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ABSTRACT 
Although mid-air hand gestures have been widely adopted by 
VR/AR products (e.g., Quest 2 and HoloLens), some drawbacks 
remain due to their lack of tangibility and tactile feedback. Oppor-
tunistic Tangible User Interfaces could address these shortcomings 
by repurposing existing objects in one’s physical environment. 
However, there has yet to be a systematic investigation of the ges-
tures that would be desirable when using opportunistic objects or 
how such gestures would be impacted by such objects. In this work, 
we conducted an elicitation study to investigate the desirability of 
object and gesture combinations across a variety of interactions. 
The results contribute (1) an opportunistic tangible UI gesture set 
for spatial interfaces, and (2) an Afordance-Based Object Selec-
tor Scheme that identifes ideal objects for tangible input given a 
desired input gesture, based on that object’s physical afordances. 
Arising from these fndings is the vision of the Adaptive Tangi-
ble User Interface, which supports the on-the-fy composition of 
tangible interfaces based on the afordances found in the physical 
environment and a user’s input task. 
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1 INTRODUCTION 
Researchers and designers in human-computer interaction have 
conducted extensive research into spatial interfaces, which enable 
interactions within our real 3D environment, often with the support 
of AR and VR headsets. In such interfaces, mid-air hand gestures 
are often used to interact with virtual content. However, mid-air 
gestures lack tangibility and haptic feedback, resulting in usability 
challenges that have been identifed in past research [33, 39]. De-
spite subsequent studies that have shown that the use of physical 
objects can improve spatial input [3, 41], mid-air input remains a 
common interaction technique within mixed reality environments. 

These challenges have motivated researchers to explore ways in 
which physical objects can be used to provide tangibility for spatial 
interfaces. However, existing approaches, such as shape-changing 
interfaces [16, 40, 58] or custom haptic devices [73], often require 
complex mechanical structures and are impractical for portable 
AR and VR form factors. Alternatively, researchers have proposed 
Opportunistic Tangible Interfaces [19, 21, 30–32, 38, 59, 66], which 
use objects within an existing physical environment for tangible 
interaction. However, previous research has only focused on tar-
geted designs of such interfaces for specifc use cases and objects, 
which are not scalable or adaptable to the diverse scenarios users 
encounter in everyday life. To overcome the scalability and adapt-
ability challenges that Opportunistic Tangible Interfaces have, we 
focus on two core research questions. First, we investigate the rele-
vant characteristics of tangible objects that impact their appropri-
ateness for diferent types of input. We defne such characteristics 
as afordance factors. Second, we seek to identify desirable Tan-
gible User Interface (TUI) gestures for diferent input commands 
and understand how they can be determined by their associated 
afordance factors and adapted across diferent objects. 

To investigate these fundamental questions, we designed an 
elicitation study [26, 74] for tangible input across a range of physical 
objects and tasks. In our study, participants performed gestures 
for a set of referent tasks with ten diferent objects representing a 
diverse range of afordance factors. The elicitation study approach 
allowed us to identify a range of tangible input gestures for various 
task-object combinations. Based on the quantitative and qualitative 
results from the study, we generated a gesture set that covered 
diferent dimensions of input for spatial computing and identifed 
the relevant afordance factors that objects needed to have for 
each gesture. We then proposed an afordance-based object selector 
scheme, which identifed ideal objects for tangible input given a 
desired input gesture. Finally, we outlined and illustrated our vision 
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for an Adaptive Tangible User Interface system that repurposes 
the physical environment around the user on-the-fy to compose 
TUIs for spatial interaction. In summary, our research makes the 
following contribution to the feld of Opportunistic Tangible User 
Interfaces: 

• An elicitation study that understands appropriate gestures 
across a range of physical objects and tasks. 

• A user-defned object-based gesture set that can be used for 
a range of 2D and 3D spatial interface tasks. 

• An Afordance-Based Object Selector Scheme to determine 
appropriate objects to use with specifc gestures. 

• The vision of an Adaptive Tangible User Interface system 
illustrated with a mockup use case scenario. 

2 BACKGROUND AND RELATED WORK 
Relevant prior work includes TUIs for spatial interfaces, oppor-
tunistic tangible user interfaces, taxonomies of tangible objects, 
interfaces, and gestures, elicitation studies for user-generated input, 
and the concept of afordance in HCI. 

2.1 Tangible User Interfaces for Spatial 
Interfaces 

The lack of tangibility inherent in spatial interfaces has been one of 
the main challenges hindering the development of such interfaces. 
Ishii et al. defned tangible user interfaces [34], which transform 
digital information and interfaces into physical forms and enable 
users to leverage their existing abilities to manipulate physical 
things when using digital UIs. TUIs have been used for a range of 
spatial interfaces. A full review is beyond the scope of this research; 
however, readers are directed to Bouzbib’s survey on the topic [9]. 
Examples of TUIs include adding tangibility to AR Interaction with 
3D printed tangible Interfaces in an urban planning context [78], 
using TUIs to increase engagement for smartphone-based virtual 
reality [14], using fan-inspired shape-changing TUIs to add tactile 
feedback to VR [73], and adding directional force feedback to virtual 
racket sports using compressed air [68]. However, these projects 
were based on customized hardware designs and were developed 
for specifc tasks and contexts. In this work, we wish to enable 
the development of scalable and adaptable TUI interfaces that can 
determine appropriate tangible gestures based on a user’s intended 
tasks and utilize objects in the user’s environment as a platform for 
tangible interaction. 

2.2 Opportunistic Tangible User Interfaces 
Ubiquitous computing research has previously explored method-
ologies to employ the afordances [24] of physical objects in the 
process of TUI design [66]. Within the context of mixed reality, 
this approached was explored by using otherwise unused every-
day objects in one’s physical environment as Opportunistic TUIs to 
provide haptic feedback to users [30]. Hettiarachchi and Wigdor’s 
Annexing Reality work [31], for example, explored opportunistic 
interfaces for VR, using computer vision techniques to scan one’s 
physical environment to fnd tangible objects that could be used 
as proxies for virtual objects. Diferent sensing technologies and 
interface authoring methods have also been explored to enable 
opportunistic TUIs, including using computer vision [19, 32], voice 

commands [22], AR markers [21, 38], or by tracking hand skin de-
formations [59]. For example, Du et al. [22] introduced Ad hoc UI, a 
prototyping toolkit that enables users to convert surrounding ob-
jects into opportunistic interfaces in real time, however, the toolkit 
focuses on 2D fat, rigid objects. More generally, most of the work 
in this feld only investigated opportunistic TUIs for a limited range 
of contexts, consisting of case-by-case and object-specifc interface 
designs. In our work, we seek to a provide a generalizable frame-
work towards the vision of an Adaptive Tangible User Interface 
that can compose opportunistic tangible user interfaces based on 
one’s current task and the existing afordances in a user’s physical 
environment. The fndings from our study enabled us to take two 
major steps towards this vision: (1) An opportunistic tangible UI 
gesture set for spatial interfaces, and (2) An afordance-based object 
selector scheme which maps input gestures to ideal objects. 

