stages: capture, reconstruc-
tion, and rendering. At its core, it relies on a Light Stage combined
with multi-view (active) stereo depth sensors: a custom spherical
dome with 331 programmable lights and 90 high-resolution 12.4 MP
reconstruction cameras.

The capture cameras are a combination of Infrared (IR) cameras
(32), which leverage active IR structured light illumination, as well
as RGB cameras (58). The IR sensors provide accurate and reliable
3D measurements, while the RGB cameras capture high quality ge-
ometry normal maps and textures. The cameras record raw video at
60 Hz, where we interleave two different visible lighting conditions
based on spherical gradient illumination [Fyffe et al. 2009].

A capture of 600 frames (i.e., 10 s), generates roughly 650 GB of
data. For each session, we also record a small geometric calibration
sequence similar to Collet et al. [2015] and a clean-plate sequence of
50 frames, i.e., the stage without any performer. The latter is used
for segmenting the actor during the actual performance.

Once we upload the data to a common repository, a distributed
system processes each frame in parallel. This first phase generates
per-camera depth maps, segmentation maps and 3D meshes [Kazh-
dan and Hoppe 2013].

An alignment algorithm [Newcombe et al. 2015] consumes the
sequence of reconstructed meshes so that long subsequences can
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Fig. 2. Hardware System Architecture. 331 lights are synced with 58 RGB
and 32 IR cameras running at 60 Hz. Multiple capture stations save the data
in real-time on disk.

share a common triangulation. We propose a novel formulation to
the keyframe (i.e, triangulation) selection problem where it is cast
and solved as an MRF inference problem. Each unique triangulation,
is parameterized [Sander et al. 2002; Zhou et al. 2004] into a common
2D texture space that can be shared with all frames sharing that
triangulation.

Each mesh has two gradient spherical illumination images avail-
able, from which, we generate albedo, normals, shininess, and am-
bient occlusion maps. These maps are compatible with standard
rendering engines and can be used to relight the volumetric cap-
tures according to any desired illumination condition. The overall
pipeline is shown in Figures 8 to 10. In the following sections, we
detail each part of the system.

3.1 Hardware and Capture Setup

There are a number of recent works that address the task of full-body
volumetric reconstruction using multi-view RGB cameras or multi-
view depth sensors. In this work, to capture volumetric relightable
performances, we use active stereo depth sensors together with
Light Stage technology to efficiently capture photometric normal
maps as well as the color, texture, and appearance of the performer.

The overall hardware architecture is illustrated in Figure 2. The
system comprises of 58 RGB cameras, 32 IR cameras, 16 IR struc-
tured light projectors, and 331 programmable light boards. When
recording, all components are synchronized by a pulse generator at
60 Hz. The sections that follow describe this hardware system.

3.1.1 High Resolution Sensors. The 90 12.4 MP cameras in our
system work together to capture detailed texture and geometry.
Both our RGB and IR cameras are Ximea scientific cameras (Ximea
MX124) that use the Sony® IMX253 sensor, which is a CMOS, global-
shutter, 4112 X 3008 resolution chip with good quantum efficiency.
The high resolution and low noise provides good details and enables
robust feature matching between the capture images.

In order to capture at 60 Hz, the cameras are connected via PCle
to the capture PCs. To simplify cabling (data, power, and sync) and
to reduce the number of capture machines, sets of 3 to 6 cameras are
grouped via PCle switches, which bridge the copper PCle Gen2x2
camera interface to a fiber PCle Gen3x4 or Gen3x8 (depending on
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The selection of pattern detail and projection lens determines the effective
resolution and FOV of the illuminator.

Fig. 3. Active Depth Sensor Components.

camera count). The switch also distributes power and synchroniza-
tion signals from buses built into the Light Stage. The fiber cables
connect back to the capture PCs. We use 16 capture PCs in total,
where each PC serves up to two switches.

Viewpoints and Distribution. Cameras on the Light Stage are dis-
tributed evenly around the sphere. In order to balance coverage and
detail, we selected a C-mount camera lens (Kowa LM16HC) with
FOV of about 48° along the long-axis. Given the radius of the sphere,
this enables a given camera to capture roughly half the height of a
human user. Six cameras are located near the top of the Light Stage,
and the remaining cameras are split into three levels: torso and head,
mid-section, and legs and feet. To support calibration and provide
some redundancy, each level overlaps with its neighbors.

Active Depth Sensing. The 32 IR (and 16 of the RGB) cameras
are grouped along with a custom IR structured light illuminator
into custom active sensors (see Figure 3). The IR cameras are built
using monochrome versions of the Ximea MX124 cameras and an IR
bandpass filter, centered at 860 nm. As the primary source of 860 nm
light in our capture environment comes from our structured light
illuminators, the IR cameras are tightly tuned to see only that light.
The RGB camera in the sensor ensures that a nearby visible-light
reference viewpoint is available for the multi-view depth estimation
algorithm.

Our custom structured light illuminators use a chrome-on-glass,
direct-projection mask together with a Vertical Cavity Surface Emit-
ting Laser (VCSEL) diode to project a structured pattern into the
scene. The design of our projector is detailed in Figure 3b: a VCSEL
diode emits IR light at 860 nm (nominal). The light passes through
an optical diffuser and an aspheric lens that collimates the light
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(b) AMS VCSEL Pattern (c) Kinect® DOE Pattern

[Kowdle et al. 2018] [Collet et al. 2015]
Fig. 4. Pattern Comparison. We compare our pattern (a) with those of
commercially available solutions (b) and (c) when captured with a 12.4 MP
camera at 1.5 m distance using a lens with a 60° FOV. Note that our pattern
is much denser which is important to reconstruct small details like the
finger shown in this image. In each image, a single pattern projector was
active.

before it hits the chrome-on-glass mask which generates the struc-
tured pattern. A projective lens (Evetar N118B0818IRM12) focuses
the pattern to give a Field of llumination (FOI) of about 50°, slightly
larger than the FOV of our cameras. Figure 4 shows the pattern
generated by our projector and compares it with those of other
commercially available solutions used in Kowdle et al. [2018] and
Collet et al. [2015]. Note that our custom pattern has much denser
features and matches the high resolution of the camera, which is
crucial for stereo matching to generate high quality, high resolution
depth maps. Additionally, the projective lens component of our illu-
minator allows us to match the FOI to the cameras’ FOVs to support
alternative capture conditions. Note that the pattern could be also
optimized for a given camera configuration such as in Mirdehghan
et al. [2018]. In this work we simply rely on an off-the-shelf grid.

