
Public Review for

VRComm: An End-to-End Web System
for Real-time Photo-realistic Social VR

Communication
S. Gunkel, R. Hindriks, K. Assal, H. Stokking, S.
Dijkstra-Soudarissanane, F. Haar, O. Niamut

This paper presents VRComm, a web-based social VR framework for
enabling remote communications via video conferencing. Unlike existing
social VR platforms such as Facebook Horizon and Mozilla Hubs, VRComm
supports real-time photorealistic representation of users by transmitting
depth data captured by the RGBD camera as 2D gray-scale images. It offers
an end-to-end pipeline including capturing, processing, transmission, and
rendering. To improve the scalability of the system, the authors proposed
to use a multi-point control unit (MCU). The performance of VRComm was
evaluated using both simulations and realistic user experiments.

The strengths are as follows. With the increasing use of video conferencing
in people’s daily lives, it is important to study how to effectively enable
social VR and spatial computing. This paper presents a thorough descrip-
tion of the design and implementation of different components of such a
system. The authors implemented a prototype system using off-the-shelf
hardware and web-based client software that can support low-cost VR video
conferencing. The authors also conducted extensive evaluation based on
simulation studies and real-world experiments to show the proposed system
is promising and realistic.

Besides the strengths, the paper also raised questions regarding the challenges
and durability of the proposed solution. It would have been useful to present
the main challenges for designing and implementing such types of social VR
systems. Also, VRComm relies on several open-source software packages,
and the durability of such software components impacts that of VRComm.

Public review written by
Yao Liu

State University of New York,
Binghamton, USA

ACM MMSys 2021

65

VRComm: An end-to-end web system for real-time
photorealistic social VR communication

Simon N.B. Gunkel
TNO, Den Haag, Netherlands

simon.gunkel@tno.nl

Rick Hindriks
TNO, Den Haag, Netherlands

rick.hindriks@tno.nl

Karim M. El Assal
TNO, Den Haag, Netherlands

karim.elassal@tno.nl

Hans M. Stokking
TNO, Den Haag, Netherlands

hans.stokking@tno.nl

Sylvie Dijkstra-Soudarissanane
TNO, Den Haag, Netherlands

sylvie.dijkstra@tno.nl

Frank ter Haar
TNO, Den Haag, Netherlands

frank.terhaar@tno.nl

Omar Niamut
TNO, Den Haag, Netherlands

omar.niamut@tno.nl

Figure 1: 16 user streams in a Virtual Experience (left; anonymous; 3D BackgroundModel "OlamConference Room" by Gideon
Abochie licensed under CC Attribution) and RGBD user transmission of RGB-part (middle) and depth-part (right)

ABSTRACT
Tools and platforms that enable remote communication and collab-
oration provide a strong contribution to societal challenges. Virtual
meetings and conferencing, in particular, can help to reduce com-
mutes and lower our ecological footprint, and can alleviate physical
distancing measures in case of global pandemics. In this paper, we
outline how to bridge the gap between common video conferenc-
ing systems and emerging social VR platforms to allow immersive
communication in Virtual Reality (VR). We present a novel VR
communication framework that enables remote communication in
virtual environments with real-time photorealistic user representa-
tion based on colour-and-depth (RGBD) cameras and web browser
clients, deployed on common off-the-shelf hardware devices. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8434-6/21/09. . . $15.00
https://doi.org/10.1145/3458305.3459595

paper’s main contribution is threefold: (a) a new VR communi-
cation framework, (b) a novel approach for real-time depth data
transmitting as a 2D grayscale for 3D user representation, includ-
ing a central MCU-based approach for this new format and (c) a
technical evaluation of the system with respect to processing delay,
CPU and GPU usage.

CCS CONCEPTS
• Information systems → Web conferencing; Multimedia in-
formation systems; • Computer systems organization → Dis-
tributed architectures; •Human-centered computing→ Vir-
tual reality; Mixed / augmented reality.

KEYWORDS
Virtual Reality, VR, Communication, Conferencing, Social VR, Im-
mersive Media, WebVR, WebXR, WebRTC

ACM Reference Format:
Simon N.B. Gunkel, Rick Hindriks, Karim M. El Assal, Hans M. Stokking,
Sylvie Dijkstra-Soudarissanane, Frank ter Haar, and Omar Niamut. 2021.
VRComm: An end-to-end web system for real-time photorealistic social
VR communication. In ACM Multimedia Systems Conference (MMSys ’21),
September 28–October 1, 2021, Istanbul, Turkey. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3458305.3459595

66

https://sketchfab.com/3d-models/olam-conference-room-6b968fac1b64479195745b42d93aa6ef
https://sketchfab.com/gabochie
https://sketchfab.com/gabochie
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3458305.3459595
https://doi.org/10.1145/3458305.3459595

MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey Gunkel et al.

1 INTRODUCTION
Communication and collaboration are an important part of every-
day life, both in professional and private environments. Having
tools to help one communicate over distance, such as the video
conferencing applications Skype, Google Hangouts, or Zoom, has
rapidly become a normality in a modern and globalized world.
Nowadays, these applications can be run both as stand-alone, ded-
icated apps and programs, as well as web applications (apps) in
browsers that implement rich media tooling such as WebRTC and
support advanced video decoding. However, looking at these tools
today, common video conferencing applications have clear limita-
tions regarding enabling a sense of (co-)presence and immersion.
That is, “the video calling stuff breaks down beyond a few people,
because you have this big grid of tiny faces.” Simply by the absence
of “the full range of social cues, from posture to eye gaze to facial
expressions, things like head nodding and hand gesturing”, that
may convey crucial nonverbal information (Blair MacIntyre1). And
even when video conferencing systems manage to convey informa-
tion communicated by facial expressions and body gestures, they
do so at the expense of a sense of shared space.

Not only recent events (like the global covid-19 pandemic) raise
the need for better solutions that increase the feeling of togeth-
erness while communicating remotely. One of the first steps in
adding space sharing in 2D video conferencing can be seen in Mi-
crosoft Teams together mode2 that blends the 2D webcam video of
users in a simply lecture hall inspired background. Further, from
other works [3, 5, 48] we know that spatial awareness, presence
and immersion can be provided by communication in Virtual Envi-
ronments and Virtual Reality (VR) experiences. However, in initial
VR frameworks, the lack of social interaction [11, 39] prevented
users to experience co-presence. With recent social VR applications
and platforms for VR meetings and conferencing, social interac-
tions have started to make their way into the virtual realm as well.
These platforms typically make use of model-based Avatars, i.e. a
graphical representations of participants whose movements are
steered by input from the VR headset and/or controllers. In order
to allow users to consume existing media streams as well (for ex-
ample shared consumption of live and on-demand video streams
like sport), the integration of video into these platforms is currently
taking shape. One example of a social VR system that is widely
accessible is Mozilla Hubs3. It solved many interesting aspects of
social VR from a technical perspective, for example, objects and
states synchronization across multiple clients. However, Moxilla
Hubs currently deals with video only in a limited way (i.e., streams
for presentations and static 2D webcam views).

In this paper, we seek to bridge the gap between common video
conferencing systems and emerging social VR platforms. That is, we
aim to reuse proven technologies and frameworks from the domain
of video conferencing, and build a platform for VR communication
experiences that incorporates photorealistic user representations.
We mainly consider the end-to-end video processing chain and the
use of a multipoint control unit (MCU) to bridge the multiple video-
conferencing connections . Our main hypothesis is that by reusing
1https://spectrum.ieee.org/tech-talk/consumer-electronics/audiovideo/forget-video-
conferencinghost-your-next-meeting-in-vr
2https://news.microsoft.com/innovation-stories/microsoft-teams-together-mode/
3https://hubs.mozilla.com/

these components from common video conferencing systems, we
can support VR conferencing under network requirements that are
similar to those for traditional video conferencing.

The motivation for this work lies in the relevance of end-to-end
video processing technology to provide real-time performance in
web-based social VR applications. While the importance of recent
volumetric video formats to provide true 6-degrees-of-freedom VR
experiences is becoming apparent [8, 49], the end-to-end workflow
to process such data from capture to rendering is far from real-
time. The use of video-based methods allows us to benefit from
existing deployed infrastructures and interfaces(such as hardware
acceleration, robust coding, and streaming) and ultimately extended
support in many browser platforms. The contribution in this paper
is threefold:

i.) we describe a new VR communication system that combines
video conferencing technology with social VR capabilities
in a new end to end pipeline from user capture, processing,
transmission and rendering users into virtual environments
for shared immersive experiences and communication

ii.) we report on a novel transmission scheme for grayscale
based depth information, for 3D user representations, includ-
ing a central MCU-based approach for the transmission of
this video format

iii.) we perform an evaluation of the resulting VR communication
systemwith respect to processing delay, CPU and GPU usage

2 RELATEDWORK
2.1 Video Conferencing
The first video conferencing systems were based on one-on-one
connections between two sites. Scalability for multi-person video
conferences could either be achieved by a full-mesh exchange of
media streams between all participants, or by using potentially
available multicast mechanisms. As IP multicast technology is not
widely deployed across the public internet, centralized mixing fa-
cilities called Multipoint Control Units (MCU) were developed in
the 1990s. These MCUs multiplex in some form the various media
streams, so only a single stream needs to be sent to each partici-
pant. With many participants, such a centralized scheme allows for
improved scaling of the bandwidth requirements and can scale the
video conference to a large set of simultaneous users, in particular
by designing hybrid centralized forwarding architectures [19].

Various developmentsweremademore recently to further achieve
scalability without sacrificing quality. For MCUs, recent cloud de-
velopments give the opportunity to use processing on-demand,
thereby allowing conferencing sessions to scale up to many hun-
dreds or even thousands of participants [36]. For an efficient stream
multiplexing without any media processing, Selective Forwarding
Units (SFU) are developed, see [43] and [53]. These SFUs forward
streams from one participant to all other participants, thereby alle-
viating the need for one participant to send out separate streams. To
support bandwidth adaptation, each participant can send its stream
in a few different bitrates so that an SFU can select and forward
individualized streams depending on the bandwidth availability for
each participant.

