
Wavelet-Based Fast Decoding of 360° Videos
COLIN GROTH, SASCHA FRICKE, SUSANA CASTILLO, and MARCUS MAGNOR, Institute for Computer
Graphics, TU Braunschweig, Germany

In this paper we propose a wavelet-based video codec specifically designed
for VR displays that enables real-time playback of high-resolution 360° videos.
Our codec exploits the fact that only a fraction of the full 360° video frame
is visible on the display at any time. To load and decode the video viewport-
dependently in real-time, we make use of the wavelet transform for intra- as
well as inter-frame coding. Thereby, the relevant content is directly streamed
from the drive, without the need to hold the entire frames in memory. With
an average of 190 frames per second at 8192x8192-pixel full frame resolution,
the evaluations demonstrate that our codec’s decoding performance is up to
272% higher than that of the state-of-the-art video codecs H.265 and AV1
for typical VR displays. Finally, we demonstrate how our wavelet-based
codec can also directly be used in conjunction with foveation for further
performance increases.

CCS Concepts: • Computing methodologies → Image compression;
Virtual reality; Visibility; Perception.

Additional Key Words and Phrases: video compression, wavelet, virtual
reality, 360 videos, foveated rendering

1 INTRODUCTION
Codecs provide efficient compression that allows storing hundreds
of videos on a single drive. This efficiency results from a precise adap-
tation to their specific application. Video codecs like HEVC/H.265
or AV1 use discrete cosine transform (DCT) and motion compensa-
tion for high compression rates at a reasonable perceptual quality.
The high compression, however, requires complex techniques. The
specific hardware decoders of modern graphics cards compensate
for some of this decoding load.

360° videos are a sophisticated form of viewing experience which
have become known with the spread of virtual reality (VR) technol-
ogy. In 360° videos the user can change his view anywhere, since the
information of the entire space is available (3 DOF). This free explo-
ration is not possible with traditional videos where the field of view
(FOV) is limited. Accordingly, 360° videos are best suited for an im-
mersive user experience when prerecorded video data is presented.
For comparable quality, the resolution of 360° videos must signifi-
cantly exceed those of videos with a discrete view, since the repre-
sentation on the display device only corresponds to a fraction of the
whole video frame. For a modern VR headset with 2000x2000-pixel
resolution per eye and 90° FOV, a comparably resolved 360° video
would require 8000x8000 pixels (stereo) with up to 120Hz temporal
resolution. However, only the part of the frame that lies within the
device’s viewport at the time of decoding is relevant for rendering.
Current DCT-based codecs do not allow to load or decode only a
defined part of a frame due to their complex structure. Accordingly,
with 360° videos it is frequently practised to load, upload, and de-
code the entire 360° frame from the drive, even though only a small
part of the frame is considered for the rendering. Furthermore, the
recording quality of 360° cameras is limited. Consequently, the res-
olution and frame rate of 360° videos today do not come close to
the quality of renderings of virtual environments. Although some
ideas exist that already try to improve the compression, e.g. tiling

the frame into separate regions, these ideas often go against the
basic compression idea of DCT and are only a compromise at the
expense of compression efficiency.
An alternative to the DCT for compression is the wavelet trans-

form, which offers two decisive advantages over the former: (1)
Different parts of the image can be loaded and decoded individually,
e.g. the FOV of VR glasses. (2) The encoding takes place in frequency
layers, which are each halved in frequency. Decoding an area in
fewer steps is equivalent to displaying the image area at a lower
resolution. Early attempts to use wavelet transform to compress
imagery were limited presentations with a discrete FOV and have
not gained wide use.

In this paper we propose a wavelet-based codec for the compres-
sion of 360° videos. We particularly aim for high display speeds of
high-resolution videos. Our implementation of the wavelet-based
codec uses the wavelet transform for inter- and intra-frame com-
pression. To the best of our knowledge, this is the first codec for
360° videos based on wavelet transforms. In comparison with mod-
ern codecs (HEVC/H.265 and AV1) and related work, we show that
our wavelet-based approach offers a significant speed advantage
while we provide a comparable video quality and reasonable com-
pression rate. In addition, we introduce foveated decoding. With
foveated decoding the properties of the wavelets are utilised to grad-
ually decrease in resolution with the distance from the focal point.
Such a foveation is so far only known from virtual scenes and offers
further opportunities for decoding speed and image perception. Our
code will be made publicly available upon acceptance.

2 RELATED WORK
Loading the entire frame for 360° video playback in VR is inefficient
since only a fraction of the frame is actually rendered. However, this
procedure is frequently practised, as it reduces the need to adjust
the standard video pipeline. We first discuss the works that aim at a
more resource-efficient presentation by adapting existing codecs.
In the second part we introduce former attempts for wavelet-based
codecs.

2.1 Viewport-Adaptive Display Techniques for Videos
Zare et al. [2016] proposed to use a tiling scheme to increase the
decoding speed of streamed 360° HEVC videos. Their experimental
setup consisted of a pipeline with a dedicated server and client side.
On the server side the same video was encoded in high and low
resolution. With the motion constrained tile sets (MCTS) extension
of HEVC the tiling was enabled for both versions of the video. The
client on the other hand requests the required tile sets from the
server based on the viewport. The authors tested different tiling
schemes. The scheme with the most tiles (18 tiles) showed the most
bitrate savings (-40% based on BD-BR). However, the compression
losses also increase the more tiles are used since all tiles are saved
independently.

1

ar
X

iv
:2

20
8.