During capture sessions, the distribution of sensors ensures that
most parts of the human subject will be covered by a few illumi-
nators. At this quantity, even though the illuminators pulse simul-
taneously, these patterns do not interfere, but instead combine to
provide additional texture.

As our structured light emitter is an invisible laser device, we
tested it according to the international standard for eye and skin haz-
ard assessment [International Electrotechnical Commission 2014]
and found that the Power-to-Limit Ratio (PLR) to be within the
limits of Class 1 laser safety, which means it is safe under all normal
use conditions. Furthermore, we ensure that all safety interlocks
are in place to ensure a safe end-to-end system.

3.1.2  Light Stage Hardware. The Light Stage is composed of
331 custom programmable light units. All units are linked via a
high-speed (min. 600 MHz) daisy-chained network. Data and syn-
chronization signals are transmitted from a PC-controlled master
unit, which programs the Light Stage with the desired lighting pat-
tern. Each light unit is populated with a total of 63 high brightness
Light-Emitting Diodes (LEDs) that cover a wide spectrum including
red, amber, lime, green, blue, and royal blue (see Figure 5).

Each LED is controlled by the on-board System on a Chip (SoC)
by means of both digital and analog modulation, capable of toggling

(a) Light Stage,
LED Board, and
LED Layout

(b) Face LED Zones. (c) Body LED Zones.

Fig. 5. Lighting Setup. The Light Stage consists of 331 light boards (a), each
with an outer ring of face-optimized (narrow FOI) LEDs (b) and central
region of body-optimized (wide FOI) LEDs (c). The board’s SoC individually
controls each zone.

Fig. 6. A misaligned frame causing duty-cycle error with PWM but not with
PDM.

as fast as 10 MHz. The analog modulation circuit is programmable
to set the current limit for each LED when the LED channel is on.
We use Pulse Density Modulation (PDM) as the digital method to
realize linear grayscale. PDM out-performs traditional Pulse Width
Modulation (PWM) [Lincoln 2017] as it achieves a lower grayscale
error, eliminating the need for sub-frame synchronization (see Fig-
ure 6). The 10 MHz toggling speed allows the Light Stage system
to generate High-Dynamic Range (HDR) lighting patterns at high
frame-rates.

The on-board SoC is a custom design of a soft CPU running within
a Field-Programmable Gate Array (FPGA) that runs a real-time OS.
It delivers a fast response to external trigger signals for the purpose
of accurate synchronization between the Light Stage and cameras.

Although our capture system runs at 60 Hz, we alternate the light
patterns at 180 Hz in order to be comfortable and imperceptible to
the performer [Fyffe et al. 2011].

3.1.3 Data Capture. For each capture session, we program our
Light Stage to produce two different lighting patterns using RGB
LEDs similar to Fyffe et al. [2009]; however, we use a gradient and an
inverse gradient instead of a gradient and white light. The gradient
is linear over the sphere, with red from dark to bright along the X
axis, green from dark to bright along the Y axis, and blue from dark
to light along the Z axis. The inverse gradient uses the same axes,
but reverses the bright to dark directions (see Figure 7).

The distributed video capture system currently operates the 16
high-performance workstation PCs from a central PC. Collectively,
when the system runs in 8 bit mode at 60 Hz (using a 2 ms exposure
time), we produce raw data at about 65.3 GB/s. Our custom capture
software performs minimal processing during capture to reduce the
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(a) Color gradient. (b) Inverse color gradient.
Fig. 7. Two different light patterns (color gradient images) using during
capture.

memory and bus bandwidth load on the PC while storing the raw,
uncompressed data on a collection of multiple high-performance
NVMe SSDs in a distributed manner.

Synchronization and overall control of the system operates over
a combination of components. A networked master control pro-
gram provides centralized control over camera stream activation
and recording activation. An external trigger bus ensures that all
cameras and light units, and structured IR light projectors trigger in
step, simultaneously. While the cameras and light units are directly
controlled by the main trigger buses, the structured light illumina-
tors are triggered by the cameras in their bundle, which supports
software-defined enabling of their trigger response.

Calibration. One of the critical steps to ensuring high fidelity vol-
umetric reconstructions and high quality textures is high precision
geometric calibration of all the cameras in the system. We achieve
this using a fairly well established approach [Zhang 2000], where
we use a calibration chart with a known pattern of Calibu circle
markers that allow us to precisely locate features with sub-pixel pre-
cision. We capture many synchronized images from all the cameras.
With enough images captured to cover the FOV of each camera
and spanning the volume of the stage, we perform a full-bundle
Levenberg-Marquardt (LM) solve to obtain, for each camera, the
intrinsics and extrinsics (relative to a single camera as the origin).
We note that our calibration process achieves a mean reprojection
error across all 90 cameras of less than 0.5 pixels which results in
high fidelity reconstructions.

While normal captures would use the structured light illumina-
tors, during this calibration, in order to clearly localize the features
on the calibration chart, we disable the structured light illuminators
in favor of IR flood illuminators. As this is an active multi-view
stereo system, we do not need any prior information about the
structure of the pattern, nor the projectors’ poses.