67

https://spectrum.ieee.org/tech-talk/consumer-electronics/audiovideo/forget-video-conferencinghost-your-next-meeting-in-vr
https://spectrum.ieee.org/tech-talk/consumer-electronics/audiovideo/forget-video-conferencinghost-your-next-meeting-in-vr
https://news.microsoft.com/innovation-stories/microsoft-teams-together-mode/
https://hubs.mozilla.com/

VRComm: An end-to-end web system for real-time photorealistic social VR communication MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey

More recently, MCU architectures have also improved through
the use of tiling mechanisms [15]. Tiling allows for stitching to-
gether video parts in the encoded domain, creating an architecture
that sits somewhere between the MCU and the SFU: all incoming
streams are mixed together so that each participant receives only
a single media stream to be decoded, while at the same time no
decoding-mixing-encoding is required.

2.2 Social VR
In the ’90s, much work went into creating high-end shared virtual
environments. Various universities set up cave automatic virtual
environments (CAVE) and CAVE-like systems which could be used
to communicate remotely, of which [23] and [37] provide good
examples, using what they call "video avatars". These environments
typically used back projection and large calibrated camera rigs to
produce a coherent virtual environment. Other examples such as
[26] used large screens, again together with calibrated camera rigs,
to also offer a sense of togetherness.

Other work from this era consists of using graphical avatars to
create large shared virtual environments, of which [4, 29, 45] give
some overview. In these days, the impact of avatar realism on the
participants’ perception was studied as well [18]. Virtual reality saw
a renewed interest with the rise of high-quality but affordable AR
and VR HMDs, most notably the Oculus Development Kit, which
carried the promise of bringing high-quality VR to the masses.
This development has led to new initiatives in shared and social
VR experiences as well. Nowadays, social VR is mostly associated
with graphical avatars in a graphical environment. Main examples
are Facebook Horizon, AltSpaceVR, BigScreen, Glue, High Fidelity,
vTime, Hubs by Mozilla, VR chat, SteamVR and Spatial.

While considering the Social VR services mentioned, all rep-
resent users as graphical avatars displayed in a shared VR envi-
ronment and allow users to play games, share screens, share web
browsing, watch videos, explore spaces or share other experiences
together. However, very little studies exist that compare those new
services with existing communication tools or compare real-time
photorealistic representations with artificial avatars. One study
[39] suggests that graphical avatars (Facebook Horizon, formerly
Facebook Spaces4) have limitations in terms of (co-)presence as
“the social cues that you would normally have about someone . . .
weren’t there”. Another study [11] presents the results that real-
time photorealistic representations show no statistical differences in
terms of interaction and social connectedness compared to a face-to-
face meeting, while the avatar-based system (Facebook Horizon4)
did. In the context of collaboration, VRComm and "traditional"
videoconferencing are theorized to differ in their affordability of
social context cue transfer, specifically in terms of body posture,
gestures, and eye-contact. In addition, the experience of presence,
which is typically found in VR (e.g. [9]), may affect communication
and interpersonal relationships as well.

2.3 Spatial Computing & HMD replacement
Spatial Computing, which is the ability to understand the environ-
ment, the user, and objects surrounding the user, is an essential
part of AR and VR applications (good examples can be found in
4https://www.oculus.com/facebook-horizon/

[14, 20]). In terms of communication, this means that user’s ac-
tions should be correctly reflected into the users’ representation
to convey good remote interactions. One example of complex and
processing intensive Spatial Computing tasks is the replacement of
the HMD that by default occludes the participants face when using
a VR-HMD as a display device. As facial expressions and eye gaze
are important factors in communication, the HMD replacement pro-
cess becomes essential for a qualitative experience. The so-called
facial reconstruction is relevant for improving the user experience
in (video-based) social VR. When capturing the user with a video
and/or depth sensor, the captured footage will include the HMD
and thus occlude parts of the face, including the eyes. Our earlier
experiments have shown that it still allows natural interaction and
communication with an increased feeling of co-presence [21]. Take-
mura [50] was one of the first researchers to describe a method
that accomplishes the HMD replacement by detecting the HMD
location in the video and replacing the pixels by a 3D facial model
captured at an earlier process. Li [30] followed a similar approach
by using strain gauges inside the HMD to measure facial expres-
sions. Burgos-Artizzu [6] used various facial models to represent
various expressions and detect expressions based on the part of the
face still visible in the video recording. More recently, Thies [51]
and Google [17] elaborated on this approach by combining these
methods with an eye-tracking camera inside the HMD to reproduce
"correct" eye direction. Furthermore, recent works aim to make the
HMD-replacement more robust and flexible by using RGB-D image
inpainting techniques [35].

2.4 Volumetric video capture and transmission
Volumetric video is regarded worldwide as a key technology in the
context of immersive AR and VR experiences. The capture, encod-
ing, and transmission of volumetric video formats such as point
clouds and meshes is an active field of research [1, 10, 33, 40, 44]
as well as industry standardization[46]. In particular, for remote
telepresence and immersive communication[38, 57], volumetric
videos provide increased quality of experience and social presence
[8, 49]. The most recent volumetric video formats (i.e. video-based
(V-PCC)[46] and geometry-based (G-PCC)[33]) point cloud cod-
ing) require significant processing resources for capturing, coding,
transmitting and rendering[33, 46]. While V-PCC is currently not
suitable for real-time communication (due to its encoding latency),
recent work has started to optimise G-VCC for telepresence scenar-
ios [7, 25] by data reduction and fusion. Still, many open challenges
exist regarding volumetric media delivery [52]. This includes high
data rates, high processing load, high encoding delays, low reso-
lution, or low frame rate (or a combination of those). To address
the current gaps of V-PCC and G-PCC our work mainly considers
a video-based (RGB plus depth) transmission approach as an initial
step towards full volumetric representation of users. The adapta-
tion of standard video codecs for depth streaming was studied in
[41], whereas more advanced conversion of depth information to
grayscale images was considered in [32] and [13].

2.5 Tele-immersion and telepresence systems
The research direction closest to this paper can be seen in tele-
immersion and telepresence. While telepresence systems offer a

68

https://www.oculus.com/facebook-horizon/

MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey Gunkel et al.

professional video conferencing experience with dedicated hard-
ware setups to showcase people more realistic (looking more nat-
ural, examples are Lifelike and Cisco), tele-immersion is making
the step to offer communication systems in virtual environments.
Multiple research efforts have been done in the last decades to
address tele-immersion and telepresence [27, 28, 31, 47, 55]. One of
the first examples of a tele-immersion system is TEEVE [56] which
allows 3D capture and rendering of users in a complex setup with
a frame rate of 4 5 frames per second. Another example of a tele-
immersion system is the Roomalive toolkit5[54] from Microsoft.
One research utilizing Roomalive is Room2Room [42], limited to
one-to-one interactions, it allows projection-based AR telepresence
with the help of a depth sensor and projector. We can summarize
the efforts of tele-immersion and telepresence systems in a complex
setup that require dedicated hardware, have high performance and
network requirements, or support only a very limited number of
users. In this paper, we present our work to bridge the gap from
low-cost simple video conferencing solutions towards volumetric
user representations in VR, with a focus on off-the-shelf hardware
and web-based client software for a low entry burden. Furthermore,
we aim to support an capture framerate, capture resolution, and
network utilisation similar to existing video conferencing solutions.

3 VRCOMM FRAMEWORK
Moving from traditional video conferencing towards VR conferenc-
ing arises new requirements on the system as well as the device
setup [21]. One of the main differences between video conferencing
and VR communication is that in VR, we work on a geometry-based
3D environment rather than a window-like 2D arrangement for
video conferencing. VR conferencing entails multiple aspects of
supporting new media formats, interaction paradigms, as well as
ways to orchestrate and synchronise media in the virtual environ-
ment. In particular, new ways to capture and blend users into the
geometrical space are crucial for higher immersion and presence
for natural communication [21], which includes 3D user represen-
tation, enabling self-representation and maintaining eye gaze with
others (i.e. not being restricted by wearing a HMD). In addition
to supporting novel user representation formats, VR conferencing
systems should scale to support numbers of users that are similar
to those of traditional 2D video conferencing applications. Figure
2, shows the VRComm system with the different components and
technology aspects being explained in the following subsections.

3.1 Architecture and media orchestration
VRComm is a web-based framework to build and consume shared
and social VR experiences. Our main motivation to utilize Web-
based technology is to cater for an easy and widespread deployment
and low entry burden for end users and developers. In this way, we
currently only make use of off-the-shelf hardware and currently
available web technologies.

Figure 2, shows the overall framework architecture of VRComm.
To initiate a web client instance, first the client JavaScript code and
any multimedia files are downloaded from a web server, secondly
the web client will register at the Media Orchestrator by select-
ing and exchanging session metadata and finally will negotiate
5https://www.microsoft.com/en-us/research/project/roomalive-toolkit/

WebRTC stream connections with the help of the Signal Master
(either as peer-to-peer or MCU transmission scheme). This results
in the following video transmission modules and processing steps:

(1) Capture of raw sensory data (see Section 3.3)
(2) Capture Processing (see Section 3.3):
(a) Video Background Removal
(b) (optional) Camera calibration
(c) (optional) HMD Replacement

(3) RGBD grayscale conversion (see Section 3.4)
(4) Web client ingest (see Section 3.2)
(5) (opt.) local rendering of self-representation (see Section 3.2)
(6) WebRTC Transmission (see Section 3.4), either
(a) Peer-to-peer (p2p), or
(b) (optional) central server / MCU-based (see Section 3.5)

(7) rendering of remote user(s) (see Section 3.2)
One central component of VRComm is a media orchestration

server, which manages communication sessions that users can join
to communicate with each other. For example, this also includes
the calibration data of the user capture to allow 3D reconstruction
of the user representation. Furthermore, the orchestration server
maintains all metadata to synchronize and modify the virtual en-
vironments of each client at run-time. The orchestration server
powers monitoring and modifying all client properties relevant to
the VR experience in real-time and thus facilitates complex inter-
active VR multimedia experiences. Particularly, the content that is
displayed can be modified, e.g., a game or movie, and the placement
of objects and users.

