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Abstract

While recent work explored streaming volumetric content

on-demand, there is little effort on live volumetric video

streaming that bears the potential of bringing more exciting

applications than its on-demand counterpart. To fill this crit-

ical gap, in this paper, we propose MetaStream, which is, to

the best of our knowledge, the first practical live volumetric

content capture, creation, delivery, and rendering system

for immersive applications such as virtual, augmented, and

mixed reality. To address the key challenge of the stringent

latency requirement for processing and streaming a huge

amount of 3D data,MetaStream integrates several innova-

tions into a holistic system, including dynamic camera cal-

ibration, edge-assisted object segmentation, cross-camera

redundant point removal, and foveated volumetric content

rendering. We implement a prototype of MetaStream us-

ing commodity devices and extensively evaluate its perfor-

mance. Our results demonstrate thatMetaStream achieves

low-latency live volumetric video streaming at close to 30

frames per second on WiFi networks. Compared to state-of-

the-art systems, MetaStream reduces end-to-end latency by

up to 31.7% while improving visual quality by up to 12.5%.

CCS Concepts

• Human-centered computing → Mobile computing;

Visualization systems and tools; • Computing methodolo-

gies → Volumetric models.
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1 Introduction

Volumetric videos enable six degrees of freedom (6DoF) mo-

tion for viewers by modeling (physical) objects as point

clouds or 3D meshes [36, 48]. When watching a volumetric

video, users can freely explore its content in 3D space by

changing not only viewing directions, which is supported

by 360° videos [37, 65], but also, more importantly, view-

points (i.e., translational position in 3D space), which is a

unique feature of volumetric content. Thus, volumetric con-

tent can be integrated into virtual, augmented, and mixed

reality (VR/AR/MR) applications to offer a truly immersive

user experience [59]. As the key component of holographic

communication [26] that is envisaged for 6G [70, 71], the cap-

ture, creation, delivery, and rendering of volumetric content

(i.e., volumetric video streaming) has registered numerous

applications in healthcare, education, entertainment, etc.

Existing work on volumetric video streaming [33, 34, 36,

48, 60, 64, 72, 82, 83] mainly focused on video on demand

(VOD) that streams pre-recorded content, and there is little

effort on live streaming that simultaneously captures and

delivers volumetric content in real-time. Different from VOD,

live streaming can facilitate more exciting use cases. For ex-

ample, a surgeon can operate on remote patients via their live

volumetric content feed to support telesurgery [25], saving

people’s lives on battlefields and in underdeveloped areas.

*These authors contributed equally to this work.
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Video Cameras Data Content Rendering DoF

Volume Creation Overhead

2D Single Low – Low –

360° Multi. Medium 2D Stitch Low 3DoF

Volumetric Multi. High 3D Synthesis High 6DoF

Table 1: Comparison of live streaming for different types of

videos, including regular 2D, 360°, and volumetric videos.

We list the key challenges of live volumetric video stream-

ing, by comparing different types of live streaming including

regular 2D, 360°, and volumetric videos in Table 1. Among

them, volumetric video streaming provides the richest amount

of information of the delivered content by enabling 6DoF

motion and providing a truly immersive experience, at the

cost of high computation and communication overhead. For

example, volumetric video capture requires a multi-camera

setup and generates a high volume of data to process; it de-

mands 3D content synthesis and rendering that consumes

much higher computing resources than 360° videos; and

the required bandwidth for streaming volumetric content is

much higher than 2D and 360° videos. Thus, it is extremely

challenging to design and implement a practical live vol-

umetric video streaming system under the constraints of

off-the-shelf commodity devices and today’s Internet.

In this paper, we proposeMetaStream, a first-of-its-kind

live volumetric content capture, creation, delivery, and ren-

dering system for enhancing the user experience of immer-

sive applications. It consists of three key components: cam-

eras equipped with computation resources (referred to as

smart cameras) to capture and pre-process RGB and depth

frames with the goal of reducing the transmitted data, a

server to optimize the computation overhead of creating

high-quality 3D content and decrease the content-generation

latency, and anMR client to render, in real-time, live volumet-

ric content for seamless integration with the surrounding en-

vironment. In a nutshell,MetaStream achieves low-latency

live volumetric video streaming at close to 30 frames per

second (FPS) by intelligently balancing the trade-offs be-

tween computation overhead, network resource utilization,

and visual quality of volumetric content. The visual result of

MetaStream is shown in Fig. 1. Our design of MetaStream

involves the following innovations that make it practical.

Adaptivity to Practical Scenarios via Dynamic Camera

Calibration. In multi-camera volumetric video streaming

systems, camera calibration is a critical component that di-

rectly affects the performance of the whole streaming ses-

sion [63]. Previous work calibrated cameras in a naive way

(e.g., predefined markers [41, 46, 57]), and no movement of

cameras would be allowed after calibration. However, practi-

cal volumetric video streaming systems often involvemoving

Real
Person

Visual 
Result on 

MR Glasses

Figure 1: Visual Results of MetaStream on Microsoft

HoloLens 2 [8].

objects in a wide range, which makes fixed cameras not ap-

plicable. For example, a person walking around in a large

room cannot be always captured by fixed cameras. More-

over, there is an increasing demand for deploying cameras on

mobile platforms such as autonomous vehicles and drones.

In such scenarios, the fixed-camera assumption no longer

holds. To resolve such a challenge,MetaStream develops a

lightweight online calibration method that allows the dy-

namic movement of cameras during streaming. By adopting

ORB feature extraction [67] and tracking algorithms [58],

our calibration method can accurately update the cameras’

6DoF pose during the streaming session.

Collaborative Edge Design for Low-latency Content

Capture and Creation. Existing multi-camera volumetric

video streaming systems suffer from large streaming data size

and high computation overhead for the point cloud genera-

tion, which requires high network bandwidth and powerful

machines [41, 46, 59]. However, to enable the movement of

cameras, captured content should be wirelessly transmit-

ted to the server.MetaStream presents a collaborative edge

pipeline for volumetric video streaming that effectively dis-

tributes computing loads across smart cameras and the server,

significantly reducing computing pressure on the server and

decreasing the streaming data size. We also design selective

segmentation on smart cameras to intelligently segment out

target objects from complex backgrounds with low over-

head. The transmission delay is largely reduced by locally

segmenting target objects on smart cameras.

Efficient Point Cloud Synthesis by Removing Redun-

dant Data. Though multiple cameras are required to cap-

ture a complete high-quality point cloud, their fields of view

(FoVs) could overlap with one another, which generates

a large portion of redundant points in the overlapped re-

gions. Thus, we propose a cross-camera redundancy removal

method that deletes the redundant points. In this way, we

not only improve the visual quality of the complete point

cloud but also reduce the transmitting data size between the

server and the client.

Foveated Rendering of Point Clouds on MR Devices.

Head-mounted displays (HMDs) are becoming a crucial fac-

tor in bringing users an immersive experience in AR/MR
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systems. Motivated by such a trend, we optimize the render-

ing performance for users (i.e., clients who receive and play

the streamed volumetric content) with MR HMDs such as

Microsoft HoloLens 2 [8]. Specifically, we propose an em-

pirical foveated rendering method that adaptively renders

volumetric content with different point densities (and thus

visual qualities) based on the user’s foveal area. Additionally,

we utilize the user’s motion as the reference to adaptively

decide the normal of 2D squares for rendered 3D points.

