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ABSTRACT 
The lack of tactile feedback on touch screens makes typing 
difficult, a challenge exacerbated when situational 
impairments like walking vibration and divided attention 
arise in mobile settings. We introduce WalkType, an 
adaptive text entry system that leverages the mobile 
device’s built-in tri-axis accelerometer to compensate for 
extraneous movement while walking. WalkType’s 
classification model uses the displacement and acceleration 
of the device, and inference about the user’s footsteps. 
Additionally, WalkType models finger-touch location and 
finger distance traveled on the screen, features that increase 
overall accuracy regardless of movement. The final model 
was built on typing data collected from 16 participants. In a 
study comparing WalkType to a control condition, 
WalkType reduced uncorrected errors by 45.2% and 
increased typing speed by 12.9% for walking participants. 

Author Keywords: Touch screen; text entry; adaptive; 
situational impairments; mobile; virtual keyboard; walking. 

ACM Classification Keywords: H.5.2. Information 
interfaces and presentation: User Interfaces—input devices 
and strategies.  

General Terms: Human factors, design, experimentation. 

INTRODUCTION 
Touch screen devices have become the dominant platform 
for mobile computing; however, the lack of tactile feedback 
on these devices requires a high level of visual attention to 
select targets accurately. Input is particularly challenging 
when the user is in motion [25,26,29], a state that can be 
thought of as causing situational impairments [35]. 
Situational impairments may be caused by a variety of 
factors including vibration, divided attention, diverted gaze, 
body motion, awkward postures, cold temperatures, 
clothing, rainwater, glare, uneven terrain, ambient noise, or 
encumbering baggage. The challenges of situational 
impairments are exacerbated for mobile text entry on virtual 

   
Figure 1. Visualizaton of key presses with WalkType (left) and 
without WalkType (right) collected while users were walking 
during model-building, showing touch points for “N”, “R” and “S”. 
Correct key-press classifications are in green; errors are in red. 
In our study, WalkType (left) corrected 90.1% of the errors. 

keyboards because of the many repeated targeting actions 
that take place in quick succession. Researchers have 
explored various techniques to accommodate some 
situational impairments, like walking versus stationary 
interaction [29,36] and, to a lesser extent, adaptive 
techniques to automatically meet such needs [21,42]. 
Despite these advances, techniques to improve interaction 
in the presence of situational impairments are relatively 
unexplored, particularly for text entry.  

In this paper, we present WalkType (Figure 1), a system that 
uses a touch screen device’s built-in accelerometer to 
increase text entry accuracy while the user is walking. 
Taking inspiration from image stabilization techniques of 
cameras to remove motion blur (e.g., [5]), WalkType 
compensates for imprecise input by incorporating multiple 
features computed from the accelerometer data: 
displacement, acceleration, and inference about the user’s 
movement. Additionally, WalkType uses tap location and 
the finger travel distance during taps to improve the user’s 
text entry accuracy, features that increase overall accuracy 
regardless of movement. Previous work on adaptive text 
entry has largely focused on adjusting key-press 
probabilities based on language models [7,13,14]. To our 
knowledge, taking into account the user’s motion through 
accelerometer or other sensor data has not been explored. 

To design and build WalkType, we first collected touch 
screen typing data from 16 participants. Based on this data, 
we built two key-press classification models that 
incorporate accelerometer information. In simulations, 
these models improved classification accuracy over a 
control condition from 72.8% to 94.6% and 95.7%, 
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respectively. While some improvement occurred for both 
walking and sitting, walking received an additional 4.8% 
increase in accuracy. The final WalkType prototype is a 
composite of these two models and a third more basic 
model that together achieved an accuracy of 97.3%. 

We evaluated the final WalkType system in a controlled 
study with 16 participants, 5 of whom had also participated 
in our model-building study. Our findings show that 
WalkType improves typing performance for both sitting 
and walking, but that the benefits are greatest for walking. 
WalkType improved text entry speed compared to a control 
condition from 28.3 to 31.1 words per minute (WPM). 
Uncorrected error rate [37] also improved, particularly for 
walking, where average error rate dropped from 10.5% to 
5.8% with WalkType. Finally, WalkType was highly 
preferred by participants, who recognized its performance 
benefits despite there being no visual difference between 
WalkType and the control interface.  

The main contribution of this paper is a demonstration that 
accelerometer data can be used to improve typing 
performance on mobile devices when the user is 
situationally-impaired due to walking. This contribution 
comes in three parts: (1) an exploration of key-press 
classification models for improving mobile touch screen 
typing; (2) WalkType itself and its component models that 
incorporate accelerometer data; and (3) an evaluation of 
WalkType, showing that it significantly improves user 
typing performance over a standard touch screen keyboard, 
particularly while the user is walking.  