To facilitate the calibration and design of the VR rooms, we
have developed a metadata format to position users and immersive
media objects into the virtual space. The schema of the rooms
metadata is shown in Figure 3. In the centre is the VRoom which
can cover different objects related to users, the virtual scene (or
environment), and different media objects (like video panes or
interaction elements). We can currently support many different
media objects like 2D video (including DASH), images, 360-degree
content, 3D models (e.g., in the OBJ or GLTF format) and our own
2D/3D RGBD format (see Section 3.2]). Furthermore, the metadata-
based virtual scene creation and media object allocation also serves
as a global coordinate system and simplifies the synchronisation,
interaction and remote configuration of different user client states
in the system. The media orchestration provides an admin console
that grants a fine-grained control of all metadata properties in real-
time. This remote control is designed with the main aim to support
any user experience research.

3.2 Web Client
The entry point for the VRComm web client is offered by a web
server back-end. WebXR-enabled web browsers can connect to this
server back-end to obtain the client application, which is based
on open source software JavaScript frameworks Node.js, React,
SimpleWebRTC and A-Frame6. This allows any modern browser
to display the VR content on a screen or any Open VR hardware
enabled VR-HMD (e.g., Oculus Rift or Windows MR). Furthermore,
the client can access the image produced from the RGBD capture
module (see Section 3.3) to be displayed as self-representation or
6https://aframe.io/

69

https://www.microsoft.com/en-us/research/project/roomalive-toolkit/
https://aframe.io/

VRComm: An end-to-end web system for real-time photorealistic social VR communication MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey

Client

Capture Processing Web Client

Audio Headset

User

RGB+Depth

Capture
PC

A-Frame

Websockets

Web
Server

Media &
Session

Orchestrator
MCU

Signal
Master

Web Client &
Content

Session Control & Metadata

WebRTC Audio & Video Transmission

WebRTC Signalling

VR HMD

Figure 2: VRComm System components and user setup

User

Stream

Media

Timeline

VRoom

0..n Vroom 1
Seat

Scene

1 assignment 1

Scene
Object

Location

1
 s

e
at

s
2

..
n

1 assets 1..n

1
 s

tr
ea

m
 0

..
n

2D
Croma

3D RGBD
(Pointcloud)

3D RGBD
(Mesh)

360°
Image

3D Model
(e.g. GLTF)

Figure 3: Virtual Scene Description Metadata Schema

to be sent via WebRTC to one or multiple other clients. To support
such a multi-user connection, the client is connected to a signalling
server that handles streaming orchestration.

The rendering of users in the VR environment is done via cus-
tom WebGL shaders that alpha-blend user representations into the
virtual environment for a natural visual representation. We first
record users with a RGB-plus-depth sensor (e.g., in VRComm we
currently support Kinect v2, RealSense™ and Azure Kinect) and
then have two options for transmission: i) we replace the users
background with a fixed "chroma" colour before transmission (over

WebRTC), and after reception apply alpha-blending to remove the
background, resulting in a transparent image showing just the user
without his/her physical background. ii) we convert the depth val-
ues into grayscale and transmit them along the image to render
the user in 3D (see section 3.4). For capture and transmission, we
currently use a resolution of 540x800 pixels for RGB (with chroma
background) or 1080x800 pixels for RGBD images. This resolution is
matching the depth resolution of most depth sensors. However, our
system is fully adaptable to any resolution. Audio is also captured,
transmitted, and made spatially audible with the help of the Google
Resonance API7.

When utilizing a 360-degree VR environment, we will trans-
mit and render users in 2D only (RGB + chroma). While for 3D
geometry-based environments, we render users in such a way that
they can observe themselves (as self-representation) via 3D point
cloud. The point cloud is created by first converting the grayscale
depth data to a depth value and then recalculating the 3D position
of each point based on the calibration data of each RGB-D sensor.
This is done in a dedicated WebGL (GLSL) shader and thus runs
efficiently on the GPU. The following 3D mapping is used (per
pixel):

𝑧 = 𝑑𝑒𝑝𝑡ℎ (1)
𝑥 = (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑥 − 𝑜𝑢𝑡𝑝𝑢𝑡𝐶𝑒𝑛𝑡𝑒𝑟 .𝑥 − 0.5) ∗ 𝑧/𝑓 𝑜𝑐𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ (2)
𝑦 = (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑦 − 𝑜𝑢𝑡𝑝𝑢𝑡𝐶𝑒𝑛𝑡𝑒𝑟 .𝑦 − 0.5) ∗ 𝑧/𝑓 𝑜𝑐𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ (3)

Where depth is the distance of the pixel in meters, position is the
pixel coordinate on the RGB video, outputCenter is the centre pixel
coordinate of the sensor metadata, and focalLength is the focal
length of the sensor.

Similar to the self-representation, we display remote users based
on the video from a WebRTC connection. To render remote users,
we developed 3 types of components for 3 types of rendering:

(1) Rendering in 2D (RGB + chroma background) via a shader
that alpha blends the user into the virtual scene

7https://resonance-audio.github.io/resonance-audio/

70

https://resonance-audio.github.io/resonance-audio/

MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey Gunkel et al.

(2) Rendering in 3D (RGB + Depth) as point cloud (mapping the
3D points on a THREE.js Geometry8)

(3) Rendering in 3D (RGB + Depth) as mesh (mapping the 3D
points on a PlaneBufferGeometry9)

A VRComm client experience consists of VR environments re-
ferred to as ‘VRooms’ (see Figure 3). For the rendering of visual and
audio information (e.g., the VR Environment, objects and users), the
client will utilize the A-Frame framework, which combines the We-
bXR API with Three.js to provide a simple scripting framework for
the design and development of web-based XR experiences. This al-
lows to easily create 360-degree and 3D volumetric VR applications
while supporting many 3D scenes and models (including glTF™10).
A-Frame has integrated support for most common consumer hard-
ware (including any SteamVR and OpenXR enabled device), among
which the Oculus Quest, Windows Mixed Reality (WMR) headsets
and HTC Vive. Further A-Frame is supported by major PC and
laptop browsers like Mozilla Firefox, Google Chrome and Microsoft
Edge, several mobile browsers including Chrome and Firefox. As
a result, easy access to VR technology has become available on
the web. Internally, the client follows a completely modularized
structure via a combination of React Modules and A-Frame compo-
nents. This allows an easy and dynamic creation of individual VR
applications with different features.

3.3 Capture
One of the main challenges in any immersive communication sys-
tem is on how to capture the users. For natural interaction and
true social presence, it is important that a visual representation
accurately reflects the appearance and actions of each user. There-
fore we focus in this work on a camera-based capture solution to
capture a photorealistic representation of users in real-time. Many
factors have to be considered for this capture, as an example, some
of the main factors include lighting, colour, edge accuracy, and
other capture artefacts. The capture in VRComm is developed in a
modular architecture and currently allows the use of one or two
RGBD sensors and different processing modules. In the following,
we outline the capture modules:

Raw Sensor Capture. The first capture module does real-time
scene and user capture by reading the raw RGBD data from the cap-
ture sensor and mapping the colour and depth images to a shared
memory location on a client PC. Currently, we have modules to
support three types of RGBD sensors: Kinect v211, RealSense™ (In-
tel® RealSense™ SDK 2.012) and Azure Kinect13. However, different
RGBD sensors could easily be added without affecting any of the
subsequent modules.

Foreground-background removal (FGBG). The raw RGBD sensor
needs some further processing in a second capture module. The
main aim of thismodule is to improve the image quality and perform
real-time foreground-background (FGBG) extraction using colour
and depth images from shared memory. This is an important step

8https://threejs.org/docs/index.html#api/en/core/Geometry
9https://threejs.org/docs/index.html#api/en/geometries/PlaneBufferGeometry
10https://www.khronos.org/gltf/
11https://developer.microsoft.com/en-us/windows/kinect/
12https://www.intelrealsense.com/sdk-2/
13https://azure.microsoft.com/en-in/services/kinect-dk/

as for the user capture, we are exclusively interested in the user
itself rather than his or her background. Furthermore, this allows us
to only transmit the captured user and blend the visual (rendered)
representation of users into the virtual environment.

Multi-cam capture and calibration. Currently, we support capture
with one or two depth sensors. When two cameras are used, we
calibrate and align both cameras. The calibration phase concerns the
alignment of the two RGB-D sensors used to capture the participant.
The registering and aligning of the two sensors are done via the
help of a large ArUco14 marker (30𝑥30𝑐𝑚) and pose matching. This
results in a near 180◦ 3D representation of the user (front view),
from the RGB-D frame pairs [16]. The calibration parameters from
the rigid body transformation are sent as metadata together with
the RGB-D visual data.

HMD Replacement. The HMD Replacement module consists of
an open source available ArUco marker detection (implemented
using OpenCV15 in Python16) applied to the RGB-D image. When
the marker is attached to the HMD of the subject, the HMD can
be detected in real-time without assumptions on the position of
the subject or the capturing device. With additional markers on all
sides of the HMD, the detection also works when the user looks
left or right, up or down. The 2D detection in the RGB stream is
combined with the depth to acquire an accurate 3D position and
orientation of the HMD. There are multiple applications possible
for this 3D position and orientation:

(1) 3D head removal for self-representation, such that the view
of the subject is not occluded by the scan of his/her face

(2) Auto-calibration of multiple sensors, such that when two
sensors detect the same marker they can auto-calibrate

(3) Integration with FGBG removal, to only have one foreground
subject in VR

(4) 3D HMD replacement and 3D face repair in RGB-D or VR
Note that HMD replacement is not a core part of this paper and
will be handled in a subsequent publication.

3.4 RGBD grayscale transmission
The VRComm streaming approach relies on a web framework with
a peer-to-peer (p2p) nature for delivering video-based social VR
experiences to each of the participants. This web streaming frame-
work employs WebRTC for browser-based real-time communica-
tion. All 2D video streams and users’ audio are transmitted via
WebRTC. Any associated metadata are transmitted via a central me-
dia orchestration server and Socket.IO . Despite newer volumetric
streaming formats (like V-PCC [46] and G-PCC [33]), this allows us
to reuse many existing real-time streaming components (including
to benefit from full hardware acceleration).