10
85

9v
1

 [
cs

.G
R

]
 2

3
A

ug
 2

02
2

HTTPS://ORCID.ORG/0000-0001-6445-5563
HTTPS://ORCID.ORG/0000-0002-9467-5070
HTTPS://ORCID.ORG/0000-0003-1245-4758
HTTPS://ORCID.ORG/0000-0003-0579-480X

Groth et al.

The tiling idea was later officially formulated by the Moving Pic-
ture Experts Group (MPEG) into the omnidirectional media format
(OMAF) standard for storage and distribution of 360° videos [Choi
et al. 2018]. The idea of OMAF is comparable to the work of Zare
et al. and is applied to HEVC or AVC video codecs. The viewport-
dependent streaming also uses MCTS to split the frames into tiles,
each encoded in different qualities [Hannuksela et al. 2019].

Sreedhar et al. [2016] also recognized the technical challenges of
bandwidth associated with high-resolution 360° videos. The main fo-
cus of their work are the mapping techniques in which the recorded
spherical scenes are packed in a rectangular frame. The most used
mapping techniques are equirectangle and cubemap projection,
which were also found as the most effective in their scenario. For
the comparison, the authors presented a methodology of the rate-
distortion performance of the schemes.

In the work of Corbillon et al. [2017] the 360° videos are separated
in individual tiles and offered in different resolutions. Unlike former
works, the single tiles are created in different versions with only
a selected part of every tile in a better visual quality. While the
360° video is streamed, the client communicates its viewpoint to the
server which selects the tiles so that the viewpoint is in the higher
quality region. The paper does not specify actual display speeds,
but it should be clear that the technology can save bandwidth.

2.2 Wavelet based codecs
Probably the best known use of wavelets for imagery is the JPEG2000
image compression standard [Marcellin et al. 2000; Taubman and
Marcellin 2012]. At the turn of the millennium, it initiated a new
form of image compression and was supposed to replace DCT-based
image compression formats. JPEG2000 supports lossless and lossy
compression. The wavelet transform operates with the biorthog-
onal wavelets, either the Cohen–Daubechies–Feauveau (CDF) 9/7
wavelet for lossy compression or the LeGall-Tabatabai (LGT) 5/3
wavelet for lossless compression. The standard has four levels of
decomposition as a default since there is not much improvement in
using higher decomposition levels when compressing images [ISO
2019]. One general advantage of wavelet compressed imagery is
the progressive decoding, so that the quality of the visualisation
improves progressively when more information is received. This
progressive decoding is also supported in JPEG2000.

The JPEG2000 image standard was later extended to include video
files. The extension is known asMotion JPEG2000 and is based on the
MP4 format. This video standard uses the JPEG2000 coding for the
compression of the individual frames. An inter-frame compression
does not take place. Thus, Motion JPEG2000 is more of a container
format for the joint wrapping of JPEG2000 compressed frames.

Efforts to create video codecs based on wavelet compression are
rare and nowadays exclusively experimental. The most extensive
attempt to create a wavelet-based video format to date was under-
taken by BBC Research in 2008 [BBC Research 2008]. The resulting
versions of the codec were named Dirac and Schrödinger in honour
of the Nobel Prize-winning physicists. Dirac supports lossy and loss-
less coding for which it uses the samewavelets as JPEG2000 (CDF 9/7
wavelet or LGT 5/3 wavelet). Themotion compensation is performed
with the overlapped-block motion compensation (OBMC) logic for

an effective inter-frame prediction [Orchard and Sullivan 1994].
Unfortunately, this overlap also prevents effective intra-prediction,
since there are no unique separations for overlapping blocks, as is
the case with common DCT-based codecs.
However, the codec could not gain wide popularity and further

development was discontinued more than a decade ago. The rea-
sons for the codecs limited success are not entirely clear, but may be
related to an inability to provide significant improvement over estab-
lished codecs like H264. Dirac and Schrödinger are now abandoned
and no longer available.

3 METHOD
Two concepts that most video codecs apply for data compression
are intra- and inter-frame coding. In practice these methods are
commonly applied with some information loss to achieve better
compression ratios. Intra-frame coding usually refers to the trans-
formation of the data of one frame to a different representation
that can be compressed more efficiently. Inter-frame coding utilises
redundancies between multiple frames to reduce the data size. In the
following we describe how we realised both concepts with wavelet
transforms.

3.1 Frame-wise Transform
The core of the frame-based compression of our codec is a 2D fast
wavelet transform (FWT). Similar to other codecs, the transform of
the frame data allows for a better compression, which in the raw
state is too large to be stored. For example, a one minute 360° video
in 8k resolution would contain around 300GB uncompressed data.
We transform an input frame 𝑠 of (𝑁 ×𝑀) pixels for a discrete 2D
position 𝑥,𝑦 and frequency 𝛾 by the wavelet transform𝑊 with the
mother wavelet𝜓 .

𝑊𝜓 𝑠 (𝛾, 𝑥,𝑦) =
𝑁∑︁
𝑖=0

𝑀∑︁
𝑗=0

𝜓𝛾,𝑥,𝑦 (𝑖, 𝑗)𝑠 (𝑖, 𝑗) (1)

To compress the transformed frame𝑊𝜓 𝑠 all coefficients below a
certain threshold 𝑇𝑠 are set to zero, so that:

𝑊 ′
𝜓
𝑠 B

{
𝑊𝜓 𝑠, |𝑊𝜓 𝑠 | > 𝑇𝑠

0, else
(2)

For a properly chosen𝑇𝑠 , this operation has only minor implications
for the quality of the reconstructed image. This is especially true
for high frequencies and is a general characteristic of the frequency
domain. Usually, in natural images most of the information is con-
tained in the low frequencies which are represented by only a small
number of coefficients [Unser and Blu 2003]. As usual for the FWT,
with every step of the 2D wavelet transform the resolution of the
image approximation is halved in both dimensions. In𝑊𝜓 this is
addressed by the frequency layers over 𝛾 .
Former research has shown that the discrete wavelet transform

can achieve better image reconstruction than a DCT-based method
at high bit compression ratios [Boopathi and Arockiasamy 2012].
For the frame-wise transformation of the image we use the CDF
9/7 wavelet [Cohen et al. 1992]. The CDF wavelet is known to
perform especially good on natural imagery and is also used for
lossy compression in the JPEG2000 standard [ISO 2019].