2.3 Taxonomies of Tangible Objects, Interfaces, 
and Gestures 

Previous work has explored ways to categorize tangible objects 
and interfaces. Researcher have proposed TUI taxonomies based on 
factors such as their afordances [23], mechanisms [16], and shape 
[56]. Roudaut et al. increased the fdelity of these taxonomies by 
proposing the Morphee [58] and Morphees+ [40] frameworks of 
shape resolution features of deformable objects. However, these 
prior taxonomies have not been designed to specifcally inform 
which afordances and input possibilities are ofered by diferent 
objects. The present research forms a taxonomy of everyday objects 
based on their afordance factors, i.e., the characteristics that impact 
their appropriateness for diferent types of input. 

Gesture classifcations and taxonomies in general have also been 
widely explored under diferent contexts, such as Mid-Air Hand 
Gestures [1], surface-based touch gestures [75] and gestures in 
Human Computer Interaction in general [37]. Others have looked 
at categorizing the types of gestures that may be possible when 
the hands are holding an object, such as a steering wheel [2, 20]. 
Sharma et al. [65] created a taxonomy of micro gestures that could 
be made when diferent hand grasps were used. Zhou et al. explored 
TUI gestures for AR while users were holding an object [77]. The 
present research builds upon this body of work to form a gesture 
taxonomy specifcally for opportunistic object-based interaction 
for spatial interfaces, where little work has been done. 

2.4 Elicitation and Wizard of Oz Studies for 
User-Generated Input 

Asking users to create input systems and gesture sets has become 
a popular methodology in HCI. In an elicitation study, users are 
prompted with referents, which are the result of an action, and are 
asked to perform possible corresponding signs, which are the cause 
of the efect. This process (also called User-Derived Interface De-
sign) was validated by Good et al. to refne a standard command-line 
mail interface [26]. It also was used by other researchers including 
Wobbrock et al. [27] and Nielsen et al. [51] in research exploring 
hand gestures for surface computing. Villarreal-Narvaez provided a 
survey of 216 gesture elicitation studies, demonstrating the promi-
nence of this relatively new design methodology [70]. However, we 
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are unaware of prior work using elicitation studies for Opportunis-
tic Tangible User Interfaces. 

The Wizard of Oz technique is another commonly used method 
due to its ability to simulate new system capabilities [67]. For exam-
ple, Maulsby et al. explored the prototyping of an intelligent agent 
using a Wizard of Oz approach [46]. Robbe [57] studied gesture and 
speech input for PC applications. Voida et al. also used a Wizard 
of Oz approach to explore hand gestures for AR interfaces in the 
workplace [71]. The Wizard of Oz approach can be particularly 
valuable for elicitation studies, as it can allow users to feel like 
the system is actually recognizing their newly defned gestures. 
For instance, Connell et al. applied Wizard of Oz in an elicitation 
study to defne body gestures for a Kinect-based interface [17]. In 
the present research, the Wizard of Oz method was used alongside 
the elicitation study methodology to enable participants to see the 
real-time efects of their gestural input. 

2.5 Afordance 
Afordance has been a popular concept in HCI and large amount 
of work has been done to explore frameworks to understand af-
fordances. The term “afordance” was frst introduced by Gibson 
[25] and then introduced to the HCI community by Norman [52] to 
describe an object’s perceived and actual properties that determine 
how it can be used. Bærentsen et al. expanded this paradigm by 
suggesting that activity theory can be used as a frame of reference 
for the concept of afordance [4]. Kaptelinin et al. calls for a me-
diated action perspective on afordances, where a socio-cultural 
framework is employed to understand technology afordances as 
possibilities for human actions mediated by cultural means [36]. In 
our work, we adopt the framing proposed by Kaptelinin et al. and 
apply the concept of afordance to refer to the instrumental afor-
dances of objects, which are the possibilities of action on objects 
to conduct input. We explicitly focus on how diferent physical 
characteristics on objects infuence their appropriateness for dif-
ferent types of inputs. It is important to distinguish the concept 
afordance from the concept of metaphor, which we also refer to in 
this work. We adopt Fishkin’s defnition of metaphor within the 
context of tangible user interfaces, which refers to the association of 
a system efect of a user action as analogous to the real-world efect 
of similar actions[23]. While metaphors are distinct from afor-
dances, we explore their potential infuence on a user’s perception 
of afordance. 

3 USER STUDY 
To develop a gesture set for opportunistic tangible interfaces, arrive 
at a taxonomy of object afordances, and derive an Afordance-
Based Object Selector Scheme so that the gesture set scales to 
other contexts, we conducted a user study using an adaption of 
the elicitation study methodology [27, 51, 75]. In our study, each 
participant was shown the efect of a gesture input (e.g., a button 
is clicked) and was asked to perform the gesture that they believe 
could cause that efect (e.g., tapping on the surface of an object). 
We refer to the efect of the gesture as the referent [47]. Similar 
to prior elicitation studies [17], Wizard of Oz control was used to 
enable participants to perceive the efects of their gesture once it 
was performed. The study utilized 10 physical objects that were 

chosen to represent a range of possible afordance factors. Each 
object was used to perform 12 referents, which were chosen to 
represent a range of input requirements. 

3.1 Participants 
Twenty-two paid participants between 23-67 years old (i.e., 12 male, 
10 female; mean 34 years; median 32 years; 2 left-handed) were 
recruited to participate in the study. Participants were from di-
verse professional backgrounds (e.g., engineering, art, law, fnance, 
business). Participants with a background in human-computer in-
teraction, AR/VR, or user interface design were excluded, to avoid 
any biased data due to previous UI design experience. All partic-
ipants were compensated at a rate of $75USD/h and recruited by 
a 3rd party study recruitment company operating in major North 
American cities. We did not have any selection criteria related to 
cultural background or socioeconomic status, and did not collect 
such information. We discuss these factors and potential impact 
further in our discussion section. 

3.2 Selection of Referents 
To select a representative range of referent tasks, we relied on prior 
work that provided characterizations of 2D and 3D input tasks. The 
frst property considered was the dimensionality of the task content. 
While our interest was in spatial input, it is important to consider 
how 2D interface widgets, such as menus and control panels, are 
often used within spatial user interfaces [10] and can be found in all 
AR/VR headsets on the market. The next property, Input Degrees-of-
Freedom (DoF) was derived from Buxton’s input taxonomy, which 
categorized tasks based on the number of continuous dimensions to 
be controlled [12]. In addition to one, two, and three DoF tasks [12], 
we also included a 6 DoF task, commonly performed when using 
3D user interfaces [76]. Finally, we considered the fow of the task, 
i.e., whether or not the referent tasks were discrete or continuous, 
another characteristic of input from Buxton’s taxonomy of input 
[13] and surface-based input [75]. 