RELATED WORK 
We draw motivation from prior research exploring 
solutions to make interaction with devices easier while 
walking and while experiencing situational impairments. In 
addition, we draw on work on screen content stabilization.  

Situational Impairments and Walking User Interfaces 
The importance of accounting for the context in which a 
mobile device is used has been stressed by numerous 
researchers (e.g., [18]). Walking has been shown to affect 
both input and output with mobile devices. Mizobuchi et al. 
[29] evaluated how increasing size of target buttons could 
improve text entry performance while walking. Lin et al. 
[25] studied the effect of walking on stylus tapping, and 
found that performance decreased while walking. Yesilada 
et al. [44] demonstrated that the number of errors made by 
an unimpaired user on a mobile device was similar to a 
motor-impaired desktop user. Consequently, existing 
techniques for motor-impaired users may be useful in 
accommodating situational impairments on mobile devices. 
Kane et al. [20] proposed an auto-correction system to help 
motor-impaired typists. Mobile devices can also impact the 
user’s ability to read information. For example, walking has 
been shown to have a negative effect on both text legibility 
[30] and reading comprehension [1]. 

To address the foregoing challenges, techniques have been 
proposed to bridge the gap between stationary and walking 
interaction. For example, Brewster et al. [4] used audio 
feedback to improve touch screen interaction while 
standing and walking. Bragdon et al. [3] evaluated touch 
screen gestures in mobile environments, and established 
that gestures starting on the screen border as a reference 
point are not “significantly affected by the environment.” 
Taking an adaptive approach, Kane et al. [21] coined the 
term walking user interfaces (WUIs) and evaluated a 
method to automatically enlarge soft buttons when users are 
walking versus stationary. Yamabe and Takahashi [42] used 
accelerometer information to automatically adapt the size of 
fonts and images while walking. Yatani and Truong [43] 
investigated how two-handed chorded keyboard input could 
improving using a stylus-based PDA while walking. 

Touch Screen Text Entry and Adaptive Keyboards 
A plethora of touch screen text entry techniques have been 
developed for both finger and stylus input. Prior work [28] 
provides a full review. Approaches to improve text entry 
performance with QWERTY keyboard layouts have been 
proposed, for example, using geometric pattern matching 
[23] and gestures [22]. Of particular relevance to our work 
are approaches that combine language model predictions 
with probabilities from a touch model (e.g., [13,14]) to 
improve overall input accuracy. Language model 
predictions for the next letter to be typed have been used to 
resize keys, either visibly [7] or invisibly, that is, without 
showing the adaptation to the user [14]. (Apple’s iPhone 
uses this approach.) Gunawardana et al. [14] ran a 
simulation study demonstrating the usefulness of key 
anchoring when the language model predictions are 
invisible. That is, regardless of the changing predicted letter 
probabilities, a center (anchor) area on the visible key 
always returns that letter, ensuring that a “direct hit” on the 
key by a user’s finger provides a predictable result. We use 
this approach in WalkType. 

As with WalkType, others have proposed techniques that 
use models of key-press distributions built on aggregate 
typing data collected from users. Most commonly, bivariate 
Gaussian distributions have been used to model individual 
keys [13,14,33]. A small number of projects have 
introduced models that adapt to individual typing patterns. 
A simulation study by Rudchenko et al. [33] showed that a 
personalized key-press model using bivariate Gaussian 
distributions for each key improved performance over an 
aggregate model. Adapting the location of keys based on 
the centroid of the user’s previous key presses has also been 
studied for larger devices [12,16], but no performance 
benefits have been found in user evaluations.  

Accelerometer-Based Input 
Researchers have leveraged accelerometers for tasks 
ranging from scrolling and changing screen orientation 
[17], to mapping the speed of the cursor on a mobile device 
to the inferred degree of tilt [38]. Novel text entry 
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techniques using an accelerometer as the primary source of 
input have also been proposed [19,31,34,39]. In general, 
these techniques have relatively high error rates and are 
meant for specialized contexts where touch screen 
keyboards may not be available. TiltType [31] and TiltText 
[39], for example, use combinations of tilting and button-
pressing for entering letters. Our system, in contrast, uses 
accelerometer data as an additional source of information to 
improve typing on a standard QWERTY layout. 