We use the SimpleWebRTC library to support direct WebRTC-
based peer-to-peer communication between users for audio and
video. At this moment, voice communication is monaural and spa-
tially positioned in the receiver client (utilizing the Google Res-
onance Audio SDK for Web17). The integration of WebRTC with

14http://www.uco.es/investiga/grupos/ava/node/26
15https://opencv.org/
16https://www.python.org/
17https://resonance-audio.github.io/resonance-audio/

71

https://threejs.org/docs/index.html#api/en/core/Geometry
https://threejs.org/docs/index.html#api/en/geometries/PlaneBufferGeometry
https://developer.microsoft.com/en-us/windows/kinect/
https://www.intelrealsense.com/sdk-2/
https://azure.microsoft.com/en-in/services/kinect-dk/
http://www.uco.es/investiga/grupos/ava/node/26
https://opencv.org/
https://www.python.org/
https://resonance-audio.github.io/resonance-audio/

VRComm: An end-to-end web system for real-time photorealistic social VR communication MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey

a VRComm client is managed through an (Node.js) orchestration
server.

Grayscale conversion. For a depth transmission in VRComm we
target a simple and reliable approach that works in real-time and is
applicable to be used in any modern browser. This already implies a
couple of design choices, e.g., transferring of RGB and depth should
be done in one frame as a separate transmission and frame accurate
synchronisation is very difficult in the browser (as the underlying
media APIs needed for frame accurate synchronization are not
exposed in JavaScript in every browser). Similarly, many underlying
WebRTC transmission and decoding APIs are also not exposed by a
browser raising the need to make any colour conversion and depth
mapping directly in the WebGL (GLSL) shader itself.

For transmitting the RGB-D frame data over WebRTC to VR over
the internet, we convert the depth data into a grayscale image for
complying with current video encoders. For this conversion we use
an improved version of [22]. While [22] does not utilise the full
RGB range, we convert depth values corresponding to a real-world
distance of 0 − 1.5𝑚 into gray-colour values that are mapped to the
full RGB colour space (contrary to other approaches that directly
modifies the YUV values, which will not be possible to convert back
to depth in a browser WebGL shader). The grayscale depth image
is concatenated to the RGB image to stream it as a single RGB-D
video stream. In the VR environment, the depth image is converted
back into the 3D positions of individual pixels. In this paper, we
will refer to our algorithm as "GrayAVG". To ensure that GrayAVG
works within a depth range of 1.5 m we first subtract a fixed value
(this is the minimum distance a person is away from the camera to
allow full body capture and is transmitted as metadata and added
in the reconstruction) and remove all values outside of the 1.5 m
range. The following shows our algorithm in Python/NumPy18:

𝑑𝑒𝑝𝑡ℎ = 𝑑𝑒𝑝𝑡ℎ −𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (4)
𝑑𝑒𝑝𝑡ℎ[𝑑𝑒𝑝𝑡ℎ > 1500] = 0 (5)
𝑟 = 𝑑𝑒𝑝𝑡ℎ/3 (6)
𝑔 = (𝑑𝑒𝑝𝑡ℎ − 𝑟)/2 (7)
𝑏 = 𝑑𝑒𝑝𝑡ℎ − 𝑟 − 𝑔 (8)

3.5 RGB(D) Multipoint control Unit
One drawback of a p2p basedWebRTC approach for transmission is
scalability [43], as multiple users can quickly elevate the (CPU/GPU)
resource usage. To mitigate this, we can (optionally) deploy a Mul-
tipoint Control Unit (MCU), to aggregate streams centrally and
reduce the processing burden on individual clients.

Figure 4 depicts the architecture of our MCU. It reuses existing
open source components, such as the Janus Video Bridge [2], which
is a general purpose, central WebRTC server. While Janus takes
care of all WebRTC stream handling (i.e., SDP negotiation and
stream forwarding, as well as any audio transmission), the MCU
composes all uploaded video streams it receives from clients into
a single output stream which is then published via WebRTC to all
clients. This output stream resembles a video mosaic combining
all user streams, as depicted in Figure 5. As a result, clients are
able to retrieve all relevant streams together instead of separately.
18https://numpy.org/

WebRTC
(Audio/Video)

RTP
(Video)

WebRTC (Video Mosaic)

RTP
(Video)

Orchestration
Data

Request pipelines

Manage pipeline lifecycle (Docker Swarm API)

Request
Gateway rooms

Cluster
GStreamer Pipeline (Dockerized)

In A

In B

In C

Compositor

Prepare

Prepare

Prepare

Janus WebRTC Gateway
Streaming

Plugin
Audio SFU

Video passthrough

Clients

A B C

Session
Manager

Cluster
Manager

Figure 4: MCU Architecture [12]

3D Mosaic RGB+D (GreyAVG)

Stream A Stream B Stream C Stream D

MCU

Stream A Stream B Stream C Stream D

2D Mosaic RGB+Chroma

MCU

Figure 5: MCUMosaic composition of RGBD (GreyAVG, left)
and RGB+Chroma (right) input streams

This optimizes the network bandwidth due to more efficient routing
(each client only sends its video stream to theMCU, and no longer to
all other clients), as well as the decoding resources (clients typically
have a limited amount of hardware decoders, which can result in
higher CPU usage with many receiving streams).

Incoming WebRTC streams to the server are first remuxed by
the Janus WebRTC Gateway into RTP streams that are sent to the
MCU (based on GStreamer19 and Python). The GStreamer media
pipeline will then decode each individual user video stream into
frames and convert them into NumPy20 arrays. All NumPy im-
ages are then mapped into one complete output mosaic (see Figure
5) with efficient in-memory functions. This mosaic image is en-
coded into video frames and sent as a single RTP stream to Janus
for distribution to an all client broadcast. The MCU system has
been designed as a containerized service such that given enough
hardware, it is horizontally scalable over multiple parallel sessions.
These services can be managed using Docker Swarm21 and the
Media Orchestrator.

19https://gstreamer.freedesktop.org/
20https://numpy.org/
21https://www.docker.com/

72

https://numpy.org/
https://gstreamer.freedesktop.org/
https://numpy.org/
https://www.docker.com/

MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey Gunkel et al.

Table 1: Capture Performance According to sensor (1000+ samples each; mean values)

RGBD Sensor Capture Processing RDA Delay Processing Delay Browser Delay
(CPU in %) (GPU in %) (CPU in %) (in ms) (in ms) (in ms)

One Kinect v2 10.53% (SD 1.13) 6.63% (SD 2.73) 19.08% (SD 2.70) 78.72 (SD 15.87) 138.19 (SD 18.71) 342.01 (SD 39.31)
One RealSense™ D415 3.94% (SD 1.21) n/a 21.81% (SD 4.10) 79.54 (SD 15.79) 152.18 (SD 18.89) 190.16 (SD 19.56)
One Azure Kinect 4.43% (SD 2.00) 4.36% (SD 1.12) 9.64% (SD 1.90) 112.29 (SD 15.51) 155.99 (SD 16.90) 261.74 (SD 24.92)
Two RealSense™ D415 10.79% (SD 1.32) n/a 10.36% (SD 2.32) 82.84 (SD 15.08) 147.06 (SD 16.35) 234.89 (SD 24.63)
Two Azure Kinect 9.11% (SD 2.49) 9.22% (SD 0.45) 9.52% (SD 1.62) 162.28 (SD 13.38) 306.28 (SD 29.35) 382.99 (SD 35.43)

RDA

RGBD Sensor
Capture

RDA Processing Browser
(Firefox)

Figure 6: Measurements points of capture system

The user experience in VR Conferencing is greatly enhanced by
using spatial audio. This requires to uniquely address each individ-
ual audio stream, to render it at the appropriate spatial location.
Therefore, we use an SFU architecture (within the MCU) for the
audio, such that clients can selectively request and retrieve indi-
vidual audio streams from the MCU. The SFU part of the MCU is
implemented purely using Janus (using the Videoroom plugin, see
[2]), and requires no further processing.

4 SYSTEM EVALUATION
In this section, we focus on the technical evaluation of our system
only. A summary of user evaluation of our system can be found
in [21]. The evaluation of the core components of the system are
structured into three parts, capture (Section 4.1), grayscale based
depth transmission (Section 4.2) and web client evaluation based
on using p2p vs. central MCU-based transmission (Section 4.3).

4.1 Capture Evaluation
We evaluate the capture performance with different sensor set-ups
and at different points in our system. Figure 6 shows the different
components and measure points for delay and CPU/GPU usage:

(1) Read sensor data via the sensor SDK into RDA. RDA (Re-
mote Data Access) is a flexible infrastructure for real-time
distributed data access and data acquisition. It allows easy
exchange of video frame data between different software
modules and allow a high flexibility for development and
different hardware set-ups.

(2) Display data from RDA on the screen.
(3) Processing (i.e. FGBG and grayscale mapping)
(4) Screen capture the processed image and display it in the

browser as self-representation, or transmit via WebRTC. We
are currently following this procedure as no current browser
implements the Media Capture Depth Stream Extensions 22

22https://w3c.github.io/mediacapture-depth/

thus making it impossible to capture depth data directly in
the browser.

All measurements were done on a MSI GS65-Stealth-Thin-8RF
(with Intel® Core™ i7-8750H, GeForce® GTX 1070 Max-Q and
32GB RAM). The capture-to-display delays were measured with
VideoLat[24]23, with at least 1000 samples each. CPU and GPU per-
formance was measured with a modified version of the Resources
Consumption Metrics (RCM) measurement tool24 [34]. The RCM
tool is a native Windows application that allows to capture CPU,
GPU, memory usage per process and network statistics of the sys-
tem in a 1-second interval. Each performance measure was done
with a representative sample size of at least 30 minutes. Table 1
shows the results of the different measurements.