With all these proposed techniques, MetaStream achieves

high-quality rendering with neglectable overhead.

We build a prototype implementation of MetaStream us-

ing commodity devices and thoroughly evaluate its perfor-

mance via live controlled experiments. We summarize our

evaluation results as follows.

• Comparing its performance and a state-of-the-art system

LiveScan3D [46] on different edge devices and in various

wireless network environments,MetaStream keeps nearly

30 FPS in all conditions while the average FPS of LiveScan3D

is only 14.3 FPS (on Jetson Nano [14]).

• With the proposed modules in MetaStream, the visual

quality of the delivered volumetric content that is rendered

on the MR client is 6.84% to 12.5% better than LiveScan3D.

• Compare to LiveScan3D,MetaStream reduces the end-to-

end latency, a key metric of live video streaming, by 31.7%.

2 Background and Motivation

2.1 Background

Volumetric Content Capture and Creation. Point cloud

and 3D mesh are two popular representations of volumetric

content. A point cloud is essentially a set of unstructured 3D

points with color and/or intensity [31]. 3D mesh models an

object using not only vertices but also edges and faces to form

polygons [55, 62]. Different from 3D mesh, the point cloud is

more flexible and easier to manipulate and is thus the focus

of this work. Volumetric content can be captured by RGB-D

cameras (e.g., Intel RealSense [5] and Microsoft Kinect [7])

and various LiDAR scanners [66]. These devices acquire 3D

data by leveraging the time of flight (i.e., calculating depth

based on the speed of light) or structured light (i.e., light

with a known pattern). In order to get colorful point clouds

for volumetric content delivery, we need to merge RGB and

depth images (frommultiple cameras) to construct 3Dmodels

via proper synchronization, calibration, and filtering.

Volumetric Video Streaming is an emerging research topic,

in particular to the networking community. We can classify

the state-of-the-art into two categories: direct streaming and

transcoded streaming. The former fetches the encoded 3D

models, either in their full form or segmented parts, before

decoding and rendering them [36, 60], whereas the latter
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Figure 2: Comparison of 4K, 8K 360◦, and volumetric videos.

performs real-time transcoding (e.g., at the edge), which ren-

ders 3D scenes/objects into 2D images based on users’ (pre-

dicted) 6DoF pose and streams transcoded 2D video to the

client [34, 64]. While direct streaming offers superior scal-

ability (i.e., the server is stateless) and user interaction, its

downside is the high bandwidth utilization and on-device

decoding overhead caused by the delivery and processing of

3D data. Since the client receives and decodes 2D content,

the network and client-side overheads for transcoded stream-

ing are dramatically reduced, becoming independent of the

complexity of 3D scenes. However, it has two limitations,

heavyweight 3D-to-2D transcoding and potential distortion

of displayed content due to inaccurate viewport prediction.

Existing Live Volumetric Video Streaming Systems.

LiveScan3D [46] is an open-source system for live, 3D data ac-

quisition using multiple Kinect v2 sensors. Benefiting from

pre-set makers, it allows the user to place sensors in any

configuration and gather data in near real-time. It has two

main components: LiveScanServer and LiveScanClient. Each

LiveScanClient is equipped with a desktop computer and a

Kinect sensor. It can capture and stream the created point

cloud to the LiveScanServer. The LiveScanServer manages all

LiveScanClients simultaneously. It can merge and compress

point clouds from different LiveScanClients based on the

spatial position of their sensor. Holoportation [59] is another

system that directly connects cameras to the server. By using

powerful GPUs, it can reconstruct a 3D model of humans in

real-time and transmit it to headsets for display [8]. Hu et

al. [40] combine point cloud capturing and streaming as an

entire pipeline and build a prototype, which contains a depth

sensor, an edge-computing device, and a smartphone. Project

Starline [47] utilizes a static setup to capture mainly the up-

per body of a stationary person, which requires multiple

powerful GPUs and custom-built hardware (i.e., not compat-

ible with mobile headsets such as HoloLens 2) to create and

display the 3D representation of captured users.

2.2 Motivation

We next demonstrate the challenges of live volumetric video

streaming over wireless networks and analyze the limita-

tions of state-of-the-art systems. MetaStream is proposed
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Figure 3: System architecture and workflow ofMetaStream.

to resolve them and realize high-quality live streaming on

commodity networks and devices.

One of the most recent video types that has been studied

for live streaming is 360° video. However, 360° video is not

true 3D content and supports only 3DoF motion (rotation

on 𝑥,𝑦, 𝑧 axes), and thus cannot fully take advantage of the

unique features of MR/AR headsets. For example, it does not

allow users to observe an object in 6DoFwith the headsets. As

shown in Fig. 2, the key challenge of streaming point cloud-

based volumetric videos is the large data size. We compare

point-cloud videos with 4K videos and 8K 360◦ videos on the

data size of a one-minute video in Fig. 2 (a) and the required

bandwidth for streaming in Fig. 2 (b). A one-minute point-

cloud video at 30 FPS requires over 60 times the data size

compared to an 8K 360◦ video and 200 times compared to

a 4K video, both at the same frame rate. To guarantee live

video streaming at 30 FPS, the required bandwidth of a raw

point-cloud video is almost 26 times over an 8K 360◦ video

and 216 times over a 4K video. Due to such a large data size,

point cloud-based live volumetric video streaming is more

challenging than its 2D and 360° counterparts.

Among existing systems of live volumetric video stream-

ing, Holoportation [59] does not optimize the transmission

overhead of high-quality 3D content and requires >1Gbps
network bandwidth. Hu et al. [40] design a system that

streams from a single camera to a mobile phone, which does

not consider point cloud synthesis from multiple cameras.

Starline [47] focuses on capturing and streaming the front

view of the upper body of a user, who sits next to the dis-

play. Thus, we could not conduct apple-to-apple comparisons

with them without modifying their design. In this work, we

choose LiveScan3D [46] as the baseline for comparison.

We observe three key limitations in LiveScan3D [46], which

motivate the design ofMetaStream. First, as directly trans-

mitting point clouds to the content server consumes high

bandwidth, it is challenging to deploy LiveScan3D on WiFi

networks, especially for the multi-camera setup. Second,

due to the constraint of the segmentation method in LiveS-

can3D [46], other objects close to the captured object may be

kept in the segmentation results by mistake. Third, as there

are overlapped areas of the FoVs of cameras, the merged

point cloud contains redundant points, which not only in-

creases transmission data size but also reduces the visual

quality of displayed content.

3 MetaStream Overview

MetaStream is a live volumetric content capture, creation,

delivery, and rendering system that realizes high-quality

video streaming for immersive applications. We depict its

system architecture and workflow in Fig. 3. Compared to

existing systems [40, 46, 47, 59], the design of MetaStream

addresses the following challenges that exist in practice.