3.2 Volumetric Reconstruction

In our system, computing accurate 3D geometry information from
multiple viewpoints is one of the key building blocks. We adopt a
multi-view stereo pipeline, enhanced with deep learning features
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and point cloud outlier removal before trianglular mesh generation.
For efficient mesh processing, we further remove both geometric
and topological artifacts from the generated meshes. To obtain a
compact representation, we generate a UV atlas to store surface
attributes, including normal, reflectance, diffuse textures, etc. To
facilitate efficient streaming, we decimate the base mesh to around
25k facets.

3.2.1 Depth Estimation. We now explain how our system re-
constructs accurate 3D geometry from raw images. Our system
comprises 58 RGB cameras and 32 IR cameras. Although our custom
depth sensor is able to provide high quality depth maps, there are
still cases due to low SNR or highly reflective surfaces which may
return a wrong estimate. To overcome this, we rely on a multi-view
stereo algorithm that runs on IR and RGB independently such as in
Collet et al. [2015]. Such a multi-view triangulation scheme can be
defined by these main components [Scharstein and Szeliski 2002]:
view selection, matching cost computation, disparity optimization,
and refinement.

View Selection. The view selection defines a set of neighbors for
each reference view. In our system, given a view, we use the cali-
bration information to find the closest cameras. In particular, two
views belong to the same neighboring set only if their distance is
less than 50 cm and their viewing angles are within 30°.

Matching Cost. Traditional matching cost computations rely on
Sum of Absolute Differences (SAD), Sum of Squared Distances (SSD),
and Normalized Cross-Correlation (NCC); more recent approaches
are training Convolutional Neural Networks (CNNs) to perform this
task [Zbontar and LeCun 2016].

For IR images, we found NCC to be the preferred choice, which
we compute over a small 7x7 window. Thanks to the highly detailed
structured light pattern, this window size is sufficient in these high
resolution images.

For matching across RGB images that lack texture in many re-
gions, we propose to enhance the cost computation by computing
features using a VGG network [Simonyan and Zisserman 2014] pre-
trained on ImageNet [Deng et al. 2009]. Given two images’ patches,
a simple SSD is used to aggregate the cost in a very small 3 X 3
window. Thanks to the learned features, this is sufficient to produce
high quality depth even at high resolutions. This method could be
thought as a fast approximation to Zbontar and LeCun [2016], which
would not have been feasible in our scenario due to the prohibitive
computational requirements.

Disparity optimization. To efficiently infer high resolution depth
maps for each view point, we resort to the popular PatchMatch
algorithm [Barnes et al. 2009; Bleyer et al. 2011; Galliani et al. 2015;
Schonberger et al. 2016]. This method parameterizes the 3D scene
using a first-order approximation: an array of slanted planes tan-
gential to the ground truth surface. The checkerboard pattern from
Galliani et al. [2015] is adopted to infer a slanted plane for each pixel
in parallel. Depth maps from different view points are also computed
independently in parallel. The depth estimation algorithm generates
a pair of depth and normal maps for each input view point.
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Fig. 8. The Relightables Pipeline (Part 1). First, raw images are used to reconstructed a high quality 3D model.

Depth Refinement. At this stage, some outliers may exist in the
raw point cloud. To remove them, we first discard pixels with high
matching error located at patches with low spatial color variation.
We perform this step by simply computing the variance ina 7 x 7
window and discarding the pixel if the variance is lower than 0.7.
Then we verify the view consistency for each pixel by projecting it
to each of the selected views where the back-projected point would
be visible. We define the mutual point-to-plane error €, as the
following:

€err = Dp(fq) +Dq(fp)7 (1)
where Dy (fg) is a function to the compute distance from point p in
the reference view to plane f; sampled at the projection g of p in
another view. If €er is larger than a certain threshold (5 mm), the
view is discarded. After this view consistency check, if the number of
selected views is less than N (we use N = 3), the pixel is invalidated.
The view consistency check removes most mismatched points. After
that, we attempt to remove any remaining outliers by removing
small disconnected regions.

Depth Fusion. Each of the IR depth maps needs to be aligned
with one RGB view for the remaining steps of the pipeline such
as segmentation. A naive solution might consist of re-projecting
the whole 3D pointcloud to all the RGB views, however in practice,
this may cause serious issues with occluded pixels with missing
depth. Therefore, we re-project each depth map generated from an
IR camera to its closest RGB camera. In practice, this is an effective
way to minimize issues with occluded areas. Assuming that active
illumination provides higher depth accuracy, pixels where IR pro-
vides a valid depth value have higher priority and replace any value
in the current RGB depth map.

3.22 Deep Learning Based Segmentation. Detecting and separat-
ing the performer from the background is crucial for any volumetric

capture system. As shown by Collet et al. [2015], a green screen can
be used to achieve compelling results. However, our setup relies on
dynamic illumination conditions, which makes the use of a green
screen very challenging. Indeed many cameras and lights have to
protrude the screen making estimation of a dense matte hard. More-
over, the screen would cause significant color spill onto the subject
which would interfere with the estimation of reflectance maps.

To tackle this problem, we enhance a traditional background
subtraction method with a deep learning solution [Chen et al. 2016].
For each performance we record a clean plate sequence of 50 frames.
For each frame and camera, a depth map is computed and the average
over all depth maps is stored as Dgyg.

At test time, each RGB camera has a depth image D, aligned with
an RGB image I, which we use to compute a unary term defined by
Equation 2:

Y(D,1) = wia(Davg, D) + wargp(I) , @

where /4(Dgvg, D) is simply defined by evaluating the logistic func-
tion on the distance between the current observation D and the
average depth D4 as detailed by Orts-Escolano et al. [2016]. The
term (1) is the confidence of the semantic segmentation network
[Chen et al. 2016]. In all our experiments, we set the contribution
of the depth term to w; = 0.6 and the semantic contribution to
wy = 0.4.

We refine this unary term by solving a CRF which introduces a
pairwise potential term to enforce smoothness across neighboring
pixels. In practice we rely on Kriahenbiihl and Koltun [2011] to
perform the inference.