2

Wavelet-Based Fast Decoding of 360° Videos

Start Encoding is
EOF

End

i < n

Yes

No i=0 Yes

i++

No

Read n
images

2D wavelet
transform of

image i

Thresholding
of transformed

image

Interframe trans-
form of all n

wavelet images

Interframe
thresholding Compaction Write to

file

Write
Metadata

video
still play-

ing

Clear
image

Load Meta-
data

Rebuild wavelet image
(inverse inter-frame transform)

Load wavelets
from file

Upload
wavelets

Determine recon-
struction region

Preload next frames from drive

Inverse
wavelet

transform

Remapped
rendering

No

YesStart Decoding

End

Fig. 1. Our program flow for encoding (blue) and decoding (orange) a video with our wavelet-based codec.

During playback, the compressed video information is decoded
with an inverse fast wavelet transform (iFWT) to obtain the original
images. This reconstruction is not conducted for the entire image,
but only for the part of the 360° panorama that is in the viewport
of the display device. For a viewport-dependent reconstruction, we
define the location of the viewport on a low resolution represen-
tation of the frame in binary form. This binary mask is uploaded
together with the wavelet coefficients and is used for the inverse
wavelet transform.

In theory, the transform can be performed until only one pixel
defines the frequency over the whole image. However, the low-
frequency levels of thewavelet transform contain fewer discrete data
points since the high-resolution in the frequency domain results in
a low resolution in time due to the Heisenberg theorem [Heisenberg
1927]. Also, the wavelet coefficient values of these pixels can only be
compressed inefficiently because the low-frequency information is
significantly more important than high frequencies in natural image
reconstruction. Therefore, we only perform the wavelet transform
until level 𝑙𝑚𝑎𝑥 = 6 as a default.

3.2 Inter-Frame Coding
Inter-frame coding describes the compression of temporal infor-
mation. The time component 𝑡 is represented implicitly by a set of
successive frames. In modern codecs the inter-frame compression is
performed with keyframes encoding only information differences
with the help of motion vectors. While this technique offers im-
pressive compression rates, a compression with keyframes has the
disadvantage that its speed depends on the linear information re-
trieval. When the video is skipped, all information since the last
keyframe has to be reloaded first. With our codec we wanted to
get rid of this disadvantage and at the same time maintain a good
compression rate between inter-frames. To achieve this purpose
we apply a second wavelet transform to encode the temporal pixel
differences. The second wavelet transform is applied on a set of
wavelet images resulting from the frame-wise wavelet transform
𝑊𝜓 𝑠 . Here, we use a one-dimensional form of𝑊𝜓 with 𝑠 (𝛾, 𝑡) for the
frequency 𝛾 of the temporal changes of every pixel over time. In the-
ory both, the frame-wise transform and the inter-frame transform,
can be combined to one 3D wavelet transform. However, this 3D

transformwould not offer us the possibility to decode different areas
of a frame in different resolutions for the same computational costs.
Furthermore, the separation allows us to apply different wavelets
and thresholds per transform and respond adaptively to individual
circumstances.
Every inter-frame transform of n consecutive frames is called

inter-frame set. Thereby, n is a power of two values. The number
of frames per inter-frame set can be defined per video and may
be bigger the less motion is in the video. In contrast to the frame-
wise transform, the inter-frame transform is always executed to the
last level. For the inter-frame wavelet transform we use the Haar
wavelet [Haar 1911]. The Haar wavelet is the only wavelet with no
overlapping of the wavelet filters and can therefore be reconstructed
by loading only one coefficient per level for the high and low pass
filtering. Reconstruction of one specific pixel by a Haar wavelet
transformwith𝑛 levels only requires 𝑙𝑜𝑔2 (𝑛) additions of the correct
wavelet coefficients scaled by the high pass filter position (−1 or
1). As a result, for the inverse inter-frame transform we can iterate
over the uploaded wavelets rather than over all pixels of the target
section. This characteristic is unique to the Haar wavelet and allows
a rapid inter-frame reconstruction. The speed of the inter-frame
reconstruction is important since the inverse inter-frame transform
runs on 𝑙𝑜𝑔2 (𝑛) frames every time one frame is decomposed. By
iterating over the uploaded pixels rather than a target section we
implicitly synthesise only the part of the image that is in our defined
FOV.

3.3 Thresholding
In order to achieve the necessary storage savings, we have to deter-
minewhichwavelet coefficients are least essential for the reconstruc-
tion. We will refer to this step as thresholding. The chosen threshold
value is decisive for the intensity of the compression. Thereby, the
threshold always represents a trade-off between quality of the recon-
structed image and size of the video file. Reconstructing an image
with too little frequency information may result in a blurry represen-
tation with less details. We derive a threshold𝑇 from a user-defined
constant 𝛼 and the level 𝑙 of the transform:

𝑇 (𝑥,𝑦) = 𝛼

(
𝑙𝑚𝑎𝑥 − 𝑙

𝑙𝑚𝑎𝑥

)2
+ 𝐻, (3)

3

Groth et al.
Si

ze
Le

ve
l

IF
_C

ou
nt

Fr
am

es

Frame 1 Frame 2 ...
Ge

ne
ra

l

Lv
l 1

Lv
l 2 ...