• MetaStream significantly reduces the high transmission

delay caused by the large data size. By exploiting the com-

puting capacity of lightweight edge devices, it dispatches

pre-processing loads on camera-side edge devices and filters

out redundant RGB and depth data around the target ob-

ject(s) before transmission. Hence, the transmission data size

from cameras to the server is largely reduced, significantly

decreasing the transmission delay.

• MetaStream effectively reduces pre-processing overhead

on the camera side without sacrificing the overall perfor-

mance. By adaptively selecting frames for segmentation

based on cross-frame differences, MetaStream keeps accu-

rate and fast deep learning-based segmentation on smart

cameras with limited computing resources.

•MetaStream boosts content creation efficiency. With the

RGB and depth data of only the target object(s), it takes less

time on the server to create the point clouds and synthesize

them into a complete one because the number of points for

processing is drastically reduced.

• MetaStream improves the applicability for practical sce-

narios where cameras may move and follow the target object

(e.g., a person walking around in a room) during streaming. A

428



MetaStream: Live Volumetric Content Capture, Creation, Delivery, and Rendering in Real Time ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

lightweight yet effective dynamic camera calibration method

is proposed by extracting and tracking ORB features [44]

from the environment to realize online camera-pose updates.

•MetaStream accelerates point cloud rendering on MR/AR

devices whose computing resources are limited. It develops

an adaptive foveated rendering technique to significantly

reduce the rendering overhead with a neglectable sacrifice of

user experience. The rendering overhead is further reduced

by limiting the search space for the foveated area.

With all the above techniques,MetaStream realizes real-

time live volumetric video streaming over a WiFi network.

4 System Design ofMetaStream

4.1 Smart Cameras

As shown in Fig. 3, a smart camera consists of two parts: a

depth camera (e.g., Intel L515 [4]) and an edge computing

device (e.g., Jetson Nano [14]). The edge device keeps a per-

sistent wireless connection with the server. Though such a

setup can be easily created in environments such as offices

and classrooms, the following challenges exist.

• As the target object (e.g., a person) can move around in a

large space, the cameras need to move to follow the object,

which is not yet supported by existing work [3, 10, 46, 59].

• The camera side of a live volumetric video streaming sys-

tem involves multiple tasks including RGB/depth frames

capturing, object segmentation, and video encoding [46]. To

make the system design practical,MetaStream supports low-

cost portable edge devices on the camera-side, which has

limited computing resources (e.g., only 128 CUDA cores on

Jetson Nano [14]) compared to desktop computers (e.g., 3,584

CUDA cores on Nvidia RTX 3060).

We address the above challenging issues with the follow-

ing methods.

• We design a dynamic camera calibration scheme by lever-

aging a lightweight ORB feature extraction and tracking

algorithm [58], which automatically updates the cameras’

6DoF pose with neglectable overhead during streaming.

•We decrease the transmission data size by segmenting RGB

and depth frames. To reduce the computational cost of seg-

mentation, we design selective segmentation that adaptively

segments frames with low similarity to their neighboring

keyframes and approximates the others with the segmenta-

tion results of keyframes. The segmented RGB and depth1

data are encoded with 2D video encoder (e.g., H.264), which

further reduces transmission data size. Note that we pre-

fer 2D video encoder rather than RGB-D data compression

methods [43, 75] because their current implementations are

expensive and cannot run in real-time on edge devices (e.g.,

∼0.4s per frame on Jetson Nano [14] with 720p resolution).

1The gray-scale depth frames are converted to RGB frames before encoding.
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Figure 4: Dynamic Camera Calibration.

Dynamic Camera Calibration. Existing volumetric video

capturing systems [3, 10, 46, 59] fix the cameras’ positions,

which limits their adaptivity to practical scenarios. We pro-

pose Dynamic Camera Calibration (DCC) in MetaStream

to address this limitation. The DCC module dynamically

obtains and manages the camera pose in real-time and cali-

brates cameras without any pre-defined makers [46].

As shown in Fig. 4, DCC includes two stages: cross-camera

distance measurement (CCDM) and online movement track-

ing (OMT). The CCDM stage is activated when the system is

set up. It is a one-time effort and obtains the initial relative

positions across cameras. The OMT stage starts after the

CCDM stage and keeps active during streaming. It continu-

ously updates the relative displacement of each camera when

it moves. By combining the relative displacement with the

initial relative position, the system obtains the poses of all

cameras in real time. Note that we have two assumptions

about the DCC module. First, the moving speed should not

exceed a certain limit to ensure the calibration performance

(e.g., <4.2m/s in our current design). Second, the scene should

contain rich feature points. Nevertheless, such assumptions

can be naturally satisfied in most real-world scenarios.

CCDM Stage. Once all smart cameras are connected to the

server, the CCDM stage of DCC starts. The smart cameras

are initially placed facing one direction, making their FoVs

overlap with each other. Then, they begin to extract ORB

features [67] from their FoVs and send them to the server.

By designating the position of one camera as the reference,

the server calculates the relative spatial positions of other

cameras by matching their features [44]. In this way, the

server obtains the initial positions of all cameras in the same

coordinate system. Note that for the camera that is selected

as the reference, its initial position is set to the origin of the

coordinate system.
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OMT Stage. Once the cameras’ initial positions are calculated

on the server, the cameras can be moved to other locations.

To make the system more efficient, the Inertial Measurement

Units (IMU) on the depth cameras [5] are used as motion

monitors. The camera updates its poses only when the IMU

detects movement. The updating method is based on an ORB

tracking algorithm [58], which tracks features on consecutive

frames and acquires the relative displacement of the camera.

Selective Segmentation.The recent success of deep learning-

based schemes enables high-accuracy semantic segmenta-

tion on RGB images [73]. Its flexibility and adaptivity widely

extend the applications of MetaStream in different practi-

cal scenarios. Thus, we apply it on RGB images to separate

the target object from the background. While depth-based

segmentation is lightweight, it is limited to handling envi-

ronmental adaptation due to the lack of recognition capabil-

ity [50]. For example, when a person sits on a chair, depth-

based segmentation may not distinguish between the person

and the chair. By exploiting the similarity between consecu-

tive frames, we propose to selectively segment some frames

and approximate the rest with the segmentation result on

their preceding frame, as shown in Fig. 5. On the one hand,

as segmentation reduces transmission delay and decreases

the redundancy in point cloud synthesis on the server, it

plays an important role in reducing end-to-end latency and

improving the overall performance ofMetaStream. On the

other hand, as executing segmentation on smart cameras

takes time [38, 39] (e.g., 27 to 48 ms on Jetson Nano [14]),

we should reduce the segmentation frequency. Thus, it is

nontrivial to decide whether to segment a frame or not.