This first segmentation pass already achieves very compelling
results and does a great job at detecting the performer and most
of the foreground objects. However, the machine learned solution
was trained to detect people and not objects, therefore some apparel
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Fig. 9. The Relightables Pipeline (Part 2). This mesh then gets downsampled, tracked over time and parameterized.

will be falsely segmented out (see Figure 14b). To solve this, we
propose to add a multi-view consistency step. Segmented points are
re-projected in 3D space and, using the calibration information, are
projected to the original views. As a further refinement, another pass
of the CRF produces boundaries that better follow the image edges.
The final results can be appreciated in Figure 14c. Notice how all the
proposed steps improve the final foreground segmentation: the CRF
solver deals with the low resolution output produced by the network
and the multi-view refinement step recovers the misdetected object.

3.2.3 Mesh Reconstruction, Simplification, and Post Processing.
The segmented depth maps are projected to 3D to generate a point
cloud in the Light Stage coordinate system (see Figure 8). Due to
small miscalibrations between IR and color sensors, we apply an
optional ICP-based (Iterative Closest Point) bundle adjustment [Li
et al. 2013a] to accurately register the point cloud from multiple
views. Then we project each point to a locally fitted plane produced
by Moving Least Squares projection [Collet et al. 2015], which com-
pensates for the remaining non-rigid alignment errors. Since we use
high resolution sensors, we do not perform the 3D optimization step
proposed in Collet et al. [2015] as we noticed doing so introduced
additional outliers.

At this stage, the point cloud is well-aligned and clean, and Pois-
son reconstruction can generate visually pleasing triangular meshes.
Similar to Collet et al. [2015], we clamp signed distance values for
voxels lying on the background to zero in order to constrain the
reconstructed surface within the visual hull. The number of facets
on the resulting mesh is around 300k-400k, and it still contains both
geometric and topological imperfections. Thus, we run decimation
[Garland and Heckbert 1997] on the mesh to bring the number of
facets down to 25k, which helps remove most artifacts. Then we
remove any remaining mesh islands and surface degeneracies by
collapsing edges. During the decimation, we set large penalties on
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the face and hands to preserve detail, based on semantic informa-
tion produced by our deep learning-based multi-view segmentation
method. Finally, we eliminated topological artifacts through a de-
noising method [Collet et al. 2015; Guskov and Wood 2001].

3.24 Mesh Alignment. At this point, we have N independently
reconstructed meshes in a sequence. As a result of noise, the appear-
ance jumps from frame to frame. Furthermore, they do not share a
common triangulation which is necessary to efficiently compress
both the geometry and texture. Therefore, we seek to represent large
contiguous sub-sequences with a single triangulation, for which
temporally smooth vertex positions can be used to model the geom-
etry.

Frame to Frame Alignment (N = 2). We solve the two-frame
mesh alignment problem by deforming one frame to align with
the other. Like Li et al. [2009] and Dou et al. [2015], we adopt the
embedded deformation graph representation [Sumner et al. 2007] to
parameterize the deformation of one mesh so that it can be aligned
with another. A deformation graph is a representation of non-rigid
motion near the surface. It contains a group of nodes whose positions
have been sampled uniformly from the mesh vertices, under the
constraint that the distance between two nodes is at least €g;g. Each
node is also connected to its H (H = 8 in our implementation)
nearby neighbors, thus forming a graph. Node i is parameterized
by an affine transformation T; = (A;,t;), A; € R33,t; € R3. Thus,
the transformation of a point v close to the surface is represented
by linear blend skinning of its K (we use K = 4) nearby nodes,
T(v) = ); ;i T;. We define the two-frame mesh alignment as an
optimization problem to compute the optimal parameters so that the
deformed mesh fits well with the next frame. The objective function
of this optimization is defined as the following:

Ealign = adEdata + %sEsmooth + arErigid + atEget 3)
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Fig. 10. The Relightables Pipeline (Part 3). Finally reflectance maps are inferred from two gradient illumination conditions.

where Eg,;, sums point-to-plane distances of all correspondences
in both directions, Egy o0t SUMS over pairwise smoothness terms
between neighboring nodes, and Eyjgiq and Egey measure how far
affine transformations are from SO3 space to enforce local rigidity.
We gradually relax weights of a5 and «; to generate fine-grained non-
rigid deformation. For a detailed description, please refer to Li et al.
[2009] and Dou et al. [2015]. The two-frame alignment is agnostic
to previous deformations, similar to plastic deformation, and we
build a new one for each two-frame tracking problem to prevent
accumulating a non-uniform distribution of embedded nodes.

Global Mesh Alignment (N > 2). Given N > 2 meshes in a se-
quence, we would like to bring them into alignment leveraging
the frame to frame alignment strategy detailed above. As such, for
the n-th mesh, we use a sequential alignment algorithm to align to
the other meshes. In particular, we first proceed forward in time,
sequentially aligning the n-th mesh to all its proceeding meshes.
Likewise, we can proceed backward in time, sequentially aligning
the n-th mesh to its all its preceeding meshes. As a result, we have
aligned the n-th mesh with all other frames.

At the end of this procedure, we obtain a matrix of aligned-meshes
M together with an alignment error matrix &. Entry My, of the
aligned-meshes matrix contains the aligned mesh of the n-th frame
towards the m-th frame (that is, a mesh with the same triangular
mesh topology as the n-th input mesh, but with vertex positions
that are aligned with m-th input mesh). Entry &, of the alignment
error matrix contains the misalignment measure between the n-th
mesh aligned with the m-th frame.

The goal is to assign to each frame n a mesh My, , with the
smallest alignment error &, ,, where by, € {0,..., N}. At the same
time, we want to minimize the number of times the triangulation
changes. We thus formulate this as a discrete MRF with the following

energy terms:

N N-1
E(b1, .. bN) = D Epyn+ A D Ibn # bns1) » (4)
n=1 n=1

where I(-) is the indicator function, the first term encourages an
assignment with low error and the second term encourages reusing
the same triangulation. As this MRF is a single chain and thus is
tree-structured, belief propagation can perform inference exactly.