Given these 3 key task characteristics, we arrived at the 12 ref-
erents, presented across 6 interface scenes (Table 1, Figure 2b). 
The frst four scenes and seven referents consisted of 2D content, 
and the remaining two scenes and fve referents consisted of 3D 
content. Arguably the most critical component of any 2D or 3D 
interface is object selection [42, 44], so, the frst chosen referent 
was a simple on/of control of a button. The next referents were 
the 1D discrete previous/next control of a carousel UI [60, 75] and 
the 1D continuous control of a slider. The next four referents were 
conducted within a web page scene, which represented the types 
of foating 2D UI panels that may be present in a mixed reality en-
vironment [10]. The scene included two 1-DoF referents (scrolling, 
zooming), a 2-DoF task (pointer control) and a 6-DoF1 task (ray 
casting). The three referents for 3D object manipulation (i.e., scale, 
rotate, and move) were selected as they are canonical tasks for 
3D manipulation [42]. Finally, a 3D scene (fight simulator) was 
included to investigate tasks which require the use of several input 
commands simultaneously, a key element of many 3D user inter-
faces [35, 42, 50]. In this scene, users needed to control acceleration 

1Technically ray casting requires only 5 DoF, however the literature often classifes it 
as 6 DoF, as the input controls both 3D position and orientation [6]. 
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Table 1: The list of referents presented to participants grouped by scenes and labelled with dimensionality. 

Scene Referent Scene Input Degrees-of- Flow 
Dimensionality Freedom 

Press a button on/of 2D 0 Discrete 
Control a carousel UI previous/next 2D 1 Discrete 
Control a slider increase/decrease 2D 1 Continuous 
Navigate a web page scroll: up/down 2D 1 Discrete 

zoom: in/out 2D 1 Continuous 
move pointer: up/down/left/right 2D 2 Continuous 
ray casting 2D 6 Continuous 

3D object scale: up/down 3D 1 Continuous 
manipulation rotate: roll/yaw/pitch 

move: x/y/z 
3D 
3D 

3 
3 

Continuous 
Continuous 

Flight simulator acceleration (1D): increase/decrease 3D 4 (compound) Continuous 
direction(3D): roll/yaw/pitch 

(1D input) and direction (3D input) at the same time. While the 
referent set does not exhaust all combinations of the three referent 
properties, it was carefully chosen to include a range of the most 
commonly used input commands and represented a range of key 
task characteristics, with the goal of enabling generalizations to 
other tasks with similar characteristics. 

3.3 Selection of Objects 
A key diferentiating factor between this work and other elicitation 
studies is that instead of one single interaction medium [11, 23, 28], 
we wanted to elicit gestures across a range of objects with varying 
characteristics. As described by prior research, the properties of a 
tangible object can invoke any number of metaphorical links that 
may guide a user to use the object in diferent ways [23]. These 
properties may relate to its geometry (e.g., a mug is cylindrical and 
can be rotated like a knob) or semantic meaning (e.g., the tip of a 
pen is like a pointer). We defne an afordance factor as a relevant 
characteristic of a tangible object that impacts its appropriateness 
for diferent types of input. Thus, our goal in selecting an object set 

was to choose objects with a range of possible afordance factors so 
that the object set could be as scalable as possible. To determine the 
relevant afordance factors, we reviewed characteristics used within 
prior taxonomies of shape-changing and tangible user interfaces 
[8, 11, 16, 28, 40, 53, 56, 58, 61, 72]. Based on this review, we arrived 
at the following set of potential key afordance factors. For each 
listed afordance factor, we cite prior work where it has been utilized 
for input. 

Potential Geometric Afordance Factors: Surface Size and 
Curvature [40, 53, 58]; Edge Length and Curvature [40, 55]; Body 
Shape [8, 28, 56, 61, 72]; Body Grabability [11, 28, 72]. 

Potential Kinetic Afordance Factors: Movable Structures 
[8, 16]; Elasticity [40, 56]. 

We selected ten objects (Figure 1) that possessed a diverse range 
of properties across the afordance factors listed above. This list was 
derived through several internal workshops and iteration sessions 
by the research team. The research team frst ran a workshop to 
narrow in on 30 common daily life objects. Afterwards, 10 out of 
the 30 objects were selected the in a subsequent iteration sessions 

Figure 1: List of objects used by participants, labelled with the potential afordance factors they have. 
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to form an object set in which each afordance factor was roughly 
balanced. To delineate geometric sizes, we used the size of a regular 
human hand (250 cm2) [54] as standard: an object with a much 
smaller, similar and much bigger volume were considered as small, 
medium and large object respectively. For length, an edge longer 
than the average breadth of hand (10 cm) [54] was considered as 
long while others are labelled to be short. For curvature, the team 
decided to use Radius ≤ 35cm as the threshold to consider a surface 
or edge to be curved. For the purpose of external validity, and 
because of the potential importance of metaphorical links [23], we 
chose objects that were typically accessible and common in daily 
life. The only exception was the Triangle Magic Cube, which is less 
common in daily life, but specifcally selected to cover a wider range 
of shapes. As with our selection of referents, we do not consider this 
to be an exhaustive list of all object types or potential afordance 
factors. However, by choosing objects based on these key afordance 
factors, our hope that the object set would be scalable and applicable 
to other objects with similar characteristics. We discuss this issue 
of scalability, for both objects and referents, in greater detail in 
Section 6. 

3.4 Procedure 
The study was conducted at a table in a lab with one monitor and ten 
everyday objects (Figure 2). At the start of the study, participants 
were shown the ten objects. Participants then viewed all referents 
for each scene. Participants were then asked to perform one gesture 
for each of the referents, repeated with every object. Participants 
completed all 12 referents in the same fxed order for one object 
before moving onto the next object. The ten objects were presented 
in a randomized order. A think aloud protocol was applied, which 
required participants to explain why they performed their gestures 
and what characteristics they saw within the object that made 
them think they could perform such a gesture. For each object-
referent combination, the participant demonstrated their gesture 
twice. Once to explain the gesture and have it captured by the 
facilitator and once to see its resulting user interface efects using 
the Wizard-of-Oz setup. At the end of each scene, participants 
answered a survey question: “If you needed to pick one gesture to 
use for this kind of interaction for the rest of your life, which gesture 
would you choose and why?” This question allowed participants 

to report their most desirable gesture for each referent across all 
objects. With 22 participants, 11 referents (the two fight simulator 
referents were merged for the purpose of data collection as they 
were performed simultaneously), and 10 objects, 22 × 11 × 10 = 2420 
gestures were performed. A total of 213 gesture data points were 
discarded when it was clear to the facilitator that the participant 
didn’t understand the referent. These data points mostly came 
from two participants that struggled with the study in general, 
especially with referents that had a 3D scene dimensionality (e.g., 
understanding the distinction between 3D movement and zoom). 
With the discarded data removed, there were a total of 2207 gestures 
analyzed in this study. For each participant, the study took between 
1.5 – 2 hours. 