Overall, the different capture requirements and delays are all in
the expected range. However, the Azure Kinect shows an overall
higher delay. We also observed high CPU and GPU usage under
certain conditions (i.e., all other GPU processes being idle). As the
Azure Kinect is still a relatively new sensor, we expect that the
performance of the sensor might still improve in the future with
further updates to the SDK (we did our tests with firmware version
1.6.108079014 and SDK 1.4.0). Furthermore, the Kinect v2 and Re-
alSense™D415 included FGBG and thus show 10% more processing
loads compared to the other capture methods. In conclusion, our
current approach, including RDA, proofs beneficial for testing and
rapid prototyping. However, in an operational environment, we
expect to decrease the delay by at least 1-2 frames (30-60ms).

4.2 Depth Transmission Evaluation
We compared our depth-based conversion (GrayAVG) under differ-
ent encoding and bandwidth conditions with two other algorithms
(naive/simple, HSV). The "simple" algorithm is the most simple con-
version based on direct depth to RGBmapping (and thus only serves
as a minimal baseline). The HSV conversion is a reimplementation
of the HoloTuber Kit25 and further explained in this presentation26.
Thus, the different mapping functions in the following:

𝐷𝑒𝑝𝑡ℎ(𝑠𝑖𝑚𝑝𝑙𝑒) = (𝑟 + 𝑔 + 𝑏)/3 ∗ 4 +𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (9)
𝐷𝑒𝑝𝑡ℎ(𝐻𝑆𝑉) = ℎ ∗ 4 +𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (10)

𝐷𝑒𝑝𝑡ℎ(𝐺𝑟𝑎𝑦𝐴𝑉𝐺) = (𝑟 + 𝑔 + 𝑏) ∗ 2 +𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (11)

23https://videolat.org/
24https://github.com/ETSE-UV/RCM-UV
25https://github.com/TakashiYoshinaga/HoloTuberKit-for-AzureKinect
26https://speakerdeck.com/takashiyoshinaga/creating-holotuber-kit-hologram-
visualization-with-rgb-d-image-streaming-via-youtube

73

https://w3c.github.io/mediacapture-depth/
https://videolat.org/
https://github.com/ETSE-UV/RCM-UV
https://github.com/TakashiYoshinaga/HoloTuberKit-for-AzureKinect
https://speakerdeck.com/takashiyoshinaga/creating-holotuber-kit-hologram-visualization-with-rgb-d-image-streaming-via-youtube
https://speakerdeck.com/takashiyoshinaga/creating-holotuber-kit-hologram-visualization-with-rgb-d-image-streaming-via-youtube

VRComm: An end-to-end web system for real-time photorealistic social VR communication MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey

In this test, we focus on encoding formats that are widely avail-
able in modern browsers and compatible withWebRTC 27: VP8, VP9
and H.264. For the test, we used 3 clips of 10 seconds length with 30
fps (resulting into 300 frames in total for each video). Furthermore,
we analysed the videos using the mean absolute difference (MD) to
indicate the motion in the video stream:

low: user sitting, no movement, MD 44,92 (SD 13,51)
med: user sitting, some movement, MD51,34 (SD 27,27)

hi: user standing, high movement, MD61,52 (SD 33,34)
For each test condition, we made a full reference analysis mea-

sured with the peak signal-to-noise ratio (PSNR) of each frame and
with 30 different encoding bitrates (0.1 Mbit to 3 Mbit). We encoded
the video sequences with FFmpeg28 (libvpx, libvpx-vp9 and libx264)
with real-time encoding flags (deadline="realtime" for VP8/9 and
tune="zerolatency" for H264), GOP size of 6 and yuv420 pixel for-
mat. Results of the 3 depth conversion methods are shown in Figure
7. While the HSV conversion is more robust on lower bandwidth
constrains (up to 1,7Mbit), our approach (GrayAVG) outperforms
the HSV on higher bit-rates that are common for real-time video
conferencing (2-3Mbit). However, the main benefit of our approach
is that it does not require any HSV or color mapping but works with
a simple RGB conversion function that can be directly implemented
in a 3D rendering shader (i.e. OpenGL GLSL). This is of particular
importance for a web/browser implementation.

While Figures 7(a,b,c) include the overall average of all 3 video
sequences, we also compared our conversion to the 3 sequences in
more detail in Figure 7 (d). For this comparison, we excluded VP8 as
it significantly underperformed on all methods before (see Figure 7
a,b,c). As to be expected, the videos with a lower motion achieve a
higher PSNR under the same bandwidth and VP9 achieves a slightly
higher PSNR as H.264 (overall average of 44,47 VP9 vs. 42,72 H.264).
Thus, similar to other analysis of VP9. However, what is not shown
in this graph is that still VP9 is not on pair with H.264 in regards to
real-time encoding (delay and required CPU/GPU performance). In
this regard, VP9 only offers a marginal PSNR increase from H.264.

4.3 P2P vs MCU for SocialVR (Simulation)
To evaluate our system and client performance, we compare MCU
vs. peer-to-peer (p2p) transmission with different numbers of sim-
ulated users and two types of streams RGB with green chroma
background (rendered as flat 2D sprite) and RGB + Depth (rendered
as 3D point cloud). Users were simulated with the same stream used
in the grayscale evaluation (med - user siting with some movement,
MD 51,34 - SD: 27,27) and pre-encoded in H.264 with 2Mbit for
the RGB stream and 4 MBit for the RGBD stream. We utilize H.264
under these bit-rates as it provides the best balance of performance
and stream quality (based on our results from Section 4.2). When
using VP9 we observed higher CPU usage in the client and lower
frame rate throughput in the MCU. Furthermore, 2/4MBit aligns
with the values that are negotiated by Chrome in the p2p case.

We run the server and MCU on a Microsoft® Azure cloud in-
stance (Standard F8s_v2) with 8 vcpus (Intel® Xeon® Platinum
8168 @ 2.70GHz) and 16GB memory. The client runs in a Chrome

27https://developer.mozilla.org/en-US/docs/Web/Media/Formats/WebRTC_codecs
28https://ffmpeg.org/

30

35

40

45

50

55

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9

hi_libvpx-vp9 med_libvpx-vp9 low_libvpx-vp9

hi_libx264 med_libx264 low_libx264

20

25

30

35

40

0,1 0,3 0,5 0,7 0,9 1,1 1,3 1,5 1,7 1,9 2,1 2,3 2,5 2,7 2,9

libvpx libvpx-vp9 libx264

(a) Simple depth conversion PSNR

30

35

40

45

50

55

0,1 0,3 0,5 0,7 0,9 1,1 1,3 1,5 1,7 1,9 2,1 2,3 2,5 2,7 2,9

libvpx libvpx-vp9 libx264

30

35

40

45

50

0,1 0,3 0,5 0,7 0,9 1,1 1,3 1,5 1,7 1,9 2,1 2,3 2,5 2,7 2,9

libvpx libvpx-vp9 libx264

(b) HSV depth conversion PSNR

(c) GrayAVG depth PSNR

(d) GrayAVG PSNR of 3 video conditions

PSNR

PSNR

PSNR

Bitrate in Mbit

PSNR

Bitrate in Mbit

Bitrate in Mbit

Bitrate in Mbit

Figure 7: Different Depth conversion with VP8, VP9 and
H.264 encoding and different bitrate (in MBit)

browser on a VR laptop, MSI GS65-Stealth-Thin-8RF (Intel® Core™
i7-8750H, GeForce® GTX 1070 Max-Q and 32GB RAM).

The measurement results of our tests can be seen in Figure
8a (for 2D RGB+Chroma) and Figure 8b, for 3D RGBD). Further,
Figure 8c shows the performance of the MCU under the conditions
tested. The p2p transmission shows a much steeper curve in terms
of CPU resource usage than using an MCU, and both RGB and
RGBD behave very similarly. This is as the overhead from multiple

74

https://developer.mozilla.org/en-US/docs/Web/Media/Formats/WebRTC_codecs
https://ffmpeg.org/

MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey Gunkel et al.

10

20

30

40

50

60

70

80

90

2 3 4 5 6 8 10 12 14 16

CPU_MCU GPU_MCU CPU_p2p GPU_p2p

(a) Chrome performance (CPU/GPU) in % for MCU and p2p
transmission of RGB user streams (540x800)

10

20

30

40

50

60

70

80

2 3 4 5 6 8

CPU_MCU GPU_MCU CPU_p2p GPU_p2p

Number of simulated users

Number of simulated users

(b) Chrome performance (CPU/GPU) in % for MCU and p2p
transmission of RGBD user streams (1080x800)

0

10

20

30

40

50

60

70

MCU CPU MCU RAM

(c) MCU Performance in %

MCU User Tiles

Figure 8: Web client (Chrome) and MCU performance

encoding and decoding streams is significant against an one stream
upload and download in all MCU conditions. This said, p2p has clear
advantages on a lower number of users, this is also to be expected
as the MCU stream also transmits the uploaded stream back to
each client and thus creates overhead on a lower number of users.
Under all tests, the Chrome memory usage was kept in a reasonable
boundary ranging from 473 MB (2ppl RGB) up to 1368 MB (16ppl
RGB) on average. Thus, given our results, it is beneficial from 4
users on to follow an MCU methodology and the system becomes
unstable and unusable (when adding capture modules and adding
further processing needs when using an VR HMD) in p2p from 6
RGB and 5 RGBD clients. In our current implementation, however,
the MCU can support a maximum of 16 RGB and 8 RGBD clients
(see MCU performance in Figure 8,c). This said, as to be expected
from a central transcoding entity, the improved performance on

Figure 9: 6 users in 3D performance test

0

10

20

30

40

50

60

70

4ppl 2D P2P 4ppl 3D P2P 4ppl 2D MCU 4ppl 3D MCU 6ppl 2D MCU 6ppl 3D MCU

CPU (in %) GPU (in %) fps

Figure 10: Chrome Browser Performance of user test

end clients comes at the price of added delay, the full end-to-end
(capture to display) delays of the MCU vs p2p in the following
(measured with VideoLat and >1000 samples):

RGB delay: p2p 396ms (SD 41) / MCU 564ms (SD 69)
RGBD delay: p2p 384ms (SD 44) / MCU 622ms (SD 68)

Overall, this shows that the MCU might add an significant over-
head in terms of delay (but still in a considerable range of real-time
communication). Further enhancements in the MCU like GPU ac-
celerated encoding or tiled based compositions (that do not need
transcoding) can further increase the number of maximum users
and decrease the delay in the future.