Header Meta Data

Lv
l 1

Lv
l 2 ...

Block End
Frame 1
~262 kB

Lv
l 1

Lv
l 2 ...

Wavelet Data
Frame 1

Block End
Frame 2

Wavelet Data
Frame 2

...

...

20 B ~59 kB ~7 MB ~262 kB ~4 MB

Fig. 2. Data arrangement of our video format. The sizes of each section are
given by an example video in 8k resolution.

where 𝐻 specifies a mapping factor which depends on the mapping
technique. In the encoding, the frames are thresholded twice: once
after the frame-wise 2D FWT, and again following the inter-frame
transform.We use two separate threshold operations as bothwavelet
transforms aim for a different encoding: The frame-wise transform
encodes the different frequency information in the respective spatial
resolutions. The inter-frame transform encodes temporal frequency
information of every wavelet coefficient. Thresholding the values
only once is possible but, in our experience, can lead to unwanted
interactions and a worse compression rate. Both thresholding oper-
ations are independent and have their own threshold value. While
the first thresholding is applied on every frame independently, the
thresholding of the inter-frames considers all 𝑛 frames of the inter-
frame set. In this latter thresholding operation, the different levels
are defined by the relative frame number defined by 𝑡 rather than
the pixel position inside the frame.
High frequency information was found to be less important for

the perceptual quality of an image than low frequency informa-
tion [Unser and Blu 2003]. We scale the threshold by the frequency
level of each coefficient in a quadratic function (cf. Equ. 3). Accord-
ingly, more coefficients may be zeroed out at high frequencies. This
thresholding weighting follows common procedures of other codecs
like JPEG2000 [Marcellin et al. 2000; Taubman and Marcellin 2012].
Quantization: Similar to other codecs, we represent the colour

values of the pixels in the video file by one byte per colour com-
ponent. In the quantization, the 32 bit float colour components of
the wavelet transform are mapped to the byte representation of
the compressed output. We use the extreme values of the wavelet
coefficients for normalisation in order to achieve the highest possi-
ble spatial resolution in this discretization. Therefore, one discrete
colour value 𝑐𝑑 is defined by 𝑐𝑑 = (𝑐𝑛 − 𝑐𝑚𝑖𝑛)/(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛) ∗ 255
with 𝑐𝑛 as the floating-point representation of the 𝑛-th pixel and
𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 as the minimum and maximum values of all coeffi-
cients, respectively. The normalisation is performed with a separate
minimum and maximum for the approximation area (last layer of
the transform) and the wavelet layer and for each inter-frame. The
normalisation is inverted during reconstruction. The minimum and
maximum values are stored with the metadata in the file.

3.4 File Format
The structure of our video file is illustrated in Fig. 2. We designed
the layout to allow for a fast and viewport-dependent streaming
of the data. Starting with a file header, general information on the
video is offered. This data includes the number of frames, size of the
frames and number of levels of the wavelet transform. Following
the header, metadata information on every single frame is provided.
This frame-wise metadata includes information about where the
frame starts and ends in the file or the overall number of wavelets.

C
P
U

G
P
U

D
e
c
o
d
e

P
re
p
a
re

Lo
a
d

U
p

lo
a
d

Lv
l 0

Lo
a
d

U
p

lo
a
d

Lv
l 1 ...

...

Lo
a
d

U
p

lo
a
d

Lv
l n

R
e
co

n
-

st
ru

ct
Lv

l n
-1

R
e
co

n
-

st
ru

ct
Lv

l n

In
v
e
rs

e
w

a
v
e
le

t
tr

a
n
s-

fo
rm

P
re

lo
a
d

 /

U
p

d
a
te

W
a
it

W
a
it

P
re

lo
a
d

 /

U
p

d
a
te

P
re

lo
a
d

 /

U
p

d
a
te

R
e
co

n
-

st
ru

ct
Lv

l 0

W
a
it

Time

Fig. 3. Parallel processes for the reconstruction of one frame.The prepare
thread buffers the next frames, but does not read from the drive in the wait
sections for the decoding process to be faster.

The frame metadata also provides information on the individual
levels of this frame. The header as well as the entire metadata are
preloaded when the video is started and are kept in the working
memory.
The position (𝑥,𝑦) of one particular wavelet coefficient within

the frame is given by an index that is saved along with the wavelet
value. However, due to the compression, the position of individ-
ual coefficients within the file is unknown. While it is possible to
find the data for (𝑥,𝑦) with binary search on the video data, this
inconsistent access to the storage drive adds an unwanted delay
to the loading process. Instead we divide the transformed frames
into a logical grid of small blocks (default size 32x32-pixel). This
block allocation is only relevant for the compression but does not
affect the wavelet transforms which operate on the entire images.
Note, that this is different from blocking in DCT. In the video file
we store one pointer for each block, located in the BlockEnd section
(see Fig. 2). This pointer indicates where the last wavelet coefficient
inside the respective block can be found in the video file. In the file
the coefficients are stored block after block, which allows a whole
series of blocks to be loaded by two of these block-end pointers.
During decoding, the block pointers of a frame are preloaded before
the frame is processed. By alternately storing the block-end and
wavelet data packages of the frames in the video file we can avoid
compute-intensive rearrangements of the file during encoding. In-
side one block of wavelet coefficients or block-end information the
data is ordered level-wise starting with the lowest frequency layer.