A facilitator controlled the monitor to display the efect of ges-
tures (i.e., referents) using a Wizard of Oz approach. We elected to 
use a monitor instead of a head-mounted display to improve the 
output quality and to ensure participants’ gestures would not be 
impeded by head-mounted display limitations (e.g., reduced touch 
accuracy in VR [62] and restricted feld-of-view in AR devices [7]). 
The referents were illustrated with three interactive interfaces that 
were created using Figma (referent 1-7), SketchUp (referent 8-10) 
and fight simulator game (referent 11-12). These interactive inter-
faces showed recorded animations of the referents or were con-
trolled by a facilitator in real-time. For example, for referent 1, the 
session started with a standard introduction from the facilitator: 
"Task 1, Imagine you are turning this button on or of. Here is 
the result of the input." Then, the facilitator played the animation, 
which illustrated a button turning on and of on the monitor. After 
the animation was played, the interface on the monitor was reset 
to the original status, the participant could then start to perform 
their gesture with an object from the object set, and then their 
gesture proposals were recorded. After the participant conveyed 
his or her idea, the facilitator said: "Now try to use this gesture to 
control the interface." When participants started performing the 
gesture, their hand movements were closely monitored. The facilita-
tor controlled the interface to ofer real-time visual feedback to the 
participant. Participants’ hand movements and think-aloud audio 
were recorded throughout the study. Two camera angles were used 
(i.e., one third person view through a desk-mounted camera and 
one frst person view through a head-mounted camera). A third 

Figure 2: a) The experiment setup. A user works on the carousel control task using the Triangle Magic cube. The efect of the 
gesture is displayed on the monitor. b) The 12 referents used in the task were presented across six diferent UI scenes. For fight 
simulator, image is not from the actual game, but is representative of the referent shown to the user. 
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hand-held camera operated by the facilitator was used for close-up 
shots when the participants were manipulating small objects. In 
addition, the facilitator observed each session and took notes on 
the user’s behavior. 

A priming technique was applied to improve the data quality and 
reduce legacy bias [49]. At the beginning of the study, the facilitator 
introduced possible interaction paradigms, including touch, slide, 
press, squeeze, move, rotate and using movable structures. These 
gestures were demonstrated on a few other objects that were not 
from the study object set. Moreover, the participants were told not 
to consider the technical feasibility of any potential interface. 

3.5 Data Coding and Analysis 
Approximately 43 hours of recorded video data were analyzed 
and labelled with the description of the gesture and related object 
afordance factors. The analysis was conducted by three researchers 
who worked independently but coordinated frequently to ensure a 
consistent process was being followed. Gesture labels included the 
name of the gesture (e.g., squeezing, tapping, rotating), the hand 
usage (e.g., right index fnger, whole right hand), the location on 
the object (e.g., on the cap of the bottle, the tip of the pyramid), and 
the pressure that was applied (i.e., no pressure, discrete pressure, 
continuous pressure). Labels were inferred from both the video data 
and the think-aloud audio (e.g., pressure/squeeze came from the 
think-aloud data). Each gesture was also labelled with any relevant 
afordance factor, based on the participant’s comments on what 
led them to perform the observed gesture on the object (e.g., “This 
desk has a big fat surface, I want to touch it like using a trackpad”). 
Think-aloud data was labelled directly from the audio recordings 
of the video, not from a text transcription. 

An open coding [18] reprocess was performed to categorize 
and group gestures together. Three researchers independently la-
belled the frst 10% of gestures for every referent and compared 
their results. The three researchers had a high consensus (Cohen’s 
kappa � = 0.82), which suggested the labelling was reliable. The 
researchers then continued to fnish coding the remaining data. A 
similar open coding process was used to label and categorize the 
afordance factors related to each gesture (with a Cohen’s kappa 
� = 0.83). Once the gesture and afordance factors were labelled, we 
calculated the agreement level of the gestures, which measured the 
level of consensus among the participants for each referent [74], 
the distribution of gestures for each referent, and the distribution 
of afordance factors for each gesture. 

4 RESULTS 
We now describe the results from our study, which include the tax-
onomy of the observed gestures (Section 4.1), the agreement rates 
of the observed gestures (Section 4.2), the associated user-defned 
gesture set (Section 4.3), an analysis of the gesture distributions 
across referents (Section 4.4), an analysis of the afordance factors 
(Section 4.5), and the derivation of the Afordance-Based Object 
Selector Scheme (Section 4.6). 

4.1 Gesture Taxonomy 
While previous work has proposed taxonomies of input [12, 23], 
little work has been done to create a gesture taxonomy specifc for 

object-based spatial tangible interactions. As such, we frst present 
a taxonomy to summarize and categorize the observed gestures to 
gain a more systematic understanding of object-based input. Based 
on the 2207 gestures that participants performed, we identifed four 
classifcation categories that applied to these gestures (Table 2). 

We observed gestures ranging in their degrees-of-freedom (i.e., 
0D, 1D, 2D, 3D, 6D) which is a well-known property of input [12]. 
Here, we defne 0D gestures as those that either switch the status 
of a value between on and of or just express the confrmation 
of an action, such as tapping on a desk’s surface or squeezing 
a water bottle to press a virtual button. We also observed both 
discrete and continuous gestures, also a known property of input 
[12], sometimes referred as fow [75]. 

More specifc to tangible interaction, we observed a range of 
expression strategies. With hand-centric gestures, participants used 
their hands as the primary medium to communicate, while only us-
ing objects as a medium to aford their hand movements. Examples 
included tapping on the surface of any object for on/of and sliding 
along any object with a fat surface to increase/decrease. With object-
centric gestures, participants expressed their input commands via a 
status change on an object. Examples included squeezing a water 
bottle for on/of or rotating an object to control the orientation of 
a virtual object. With object and hand-centric gestures, participants 
simultaneously expressed their input command with a combination 
of the two strategies above. One example was tapping on a pen 
while rotating it for on/of and ray casting in a 3D pointing scene. 