4.4 Evaluation in realistic user setting
To further evaluate the simulation results, we conducted a set of
user sessions in a realistic setting connecting 4 and 6 users (from
Netherlands, France, and Germany). The details of the user end
points used can be found in Table 2. We conducted 6 sessions with
a duration of at least 25 minutes. An example of the user test is
shown in Figure 9. Four user sessions were conducted between
the nodes NL1, NL2, FR1 and FR2 in four conditions: P2P with 2D
and 3D presentation, MCU with 2D and 3D representation. As the
performance is not stable enough for a 6 user P2P condition, we
only tested 2 conditions: MCU with 2D and 3D representation. The
6 user sessions were conducted between the nodes NL2, NL3, NL4,

75

VRComm: An end-to-end web system for real-time photorealistic social VR communication MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey

Table 2: User Devices for performance evaluation

Name CPU GPU Memory Sensor Location

NL1 Intel Core i7-8750H CPU @ 2.20GHz NVIDIA GeForce GTX 1070 Max-Q 32 GB Azure Kinect NL, Amsterdam
NL2 Intel Core i7-8700 CPU @ 3.20GHz NVIDIA GeForce RTX 2080 32 GB Azure Kinect NL, Katwijk
NL3 Intel Core i7-6700K CPU @ 4.00Ghz NVIDIA GeForce GTX 980 Ti 16 GB Kinect V2 NL, The Hague
NL4 Intel Core i7-7820HK CPU @ 2.9GHz NVIDIA GeForce GTX 1070 24 GB Azure Kinect NL, Enschede
FR1 Intel Core i7-8750H CPU @ 2.20GHz NVIDIA GeForce GTX 1070 16 GB Kinect V2 FR, Rennes
FR2 Intel Core i7-47770K CPU @ 3.50GHz NVIDIA GeForce GTX 1050 Ti 16 GB Kinect V2 FR, Paris
DE1 Intel Core i7-8750H CPU @ 2.20GHz NVIDIA GeForce GTX 1070 Max-Q 32 GB Azure Kinect DE, Berlin

0

10

20

30

40

50

60

70

80

90

4ppl 2D P2P 4ppl 3D P2P 4ppl 2D MCU 4ppl 3D MCU 6ppl 2D MCU 6ppl 3D MCU

video upload round trip delay (in ms) jitter (in ms)

Figure 11: WebRTC video upload delay and jitter

0

2

4

6

8

10

12

14

16

18

20

22

24

4ppl 2D P2P 4ppl 3D P2P 4ppl 2D MCU 4ppl 3D MCU 6ppl 2D MCU 6ppl 3D MCU

Upload (Mbit/s) Download (Mbit/s)

Figure 12: Video Upload & Download Traffic

FR1, FR2 and DE1. The results of these tests are presented in the
following. CPU, GPU and network performance was measured with
the same Resources Consumption Metrics (RCM) measurement tool
[34] as in the simulation evaluation (section 4.3), the frame rate
was measured via the Aframe stats and the WebRTC delay was
measured via the Chrome WebRTC stats.

Figure 10, shows the overall performance average per condition
(of all user end points) of the Chrome instance running the Web
client in terms of CPU, GPU, and rendering frame rate. The values
are slightly lower in terms of GPU/CPU usage than in the simulation
due to more powerful end points with the same trend in MCU

vs P2P resource usage: The MCU condition allows to reduce the
CPU load at the cost of GPU usage. As CPU resources are more
sparse and necessary for many more processes, this is particularly
beneficial to support more simultaneous users and constant high-
quality rendering. Important to note is that the frame rates are only
indicative and not realistic for the rendering performance in an VR
HMD. This is, we conducted the evaluation without a VR HMD
to simplify the measurements and user interactions. Furthermore,
the browser executes various optimisation strategies to balance the
performance load with visual rendering quality. None of the users
perceive stuttering or visual impact due to performance and the
CPU/GPU load was low enough to allow higher frame rates in VR.

Figure 11, shows the overall average per condition (of all user end
points) of the video upload round trip delay and jitter. These delays
are additional to the overall delay values reported in the simulation
evaluation (section 4.3). We can observe an overall higher delay and
jitter for P2P transmission compared to central MCU transmission.
However, one condition "4 users MCU with 2D representation"
shows a high standard derivation as one client (FR1) observed
higher delay values. This is to be expected in such a test (with
a realistic and varying internet connection) and is in the normal
boundaries of delay to expect for WebRTC transmission (and in the
delay range acceptable for remote communication).

Figure 12, shows the overall average per condition (of all user
end points) in network traffic. Our results reflect the main bene-
fits of an central WebRTC approach (MCU) as the upload traffic is
significantly decreased. This is as in the MCU condition the repre-
sentation of a user is only uploaded once, while in the P2P condition
the user representation has to be uploaded to each other end point.
Overall, the MCU is capable to use network resources much more
efficiently (based on the cost of central computation, see 4.3).

Overall, the user evaluation confirms the performance measures
of the simulation in more realistic settings. The results show that we
can achieve VR communication with similar network transfer rates
and slightly more CPU/GPU resource usage compared to video
conferencing solutions while being able to render users both in 2D
and volumetric 3D.

5 DISCUSSION & FUTUREWORK
Our evaluation (section 4) shows that our proposed capture and
depth to grayscale conversion for RGBD video data is suitable for
real-time video transmission under bandwidth considerations typi-
cal for current video conferencing systems. However, for other bi-
trates (i.e., below 1.5 Mbit and above 3 Mbit), as well as pre-encoded

76

MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey Gunkel et al.

content, other solutions might result into a better visual quality.
The real strength of our method is that it works on the RGB colour
space and thus does not require direct access to encoding APIs (e.g.,
as YUV mapping would require), which makes it a suitable solution
for web applications (due to its limitations in not revealing many
underlying native media APIs do not allow many other RGB+Depth
transmission techniques).

With VRComm, we extend common video conferencing opti-
misation solutions, i.e., an MCU to support RGBD video which is
important to address the dedicated performance requirements of
VR applications. In our current setup, we can support 16 2D (RGB
+ chroma) users and 8 3D (RGB + Depth) users, while the use of an
MCU proves to be efficient from 4 users onwards. It is important
to note here that our additions to the MCU in terms of handling
our RGBD video format are fully compatible to any other MCU
optimisation technique. For example, in more complex use cases
one MCU might not be enough to cater for many geographical
distributed users. Then a multi-MCU solution (or extended with
multiple SFUs) could be deployed. Together with other optimisa-
tions like not rendering all users at the same time, this can increase
scalability, visual quality and reduce delay.

Our evaluation of different capture configurations (section 4.1)
shows reasonable CPU / GPU usage in all conditions. Furthermore,
it offers a modular design to add different processing and image
improvements like foreground background removal, HMD replace-
ment, and image alignment calibration. One of the main bottle
necks of our current approach is the connection to the browser, as
this is currently done via a screen rendering and screen capture
approach. In the future, this can be mitigated by direct access of the
browser to the APIs of the depth sensor (i.e., via the W3C Media
Capture Depth Stream Extensions) and a combination of processing
within the browser client and in the network.

Our current system design and example VR experiences show
that multi-user photorealistic immersive media applications are
possible in real-time on the web. Allowing to use such applications
without downloading and installing large software packages. How-
ever, current browser implementations still have some drawbacks
regarding WebXR and other immersive media functionalities. One
problem is that the performance can significantly vary between
different browsers and different browser versions. Which can make
it difficult to widely support your application with a constant high
quality. For this paper, we only used Chrome as a browser client.
We also tested a working solution of VRComm with other browsers
like Firefox and Edge (i.g., utilizing VP8 or VP9 encoding for theWe-
bRTC transmission). Currently, however, daily updates and changes
in APIs can still break different aspects of the application and might
make a widespread deployment cumbersome. Overall, video codec
support, frame accurate synchronisation, underlyingWebRTC func-
tionality, and the connection of WebXR with different headsets (or
the Steam29 OpenXR30 Api) still need to mature across browsers to
offer a constant and high-quality user experience.

To get towards full VR and AR conferencing, the main goal is to
create volumetric representation that fully blends into the AR or

29https://store.steampowered.com/steamvr
30https://www.khronos.org/openxr/

VR environment. For this, it is most essential to have good depth in-
formation (sending, transmission, and rendering). For now this can
be done with solutions (as presented in this paper), but eventually
can be done via new 3Dmedia formats like MPEG V-PCC or G-PCC,
however currently V-PCC is not real-time yet and GPCC might suf-
fer from performance gaps (as there is no hardware acceleration for
such codecs yet). Thus, the presented solution can be utilized right
now for many VR and AR scenarios (as presented in [21]), while
still offering multiple points for further improvement. Furthermore,
the solution as presented in this paper does not exclude but adds
to the current development of new 3D video formats like V-PCC.
As real-time depth to 2D video mapping is also an aspect of V-PCC
and solutions like the MCU can be utilized in the future to support
scalability and large user groups for V-PCC.

Currently, VRComm can support up to 16 users in VR communi-
cation experiences, which is similar to direct interaction support in
most video conferencing systems. To support more complex and
large groups of users (100+ users, e.g., to support lectures, con-
ferences, or galas), our future work will focus on moving more
processing from the client into the cloud and edge. For example,
new split rendering techniques can allow more lightweight and low
powered end devices (e.g., AR glasses and mobile phones) to allow
photorealistic XR applications with increased visual quality.