When a new frame 𝑓𝑖 is sampled from the camera, we

calculate its difference from the reference frame 𝑓𝑗∗ and their
difference is compared with the threshold 𝜃𝐷 in the Differ-

ence Indicator. The reference frame 𝑓𝑗∗ is the last frame that

is segmented by the segmentation model. The threshold 𝜃𝐷
is the upper bound of the frame difference. If the difference

between 𝑓𝑖 and 𝑓𝑗∗ is less than 𝜃𝐷 , we directly apply the

segmentation mask of 𝑓𝑗∗ , 𝑆 𝑗∗ , to 𝑓𝑖 (i.e., the segmentation

result of frame 𝑓𝑖 is obtained by applying the mask 𝑆 𝑗∗ to
it); otherwise, we use the segmentation model to generate

the mask of 𝑓𝑖 , 𝑆𝑖 . In the later case, we update the reference

frame 𝑓𝑗∗ as 𝑓𝑖 and update the segmentation mask 𝑆 𝑗∗ as 𝑆𝑖 .
Finally, the segmentation result is stored in the result buffer.

As the threshold 𝜃𝐷 determines whether to execute the

segmentation model on frames, it is a critical parameter to

balance segmentation accuracy and resource consumption.

Specifically, if 𝜃𝐷 is higher than most frame differences, the

segmentation model is seldom activated and the masks of

most frames are approximated by the mask of their reference

frame. Consequently, we can keep low resource consump-

tion but may sacrifice segmentation accuracy due to mask

approximation. On the contrary, if 𝜃𝐷 is lower than most

frame differences, we can keep high segmentation accuracy

but have high resource consumption as the segmentation

model is executed frequently. During live volumetric video

streaming, the computing capacity of smart cameras may

vary as multiple tasks run simultaneously on the devices (e.g.,

dynamic camera calibration and frame encoding). Moreover,

the change of the target object’s movement across frames

also varies over time. Thus, we design a threshold updater

to tune 𝜃𝐷 periodically (every 𝑇 second) according to the

computing capacity and the movement change rate.

In the threshold updater, we tune 𝜃𝐷 based on the records

during the past𝑇 second. The performance recorder in Fig. 5

stores the frame differences in the past 𝑇 second, denoted

as D[𝑡−𝑇,𝑡 ] . First, we calculate the average computing la-

tency of the segmentation model during the past 𝑇 second,

denoted as 𝑡𝑆 , and rank the values in D[𝑡−𝑇,𝑡 ] from high to

low, denoted as D̂[𝑡−𝑇,𝑡 ] . Note that 𝑡𝑆 reflects the computing

capacity of the device in the past𝑇 second. We then estimate

the number of executions of the segmentation model that

can be finished within 𝑇 as �𝑇 /𝑡𝑆�. The actual number of

executions of the segmentation model may not be the same

as �𝑇 /𝑡𝑆�. For example, if 𝜃𝐷 is high and the frame difference

is relatively low, the number of executions can be lower than

�𝑇 /𝑡𝑆�, which indicates that more executions could have

been done given a lower 𝜃𝐷 . Thus, we adjust 𝜃𝐷 based on

�𝑇 /𝑡𝑆� and D̂[𝑡−𝑇,𝑡 ] . Specifically, we find the �𝑇 /𝑡𝑆�-th value

in D̂[𝑡−𝑇,𝑡 ] and update 𝜃𝐷 to this value. The intuition is that,

if 𝜃𝐷 were the �𝑇 /𝑡𝑆�-th value in D̂[𝑡−𝑇,𝑡 ] , there would be

�𝑇 /𝑡𝑆� frames processed by the segmentation model. In this

way, we update 𝜃𝐷 every 𝑇 second according to the device

performance and frame differences in the past𝑇 second. Due

to the change of reference frames with different 𝜃𝐷 , the num-

ber of executions of the segmentation models may not be

equal to �𝑇 /𝑡𝑆� when we set 𝜃𝐷 to the �𝑇 /𝑡𝑆�-th value in

D̂[𝑡−𝑇,𝑡 ] . However, finding the optimal solution (the actual

value that leads to �𝑇 /𝑡𝑆� executions) is time-consuming.

Consequently, we design the above heuristic method.
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When MetaStream starts, we feed the first frame into

the segmentation model and take it as the reference frame.

We collect the frames sampled during segmenting the first

frame and calculate their differences. Among these frames,

we select the one with the highest frame difference and take

it as the second reference frame, which is also fed into the

segmentation model. The difference between the second and

the first reference frames is the initial threshold 𝜃𝐷 , which
is later updated periodically every 𝑇 second as described

above. As 𝑇 is a pre-set hyperparameter, we will evaluate

the system performance under different values of 𝑇 in §6.2.

Alignment and Encoding. The above segmentation is only

applied to RGB frames, and we align the results to depth

frames with (𝛿𝑥, 𝛿𝑦), which is a displacement between the

FoVs of depth and RGB cameras. We apply (𝛿𝑥, 𝛿𝑦) to the

segmented pixels’ positions on the RGB frame to obtain the

corresponding positions on the depth frame and remove

its background area. Finally, the segmented RGB and depth

frames are encoded in H.264 format. Specifically, we apply a

color filter to the gray-scale depth frames and convert them

to three channels (corresponding to the R, G, and B channels)

before compression. In such a way, we can directly encode

the converted depth frames with H.264.

4.2 Content Creation Server

To create a complete point cloud of a target object, we need

to combine the outputs from multiple cameras surrounding

the object, which leads to the following challenges.

•Due to discrepancies among cameras and their connections

with the server, the arrivals of frames from different cameras

may be asynchronous, which leads to low-quality content

creation of the object.

• Creating a complete point cloud of an object involves an

extremely high volume of data, which consumes a large

memory footprint and requires high-performance computers

for real-time content creation.

We resolve the above challenges in the following ways.

• We design a lightweight yet effective capture synchroniza-

tion module to find frames across cameras that are sampled

at approximately the same time.

• We present a two-step content creation workflow: single-

camera point cloud construction and multi-camera point

cloud synthesis. In this way, we flexibly parallel the single-

camera point cloud construction of different cameras when-

ever their frames arrive at the server. The constructed point

clouds of different cameras are synthesized based on the

cameras’ positions with low computational cost.

Capture Synchronization. Synchronicity is important for

constructing point clouds from multiple cameras. Most ex-

isting setups (e.g.,Microsoft Kinect DK [7] and Holoporta-

tion [59]) use a cable to transmit synchronization signals,

which limits the mobility of cameras. Instead, we utilize a

header message to synchronize frames from different cam-

eras. The header message has only 32 bytes which stores

frame capturing time, frame index, frame resolution, and

camera ID.

To synchronize frames across cameras, we set an upper

bound (𝑈 ), which is the maximum waiting time once the

first frame with a new ID (i.e., an ID that has not been seen

by the server before) is received by the server. After frames

of a new ID start to arrive, the server collects all frames with

this ID that are received within 𝑈 . If the frames of this ID

from all cameras are received before𝑈 , the server finishes

the collection of frames and sends them to the next module.

Note that when a frame with this ID arrives after 𝑈 , it is

dropped after decoding. Thus, it does not affect the decoding

of subsequent frames because all received frames are decoded

regardless of whether they have missed the deadline.

During the streaming process, we adaptively adjust𝑈 . For

every Δ𝑓 frame IDs, we tune 𝑈 by adding a value Δ𝑈 . For

each frame ID 𝑖 , we first compute the difference between the

arrival time of the first and last received frames Δ𝑇𝑖 and then
compute the difference between𝑈 and Δ𝑇𝑖 . We then define

Δ𝑈 as the median of these differences of the Δ𝑓 frame IDs.