Finally, the gestures performed by participants arose from var-
ious metaphorical links [23]. Gestures based on physical world 
metaphors transferred previous experiences interacting with physi-
cal objects. One example was to rotate a chocolate bar like a steer-
ing wheel to control the direction of an airplane in a video game. 
Gestures based on digital world metaphors were derived from the 
participant’s previous experience interacting with digital content. 
One example was to use the surface of a desk like a touchpad for a 
move pointer. Abstract gestures were not based on previous experi-
ences or metaphors. Instead, they were subjectively defned by the 
user. An example was to use a double tap for next or a single tap for 
previous. This taxonomy will be used to ground the discussion of 
the resulting gesture set and how the gestures relate to an object’s 
afordance factors. 

4.2 Agreement Rates 
To identify a set of widely applicable and generalizable object-based gestures 
for diferent types of input commands, we frst calculated the agreement 
rate for each type of object to determine if there was a high level of consen-
sus between participants’ proposed gestures. Participants were considered 
in agreement if they proposed the same gesture types for a referent and 
object combination. We adopted the defnition of agreement rate from the 
Agreement Analysis Toolkit [69], where P was the set of all proposals for 
referent-object combination r, |P| the size of the set, and Pi the subsets of 
identical proposals from P : ∑ |� | 

� 
|�� | 

�2 1 
�� (� ) = − (1)|� | − 1 � |� | − 1 

�� ⊆� 

The outcome of the agreement analysis indicated that a gesture set could 
be generated with a high level of consensus among the participants (Table 
3). Agreement rates ranged from 0.1 to 1.000, with a mean across all objects 
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Table 2: Taxonomy of object-based gestures for spatial interaction based on collected gestures. 

Category Sub-category Example Object-Based Gesture 

Degrees-of- 0 DoF Tap on the table to press a bottom 
Freedom 1 DoF Slide on table to control a slider 

2 DoF Moving the fngers along the surface of a desk like using a trackpad to control a webpage 
3 DoF Push a mug forward to move a virtual cube forward in a 3D modelling environment 
6 DoF Control the position and orientation of a pen to point as virtual ray 

Compound Rotate and squeeze a bottle to control the direction and acceleration in a fight simulator 
Flow Discrete Use the index fnger to swipe on an armchair surface to go to the next item in a carousel UI 

Continuous Slide along a chocolate bar to control a continuous volume slider 
Expression Hand-centric Use the index fnger to swipe on a surface to control a carousel UI 
Strategy Object-centric Squeeze a water bottle to “confrm” an action 

Object and Use a pen to point at a slider and use the fnger to slide along the surface of the pen to control the slider 
hand centric 

Metaphorical Physical Hold a chocolate bar like a steering wheel and rotate it to control direction in a fight simulator 
Link Digital Moving fngers on the surface of a desk like using a trackpad to control a webpage 

Abstract To control a carousel, single tap for next, double tap for previous 

Table 3: Agreement rates for each referent, displayed for each object type. 

Referent Chocolate 
Bar 

Ofce 
Chair 

Cup Pyramid 
Cube 

Desk Pen Eraser Water 
Bottle 

Mug Yoga 
Ball 

MEAN STD 

On/Of 0.71 0.51 0.34 0.39 1.00 0.69 0.60 0.28 0.49 0.33 0.53 0.22 
Next/Previous 0.28 0.28 0.20 0.32 0.75 0.40 0.30 0.15 0.29 0.23 0.32 0.16 
Increase/Decrease 0.45 0.58 0.42 0.30 1.00 0.53 0.46 0.30 0.46 0.37 0.49 0.20 
Scrolling 0.27 0.58 0.17 0.15 0.68 0.53 0.29 0.10 0.28 0.20 0.32 0.20 
Move Cursor 0.42 0.74 0.39 0.29 1.00 0.63 0.42 0.41 0.28 0.23 0.48 0.24 
Zoom In/Out 0.23 0.38 0.13 0.13 0.68 0.15 0.22 0.13 0.18 0.27 0.25 0.17 
Move a 3D Object 0.46 0.29 0.56 0.49 0.63 0.65 0.65 0.52 0.83 0.49 0.56 0.15 
Rotate a 3D Object 0.62 0.60 0.91 0.81 0.91 0.66 0.91 0.75 0.82 0.81 0.78 0.12 
Scale a 3D Object 0.32 0.37 0.17 0.14 0.90 0.21 0.22 0.17 0.24 0.23 0.29 0.22 
Flight Direction 0.62 0.18 0.46 0.53 0.82 0.44 0.52 0.52 0.60 0.28 0.50 0.18 
Flight Acceleration 0.22 0.21 0.19 0.19 0.43 0.17 0.20 0.16 0.19 0.18 0.21 0.08 

MEAN 0.42 0.43 0.36 0.34 0.80 0.46 0.43 0.32 0.42 0.33 
STD 0.17 0.18 0.23 0.21 0.19 0.20 0.22 0.21 0.24 0.18 

and referents of 0.430 (SD = 0.19), which the Agreement Analysis Toolkit 
classifes as high agreement (between 0.3 and 0.5) [69]. 

4.3 Set of Gesture Types 
Observed gestures were categorized according to the characteristics de-
scribed in the object-based gesture taxonomy (Table 2). Figure 3 illustrates 
the main set of 14 gestures that occurred more than 5% of the time for at 
least one referent. Only 1.2% of observed gestures did not fall within this set, 
such as Bending (0.3%) and Rotate Chair (0.1%). Gestures were named with 
terms that described the action while also adopting existing names when 
possible. The total number of times a gesture was observed, and the total 
number of participants that produced each gesture, are also provided in 
Figure 3. It should be noted that certain gestures were observed for multiple 
referents, while others were not. This distribution is described in more detail 
in Section 4.4. 

4.4 Gesture Distributions and Preferences 
While the analysis of agreement rates demonstrated a high level of consis-
tency across participants, an analysis of the actual gestures performed is 

still needed. To determine the most appropriate gesture for each referent, 
we grouped all the identical gestures for each referent. The resulting dis-
tribution of gestures across referents is illustrated in Figure 4. The fight 
simulator referents are omitted from Figure 4, as participants were asked to 
perform a combination of gestures. They will be discussed separately below 
(Figure 5). 

In Figure 4, we highlight the most popular gesture for each referent, 
which we classify as the primary gesture for this referent. The identifcation 
of these primary gestures was validated by the qualitative data i.e., for each 
referent, all gestures with the highest representation were also selected as 
“the preferred gesture” by all participants. 

In contrast to other user-defned gesture sets, we cannot rely on a single 
gesture type (with the highest occurrence level) as the only representation 
for each referent [60, 75]. This is because opportunistic objects would not 
always aford the most popular gesture for a specifc input command. For 
example, a user may not be able to fnd a grabbable object needed to rotate 
a virtual object for Object Rotate (i.e., the most ideal gesture for this task). 
As such, we also highlight the second most popular, or secondary, gesture 
for each referent. This secondary gesture, a backup per se, could be used in 
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Figure 3: The user-defned gesture set for spatial tangible interactions. In parenthesis is the number of times the gestures were 
observed and the number of participants that produced the gesture at least once, across all objects and referents. 

cases where the primary gesture is not possible with the objects currently 
in the user’s environment. Below we highlight some key insights gained 
from these gesture preferences. 