3.5 Parallel Wavelet Processing
Since VR users move their head, the part of a 360° video that is ren-
dered can change continuously. These viewpoint changes compli-
cate the buffering of subsequent frames. On the other hand, without
buffering the data has to be loaded from the drive at the time of
rendering which is costly and slows down the process. Therefore,
we preload the data of subsequent frames by estimations of the next
head and eye positions. Thereby, we estimate the trajectory of the
head and eye movement by the movement pattern of the previous
positions. The data of the subsequent inter-frame set is preloaded

4

Wavelet-Based Fast Decoding of 360° Videos

Reference Ours Raw

Fig. 4. Our foveated decoding compared with the full-resolution reference
frame. On the right, the information density of the foveated decoding is
visualised.

in parallel to the rendering of the current frames. Until the time of
rendering, the preloaded data is updated continuously in case that
the estimations differ from the actual movements.
Due to the inter-frame compression, one frame is reconstructed

by the wavelet coefficients stored in multiple inter-frames of the
respective inter-frame set. We rebuild the wavelet representation
𝑊𝜓 𝑠 of one frame on the GPU while we already prepare and upload
the wavelet data for the next inter-frame in parallel (see Fig. 3).
This rebuild already includes the inverse inter-frame transform, as
described in Sec. 3.2. Also, the wavelet transforms for encoding
and decoding are executed on the GPU. The reconstruction of the
original frame by the 2D iFWT is performed once all inter-frames
are processed and the inverse inter-frame transform is completed.

3.6 Frame Mapping
360° videos are representations of a recorded 3D sphere, brought to
a rectangular frame by a projection. The position of the informa-
tion in the projected frame is defined by its mapping. Among the
most popular mapping techniques are equirectangular mapping and
cubemaps. Our codec is defined to be independent of the mapping
technique. As the reconstructed areas are given in a low resolution
presentation of the frame (cf. Sec. 3.1), the areas needed for the
frame mapping can be set in direct relation to the final reconstruc-
tion. We render the final re-projection of the FOV to the spherical
presentation in an own shader which is run after the inverse wavelet
transform is completed. This shader can react on multiple mapping
types and also considers the stereo images. For the experiments we
use the equirectangular projection. We tackle the redundancies in
the pixel information near the poles by gradually increasing the
mapping factor 𝐻 towards the poles. For an equirectangular pro-
jected frame with the dimension 𝑆 we define𝐻 (𝑦) = 1− sin(𝑦𝜋/𝑆𝑦).
With the adjusted threshold, we experience equal performance at
all viewing angles, including upward views.

Table 1. Display speeds. Tiling refers to Zare et al.. The foveated decoding
(FD) is run with the high resolution version of our codec (𝑂𝑢𝑟𝑠𝐻𝑄), all
values are averages over multiple runs and given in frames per second (FPS).

Videos AVG fps ↑
HEVC Tiling AV1 𝑂𝑢𝑟𝑠𝐿𝑄 𝑂𝑢𝑟𝑠𝐻𝑄 𝑂𝑢𝑟𝑠𝐹𝐷

Downhill 60.21 93.21 48.32 193.88 180.70 206.65
Horse 62.6 95.94 50.45 197.17 181.18 207.16
Climbing 65.36 92.55 52.53 195.63 187.56 207.3
Walking 65.32 93.1 52.76 198.24 187.88 205.89
Cave* 66.53 111.08 53.93 209.22 207.12 210.28
Boat* 67.13 110.15 55.07 205.21 201.06 208.76

3.7 Foveated Decoding
The information density of visual representations of the human eye
are not equally distributed [Silverstein 2008]. The images created on
the retina of the human visual system follow a qualitative decline
starting from the fixation point of the eye.While people can perceive
the full resolution of about one sixtieth of a degree in the fovea
around the focus point, the information in the peripheral visual area
is significantly lower in resolution [Kolb et al. 2020].
So far we only discussed full resolution reconstructions of the

viewport. However, when the eye gaze direction of the observer
is available by eye tracking, we can utilise the properties of the
wavelets and achieve what we call foveated decoding. With foveated
decoding the resolution gradually decreases with the distance from
the fovea. Our method is comparable to classical foveated rendering,
except that in the periphery the decoding is accelerated while the
rendering load is constant. The results are bandwidth savings and a
higher possible playback speeds.
For the foveated decoding we utilise the level-wise structure

of the wavelet transform. As described in Section 3.1, a wavelet
representation is composed of individual levels, each corresponding
to a defined frequency interval 𝛾 . The reconstruction is performed
incrementally from a low-resolution version of the frame to the
full resolution. Instead of reconstructing the same FOV at each
level, the full FOV of the viewport is reconstructed only at the
lowest frequency level and reduced with each level. The sizes of the
individual resolution levels of the wavelet transform are defined
in regard to the properties of the human eye [Leigh and Zee 2015].
Like human perception, we decrease the quality of the frames at
a logarithmic rate [Kolb et al. 2020]. The area with the full video
resolution which stimulates the most central foveola is only about
two percent wide [Silverstein 2008].

The inverse wavelet transform is executed over the same number
of data points as for a full resolution viewport but assumes zero co-
efficients for the surrounding regions. With foveated decoding, we
achieve a peripheral reconstruction in a visually appealing quality
with a small number of coefficients (see Fig. 4).With the foveation up
to 80% less data has to be loaded. The reconstructed areas are in rec-
tilinear form and follow recent findings, which indicate advantages
over a log-polar presentation [Li et al. 2021].

5

Groth et al.

4 EXPERIMENT
For the evaluation, we consider a high and low quality version of the
wavelet-compressed videos. The inter-frame transform is applied in
sets of four frames and compressed with an inter-frame threshold
of 0.005. The frame-wise threshold is chosen to be 0.1 and 0.25 for
the high and low quality version, respectively.