That is, Δ𝑈 =𝑚𝑒𝑑𝑖𝑎𝑛{Δ𝑇𝑖 −𝑈 }𝑖∈[ 𝑓 ,𝑓 +Δ𝑓 −1] . 𝑁 is the number

of cameras and 𝑓 is the first frame ID in the past Δ𝑓 frames.

In general, when the network delays between some cameras

and the server are higher than others, the frames of the same

ID arrive at the server asynchronously and the last frame of

the ID may arrive at the server after𝑈 (i.e., a positive Δ𝑈 );

when the network delays between cameras and the server

are similar, the frames of the same index number arrive at

the server synchronously and the last frame of the ID may

arrive at the server within𝑈 (i.e., a negative Δ𝑈 ).

As the network conditions are temporally correlated [54],

Δ𝑈 of the past Δ𝑓 frames reflects the network conditions

between cameras and the server during the past Δ𝑓 frames,

and we can utilize it to guide the collection of future frames.

Thus, in the past Δ𝑓 frames, if the frames from cameras

arrive at the server in a wide range, then Δ𝑈 is a positive

large value, and we tune𝑈 higher accordingly for the next

Δ𝑓 frames; if the frames from cameras arrive at the server in

a narrow range (synchronously), then Δ𝑈 is a negative value,

and we tune𝑈 lower accordingly for the next Δ𝑓 frames.

Single-Camera Point CloudConstruction.Given the con-

figuration of cameras, we obtain the horizontal FoV (ℎ𝑓 𝑜𝑣),
the vertical FoV (𝑣 𝑓 𝑜𝑣), and the width (𝑑𝑤𝑖𝑑𝑡ℎ) and height

(𝑑ℎ𝑒𝑖𝑔ℎ𝑡 ) of the original depth frame. Given a point (𝑥,𝑦) on
the depth frame with depth value 𝑧, we calculate its coordi-
nate values as: (𝑑𝑥 · tan(ℎ𝑓 𝑜𝑣/2) · 𝑧, 𝑑𝑦 · tan(𝑣 𝑓 𝑜𝑣/2) · 𝑧, 𝑧),
where 𝑑𝑥 = 2 · (𝑥 − 𝑑𝑤𝑖𝑑𝑡ℎ/2)/𝑑𝑤𝑖𝑑𝑡ℎ and 𝑑𝑦 = 2 · (𝑦 −

𝑑ℎ𝑒𝑖𝑔ℎ𝑡/2)/𝑑ℎ𝑒𝑖𝑔ℎ𝑡 [32]. As we have aligned the RGB and
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depth frames on the camera, we can directly obtain the cor-

responding RGB values of each point on the depth frame.

In this way, we can create point clouds from cameras by

combining their RGB and depth frames.

Redundant Point Removal. With multiple cameras sur-

rounding an object, there can be overlapping areas sampled

by more than one camera. Removing redundant points in

the overlapping area improves processing and transmission

efficiency. In our coordinate system, the x-axis denotes left-

ward and rightward directions, the y-axis indicates upward

and downward directions, and the z-axis signifies forward

and backward directions. Based on the segmentation results

and the point cloud construction, we obtain the left-most

and right-most points of an object, (𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙 ) and (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ).
From their coordinate values, we can approximately deter-

mine the center point of the object as ( 𝑥𝑙+𝑥𝑟2 , 𝑦𝑙+𝑦𝑟2 , 𝑧𝑙+𝑧𝑟2 ). We

repeatedly calculate the approximated center point of the

object on each camera. Then, we average over these points

to have a more accurate estimation of the center point of

the object, which is denoted as (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ). Consequently, the
center axis of the object is (𝑥𝑐 , 𝑧𝑐 ). Additionally, we can iden-

tify the range of the object on the 𝑦-axis, denoted as 𝑦𝑡𝑜𝑝 and
𝑦𝑏𝑜𝑡𝑡𝑜𝑚 , according to the segmentation results.

We find the overlapping area between two adjacent cam-

eras as follows. First, we determine the right-most vertical

boundary of the object in the FoV of the camera on the left

and the left-most vertical boundary of the object in the FoV

of the camera on the right (i.e., 𝑥 = 𝑥𝑟 and 𝑥 = 𝑥𝑙 ); then, for
the points that lie between the two boundaries on the ob-

ject, they are captured by both cameras. We observe that the

point clouds generated by one camera may exhibit a spatial

offset relative to the other camera in the overlapping area

caused by the inherent errors in the point cloud construc-

tion, which include measurement errors in the depth data

and precision errors during calibration. Thus, we randomly

sample some points in the overlapping area (i.e., 𝑥𝑟 ≤ 𝑥 ≤ 𝑥𝑙 )
and calculate their distances to the center axis on the same

level 𝑦, 𝑦𝑏𝑜𝑡𝑡𝑜𝑚 ≤ 𝑦 ≤ 𝑦𝑡𝑜𝑝 . Once we find that the points of

one camera have a smaller distance to the center axis, we

delete all points of that camera in the overlapped area. We

repeatedly loop over all overlapping areas between any two

adjacent cameras to remove all redundant points.

Point Clouds Synthesis and Compression.We synthesize

the point clouds of different cameras into a complete point

cloud of an object by translating the point clouds of other

cameras to the coordinate system of the reference camera

(selected by the dynamic camera calibration module). For

example, for a given point (𝑥,𝑦, 𝑧) in the point cloud from

camera 𝑖 , the new position will be (𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖 , 𝑧 − 𝑧𝑖 ),
where (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) is the coordinate of camera 𝑖 in the coordi-

nate system of the reference camera. Further, we filter out
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Figure 6: Volumetric Content Rendering Workflow.

and smooth the synthesized point cloud with a kNN-based al-

gorithm [49], which reduces error points (caused by cameras’

sensing noises) and further improves visual quality [18].

4.3 Mixed Reality Client

We tackle the challenge of limited computing resources on

MR headsets and propose to leverage foveated rendering in

MetaStream to preserve a good user experience with low

overhead. We show the rendering workflow in Fig. 6.

Depth-assisted Determination of Foveal Size. Foveated

rendering can reduce the computation overhead of head-

sets [61]. It synthesizes content with progressively less detail

outside the eye fixation region by tracking the user’s eye

movement. Compared to traditional applications of foveated

rendering in 2D images/videos [61], foveated rendering on

volumetric content presents unique challenges. For exam-

ple, as the user moves during rendering, the radius of the

foveal area on volumetric content keeps changing due to

the distance variation between the user and the displayed

volumetric content.

We propose a depth-assisted foveated rendering method

to resolve the above challenges. Specifically, we determine

the foveal area of the user via the visual focal point and

the central foveal angle 𝛼 𝑓 (e.g., 𝛼 𝑓 = 7.5◦ [61]). We draw

a virtual circular cone along with the user’s viewing direc-

tion to the rendered content and take the center point of

the intersection area with the point cloud as the visual focal

point of the user, which is denoted as (𝑥 𝑓 , 𝑦𝑓 , 𝑧𝑓 ). Given the

position of the center of the user’s eyes (𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒 ), we obtain
the distance between it to the visual focal point on the ren-

dering content, 𝑑𝑓 𝑒 =
√
(𝑥 𝑓 − 𝑥𝑒 )2 + (𝑦𝑓 − 𝑦𝑒 )2 + (𝑧𝑓 − 𝑧𝑒 )2.