Single-handed gestures were dominant, but more bimanual ges-
tures were proposed for 3D and compound commands. Overall, 87% 
of the observed gestures used one hand, while 13% of proposed gestures 
were performed bimanually. Bimanual gestures were observed more often 
for three referents: Move 3D Object (21% bimanual), Rotate 3D Object (22.1%) 
and Drive Airplane (45%) – all of which had 3D scene dimensionality (Table 
1). Object Move and Object Rotate were the most common gesture types to 
be performed bimanually (22% and 52%, respectively). This pattern relates 
to literature that has shown the appropriateness of bimanual input for 3D 
tasks [5]. 

Participants’ gestures were infuenced by their previous experi-
ences. Our work confrms a key advantage of TUIs – the ability of users to 
draw on previous experiences with metaphorical links [23]. For referents 
with a 2D scene dimensionality, the most common gestures, such as Finger 
Tap, Finger Swipe, and Finger Slide, were similar to gestures commonly used 
with digital devices such as smartphones and laptops (Digital Metaphorical 
Link). For referents with a 3D scene dimensionality, participants applied 
their experiences manipulating physical objects, such as Object Rotate and 
Object Move (Physical Metaphorical Link). Examples were imagining an 
object to be a physical representation of a digital object (e.g., mapping the 
movement of the physical object to the digital one), or imagining the object 
was a known physical controller (e.g., holding a chocolate bar like a steering 
wheel to control the direction of an airplane). 

Participants attempted to provide congruent spatial relationship 
mappings. In scene 3, participants were asked to create gestures to in-
crease/decrease the value on a slider. There were two types of sliders, one 
vertical and one horizontal. Overall, 87% of participants proposed the Finger 
Slide gesture that aligned with the direction of the sliders on the screen. This 

demonstrates the importance of supporting congruent spatial relationship 
mappings [45] in opportunistic TUIs. 

Users applied diferent strategies when performing compound 
gestures. For the fight simulate scene, controlling acceleration and direction 
were a combination of the input commands increase/decrease and rotate 
3D object, except they had to be performed simultaneously. While users’ 
proposed gestures for control direction and rotate 3D object were similar, 
there was a noticeable diference between the results of acceleration and 
increase/decrease. For increase/decrease, Finger Slide (52.6%) and Object Slide 
(35.3%) were used over 85% of the time. However, for acceleration, Squeeze 
(24.8%) and Object Move (24.2%) were also used as they were easier to 
perform while rotating an object, whereas Object Slide was not used at all 
as it conficted with Object Rotate (Figure 5). 

4.5 Observed Afordance Factors 
Once we understood which gestures were used and their distribution across 
referents, we examined the afordance factors that infuenced participants’ 
choice of gestures. 

4.5.1 Taxonomy of Object Afordance Factors. During the user study, par-
ticipants were asked to explain why they proposed each gesture and what 
properties of the object infuenced their choice of gesture (e.g., a fat surface 
or its grabbable size). These object characteristics were identifed as afor-
dance factors. We analyzed the recorded video data and compiled a list of 
afordance factors using the factors mentioned in the think-aloud data. The 
afordance factors were labelled and grouped into nine factors (Figure 6). 

These nine afordance factors were then divided into four categories, 
including geometric, kinetic, semantic and ergonomic. The semantic factors 
were further sub-divided into three categories: Sharp Tip and Button Like, 
which were frequently observed across several gestures, and Metaphorical, 
which represented other semantic factors that did not exceed 5% represen-
tation for any individual referent (e.g., Steering Wheel-Like, Handle-Like, 
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Figure 4: The distribution of gestures with the primary and secondary gestures for each referent highlighted. The fight 
simulator referents are omitted from this fgure, as participants were asked to perform a combination of gestures. They are 
discussed in Figure 5. 

Figure 5: A comparison of gesture selections for equivalent 
referents when elicited individually vs in combination. In-
crease/decrease and Rotate 3D Object were performed indi-
vidually, while Control Acceleration and Direction were per-
formed simultaneously. 

Knob-Like). Some of these afordance factors (e.g., size and curvature for 
surface) closely match the initial potential afordance factors, which are 
criteria used to select the objects for the study (Figure 1), while some other 
factors, such as geometric shape of the entire object body (e.g., cylinder or 
pyramid), were found not infuence participants’ chosen gestures. To some 
extent this validates the decision to use real work objects for the study and 
not abstract, geometric shapes. 

4.5.2 Afordance Factors Across Gestures. The distribution of afordance 
factors showed a high alignment among participants, as the top afordance 
factor for each gesture had more than 50% representation, which we consider 
to be the primary afordance factor (Figure 7). We also identify secondary 
afordance factors for instances where the primary afordance factor may 
not be possessed by nearby objects. Objects that possess both the primary 
and secondary afordance factors could potentially be even more suitable for 
the associated gesture. Pointing was the only gesture that had no secondary 
afordance factor. Below we discuss key insights on how the afordance 
factors infuenced gesture preferences. 

Hand-centric gestures were surface-based. All hand-centric gestures, 
including Finger Tap, Finger Swipe, Finger Slide, Pinch & Splay, and Finger 
Move on Surface, had Surface as their primary afordance factor. Some par-
ticipants reported that they utilized their existing experience interacting 
with smartphones to create these hand-centric gestures. 

Semantic characteristics played an important role for hand-
centric gestures. As reported in prior work, metaphorical links played an 
important role in infuencing users’ gestures [23]. For example, participants 
were drawn to Button-like areas of objects when performing Finger Tap 
(12.4%). Similarly, Long Edge was a secondary afordance factor for Finger 
Slide (83%), as participants reported that “the shape of a long edge looks like 
a slider”. 

Infuence of visual guidance. While the size of a surface was not a 
strong infuence, 8.3% of participants wanted the surface to be “small or 
constrained” to perform a Finger Tap (such as the small surfaces on the sides 
of the chocolate bar or the center of rings on a yoga ball surface). This may 
indicate that visual guidance or a signifer can be useful to inform the user 
where to perform a gesture. 

Infuence of metaphors. Semantic afordance factors were commonly 
identifed, appearing as a primary or secondary gesture for 8 of the 14 ges-
tures, often due to metaphorical links [23]. For example, Object Swipe, Object 
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Figure 6: The taxonomy of object afordance factors and their related variables, grouped by category. 

Figure 7: Percentage of afordance factors in each gesture category. Primary and secondary afordance are highlighted for each 
gesture. 