4.1 Dataset
For the evaluation, we analyse two categories of 360° videos. The first
set of videos is recordedwith amoving camera trajectory and the dis-
play of rapid motions. Here, we use the videos of Groth et al. [2021;
2022] which have a higher resolution than typical moving-camera
360° videos due to their custom camera setup. The second cate-
gory considers videos with a fixed recording position (further de-
noted by *). These videos were originally recorded by Mühlhausen
et al. [2020]. All videos display natural, real-world scenes. We de-
liberately decided not to use rendered scenes, as we see the final
application area to be real-world recordings. The original videos are
recorded with stereoscopic information in 6400x6400-pixel resolu-
tion at 30 FPS.
Reference Data Creation: Pre-recorded videos can cause two

problems for evaluation. For one, the frame rates typically do not
match the refresh rates of VR devices. Additionally, the data is al-
ready lossy compressed and has partly serious compression artefacts.
In order to address both problems, we first downscale the video data
to 1024x1024-pixel to get rid of high-frequency compression arte-
facts and then perform temporal interpolation and upscaling of the
data with state of the art (SotA) neural network approaches. The
resulting frames are used as reference for our evaluation. The origi-
nal video data is downscaled with bicubic interpolation by OpenCV.
The temporal interpolation is run on the downscaled frames with
RIFE [Huang et al. 2021]. The information from both eyes is pro-
cessed individually to avoid artefacts at the edge. We increase the
frame rate from the original 30 FPS to 120 FPS, which should be in
line with the frequency of most modern VR glasses. For the reso-
lution upscaling we use Nvidia VFX to create the final reference
frames in 8196x8196-pixel resolution.

4.2 Evaluation
For the evaluation we compare our codec against the commonHEVC
and AV1 codecs and a tiled HEVC implementation [Zare et al. 2016].
The HEVC and AV1 encodings are performed with ffmpeg. Regard-
ing quality, for HEVC we use a constant rate factor (CRF) of 30
(range 0–51) and for AV1 a CRF of 50 (range 0–65). The videos of
both codecs are encoded in YUV420 colour space. The OMAF in-
spired tiling method is realised with HEVC encoded tiles with the
fastest tiling scheme of Zare et al. [2016]. However, we extended
their tiling scheme for stereoscopic videos to a 6-by-6 grid layout
(6-by-3 per eye). Following the former work, the middle row of both
eyes is chosen with 90° height and all other rows with 45° height
for a better central view performance.
We conduct all of our experiments on a commercially available

computer with a NVIDIA RTX 3090 graphics card and an AMD
Ryzen 5950X processor. The video data is stored on an on-board
SSD. A HTC Vive Pro Eye is chosen as output device. All videos

Table 2. Quality metrics of all codecs in comparison with the reference
frames.

Scene Metrics HEVC AV1 𝑂𝑢𝑟𝑠𝐿𝑄 𝑂𝑢𝑟𝑠𝐻𝑄

Downhill
PSNR ↑ 34.77 34.17 31.4 34.81
SSIM ↑ .954 .95 .921 .961
LPIPS ↓ .082 .103 .161 .081

Horse
PSNR ↑ 37.05 36.48 32.24 35.07
SSIM ↑ .968 .966 .939 .97
LPIPS ↓ .054 .07 .118 .057

Climbing
PSNR ↑ 37.3 36.83 32.84 35.33
SSIM ↑ .973 .971 .952 .976
LPIPS ↓ .051 .066 .115 .056

Walking
PSNR ↑ 37.64 37.06 32.04 35.45
SSIM ↑ .97 .969 .928 .967
LPIPS ↓ .05 .064 .117 .05

Cave*
PSNR ↑ 40.32 40.24 37.02 39.58
SSIM ↑ .971 .972 .96 .972
LPIPS ↓ .039 .04 .08 .046

Boat*
PSNR ↑ 39.2 39.87 33.01 35.88
SSIM ↑ .984 .986 .954 .978
LPIPS ↓ .03 .027 .078 .036

are displayed in our self-programmed video player which uses the
Vulkan API to utilise the GPU. The decoding of HEVC and AV1 video
data is performed with the Nvidia NVDECODE API. Thereby, the
HEVC and AV1 decoding benefits from the hardware acceleration
on the GPU. All videos are created from 1200 reference frames with
8192x8192-pixel resolution. To assure an equal comparison with
all experimental conditions, we use head and eye tracking data of
participant recordings.

The results regarding computational time are shown in Tab. 1.
Our proposed codec allows for an average increase in performance
of 197% compared to HEVC and AV1 and an increase of 91% over
the tiling technique. This increase is even more significant when
the lower quality version of our codec is used. In the experiment,
the foveated decoding (𝑂𝑢𝑟𝑠𝐹𝐷) is applied on the wavelet-based
video with high quality settings. Due to the foveation, the perfor-
mance increases by 223% over HEVC allowing a better performance
than the lower quality wavelet-encoded videos. Please note that
we used the hardware accelerated on the GPU for the decoding of
HEVC and AV1. The dedicated decoding chips allow for significant
increases in decoding speed compared to conventional decoding.
Additionally, the compute shaders for the mapping and rendering
can be executed in parallel to the decoding through the dedicated
chips. A comparable chip for decoding wavelet transforms could
also significantly improve the performance of a wavelet-based codec
while the compute unit can be used for other tasks.

We compared the results’ quality of all codecs by the commonly
used metrics PSNR, SSIM [Wang et al. 2004], and LPIPS [Zhang et al.
2018]. The given values are averages over all frames and compared
with the uncompressed reference frames (see Tab. 2). In terms of
image quality our method performs equally to the other codecs,
HEVC/H.265 and AV1, when high quality settings are chosen. As

6

Wavelet-Based Fast Decoding of 360° Videos

Table 3. Compression ratios of the wavelet video files in relation to the
uncompressed data.