Further, the foveal area is a circle with the central point at

(𝑥 𝑓 , 𝑦𝑓 , 𝑧𝑓 ) and its radius is 𝑟 𝑓 = 𝑑𝑓 𝑒 · tan(
𝛼𝑓

2 ).

Fast Search for Foveal Area on Volumetric Content.

After getting the size of the foveal area,MetaStream needs

to calculate which points of the volumetric content are in the

foveal area. However, it may generate nontrivial overhead

on the headset to search for points that locate inside the

user’s foveal area among the whole point cloud. As the user’s
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𝜌 0.5 0.6 0.7 0.8 0.9

Average Score 1.24 2.61 3.37 3.66 3.84

Table 2: Visual Quality for Different 𝜌 .

foveal area may change fast [61], such overhead lowers user

experience. Thus, we propose to reduce the overhead by

partitioning the point cloud into several small subsets on the

server (before transmitting to the MR client).

Specifically, we denote the boundary of the point cloud

(S) on the 𝑥-𝑦 plane (the plane that is perpendicular to

the ground) as {𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥 , 𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥 }. We divide the point

cloud into 𝐾 × 𝐾 subsets and each subset S𝑖 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝐾)
contains the points inside the boundary of {(𝑖 − 1) · Δ𝑋, 𝑖 ·
Δ𝑋, ( 𝑗 − 1) · Δ𝑌, 𝑗 · Δ𝑌 }, where Δ𝑋 = 𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

𝐾−1 and Δ𝑌 =
𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛

𝐾−1 . In this way, given each subset’s boundary and

the foveal area, we can determine the subset that contains

the foveal area and search inside only that subset on the

client. Note that we can extend the boundary of each subset

(making neighboring subsets overlap with each other) to sim-

plify the case in which the foveal area includes points from

multiple neighboring subsets. When sending them to the

headset, we compress these subsets individually and mark

each subset with its boundary.

Point Cloud Filtering and Rendering. For points that are

inside the foveal area, we render them at the original density.

For other points, we apply a filter to reduce the rendering

density by a ratio 𝜌 . That is, each point is rendered with a

probability of 𝜌 . We conduct an IRB-approved user study to

find the minimal acceptable 𝜌 . We develop an application to

render and display point clouds with different 𝜌 (i.e., 0.5, 0.6,

0.7, 0.8, and 0.9) on HoloLens 2. We invite 16 participants,

aged from 23 to 54, and 12 of them have 20/20 corrected

vision.We ask each participant towearHoloLens 2 andwatch

the point clouds with different 𝜌 (we keep them agnostic to

𝜌 and randomly order the five point clouds for a fair study).

We ask the participants to provide their mean opinion scores

(MOS) for the visual quality of the point cloud from 1 to

5 (1: bad, 2: poor, 3: fair, 4: good, 5: excellent). The results

are shown in Table 2. The selection of 𝜌 is to balance the

trade-off between visual quality and rendering overhead.

Specifically, with a large 𝜌 , there will be a large number of

points to render, which can preserve high visual quality but

lead to a long rendering delay, and vice versa. We observe

a significant increase in MOS (0.76) between 𝜌 = 0.6 and

𝜌 = 0.7 and a small increase between 𝜌 = 0.7 and 𝜌 = 0.8.
Consequently, we set 𝜌 = 0.7.
Besides foveated rendering, we apply motion-based ren-

dering. Specifically, we design a motion tracking module to

track the user’s orientation in real-time, as shown in Fig. 6.

We adopt the particle system of Unity engine [16] for ren-

dering on HoloLens 2. In the rendering process, we convert

the (𝑟, 𝑔, 𝑏) values of each point into 2D textures and set each

Multi- amera Setup Single Camera
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L515

Jetson
Nano Battery 

Pack

Figure 7: Testbed ofMetaStream.

basic particle (point) as a 2D square to reduce rendering

overhead. Based on the tracked user’s motion, we adjust the

normal of the 2D square to align with the user’s viewing

direction (i.e., making the 2D square perpendicular to the

user’s view). In this way, the rendering of the point cloud of-

fers good visual quality. The rendering overhead is ∼25.4ms

for a point cloud with 330K points based on our evaluation.

5 Implementation

Hardware: The setup of our testbed is shown in Fig. 7.

Each smart camera is an Intel RealSense L515 [4] mounted

on Nvidia Jetson Nano [14]. The content creation server is

equipped with AMD 5950X CPU and Nvidia RTX 2080S GPU.

The MR client is Microsoft HoloLens 2 [8].

Software: The smart camera and content creation server

are developed on Linux, and the MR client is developed on

Universal Windows Platform (UWP) [9]. On smart cameras,

we implement the dynamic camera calibration module based

on ORB feature extraction and tracking [58], OpenCV [23],

and RealSense SDK [5]; we implement the segmentation and

streaming with RealSense SDK [5], OpenCV [23], Nvidia

Docker [12], TensorFlow [20], and x264 library [19]; the

segmentation model is Segnet [21], compressed by Jetson-

inference [13]. The segmented results are encoded with

H.264 [74] and transmitted to the content server. On the

content creation server, we utilize x264 [19], Open3D [84],

Point Cloud Library (PCL) [68], and Draco [1] to implement

content creation and compression. On the MR client, we

utilize Unity [16] and Mixed Reality Toolkit (MRTK) [11] to

implement foveated content rendering. After decompressing

the received data, we filter and load the point clouds into

the VFX Graph [17] plugin of Unity based on the foveal data

collected by eye tracking sensor [2] of HoloLens 2.

In total, our implementation consists of 4,500+ lines of

code (LoC): 1,300+ LoC in C++ for the smart camera, 1,500+

LoC in C++ for the content creation server, and 1,700+ LoC

in C# for the MR client.

6 Performance Evaluation

In this section, we evaluate the performance of MetaStream

with live experiments and compare it with the state-of-the-

art, LiveScan3D[46]. We use the FPS, structural similarity
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Figure 8: Evaluation of Dynamic Camera Calibration.

index measure (SSIM) [18], network throughput, and end-

to-end latency as the metrics for our evaluation. SSIM is a

weighted combination of luminance, contrast, and structure

comparison measurements between two images to measure

their similarity. Its values range between 0 to 1, and 1 means

the target image is the same as the reference image. We

calculate the SSIM2 between the screenshots on HoloLens

2 [8] and the original images from smart cameras. For the

end-to-end latency, we measure the difference between the

time when a frame is captured by cameras and the time

when HoloLens 2 [8] renders the point cloud constructed by

the frame. We average the end-to-end latency of all frames

during a streaming session.