Slide, and Pointing all had Semantics-Sharp Tip as the primary afordance 
factor. Participants reported that the sharp tip of an object was often used 
as a “pointer” in daily life. One example is that teachers often use the tip 
of a marker to point at a whiteboard. Some objects with a sharp tip, such 
as a stylus, can also be used as an input device for sliding and swiping on 
touchscreens. 

Deformation and tactile feedback led to gesture preferences. Both 
Squeeze and Press had Elasticity as their primary afordance factor. Although 
participants could perform these gestures using rigid objects, most partici-
pants (84.2% and 58.9%, respectively for Squeeze and Press) preferred to have 
an elastic object due to its deformation and tactile feedback. 
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Table 4: The Afordance-Based Object Selector Scheme identifes object afordance factors for the 14 gesture types. Secondary 
afordance factors are shown in square brackets. Thresholds for geometric measurements are provided at the bottom of the 
table. 

Gesture Primary and [Secondary] Afordance Factors Example Object 

Finger Tap Objects with a surface [and button-like part] Top surface of a bottle’s cap 
Object Tap Objects with a sharp tip [and metaphorical link] A pen 

Press Objects with elastic surface [button-like part] A water bottle’s side surface or its cap 
Squeeze [Grabbable] Objects with an elastic surface A water bottle’s side surface 

Finger Swipe Objects with a [fat] surface A desk 
Object Swipe [Grabbable] Objects with a sharp tip A pen 
Finger Slide Objects with a surface [and a long edge] A desk 
Object Slide [Grabbable] Objects with a sharp tip A pen 

Pinch and Splay Objects with a [fat] surface A desk 
Finger Move on Surface Objects with a [fat] surface A desk 

Object Rotate Grabbable objects [with a sharp tip] An eraser 
Object Move Grabbable objects [with a sharp tip] An eraser 
Pointing Objects with a pointer-like tip A pen 

Movable Structure Input Objects with a movable structure [providing feedback] The button on the back of a pen 

Surface Size: Large (> 300 cm2), Medium (12-300 cm2), Small (< 12 cm2) 
Edge Length: Long (> 10cm), Short (≤ 10cm) 

Curvature: Flat (Radius > 35cm), Curved (Radius ≤ 35cm) 

4.6 Afordance-Based Object Selector Scheme 
Based on the above analysis of afordance factors, we derived a lookup 
table that can determine suitable objects for each gesture type (Table 4). 
We defne this table as an Afordance-Based Object Selector Scheme, as it 
selects objects based on their afordance factors. For each gesture, we list 
the associated primary object afordance factor (Figure 7) and an example 
object. We also include the secondary afordance factors, which indicate 
additional preferences. For example, for Finger Tap, while some participants 
did not discern the shape of the object, some preferred to tap on a button-
like region. These secondary afordance factors are marked with square 
brackets in the table. By developing this afordance-based object selector 
scheme, our results can be generalized to arbitrary objects, by considering 
their associated afordance factors. 

5 DESIGN IMPLICATIONS: ADAPTIVE 
TANGIBLE USER INTERFACES 

From our analysis, we developed a user-defned gesture set for diferent 
types of spatial interface input that demonstrated a high level of agreement. 
Also, we created the Afordance-Based Object Selector Scheme to identify 
and prioritize opportunistic objects for each gesture in the gesture set. 
We now have the foundation to design an adaptive system that could be 
applicable in diferent physical environments for diferent spatial interaction 
tasks. 

We now propose our vision of Adaptive Tangible User Interfaces (ATUI) 
which could repurpose the physical environment around a user to support 
opportunistic tangible input. This vision is similar in spirit to the concept 
of Ad hoc UI [22]but would intelligently map UIs to objects based on their 
afordance factors. ATUIs would need to proactively scan, interpret, and 
identify objects within one’s physical environment that have the afordance 
factors needed for users to accomplish their goals. Imagine if one wants to 
turn up the volume of music they are listening to while using AR glasses – 
in our vision, they could simply rotate a nearby cup using their hand. In 
another example, if one fnds that they are running low on milk, they could 
squeeze a milk jug to add milk to their shopping list. Several challenges 
must be overcome to realize this vision, which we now discuss. 

5.1 Object and Afordance Factor Detection 
The ability to process users’ surroundings and recognize objects and their 
afordances is fundamental to any ATUI system. This would involve proac-
tively scanning the environment when needed and applying the Afordance-
Based Object Selector Scheme (Table 4), to form a dynamic list of objects in 
the environment that can aford the required gestures. Such a system would 
likely apply computer vision techniques and require the system to recognize 
and label both the objects (e.g., an elastic yoga ball) and the geometry of the 
objects (e.g., a large and fat surface on a desk) to form a list of all afordance 
factors in the environment. Past work on obtaining 3D meshes representing 
the geometry of the physical environment, could be of use [15]. 

5.2 TUI Composition 
Such a system also needs to determine desirable actions based on the user’s 
current interaction goals and compose the associated TUI in real-time. With 
this TUI composition capability, a system could recognize potential input 
tasks based on the existing spatial UI (e.g., one opens a 3D model in AR 
with the potential input of rotating, moving and scaling) and produce a list 
of suitable gestures for the input tasks based on our gesture distribution 
results (Figure 4). The system would then locate suitable nearby objects that 
aford these gestures, using our Afordance-Based Object Selector Scheme 
(Table 4). Once the TUI is composed, visual prompts would be rendered 
on top of the object to provide feedback to the user. The user could then 
activate the object as a controller and begin the interaction. 

5.3 Hand and Object Tracking and TUI Gesture 
Recognition 

The ATUI system we envision would require both object recognition and 
hand tracking to be interactive. Existing research has explored using com-
puter vision to recognize and track the status of an object and hand gestures 
[48]. Wrist devices can also be used to track hand gestures that are outside 
the camera’s feld of view [59]. The system may also need a way to sense 
object deformations to support gestures like squeeze. Existing research on 
object-constrained gestures could be utilized to help address these chal-
lenges [64]. 
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Figure 8: Mockup of the ATUI vision. a) Tom loads a 3D hologram of a car. b) An indicator is displayed on the cup to activate 
the ATUI system. c) Tom rotates the cup to steer the car. d) Tom squeezes the cup to drive the car. 

5.4 Example Use Case - Virtual Object 
Manipulation with A Paper Cup 

We now describe an example use case of an adaptable tangible user interface. 
We frst discuss the user experience, followed by the underlying system 
behavior. 

5.4.1 User Flow. A sample user fow is illustrated in Figure 8. Tom receives 
a car design proposal sent from his colleague. He wants to check the 1:1 3D 
hologram in his AR glasses, but it is hard to control such a large hologram 
with in-air hand gestures. 