Downhill Horse Climbing Walking Cave* Boat*

𝑂𝑢𝑟𝑠𝐿𝑄 147:1 187:1 250:1 185:1 714:1 312:1
𝑂𝑢𝑟𝑠𝐻𝑄 77:1 100:1 128:1 100:1 416:1 117:1

can be expected, the image quality is on a lower level when the low
quality parameters are chosen for the wavelet-based encoding.

The compression rates of the wavelet files in both quality con-
figurations can be seen in Tab. 3. With our wavelet-based approach,
we are able to compress the raw information to over one hundredth
in size for most videos. Compared to HEVC and AV1 compression
we achieve about half the compression rates, depending on the qual-
ity of the video. The tiled HEVC videos by the technique of Zare
et al. are on average three times larger than our wavelet-compressed
video files due to the significant compression losses of the tiling
process.

5 DISCUSSION AND LIMITATIONS
We compared our wavelet-based codec against two common video
codecs and previous work. For the evaluation, we considered a low
and high quality version of the wavelet-encoded videos, because in a
practical application either quality or speed may be prioritised. The
results show that the codec can be optimised for such requirements
by changing the encoding parameters. However, even at the highest
quality, we achieve significantly higher decoding speeds than the
other methods. The foveated decoding technique leverages the prop-
erties of the human visual system, resulting in peripheral resolution
differences to a fully resolved viewport that are unnoticeable to the
user [Leigh and Zee 2015]. Despite a perceived visual quality that
is comparable to the highest quality videos, the foveated decoding
allows for the highest decoding speeds. In VR, eye tracking is nowa-
days mostly used for computer-generated content, where foveation
allows for significant increases in rendering speed. Our wavelet-
based foveated decoding opens up the opportunity for an broader
use of eye tracking in VR where it can also be used to increase the
playback speed of 360° videos through unobtrusive quality gradation
in the peripheral area.
Our objective with the reference data scaling was to generate

uncompressed high-resolution, high frame-rate video data. We used
a combination of downscaling followed by AI-based upscaling to
remove compression artefacts from the original videos. This removal
is not perfect and it can be assumed that the compression rate of a
wavelet-based codec is significantly higher for raw footage. Such
a use of a wavelet-based codec can only be achieved when the
encoding is directly performed by the capturing device with the
native colour information.

The videos from our experiment are considered as casual record-
ings. Nevertheless, 360° videos are not only used by amateurs, but
also by professional filmmakers. For professional filming, it can be
necessary to display different areas of a frame in different quali-
ties, such as the background or the masks of an actor, which stands
out as artificial in high resolutions. With conventional methods,

this procedure requires post-processing or recapturing of the video.
With a wavelet-based codec a pre-adjustment is not necessary and
the video can be stored in full resolution. Individual quality lev-
els may be chosen at decoding time for defined parts of the video,
comparable to our foveated decoding approach (cf. Sec. 3.7).
So far, we have primarily addressed videos that are stored on a

local drive. Online streaming is another common way to retrieve
video data. With online streaming, the amount of data that is trans-
mitted is much more relevant due to bandwidth limitations. For
these limitations, a wavelet-based codec benefits from the direct
viewport-dependent streaming from file. This property allows to
reduce the transfer rates by up to ten times compared to the total
size of the video.
Our wavelet format does not use any container format but is

stored in simple binary form. Neither is a colour transformation
performed, for example to the YUV space. Such techniques are
applied by other codecs to reduce their file sizes to the minimum
while preserving the best possible quality. In this paper the major
focus was on display speed. In future work such techniques may
be introduced to further reduce the file sizes of our wavelet-based
video codec.

6 CONCLUSION
In this paper we proposed wavelet-based video coding for fast and
high-resolution playback of 360° videos.

We showed that our wavelet-based compression approach allows
for selective loading and decoding of arbitrary video regions, which
in the case of 360° videos is key for a fast decoding. While in our ex-
periment our codec reached display speeds at least two times higher
than the other methods tested, the quality remained at a compara-
ble level. In addition, with our codec we have introduced foveated
decoding, allowing for an unobtrusive quality decrease in the outer
regions of the view. Foveated decoding can be applied on run-time
and further increases the decoding times. In conclusion, wavelet-
based video approaches solve the problems that are raised by DCT
codecs when a fast or viewport-dependent playback of 360° videos
is required. Especially for VR environments, wavelet-based codecs
show to be a valuable extension, offering the opportunity to dis-
play 360° videos in a quality and speed comparable to renderings of
virtual worlds.

7 ACKNOWLEDGMENTS
The authors gratefully acknowledge funding by the German Science
Foundation (DFG MA2555/15-1 “Immersive Digital Reality”).

REFERENCES
G Boopathi and S Arockiasamy. 2012. Image compression: Wavelet transform using

radial basis function (RBF) neural network. In India Conference. IEEE, 340–344.
B Choi, YK Wang, MM Hannuksela, Y Lim, and A Murtaza. 2018. Information

technology–coded representation of immersive media (MPEG-I)–part 2: Omni-
directional media format. ISO/IEC (2018), 23090–23092.

A. Cohen, I. Daubechies, and J.-C. Feauveau. 1992. Biorthogonal bases of compactly
supported wavelets. Communications on Pure and Applied Mathematics 45, 5 (1992),
485–560. https://doi.org/10.1002/cpa.3160450502

Xavier Corbillon, Gwendal Simon, Alisa Devlic, and Jacob Chakareski. 2017. Viewport-
adaptive navigable 360-degree video delivery. In International Conference on Com-
munications. IEEE, 1–7.