This approach minimizes the number of keyframes used for a
given sequence. This is also crucial to reduce “popping” artifacts
when a new keyframe is selected. Indeed, changes in the mesh
topology could potentially lead to unpleasant flickering during the
playback.

3.2.5 Consistent UV Parameterization. The aligned, topologically
consistent sequence is not sufficient to render high quality geomet-
rical details. In order to achieve the desired results, we parameterize
[Sander et al. 2002; Zhou et al. 2004] these meshes so that we can
separate the details from the base geometry using a displacement
texture map in UV space. To compute such as parameterization,
we use the well established Microsoft UVAtlas software package
[Microsoft 2019]. Similar to the system by Collet et al. [2015], we
increase vertex weights for facial regions so that the unfolded face
takes more texels in the UV space. Projected semantics from seg-
mentation label vertices in facial regions. After mesh alignment,
we divide the entire sequence into groups, each of which have the
same mesh topology. As such, the meshes within a group can share
a common UV parameterization as to enforce temporal and spatial
consistency (see Figure 9).

ACM Transactions on Graphics, Vol. 38, No. 6, Article 217. Publication date: November 2019.
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3.3 Reflectance Maps Generation

Volumetric capture systems typically operate using fixed lighting
and compute a color texture map with the lighting “baked in”. Hence
it is difficult to produce realistic renderings of the captured subject
under novel illumination or in novel environments. These systems
often surround subjects by even illumination in an attempt to obtain
a color map, but renderings produced using a single color map and
a Lambertian reflectance assumption exhibit unrealistic double-
shading. They also tend to rely on the geometry to provide surface
normals for shading, which is typically far coarser than the details
visible in the images. To remedy these issues, we propose to capture
more detailed reflectance information, using the two different color
gradient lighting conditions in our capture process.

3.3.1 Texture Blending in UV Space. In each frame of a perfor-
mance, we blend images from the color cameras in the mesh UV
space using Poisson blending, with the contribution of each camera
weighted by the dot product of the surface normal and view vector.
We exclude cameras that are occluded at each point in UV space,
using the mesh and ray casting to compute occlusion. Alternating
frames contain either the color gradient illumination or the inverse
color gradient illumination. Our reflectance map estimation requires
both illumination conditions to be aligned in UV space. To achieve
this we evaluated two different strategies. The first strategy relies
on our mesh alignment step to produce consistent texture param-
eterizations for adjacent frames, allowing each frame to borrow
the complementary UV texture from one of its neighbors. The sec-
ond strategy uses optical flow in image space between consecutive
frames [Anderson et al. 2016], therefore the complementary illu-
mination is retrieved in image space for each camera prior to UV
space blending. Since the mesh alignment step may not accurately
track high frequency details in the texture space due to tangential
motion, we found this second strategy more effective.

3.3.2  Reflectance Estimation. We use the color gradient and in-
verse color gradient to compute a reflectance estimate similar to
Fyffe et al. [2009]. Equation 5 describes the rgb color channels for the
color gradient G and inverse color gradient G~ lighting conditions.

144 +10)) G = (3 + Jou)t
Gr = (3~ 40005 G = (1~ J0,)5 G, = (3 - JoL. )

with @ € S? representing the direction from the subject to the
(presumed distant) light, and L the overall intensity. Note that
G*' + G~ = L, while G* — G~ = OL. Intuitively, the sum of the
color gradient and inverse color gradient photographs contains the
albedo at each pixel (as if lit by white light), and the difference be-
tween the two photographs encodes the overall reflected direction
of the reflectance (times the albedo). Since we rely on the relation-
ship between light direction and light color, we first correct color
cross-talk between the light color primaries and camera sensor color
primaries using a 3 X 3 color matrix established using photographs
of a color chart illuminated by each color of LED. We refer to the
color corrected pixel values captured under color gradient illumina-
tion G* and inverse color gradient illumination G~ as g* and g,
respectively. We also scale the overall magnitude of the color matrix
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such that a 100 % reflective white material appears with pixel values
gt + g~ ={1,1,1}, established using the same color chart.

Assuming a simple Phong reflectance model having a Lambertian
lobe with albedo k; and surface normal n, and a specular lobe
with albedo kg, lobe axis r, and exponent n, the pixels take on the
following values (adapted from [Fyffe et al. 2009]):

9" +g =kg+ {ks, ks, ks}; (6)

07 =97 =kay (00001 doo + ks (-0, doo;
gt —g = %kd on+ Z—Eksr, (7)
with i € {x,y,z}, and where Q, represents the hemisphere of
directions on the positive side of axis @, and o represents element-
wise multiplication. Note as the color gradients are aligned with the
cardinal axes, the cross-talk-corrected color channels {r, g, b} are
referred to interchangeably as the axes {x,y, z}.

The magnitude of the difference g* —g~ relative to the sum g* +g~
encodes information about the narrowness of the scattering, which
may be interpreted as a cosine lobe exponent or shininess parameter.
Indeed the ratio of these two quantities is % for perfect Lambertian
materials, and 1 for perfect mirror materials [Fyffe et al. 2009].

In contrast to previous work operating in image space [Fyffe et al.
2009], we operate on blended textures in UV space, which offers sev-
eral advantages. Examining Equation 7, we see the surface normal n
is trivially obtained for Lambertian materials, but is conflated with
the reflection vector r for materials having a specular component.
Previous single-view work resorted to heuristic conversion from
reflected direction to surface normal using assumptions about the
BRDF [Fyffe et al. 2009]. However, conveniently, the average value
of r over many views surrounding the subject is itself n times a con-
stant factor. Thus a benefit of operating on blended textures from
multiple views is that Equation 7 leads directly to a photometric
estimate of the surface normal (Equation 12) since view-dependent
effects are averaged out. Further, the cosine weighting employed dur-
ing blending downweights views with large Fresnel gain, yielding a
more or less constant specular contribution for dielectric materials.