6.1 Dynamic Camera Calibration

We first evaluate the performance of the dynamic camera

calibration method with a setup of four smart cameras. We

move one of the four cameras by several times (10, 15, 20,

25, and 30) and return it to its original position; we then

compare the SSIM of the same captured object before and

after the camera is moved. As shown in Fig. 8 (a), the SSIM

drops by only 0.02 with the increase in moving times of

the camera, which indicates the robustness of our method

to the movement of a single camera. In Fig. 8 (b), we show

the change of SSIM along with the moving distance of the

target object (a person) from position A to position B in

Fig. 8 (c) following an unplanned route. The four cameras

follow the object, and their routes are shown in Fig. 8 (c).

With the movement of cameras, the SSIM of the captured

object decreases by 0.081 when the moving distance is 8m.

The decrease is caused by the accumulated tracking error,

which is unavoidable in unclosed-loop routes [58]. We will

2The SSIM is measured on the whole point cloud without point filtering

(§4.3) rather than within the foveal area unless specifically mentioned.
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study how to further improve the calibration performance

when the cameras move in future work.

6.2 Selective Segmentation

We then evaluate the performance of the selective segmen-

tation method on a one-minute volumetric video. The video

covers the static scenario and the slow and fast movements

of the target person. We evaluate the performance under

different threshold-update frequencies, 𝑇=100, 200, 300, and
500ms. In Fig. 9, we show the cumulative distribution func-

tion (CDF) of SSIM with different 𝑇 . As discussed in §4.1,

MetaStream updates the frame-difference threshold based

on the records in the past 𝑇 second. Consequently, with a

large 𝑇 , it may fail to adaptively adjust the threshold based

on the change in the target object’s movement. As shown in

Fig. 9, the SSIM of 92.2% frames is under 0.9 when𝑇 = 500ms.

Specifically, there are two reasons for the low SSIM with

large𝑇 . First, when the target object switches from fast move-

ment to slowmovement,MetaStreamwith large𝑇 still keeps

a high threshold, and few frames are fed into the segmenta-

tion model, which reduces segmentation accuracy. Second,

when the target object switches from static/slow movement

to fast movement,MetaStream with large𝑇 still keeps a low

threshold, and almost all frames are fed into the segmenta-

tion model, which leads to severe segmentation delay. For

live volumetric video streaming, we have the maximumwait-

ing time on the content creation server as described in §4.2.

Thus, the segmentation delay further causes frame drops on

the server, and the dropped frames can cause degradation

in the quality of the synthesized point cloud. Nevertheless,

we observe similar patterns for𝑇 = 100ms and𝑇 = 200ms. It

indicates that the value of 𝑇 does not have to be extremely

small, which means we do not necessarily update the thresh-

old with a high frequency.

6.3 Comparison with LiveScan3D

In the original design of LiveScan3D [46], each camera is con-

nected to a desktop computer, which is connected to a server

via a cable. In our evaluation, we implement LiveScan3D on

the same hardware as MetaStream for a fair comparison.
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andMetaStream.

6.3.1 Capturing Performance with Different Hardware Con-

figurations. We compare the sending FPS on the camera

side with different types of edge devices: Jetson Nano [14],

TX2 [15], and Xavier [6], and the receiving FPS on the server

under different types of networks: 2.4GHz WiFi, 5GHz WiFi,

and 1Gbps cable. As shown in Fig. 10 (a), MetaStream out-

performs LiveScan3D for the sending FPS by 20.8% to 1.13×.
As MetaStream offloads point cloud synthesis to the server,

its requirement on the computing capability of edge devices

on the camera side is largely lowered. Thus, we hardly ob-

serve any difference in sending FPS among the three types

of edge devices. In other words, MetaStream is relatively

robust to edge devices’ computing capability on the camera

side compared to LiveScan3D. Similarly,MetaStream outper-

forms LiveScan3D by 16.1% to 64.7% when we vary the type

of network between smart cameras and the server, as shown

in Fig. 10 (b). Due to the large transmission data size in LiveS-

can3D, the receiving FPS significantly decreases when the

network bandwidth is low (e.g., 2.4GHz WiFi).

6.3.2 FPS under Different Network Bandwidth. In Fig. 11

(a), we compare the end-to-end FPS of MetaStream with

LiveScan3D under different network bandwidths (150, 100,

50, 20, and 10Mbps). Note that the end-to-end FPS refers to

the frame rate observed on the MR client. We vary the net-

work bandwidth on both the network connection from the

smart cameras to the server and that from the server to the

MR client. Overall,MetaStream outperforms LiveScan3D by

23.2% to 3.32×. Several factors in the design of MetaStream

contribute to such FPS improvement: (1) the selective seg-

mentation and H.264 encoding on smart cameras, (2) the
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Figure 12: Comparison of Network Throughput between

LiveScan3D and MetaStream.

distribution of computation across smart cameras and the

server, and (3) the redundant point removal on the server.

6.3.3 SSIM vs. Resolution of Depth Image In Fig. 11 (b), we

compare the SSIM of MetaStream and LiveScan3D with dif-

ferent frame resolutions of depth images. Benefiting from the

visual quality improvement by removing redundant points

andmotion-based rendering (§4.3),MetaStream outperforms

LiveScan3D by 6.84% to 12.5%.

6.3.4 Network Throughput. We measure the throughput of

LiveScan3D andMetaStream by continuously streaming live

videos for 10 min. As shown in Fig. 12, the network through-

put of LiveScan3D is much higher thanMetaStream, for both

the link from a randomly selected smart camera to the server

and that from the server to the MR client. As MetaStream

sends 2D videos encoded by H.264, the throughput from the

smart camera to the server is significantly low, around only

12Mbps with an average FPS of 28.7, as shown in Fig. 12 (a). In

contrast, LiveScan3D generates around 38.1Mbps throughput

with an average FPS of 23.7. Though MetaStream transmits

point clouds from the server to the MR client as LiveScan3D

does, the average throughput ofMetaStream is < 58.1% of

that of LiveScan3D. There are two reasons for this large

throughput improvement. First, MetaStream reduces trans-

mitted data by the DNN-based segmentation model, which

effectively segments the target person from the background.

In contrast, due to the limitation of depth-based segmenta-

tion in LiveScan3D, the segmented frames still keep some

background pixels with the target person. Second, the re-

dundant points removal inMetaStream reduces the number

of points in delivered volumetric content without affecting

visual quality.

6.3.5 End-to-end Latency. We compare the end-to-end la-

tency of live volumetric video streaming with LiveScan3D

and MetaStream, by breaking it down to each component.

Specifically, we divide the streaming procedure into four

parts. The first component includes the process from the

camera sampling to H.264 encoding on smart cameras. The

second one includes the process of receiving encoded RGB

and depth data to point cloud compression on the server. The

third one includes the process from receiving the compressed

point cloud to displaying it to the user on the MR client. The
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fourth one includes the two transmission processes (i.e., from

smart cameras to the server and from the server to the MR

client). Note that MetaStream utilizes Jetson Nano as the

edge device for smart cameras. We employ Jetson Xavier [6]

as the edge device for LiveScan3D, which has a much higher

computing capability than Jetson Nano.