6 CONCLUSION
In this paper, we present a web-enabled video-based social VR
framework that allows to rapidly develop, test, and evaluate pho-
torealistic VR communication experiences. By combining video
conferencing technology with social VR capabilities, we offer a
new end-to-end pipeline (capture, processing, transmission, and
rendering) to allow real-time shared immersive experiences and
volumetric communication. Our novel transmission scheme for
grayscale based depth information via 2D video proofs particularity
usefully for web applications (that do not allow other depth con-
version due to browser API limitations). Finally, the evaluation of
our system in a simulation and realistic user setting shows that our
solution utilizes processing (CPU / GPU) acceptable for modern
(VR-ready) PCs and under network bandwidth constrains similar
to existing video conferencing solutions. Still, more research is
necessary to get all aspects of the technology ready (i.e., spatial
computing, HMD replacement, enhanced quality transmission of
real-time 2D/3D video data and system scalability for large sets of
simultaneous users).

ACKNOWLEDGMENTS
This paper was partly funded by the European Commission as part
of the H2020 program, under the grant agreement 762111 (VRTo-
gether, http://vrtogether.eu/). In particular, we like to acknowledge
the valuable contributions made by our project partner Viaccess-
Orca (VO), part of the Orange Group, who provided a library to
capture the WebRTC transmission stats. Furthermore, we like to
thank Vincent Lepec, Jean-Baptiste Pigree and Guillaume Debeneix
from VO who participated in the remote testing.

77

https://store.steampowered.com/steamvr
https://www.khronos.org/openxr/

VRComm: An end-to-end web system for real-time photorealistic social VR communication MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey

REFERENCES
[1] D. S. Alexiadis, A. Chatzitofis, N. Zioulis, O. Zoidi, G. Louizis, D. Zarpalas, and

P. Daras. 2017. An Integrated Platform for Live 3D Human Reconstruction and
Motion Capturing. IEEE Transactions on Circuits and Systems for Video Technology
27, 4 (2017), 798–813.

[2] Alessandro Amirante, Tobia Castaldi, LorenzoMiniero, and Simon Pietro Romano.
2015. Performance Analysis of the Janus WebRTC Gateway. In Proceedings of
the 1st Workshop on All-Web Real-Time Systems (Bordeaux, France) (AWeS ’15).
Association for Computing Machinery, New York, NY, USA, Article 4, 7 pages.
https://doi.org/10.1145/2749215.2749223

[3] Jeremy N Bailenson and Nick Yee. 2005. Digital chameleons: Automatic assimi-
lation of nonverbal gestures in immersive virtual environments. Psychological
science 16, 10 (2005), 814–819.

[4] Steve Benford, Chris Greenhalgh, Tom Rodden, and James Pycock. 2001. Collab-
orative virtual environments. Commun. ACM 44, 7 (2001), 79–85.

[5] Jim Blascovich and Jeremy Bailenson. 2011. Infinite reality: Avatars, eternal life,
new worlds, and the dawn of the virtual revolution. William Morrow & Co.

[6] Xavier P Burgos-Artizzu, Julien Fleureau, Olivier Dumas, Thierry Tapie, François
LeClerc, and Nicolas Mollet. 2015. Real-time expression-sensitive hmd face
reconstruction. In SIGGRAPH Asia 2015 Technical Briefs. 1–4.

[7] Gianluca Cernigliaro, Marc Martos, Mario Montagud, Amir Ansari, and Sergi
Fernandez. 2020. PC-MCU: Point Cloud Multipoint Control Unit for Multi-User
Holoconferencing Systems. In Proceedings of the 30th ACM Workshop on Network
and Operating Systems Support for Digital Audio and Video (Istanbul, Turkey)
(NOSSDAV ’20). Association for Computing Machinery, New York, NY, USA,
47–53. https://doi.org/10.1145/3386290.3396936

[8] S. Cho, S. Kim, J. Lee, J. Ahn, and J. Han. 2020. Effects of volumetric capture avatars
on social presence in immersive virtual environments. In 2020 IEEE Conference
on Virtual Reality and 3D User Interfaces (VR). 26–34.

[9] Carlos Coelho, JG Tichon, Trevor J Hine, GM Wallis, and Giuseppe Riva. 2006.
Media presence and inner presence: the sense of presence in virtual reality
technologies. In From communication to presence: Cognition, emotions and culture
towards the ultimate communicative experience. IOS Press, Amsterdam, 25–45.

[10] Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev, David
Calabrese, Hugues Hoppe, Adam Kirk, and Steve Sullivan. 2015. High-Quality
Streamable Free-Viewpoint Video. ACM Trans. Graph. 34, 4, Article 69 (July 2015),
13 pages. https://doi.org/10.1145/2766945

[11] Francesca De Simone, Jie Li, Henrique Galvan Debarba, Abdallah El Ali, SimonNB
Gunkel, and Pablo Cesar. 2019. Watching videos together in social virtual reality:
An experimental study on user’s QoE. In 2019 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR). IEEE, 890–891.

[12] Sylvie Dijkstra-Soudarissanane, Karim El Assal, Simon Gunkel, Frank ter Haar,
Rick Hindriks, Jan Willem Kleinrouweler, and Omar Niamut. 2019. Multi-sensor
capture and network processing for virtual reality conferencing. In Proceedings
of the 10th ACM Multimedia Systems Conference. 316–319.

[13] Sam Ekong, Christoph W. Borst, Jason Woodworth, and Terrence L. Chambers.
2016. Teacher-Student VR Telepresence with Networked Depth Camera Mesh
and Heterogeneous Displays. In Advances in Visual Computing, George Bebis,
Richard Boyle, Bahram Parvin, Darko Koracin, Fatih Porikli, Sandra Skaff, Alireza
Entezari, Jianyuan Min, Daisuke Iwai, Amela Sadagic, Carlos Scheidegger, and
Tobias Isenberg (Eds.). Springer International Publishing, Cham, 246–258.

[14] Carmine Elvezio, Mengu Sukan, Ohan Oda, Steven Feiner, and Barbara Tversky.
2017. Remote Collaboration in AR and VR Using Virtual Replicas. In ACM
SIGGRAPH 2017 VR Village (Los Angeles, California) (SIGGRAPH ’17). Association
for Computing Machinery, New York, NY, USA, Article 13, 2 pages. https:
//doi.org/10.1145/3089269.3089281

[15] Christian Feldmann, Christopher Bulla, and Bastian Cellarius. 2013. Efficient
stream-reassembling for video conferencing applications using tiles in HEVC. In
Proc. of International Conferences on Advances in Multimedia (MMEDIA). 130–135.

[16] Leonor Fermoselle, Simon Gunkel, Frank ter ter Haar, Sylvie Dijkstra-
Soudarissanane, Alexander Toet, Omar Niamut, and Nanda van van der Stap.
2020. Let’s Get in Touch! Adding Haptics to Social VR. In ACM Interna-
tional Conference on Interactive Media Experiences (Cornella, Barcelona, Spain)
(IMX ’20). Association for Computing Machinery, New York, NY, USA, 174–179.
https://doi.org/10.1145/3391614.3399396

[17] Christian Frueh, Avneesh Sud, and Vivek Kwatra. 2017. Headset removal for
virtual and mixed reality. In ACM SIGGRAPH 2017 Talks. 1–2.

[18] Maia Garau, Mel Slater, Vinoba Vinayagamoorthy, Andrea Brogni, Anthony Steed,
and M Angela Sasse. 2003. The impact of avatar realism and eye gaze control on
perceived quality of communication in a shared immersive virtual environment.
In Proceedings of the SIGCHI conference on Human factors in computing systems.
529–536.

[19] Juan C Granda, Pelayo Nuño, Francisco J Suárez, and Daniel F García. 2015.
Overlay network based on WebRTC for interactive multimedia communications.
In 2015 International Conference on computer, information and telecommunication
systems (CITS). IEEE, 1–5.

[20] RA Grier, H Thiruvengada, SR Ellis, P Havig, KS Hale, and JG Hollands. 2012.
Augmented Reality–implications toward virtual reality, human perception and
performance. In Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, Vol. 56. SAGE Publications Sage CA: Los Angeles, CA, 1351–1355.

[21] S.N.B Gunkel, Stokking H., T. De Koninck, and OANiamut. 2019. Everyday Photo-
Realistic Social VR: Communicate and Collaborate with an Enhanced Co-Presence
and Immersion. In Technical Papers International Broadcasting Convention (IBC).

[22] Simon NB Gunkel, Hans M Stokking, Martin J Prins, Nanda van der Stap, Frank
B ter Haar, and Omar A Niamut. 2018. Virtual Reality Conferencing: Multi-user
immersive VR experiences on the web. In Proceedings of the 9th ACM Multimedia
Systems Conference. 498–501.

[23] Michitaka Hirose, Tetsuro Ogi, and Toshio Yamada. 1999. Integrating live video
for immersive environments. IEEE MultiMedia 6, 3 (1999), 14–22.

[24] Jack Jansen. 2014. VideoLat. Proceedings of the ACM International Conference on
Multimedia - MM 14 (2014). https://doi.org/10.1145/2647868.2654891

[25] Jack Jansen, Shishir Subramanyam, Romain Bouqueau, Gianluca Cernigliaro,
Marc Martos Cabré, Fernando Pérez, and Pablo Cesar. 2020. A pipeline for
multiparty volumetric video conferencing: transmission of point clouds over low
latency DASH. In Proceedings of the 11th ACM Multimedia Systems Conference.
341–344.

[26] Peter Kauff and Oliver Schreer. 2002. An immersive 3D video-conferencing
system using shared virtual team user environments. In Proceedings of the 4th
international conference on Collaborative virtual environments. 105–112.

[27] Gregorij Kurillo and Ruzena Bajcsy. 2013. 3D teleimmersion for collaboration
and interaction of geographically distributed users. Virtual Reality 17, 1 (2013),
29–43.

[28] Jason Leigh, Thomas A DeFanti, A Johnson, Maxine Brown, and D Sandin. 1997.
Global tele-immersion: Better than being there. In Proceedings of ICAT, Vol. 97.
3–5.

[29] Jason Leigh, Andrew E Johnson, Thomas A DeFanti, Maxine Brown, M Dastagir
Ali, Stuart Bailey, Andy Banerjee, P Benerjee, Jim Chen, Kevin Curry, et al.
1999. A review of tele-immersive applications in the CAVE research network. In
Proceedings IEEE Virtual Reality (Cat. No. 99CB36316). IEEE, 180–187.