Despite averaging out view-dependent effects, the blended multi-
view gradient illumination images still encode information about
the narrowness or broadness of the scattering, as this is a phenome-
non derived from the breadth of reflectance lobes rather than their
directions with respect to a view vector. We define a narrowness of
scattering f3, as measured by Equation 8, which may be explained
by various phenomena, including shininess, occlusion, and inter-
reflection. We heuristically split the explanation between shininess
and occlusion using the following intuition: surfaces with no occlu-
sion will have a photometric surface normal estimate that is largely
aligned with the geometric surface normal of the mesh, while sur-
faces with some occlusion may not. Hence we use the angle between
the two surface normals (photometric and mesh) along with the
scattering narrowness to estimate a shininess parameter and an am-
bient occlusion term using Equations 9 and 10. Ambient occlusion
can then be removed from the albedo estimate by dividing it out.
All told, the shininess s, ambient occlusion term o, albedo a, and
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surface normal n are computed as follows:

. g — &
ﬁ = %(|d| - %) with die{x,y,z} = ﬁ ; (8)
s=p0"Y with «=min(1,cos '(n-n™)); 9)
0=p%; (10)

g" +g~ — (ro, 70, 70)
= ; 11
T o -n) an
d

n=—; 12
d| (12)

where g* and g~ are the color gradient illumination pixels g and
inverse color gradient illumination pixels g~, respectively, blended
over all non-occluded views, ryp = 0.04 is an approximate dielec-
tric Fresnel term at normal incidence, and n" is the mesh normal.
The linear mapping in Equation 8 scales f§ to range from 0 to 1 for
rough diffuse to mirror. Depending on the specific shading model
employed, this scaling might be omitted. The resulting albedo, sur-
face normal, shininess, and ambient occlusion maps can be used in
a real-time rendering engine or offline rendering system without
further modification. In practice, shininess (or roughness) and am-
bient occlusion maps are encoded as a single “gloss” texture map
(see Figure 10, right column, middle row).

4 RUN TIME

Volumetric capture systems require a considerable amount of com-
putational resources; for instance, the state-of-the-art system by
Collet et al. [2015] requires 30 min per-frame using 4 MP cameras.
Scaling the system to 12 MP cameras increases the run-time sub-
stantially to the point that multiple days are required to process a
few seconds of capture.

In order solve this issue, we designed the system to be massively
parallel and distributed. Image pre-processing steps such as undis-
tortion, demosaicing, and color correction, as well as multi-view
stereo and segmentation computation are parallelized over camera
views.

The multi-view segmentation refinement is instead parallelized
only over frames, as each frame requires all the views to be avail-
able. The same approach is used for Poisson Reconstruction, Mesh
Simplification, and Denoising.

The mesh alignment step is the most expensive part of the pipeline,
since it requires the computation of all the possible tracking solu-
tions across all the frames. Fortunately, each mesh n can be aligned
to the others in parallel. Furthermore, for this n-th mesh, the sequen-
tial forward alignment and backward alignment’s through time can
be performed in parallel. Thus the level of parallelism that can be
achieved at this granularity is 2n.

The parameterization stage using UVAtlas runs only on the key-
frames, as the tracked meshes all share the same topology. For a
sequence of 600 frames we typically find an average of 5 keyframes.

The final stage of texture map computation is instead performed
in parallel across all the frames.

A typical sequence of 10 s with 600 frames is processed in about
8 hours. Notice that processing the same amount of data on a sin-
gle machine with 32 cores would require over a year, proving the

(a) 4 MP 3D reconstruction. (b) 12 MP 3D reconstruction.

Fig. 11. Input image resolution comparison. We compare the 3D reconstruc-
tions results generated using 4 MP (a) vs 12MP (b) IR images. The first
row shows the raw point cloud generated by our MVS implementation.
The second row shows the reconstructed geometry using PSR. Note that
by using 12 MP images we are able to recover small details such as facial
expressions and clothing wrinkles.

SAD

VGG

l

Fig. 12. Comparison of raw stereo matching results with SAD vs. VGG on
RGB images. Note that the VGG results contain less gross errors and provide
smoother results everywhere. Please see text for details.

importance of a well engineered system for performance capture
applications.

These efforts, allow us today to have a production ready system
which is orders of magnitude faster of the state of the art. However,
we do acknowledge the computational power required is extremely
high and that achieving real-time performance requires additional
breakthroughs and follow up research.

5 EVALUATION

Our system is a very complex pipeline. In this section, to validate
the proposed approach, we analyze the main components of the
system and show evidence to justify our design choices.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 217. Publication date: November 2019.
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Fig. 13. A comparison of different mesh tracking strategies. Compared to Collet et al. [2015], our approach achieves the lowest error and selects fewer

keyframes (25 vs. 41). See text for details.

5.1 Depth Quality

Spatial Resolution. Following the Nyquist sampling theorem, it
is easy to prove that the spatial surface detail we can reconstruct
fundamentally depends on the image resolution. To assess the im-
portance of this, we conducted an experiment where we run our
sensors at 4 MP (e.g., Collet et al. [2015]) and compare it with our
12.4 MP solution. In Figure 11, it is quite evident that low resolution
sensors have higher level of depth noise and oversmooth the final
geometry. In order to achieve the next level of realism, the pro-
posed 12.4 MP cameras are able to capture most of the fine details
in geometry including facial features and wrinkles in the shirt.