As shown in Fig. 13, the latency of each component in

LiveScan3D is higher than that in MetaStream, except for

the computing latency on the server. Overall, the end-to-

end of MetaStream is 31.7% lower than LiveScan3D. The

computing latency on the cameras in MetaStream is only

53.5% of that in LiveScan3D. Though point cloud synthesis

is offloaded to the server in MetaStream, the computing

latency on the server in MetaStream is only slightly higher

(around 3%) than that in LiveScan3D because of the parallel

pipeline design and redundant point removal inMetaStream.

In addition, we observe the video start-up time is 182 to

193ms in MetaStream and 239 to 247ms in LiveScan3D.

6.4 Ablation Study

We evaluate the effect of capture synchronization for 2,000

frames and show the results in Fig. 14. Without synchroniza-

tion, the server reads the streaming buffer without checking

frame IDs. As a result, frames from different cameras may

be synthesized to one point cloud even if they are not sam-

pled at the same time. As shown in Fig. 14 (a), the number

of unsynchronized frames without capture synchronization

is over twice that with capture synchronization due to net-

work transmission delay. Moreover, with capture synchro-

nization, the SSIM is 28.5% higher than that without capture

synchronization as shown in Fig. 14 (b), which indicates a

higher-quality content creation.
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We evaluate the effect of redundant point removal in a

challenging environment, aWiFi network with 50Mbps band-

width. We show the FPS on the MR client in Fig. 15 (a). As

the transmission data size from the server to the headset is

reduced by the redundant point removal, we observe an FPS

increase of 2 to 8. Moreover, the redundant point removal

improves the visual quality of volumetric content. As shown

in Fig. 15 (b), the volumetric content with redundant point

removal reaches an SSIM that is on average 16.4% higher

than that of without redundant point removal.

As shown in Fig. 16 (a), foveated rendering reduces the

rendering time on average by 63.1% on the MR device. While

the SSIM of the whole point cloud with foveated rendering

is 7.2% lower than the regular rendering, the SSIM inside

the foveal area is higher, as shown in Fig. 16 (b). It benefits

from both foveated rendering and motion-based rendering

optimization. Note that we set the default rendering density

ratio 𝜌 = 0.7 based on Table 2, which achieves an SSIM of

0.87 as shown in Fig. 16 (b).

7 Discussion

Limitations. As the first practical live volumetric video

streaming system,MetaStream has a few limitations of its

current design. For example, we have not yet optimized

its performance for multi-user scenarios (i.e., there is only

one user receiving video content in MetaStream). Recently,

Zhang et al. [83] propose a research agenda for enabling

multi-user volumetric video streaming over mmWave net-

works through a cross-layer design for VoD applications.

ExtendingMetaStream to multi-user scenarios is challeng-

ing due to the stringent latency requirement of live video

streaming and the diverse network conditions of different
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users. Another demanding future work is to further improve

the accuracy of dynamic camera calibration.

Camera-server Split. Overall,MetaStream benefits from

the camera-server split setup from the following aspects.

First, directly transmitting RGB+depth frames to the server

consumesmore network bandwidth and leads to longer delay,

compared to streaming only segmented parts. Second, we

target a scalable multi-camera system where the number of

cameras may be large to further improve the visual quality of

generated volumetric content. If we deploy the segmentation

modules on the edge server, the latency of inference increases

with the number of cameras (i.e., batch size). In comparison,

the latency of executing the segmentation module on each

smart camera is relatively stable.

Enabling Interactive Applications. We plan to extend

MetaStream to support interactive applications with live

volumetric content delivery [26, 59]. Instead of having view-

ers passively receive video content from the broadcaster, we

can set up MetaStream at multiple locations so that geo-

distributed users can interact with each other via the cap-

tured volumetric video of their activities, fully exploiting the

unique feature of volumetric content. Existing work such as

Holoportation [59] may not be suitable for mobile scenarios

due to its high bandwidth requirement (e.g., >1Gbps).

Neural Adaptive Content Delivery. We can further im-

prove the performance ofMetaStream by reducing its mobile

data usage via neural adaptive streaming [78, 79]. Recently,

Zhang et al. [82] propose to lower bandwidth consumption of

volumetric video streaming by delivering low-density point

clouds that will be upsampled to high quality through 3D

super resolution (SR) [51]. While it has been demonstrated

to be feasible to conduct 3D SR on machines equipped with

powerful GPUs, applying the idea to mobile devices remains

a challenging research problem [77], especially for live volu-

metric content delivery.

8 Related Work

Volumetric Video Streaming. The research on volumetric

video streaming is still relatively nascent, and thus there

exist only a few studies on this topic [33, 34, 36, 48, 60, 64, 72,

82, 83]. ViVo [36] proposes several visibility-aware optimiza-

tions such as occlusion and distance visibility to boost the

performance of volumetric video streaming. GROOT [48]

introduces parallel decoding of highly-quality point-cloud

data for delivering volumetric content. The above schemes

directly stream volumetric content. Other approaches ben-

efit from the remote rendering of volumetric content (i.e.,

transcoding into 2D content) [33, 34, 64]. Given the above

work, content delivery is not the focus of this paper. We can

integrate their main ideas intoMetaStream, as the design of

MetaStream is extensible and orthogonal to them.

Live Video Streaming. There is a plethora of research on

live streaming for not only regular videos [22, 45] but also

360° videos [24, 53, 80]. Skynet [81] utilizes existing P2P

technologies and integrates them with minimal changes to

the existing CDN infrastructure to ensure that the system

scales with the number of users. CNLive [52] and Akamai live

streaming [69] focus on user activities and network traffic.

Twitch.tv is a live streaming service exclusively for gaming

broadcast [35]. Cicco et al. [27] present a quality adaptation

controller for an adaptive live video streaming system de-

signed by using feedback control theory. Different from the

above work, we investigate live volumetric content capture,

creation, delivery, and rendering and proposeMetaStream,

a practical system to improve content delivery performance

for emerging immersive applications.

3D Object Model Construction. Image-based 3D object

model construction has been extensively studied in computer

vision and graphics communities [28–30, 42, 56, 76]. For

example, KinectFusion [42] is the first system that fuses point

clouds intomeshes using a single depth sensor. Fusion4D [28]

is a real-time multi-view nonrigid reconstruction system for

high-quality live performance capture. Montage4D [29] is

an interactive and real-time solution to blend multiple video

textures onto dynamic meshes with nearly indiscernible view

transitions. Different from the mentioned work,MetaStream

not only focuses on creating 3D content in real-time but also

proposes a practical system that can transmit and render 3D

content with low latency.

9 Conclusion

In this paper, we propose a live volumetric content capture,

creation, delivery, and rendering system, MetaStream. We

designMetaStream on low-cost commercial platforms and

achieve close to 30 FPS onWiFi networks. We specifically ad-

dress the challenges of calibration of multiple cameras, volu-

metric video capture on resource-constrained smart cameras,

point cloud synthesis for multi-camera setup, and reduction

of transmission delay over WiFi networks. With dynamic

camera calibration, selective segmentation, efficient point

cloud synthesis, and foveated rendering of point clouds on

MR devices,MetaStream reduces end-to-end latency by up

to 31.7% while improving visual quality by up to 12.5% com-

pared to state-of-the-art systems.
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