Colin Groth, Jan-Philipp Tauscher, Nikkel Heesen, Steve Grogorick, Susana Castillo,
and Marcus Magnor. 2021. Mitigation of Cybersickness in Immersive 360°Videos.

7

https://doi.org/10.1002/cpa.3160450502

Groth et al.

In IEEE Virtual Reality Workshop on Immersive Sickness Prevention (WISP). IEEE,
169–177. https://doi.org/10.1109/{VRW}52623.2021.00039

Colin Groth, Jan-Philipp Tauscher, Nikkel Heesen, Max Hattenbach, Susana Castillo,
and Marcus Magnor. 2022. Omnidirectional Galvanic Vestibular Stimulation in
Virtual Reality. Transactions on Visualization and Computer Graphics (TVCG) 28, 5
(2022), 2234–2244. https://doi.org/10.1109/{TVCG}.2022.3150506

Alfred Haar. 1911. Zur theorie der orthogonalen Funktionensysteme. Math. Ann. 71, 1
(1911), 38–53.

Miska M Hannuksela, Ye-Kui Wang, and Ari Hourunranta. 2019. An overview of the
OMAF standard for 360 video. In Data Compression Conference. 418–427.

Werner Heisenberg. 1927. Über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik. (1927), 172–198.

Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. 2021.
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation. arXiv
preprint arXiv:2011.06294 (2021).

ISO. 2019. ISO/IEC 15444-1:2019. Vol. 642. International Organization for Standardiza-
tion.

Helga Kolb, Ralph F Nelson, Peter K Ahnelt, Isabel Ortuño-Lizarán, and Nicolas Cuenca.
2020. The architecture of the human fovea. Webvision: The Organization of the
Retina and Visual System (2020).

R.J. Leigh and D.S. Zee. 2015. The Neurology of Eye Movements. Oxford University
Press.

David Li, Ruofei Du, Adharsh Babu, Camelia D Brumar, and Amitabh Varshney. 2021. A
log-rectilinear transformation for foveated 360-degree video streaming. Transactions
on Visualization and Computer Graphics 27, 5 (2021), 2638–2647.

Michael W Marcellin, Michael J Gormish, Ali Bilgin, and Martin P Boliek. 2000. An
overview of JPEG-2000. In Proceedings Data Compression Conference. IEEE, 523–541.

Moritz Mühlhausen, Moritz Kappel, Marc Kassubeck, Paul Maximilian Bittner, Susana
Castillo, and Marcus Magnor. 2020. Temporal Consistent Motion Parallax for Omni-
directional Stereo Panorama Video. In Symposium on Virtual Reality Software and

Technology (VRST). ACM, 1–9. https://doi.org/10.1145/3385956.3418965
M.T. Orchard and G.J. Sullivan. 1994. Overlapped block motion compensation: an

estimation-theoretic approach. Transactions on Image Processing 3, 5 (1994), 693–
699.

Louis D. Silverstein. 2008. Foundations of Vision. Color Research and Application 21
(2008), 142–144.

Kashyap Kammachi Sreedhar, Alireza Aminlou, Miska M Hannuksela, and Moncef
Gabbouj. 2016. Viewport-adaptive encoding and streaming of 360-degree video
for virtual reality applications. In International Symposium on Multimedia. IEEE,
583–586.

David Taubman andMichaelMarcellin. 2012. JPEG2000 image compression fundamentals,
standards and practice. Vol. 642. Springer Science & Business Media.

BBC Research. 2008. Dirac Specification (Version 2.2.3). https://web.archive.org/
web/20150503015104/http://diracvideo.org/download/specification/dirac-spec-
latest.pdf.

M. Unser and T. Blu. 2003. Mathematical properties of the JPEG2000 wavelet filters.
IEEE Transactions on Image Processing 12, 9 (2003), 1080–1090. https://doi.org/10.
1109/TIP.2003.812329

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image quality as-
sessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing 13, 4 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861

Alireza Zare, Alireza Aminlou, Miska MHannuksela, and Moncef Gabbouj. 2016. HEVC-
compliant tile-based streaming of panoramic video for virtual reality applications.
In Proceedings of the International Conference on Multimedia. 601–605.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and OliverWang. 2018. The
Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 586–595. https:
//doi.org/10.1109/CVPR.2018.00068

8

https://doi.org/10.1109/{VRW}52623.2021.00039
https://doi.org/10.1109/{TVCG}.2022.3150506
https://doi.org/10.1145/3385956.3418965
https://web.archive.org/web/20150503015104/http://diracvideo.org/download/specification/dirac-spec-latest.pdf
https://web.archive.org/web/20150503015104/http://diracvideo.org/download/specification/dirac-spec-latest.pdf
https://web.archive.org/web/20150503015104/http://diracvideo.org/download/specification/dirac-spec-latest.pdf
https://doi.org/10.1109/TIP.2003.812329
https://doi.org/10.1109/TIP.2003.812329
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/CVPR.2018.00068

	Abstract
	1 Introduction
	2 Related Work
	2.1 Viewport-Adaptive Display Techniques for Videos
	2.2 Wavelet based codecs

	3 Method
	3.1 Frame-wise Transform
	3.2 Inter-Frame Coding
	3.3 Thresholding
	3.4 File Format
	3.5 Parallel Wavelet Processing
	3.6 Frame Mapping
	3.7 Foveated Decoding

	4 Experiment
	4.1 Dataset
	4.2 Evaluation

	5 Discussion and Limitations
	6 Conclusion
	7 Acknowledgments
	References