VGG Features. Our system demonstrates the importance of ex-
tracting deep learning features for the multi-view stereo. We con-
ducted an experiment where we run multi-view stereo only on RGB
images, without leveraging the active illumination. We invalidate
pixels within a 7 X 7 image patch with a low variance and we do not
perform any additional filtering. In one case, we use SAD matching
cost with adaptive support weights, and we aggregate the results
over a 7 X 7 patch, in the second case we use SAD on VGG fea-
tures on a smaller 3 X 3 patch. VGG features are extracted using
the first convolutional layer, resulting in images with 64 channels.
Figure 12 shows that the proposed solution consistently reduces
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gross errors across the full image. Textureless regions, such as the
performer’s shirt and jeans, are still not perfect; perhaps a more
global optimization scheme could be employed to improve this.

5.2 Segmentation

Unlike other volumetric capture systems, we do not rely on a green
screen solution to detect the performer. Besides complicated envi-
ronment setup, the other drawback of green screen segmentation
is a baked-in lighting condition. Instead, we embed the prior us-
ing a deep learning technique [Chen et al. 2016] into a CRF model
with fore-/background color and depth together. Because Chen et al.
[2016] is trained to detect people, non-human objects may be mis-
classified in some view, e.g., the basketball in Figure 14b. On the
other hand, our proposed multi-view segmentation method can
successfully label this region as foreground, as shown in Figure 14c.
Note that the semantic labels assigned to the ball are not crucial:
only a foreground mask is required to obtain accurate segmentation
of objects. Finally, notice how the proposed CRF solution is able to
better follow the edges of the high resolution image. Conversely,
the output of the network is usually lower resolution, so it may miss
important details such as hair or thin structures.
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(a) Single View Segmen- (b) Single View Segmen- (c) Multi-View Segmen-
tation without CRF. tation. tation.

Fig. 14. Our multi-view segmentation is able to label the basketball in the
hand of the performer while the single view segmentation cannot label it at
all. Note that without CRF the edges are coarse due to the low resolution
output of the neural network.

5.3 Optimal Mesh Tracking

The greedy tracking algorithm by Collet et al. [2015] relies on a
heuristic score to search for the next keyframe in a priority queue.
Even though the aligned surface has a small overall Hausdorff dis-
tance to the target frame, misalignment of local structures are in-
evitable. We present a challenging sequence where a performer is
juggling three balls. We expect the tracker to be able to deal with
topology changes every time the performer catches a ball or throws
the next one in the air. We compared the proposed solution with
our re-implementation of the algorithm proposed by Collet et al.
[2015] and show the results in Figure 13. Note how our method
selects better keyframes, leading to more pleasant reconstructed
meshes. Our system also results in quantitative improvements. We
result in producing fewer keyframes, only selecting 25 keyframes,
as opposed to 41 by Collet et al. [2015]. The average alignment error
computed as Hausdorff between tracked meshes in the sequence is
8 cm for Collet et al. [2015], whereas we achieve 3 cm, showing the
effectiveness of the proposed MRF formulation.

5.4 UV Parameterization

The semantic weight in the mesh parameterization plays an impor-
tant role to preserve high frequency details in the face. In Figure 15,
we show the results of an experiment where, using UVAtlas, we
assign the same importance to all the weights and compare it to one
where we increase the weight on the areas belonging to the face of
the performer three-fold. Note how the texture map generated when
we use semantic information correctly allocates more pixels around
the face and downgrading the priority of other components. Indeed,
as shown in previous work [Meka et al. 2019; Orts-Escolano et al.
2016], human faces are the areas where artifacts are most noticeable.

(b) Texture Atlas with Semantic
Allocation.

(a) Regular Texture Atlas.

Fig. 15. Compared to the default atlas (a), using our semantic segmentation
(b) for atlasing improves the allocation of texture for important feature like
the face.

5.5 Mesh Decimation

To evaluate the importance of the size of the mesh, we consider a
sequence where we set the target decimation to 5k, 25k, and 100k
vertices respectively and generate the reflectance maps as described
in the previous section. Figure 17 shows a comparison of different
decimated meshes using these decimation sizes. By looking at the
base mesh (first row) and the photometric normals (second row),
as we increase the number of triangles, more and more details
start to appear. We argue that between 25k and 100k there is not
significant improvement, only highlighting really small details such
as facial pores and subtle wrinkles. Nonetheless, when combined
with photometric normals, even the 5k decimation results in high
quality details.

5.6 Texture Alignment

To evaluate the proposed strategies (see Section 3.3.1) for aligning
complementary illumination conditions, we demonstrate the im-
portance of an explicit texture alignment step in image space when
computing the reflectance maps. The mesh tracking algorithm may
not accurately track high frequency texture details when tangential
motion in the geometry occurs; e.g., a spinning ball. In Figure 16, we
show a visual comparison when the alignment step in image space
is turned on and off. In this case the mesh tracking algorithm fails
to align the spinning ball, whereas the explicit texture alignment
strategy we propose can compensate for the fast motion resulting
in more accurate renderings.

5.7 Comparisons with State-of-the-art

In this section, we compare our system with two state of the art
methods. First, we consider the algorithm proposed by Dou et al.
[2017], which we ran using a voxel resolution of 2 mm to achieve
the highest quality as reported in the original paper. Note that this
method generates very accurate reconstructions, however it pro-
duces a “tracked” Signed Distance Function (SDF) sequence, which
results in meshes that are not topologically consistent. Moreover
the meshes obtained with this approach contain millions of vertices,
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(a) Without texture alignment. (b) With texture alignment.

Fig. 16. The texture alignment step substantially improves rendering arti-
facts in presence of fast tangential motion.

Base mesh

Photometric normals

Sk triangles 25k triangles 100k triangles
Fig. 17. A comparison of different decimated meshes (base mesh and photo-

metric normals visualization) using 5k, 25k, and 100k triangles respectively.

limiting its application in practice. Nevertheless, we show a side by
side comparison in Figure 18.