The system displays an indicator on a paper cup so Tom realizes the cup 
can be used as a controller. He double-taps the top of the cup to activate it in 
the ATUI system. Some additional visual signifers then appear, indicating 
how he can interact with the cup. Tom holds the cup and rotates it, and the 
1:1 hologram of the car rotates with it. When Tom squeezes the cup, the 
hologram of the car starts to drive, and Tom can rotate the cup to control 
its direction. 

5.4.2 Behind the Scenes. When Tom opens the car design hologram, the 
system captures the input tasks required by the application. In this case, 
the potential input tasks are: 1) Rotate the hologram, 2) Move the hologram, 
3) Scale the hologram, 4) Control the acceleration of the car, and 5) Exit. 
Based on the understanding of the preferred gesture distributions (Figure 
4), the system identifes that the desirable object-based gestures for these 
tasks are: 1) Object Rotate, 2) Object Move, 3) Finger Slide, 4) Squeeze, 
and 5) Finger Tap. Using the Afordance-Based Object Selector Scheme 
(Table 4), the system determines that the preferred object to accommodate 
those gestures should: 1) be grabbable, 2) have a fat surface, and 3) have 
an elastic body. With its afordance detection capability, the system scans 
the environment and identifes a paper cup on the desk that has all the 
afordance factors needed. The system then renders the visual signifers 
on the cup and prepares the cup to be activated. Object and hand tracking 
technologies are then used to track the user’s gestures. 

6 DISCUSSION, LIMITATIONS, AND FUTURE 
WORK 

A key motivation for this research was that prior Opportunistic TUIs for 
spatial interfaces tend to focus on designing interfaces for specifc use 
cases and objects, so the outcomes are hard to scale to other objects and 
environments. As such, the generalizability of this research is important to 
discuss, and, in particular, our choice of referents and objects used in the 
study. 

By choosing an object set for our study that represented a spectrum 
of characteristics, all informed by prior research, our hope was that the 
results would be applicable to not just the objects themselves, but to other 
objects with similar afordance factors. While future studies could test 
this hypothesis, the think-aloud feedback did indicate user’s gestures were 
guided by the afordance factors of the objects rather than the specifc 

objects themselves. This provides some level of confdence that the results 
would scale to other objects with similar characteristics. We also chose a 
wide range of referents for our study representing both 2D and 3D input 
tasks that are commonly used in spatial interfaces. While certainly not 
exhaustive, we believe the insights gained from our study of this set of 
12 referents should be sufcient to infer appropriate gestures for many 
spatial UI actions. Finally, the development of the Afordance-Based Object 
Selector Scheme (Table 4) should, itself, allow for the scalability of our 
results. This scheme should help designers identify and prioritize suitable 
objects for input tasks based on the objects’ afordance factors. Furthermore, 
it should enable the concept of an ATUI, where the results could be utilized 
within a scalable system that composes an adaptive, on-the-fy TUI based 
on the task and objects in an environment. While we hypothesize these 
contributions may help with the scalability of our research, future work 
is needed to further validate the generalizability of the results, and a true 
implementation of the ATUI vision may be the best test of scalability. In 
order to demonstrate the scalability of our results, we considered several 
examples to refect how the afordance-based object selector can be applied 
to objects that were not included in the user study. For example, rather than 
utilizing the paper cup, a soda can or an apple can be employed for virtual 
object manipulation mentioned in section 5.4. The Finger Tap gesture can 
be performed on both the soda can and the apple using a surface, which is 
the primary afordance factor for this gesture. Similarly, both objects can 
be rotated as they are both capable of being grasped, making them suitable 
for the Object Rotate gesture. 

The results of our user study have yielded some interesting and inno-
vative fndings with regards to the gesture set. We introduced a total of 
14 gesture types that can be applied across tasks involving 0-6 Degrees of 
Freedom (DoF). Although certain gesture types for 2D tasks, such as Finger 
Slide and Finger Tap, exhibit similarities with results existing elicitation 
studies for traditional 2D touch interfaces [75], a substantial number of scal-
able novel gestures were discovered for 3D input or using object properties 
such as elasticity or movable structures, which have not been extensively 
explored in the literature. 

There are several other topics that warrant further research. One limita-
tion of this research is that we didn’t compare the usability of the object-
based gestures with mid-air hand gestures. It is possible that in some cases 
object-based gestures have advantages over mid-air hand gestures, while 
in other cases they may not. For example, users could feel that it is easier 
to pinch their fngers to confrm an action instead of tapping on an object 
when they are not already holding the object. A better understanding of 
these trade-ofs could be used within a dynamic UI that combines mid-air 
and object-centric gestures. In addition, we did not consider the impact of 
objects’ spatial locations. The distance an object is to a user could be used 
to infuence the composition of a TUI. Prior research on reachability could 
also provide a guiding model [29, 63]. 

Additionally, our study used a traditional desktop display to provide 
feedback to the user to ensure hardware limitations would not constrain the 
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gestures that users performed. We adopted this approach of using desktop 
display for 3D gesture user study because its ability to simulate 3D tasks 
successfully and produce highly transferable results to 3D environments 
[43]. Moreover, all referents within 0 – 2 dimensions normally appear as 2D 
foating windows in AR/VR, which is analogous to a desktop display. Our 
referents under higher dimensions were also less dependent on stereoscopic 
vision as all referents doesn’t require world-lock 3D content and participants 
were in a stationary position. That said, future work should determine if 
there are any substantial diferences in preferences when utilizing a head-
worn display. 

Moreover, participants of our user study were recruited in major north 
American cities. Future work should also consider a more diverse culture 
and geographical background to explore how culture or socioeconomic 
status may impact gesture preferences, especially given the infuence which 
culture may have on the concept of afordance [36] and metaphor [23]. 

Finally, to further increase the scalability of our research, quantitative 
data about how the parameters of an afordance factor (e.g., length, curva-
ture) impact performance data (e.g., performance time, comfort, accuracy), 
could be collected and utilized by the ATUI. 

7 CONCLUSION 
This paper presented a study of opportunistic tangible user interface ges-
tures and object afordance factors that led to a user-defned object-based 
spatial input gesture set and an Afordance-Based Object Selector Scheme. 
The taxonomy and gesture set were based on the 2207 gestures and afor-
dance factors proposed by 22 participants in an elicitation study. This work 
led to a systematic understanding of the desirable object-based gestures 
for diferent input tasks in spatial computing, the characteristics an object 
needed to aford those gestures, and insights into how metaphorical links 
infuenced users’ gesture preferences. As a direct implication of the fndings, 
we discussed requirements for an Adaptive Tangible User Interface, which 
aims to build a system that composes a desirable tangible UI on-the-fy 
based on the afordances in the physical environment and a user’s input 
task. 
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