[30] Hao Li, Laura Trutoiu, Kyle Olszewski, Lingyu Wei, Tristan Trutna, Pei-Lun
Hsieh, Aaron Nicholls, and Chongyang Ma. 2015. Facial performance sensing
head-mounted display. ACM Transactions on Graphics (ToG) 34, 4 (2015), 1–9.

[31] Jyh-Ming Lien, Gregorij Kurillo, and Ruzena Bajcsy. 2010. Multi-camera tele-
immersion system with real-time model driven data compression. The Visual
Computer 26, 1 (2010), 3.

[32] Yunpeng Liu, Stephan Beck, Renfang Wang, Jin Li, Huixia Xu, Shijie Yao, Xi-
aopeng Tong, and Bernd Froehlich. 2015. Hybrid Lossless-Lossy Compression
for Real-Time Depth-Sensor Streams in 3D Telepresence Applications. 442–452.
https://doi.org/10.1007/978-3-319-24075-6_43

[33] R. Mekuria, K. Blom, and P. Cesar. 2017. Design, Implementation, and Evaluation
of a Point Cloud Codec for Tele-Immersive Video. IEEE Transactions on Circuits
and Systems for Video Technology 27, 4 (2017), 828–842.

[34] Mario Montagud, Juan Antonio De Rus, Rafael Fayos-Jordan, Miguel Garcia-
Pineda, and Jaume Segura-Garcia. 2020. Open-Source Software Tools for
Measuring Resources Consumption and DASH Metrics. In Proceedings of the
11th ACM Multimedia Systems Conference (Istanbul, Turkey) (MMSys ’20). As-
sociation for Computing Machinery, New York, NY, USA, 261–266. https:
//doi.org/10.1145/3339825.3394931

[35] Nels Numan, Frank Haar, and Pablo Cesar. 2021. Generative RGB-D Face Com-
pletion for Head-Mounted Display Removal. In 2021 IEEE Virtual Humans and
Crowds for Immersive Environments (VHCIE). IEEE, IEEE.

[36] Pelayo Nuño, Francisco G Bulnes, Juan C Granda, Francisco J Suárez, and Daniel F
García. 2018. A Scalable WebRTC Platform based on Open Technologies. In 2018
International Conference on Computer, Information and Telecommunication Systems
(CITS). IEEE, 1–5.

[37] Tetsuro Ogi, Toshio Yamada, Ken Tamagawa, Makoto Kano, andMichitaka Hirose.
2001. Immersive telecommunication using stereo video avatar. In Proceedings
IEEE Virtual Reality 2001. IEEE, 45–51.

[38] Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne Chang, Adarsh
Kowdle, Yury Degtyarev, David Kim, Philip L Davidson, Sameh Khamis, Ming-
song Dou, et al. 2016. Holoportation: Virtual 3d teleportation in real-time. In
Proceedings of the 29th Annual Symposium on User Interface Software and Technol-
ogy. 741–754.

[39] J. Outlaw and B. Duckles. 2017. Why Woman Don’t Like Social Virtual Reality.
https://extendedmind.io/social-vr

[40] J. Park, P. A. Chou, and J. Hwang. 2019. Rate-Utility Optimized Streaming of
Volumetric Media for Augmented Reality. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems 9, 1 (2019), 149–162.

[41] Fabrizio Pece, Jan Kautz, and TimWeyrich. 2011. Adapting standard video codecs
for depth streaming.. In EGVE/EuroVR. 59–66.

[42] Tomislav Pejsa, Julian Kantor, Hrvoje Benko, Eyal Ofek, and AndrewWilson. 2016.
Room2room: Enabling life-size telepresence in a projected augmented reality
environment. In Proceedings of the 19th ACM conference on computer-supported
cooperative work & social computing. 1716–1725.

78

https://doi.org/10.1145/2749215.2749223
https://doi.org/10.1145/3386290.3396936
https://doi.org/10.1145/2766945
https://doi.org/10.1145/3089269.3089281
https://doi.org/10.1145/3089269.3089281
https://doi.org/10.1145/3391614.3399396
https://doi.org/10.1145/2647868.2654891
https://doi.org/10.1007/978-3-319-24075-6_43
https://doi.org/10.1145/3339825.3394931
https://doi.org/10.1145/3339825.3394931
https://extendedmind.io/social-vr

MMSys ’21, September 28–October 1, 2021, Istanbul, Turkey Gunkel et al.

[43] Stefano Petrangeli, Dries Pauwels, Jeroen van der Hooft, Tim Wauters, Filip
De Turck, and Jürgen Slowack. 2018. Improving quality and scalability of We-
bRTC video collaboration applications. In Proceedings of the 9th ACM Multimedia
Systems Conference. 533–536.

[44] O. Schreer, I. Feldmann, S. Renault, M. Zepp, M. Worchel, P. Eisert, and P. Kauff.
2019. Capture and 3D Video Processing of Volumetric Video. In 2019 IEEE
International Conference on Image Processing (ICIP). 4310–4314.

[45] Ralph Schroeder. 2012. The social life of avatars: Presence and interaction in shared
virtual environments. Springer Science & Business Media.

[46] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A. Cohen,
M. Krivokuća, S. Lasserre, Z. Li, J. Llach, K. Mammou, R. Mekuria, O. Nakagami,
E. Siahaan, A. Tabatabai, A. M. Tourapis, and V. Zakharchenko. 2019. Emerging
MPEG Standards for Point Cloud Compression. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems 9, 1 (2019), 133–148. https://doi.org/10.
1109/JETCAS.2018.2885981

[47] Renata M. Sheppard, Mahsa Kamali, Raoul Rivas, Morihiko Tamai, Zhenyu Yang,
Wanmin Wu, and Klara Nahrstedt. 2008. Advancing Interactive Collaborative
Mediums through Tele-Immersive Dance (TED): A Symbiotic Creativity and De-
sign Environment for Art and Computer Science. In Proceedings of the 16th ACM
International Conference on Multimedia (Vancouver, British Columbia, Canada)
(MM ’08). Association for Computing Machinery, New York, NY, USA, 579–588.
https://doi.org/10.1145/1459359.1459437

[48] Mel Slater. 2018. Immersion and the illusion of presence in virtual reality. British
Journal of Psychology 109, 3 (2018), 431–433.

[49] S. Subramanyam, J. Li, I. Viola, and P. Cesar. 2020. Comparing the Quality of
Highly Realistic Digital Humans in 3DoF and 6DoF: A Volumetric Video Case
Study. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
127–136.

[50] Masayuki Takemura and Yuichi Ohta. 2005. Generating High-Definition Facial
Video for Shared Mixed Reality.. In MVA. 422–425.

[51] Justus Thies, Michael Zollhöfer, Marc Stamminger, Christian Theobalt, and
Matthias Nießner. 2017. Demo of FaceVR: real-time facial reenactment and
eye gaze control in virtual reality. In ACM SIGGRAPH 2017 Emerging Technologies.
1–2.

[52] J. v. d. Hooft, M. T. Vega, T. Wauters, C. Timmerer, A. C. Begen, F. D. Turck, and
R. Schatz. 2020. From Capturing to Rendering: Volumetric Media Delivery with
Six Degrees of Freedom. IEEE Communications Magazine 58, 10 (2020), 49–55.
https://doi.org/10.1109/MCOM.001.2000242

[53] M. Westerlund and S. Wenger. 2015. RTP Topologies. RFC 7667. RFC Editor.
https://tools.ietf.org/html/rfc7667

[54] Andrew D. Wilson and Hrvoje Benko. 2016. Projected Augmented Reality with
the RoomAlive Toolkit. In Proceedings of the 2016 ACM International Confer-
ence on Interactive Surfaces and Spaces (Niagara Falls, Ontario, Canada) (ISS
’16). Association for Computing Machinery, New York, NY, USA, 517–520.
https://doi.org/10.1145/2992154.2996362

[55] Zhenyu Yang, Bin Yu, Klara Nahrstedt, and Ruzena Bajscy. 2006. A multi-stream
adaptation framework for bandwidth management in 3D tele-immersion. In
Proceedings of the 2006 international workshop on Network and operating systems
support for digital audio and video. 1–6.

[56] Zhenyu Yang, K. Nahrstedt, Yi Cui, Bin Yu, Jin Liang, Sang-hack Jung, and
R. Bajscy. 2005. TEEVE: the next generation architecture for tele-immersive
environments. In Seventh IEEE International Symposium on Multimedia (ISM’05).
8 pp.–. https://doi.org/10.1109/ISM.2005.113

[57] N. Zioulis, D. Alexiadis, A. Doumanoglou, G. Louizis, K. Apostolakis, D. Zarpalas,
and P. Daras. 2016. 3D tele-immersion platform for interactive immersive expe-
riences between remote users. In 2016 IEEE International Conference on Image
Processing (ICIP). 365–369.

79

https://doi.org/10.1109/JETCAS.2018.2885981
https://doi.org/10.1109/JETCAS.2018.2885981
https://doi.org/10.1145/1459359.1459437
https://doi.org/10.1109/MCOM.001.2000242
https://tools.ietf.org/html/rfc7667
https://doi.org/10.1145/2992154.2996362
https://doi.org/10.1109/ISM.2005.113

	Abstract
	1 Introduction
	2 Related work
	2.1 Video Conferencing
	2.2 Social VR
	2.3 Spatial Computing & HMD replacement
	2.4 Volumetric video capture and transmission
	2.5 Tele-immersion and telepresence systems

	3 VRComm Framework
	3.1 Architecture and media orchestration
	3.2 Web Client
	3.3 Capture
	3.4 RGBD grayscale transmission
	3.5 RGB(D) Multipoint control Unit

	4 System Evaluation
	4.1 Capture Evaluation
	4.2 Depth Transmission Evaluation
	4.3 P2P vs MCU for SocialVR (Simulation)
	4.4 Evaluation in realistic user setting

	5 Discussion & Future work
	6 Conclusion
	Acknowledgments
	References