Note how, despite Dou et al. [2017] relying on a very fine-detailed
reconstruction, our results still exhibit better high frequency details
in the wrinkles of the shirt, the ball, and the face. Additionally, Dou
et al. [2017] cannot interpolate missing geometrical parts, resulting
in holes in some areas. This proves the effectiveness of the texture
maps as a way to store a displacement from a coarser geometry,
making the method more compelling for practical applications.
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Our result Dou et al., 2017 Our result Dou et al., 2017
Fig. 18. A comparison of our reconstruction with Dou et al. [2017]. Note
that our reconstructions are complete while holes (circled) remain with the

approach of Dou et al. [2017].

To compare with the state-of-the-art of volumetric capture pro-
posed by Collet et al. [2015], we reimplemented the majority of its
components, except the segmentation algorithm, which relied on
a green screen. Nevertheless, we used our proposed segmentation
which produces high quality results and compared the final recon-
structions in Figure 19. Note how the method by Collet et al. [2015]
does an excellent job at generating convincing textured meshes;
however, missing high frequency details are noticeable when com-
pared with the proposed method. We push this technology to the
next level of photo-realism, recovering fine level details such as
facial hair, wrinkles and hair.

Finally, we show the importance of the reflectance maps for re-
lighting purposes. In Figure 20 we compare our results with the
ones obtained using geometry and diffuse relighting (e.g. such as
in Collet et al. [2015]). Note how the proposed system renders fine
details in a more realistic and pleasant way.

6 PHOTO-REALISTIC RENDERINGS

Photorealistic composition of virtual and scanned 3D models into
photos or videos is a relevant technique in many areas such as
virtual and augmented reality, visual effects and film production.
A composition’s realism depends on both geometric and lighting
related factors. The system that we propose can be employed for var-
ious purposes that range from volumetric video playback to highly
realistic portrait relighting. For example, given a High-Dynamic
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Fig. 19. A comparison of our reconstruction with our software re-implementation of Collet et al. [2015]. Note that our reconstructions exhibits more geometric

detail due to higher resolution depth cameras and photometric stereo normal estimation.

Range Image (HDRI) of an environment, we can transport our high-
resolution 3D models to photographs of real-world scenes which
contain detailed lighting. Figure 21 shows various examples of dif-
ferent 3D models that have been transported to real-world scenes
using captured HDRIs.

Using an HDRI provides a good approximation of the scene light-
ing, but it lacks 3D geometry, cannot render shadows correctly,
and misses other light-related effects, such as occlusions. Motivated
by this problem, we also used photorealistic, synthetic 3D scenes
where the geometry of the environment is known. In this way, we
can also properly model shadows and occlusions on scene surfaces.
Figure 22 shows a few examples of these renderings using highly
realistic synthetic scenes. We used various 3D scenes with different
illumination conditions to show how our 3D models blend into the
environment making the rendering very realistic, as if the person
was recorded at those particular places.

Finally, we took one step further and also created realistic render-
ings of our models on real world images captured using a regular
smartphone camera (see Figure 23). We took advantage of a recent
learning-based method that estimates plausible HDR, omnidirec-
tional illumination given an unconstrained, Low Dynamic Range
(LDR) image from a smartphone camera [LeGendre et al. 2019]. Fig-
ure 23 shows multiple renderings of our 3D models on different real

world scenes under multiple lighting conditions. Note that the 3D
models are blended into the images in a convincing way, rendering
consistent lighting and shadows as if the scanned humans were
really there.

7 LIMITATIONS

Although our system brings us closer to photo-realistic volumetric
videos through their accurate relightability in new scenes, there
are limitations. For example, our system still struggles to recon-
struct the geometry of thin structures such as hair despite our high-
resolution input imagery. Although our reflectance maps somewhat
compensate for this by adding high frequency details, we believe
that machine learning methods may be the best way to address this.
We also struggle with transparent and specular materials, for which
we are unlikely to obtain a reconstruction. Figure 24 shows some
examples of failures cases for the aforementioned problems: thin
structures, such as hair; transparent surfaces, such as glasses; and
finally, thin and highly specular surfaces, such as a golf club.
Popping artifacts may be visible when a new key frame is selected,
although applying the reflectance maps makes this effect less no-
ticeable at rendering time. Very fast tangential motion could cause
wrong reflectance maps estimates even after an explicit texture align-
ment step: indeed the final quality depends on the accuracy of the
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Fig. 20. Left: HDRI relighting of diffuse color and geometry such as in Collet
et al. [2015]. Right: our solution using geometry, albedo, photometric normal,
and material maps as input. Note the increased sharpness and amount of
details with the proposed system.

optical flow. Regions with low SNR (e.g., dark surfaces, hair), could
lead to a poor estimate of the normal maps. This can be mitigated
by tuning the lights and exposure time ad hoc for a given performer.
Other imperfections are due to the spatial bias that increases with
the distance from the center of the stage: this could be solved with
a precomputed look-up-table.
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8 DISCUSSION

In this paper, we presented our system for reconstructing relightable
volumetric videos of humans. Through the combination of state
of the art active illumination, novel high resolution depth sensors,
and a high resolution camera array, our system is presented with
a plethora of geometric, lighting, and appearance constraints. In
order to consume these constraints, we designed a cloud-based re-
construction pipeline. This pipeline adapts state of the art geometric
and machine learning methods for use in map reduce style paral-
lelism. As a result of our ability to control the lighting conditions
during capture, we are also able to derive reflectance maps. As such,
we are able to derive volumetric videos of real humans that can
be accurately relit in a new environment without any user inter-
vention. Although this work makes significant progress towards
photo-realisism, we leave it as future work to incorporate more
complicated lighting models and machine learning methods.
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Fig. 22. Our system allows us to realistically integrate and relight our models in virtual 3D scenes.
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Fig. 23. Our models re-rendered on the smartphone with estimated lighting using [LeGendre et al. 2019].

Fig. 24. Our system struggles to reconstruct the geometry of some thin
structures (hair), and also transparent and highly specular surfaces.
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