Screen Content Stabilization 
WalkType derives motivation from the image stabilization 
techniques broadly found in digital cameras. There has been 
extensive research in countering user motion in image and 
video capture. Researchers have worked to remove effects 
of camera shake for images [8,24]. Similar techniques have 
also been used by researchers to stabilize contents of a 
screen. Behringer [2] addressed the problem of shaking 
displays in moving vehicles by dynamically shifting screen 
content. Similarly, NoShake [32] utilizes the accelerometer 
of a smartphone to perform content stabilization by 
dynamically moving screen content. 

Finally, of particular relevance to walking-based situational 
impairments, Crossan et al. [6] leveraged an accelerometer 
to analyze in which phase of a user’s gait he or she more 
comfortable interacting with a stylus-based PDA, and 
which areas of the screen are more error-prone. Although 
their approach is relevant to our work, Crossan et al. 
studied simpler target selection tasks than for keyboarding. 

THE DESIGN OF WALKTYPE 
WalkType uses multiple sources of information to classify a 
user’s finger-touches as key-presses. Among these sources 
is data from the device’s built-in accelerometer, which is 
used to account for extraneous movement while the user is 
walking. In this section, we outline WalkType and the 
process taken to build it, including a study to collect 
training data from 16 participants. In the next section, we 
describe a controlled study of the final WalkType system. 

Model-Building 
Along with accelerometer data, WalkType uses tap 
locations and tap travel distance to better predict the 
intended key. The Weka machine learning toolkit1 was used 
to generate two J4.8 Decision Tree models with pruning 
confidence set to Weka’s default (0.25). For classification, 
the first model used time-domain accelerometer data 
between taps and the second model used the pattern of 
accelerometer data generated from the three axes due to the 
phone’s motion while walking. The final WalkType system 
combined output from both of these models along with a 
simple Euclidian model. Our analysis showed that this 
composite model performed better than individual models. 

For clarity, we use the term Euclidian model throughout 
this paper to refer to a simple key-press classification model 

                                                             
1 http://www.cs.waikato.ac.nz/ml/weka 

that takes as input the (x, y) coordinate of a finger-touch and 
returns the letter whose corresponding key’s visual bounds 
contain those coordinates. 

The models were built based on typing data collected from 
16 participants (10 males, 6 females) who each volunteered 
for a 45-minute study session. All participants self-rated as 
expert computer users and intermediate to expert touch 
screen smartphone users. They were between 21 and 35 
years of age (M = 28.69, SD = 4.48).  

 
Figure 2. In WalkType Collect, the user was only given 
feedback about whether they pressed a key or not. The red 
triangular cursor moved forward after every key-press. 

We built a custom data collection application, WalkType 
Collect, for the iPhone 3GS that records the device’s 
movement using the on-device low-noise tri-axis 
accelerometer. We wanted to elicit natural typing patterns 
and did not want participants to be overly concerned with 
the accuracy of their input. Thus, we followed the 
approaches of Gunawardana et al. [14] and Findlater et al. 
[9] and created Collect’s keyboard in such a way that it 
only gave the user feedback that a tap had occurred, but 
not where it occurred or what key had been hit. To convey 
this feedback, a small cursor moved under the phrase as the 
user typed. Figure 2 shows an example. If the user realized 
that they were off by a character or two while typing, they 
could swipe from right to left anywhere on the screen to 
delete one tap at a time. Participants were instructed to try 
to delete their tap when they knew they had made an 
obvious mistake or when they felt they were off by a 
character or two. We requested participants not to go back 
through the whole phrase in order to correct a supposed 
error. Participants were asked to enter 50 phrases in 2 
postures, sitting and walking, while holding the device with 
both hands and typing with both thumbs. The order of 
postures was counterbalanced and participants were 
randomly assigned to orders. Short phrases of English text 
from MacKenzie and Soukoreff’s phrase set [27] were 
used. Apart from these, every fifth phrase was a randomly 
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selected pangram from a list of 35 pangrams to ensure 
sufficient data for all letters of the alphabet.  

The lack of tap-location feedback meant that users made 
mistakes while entering text, which added noise to our data. 
Thus, outliers were removed during post-processing by 
eliminating all taps that landed outside the Euclidean 
bounds of the intended key or its immediate neighbors. 
Figure 3 shows filtered data for one participant for the “H” 
key. About 2.5% taps were filtered out in this process. 

 
Figure 3. Tap filtering for letter “H”. Taps not on the intended 
key or its immediate neighbors are filtered out (in red). 

The logs from Collect contained tap-start and tap-end 
locations, amount of travel while tapping, the time interval 
between taps, the intended key, and temporal accelerometer 
data. The touch-screen-based features (tap location, tap 
travel and time elapsed between taps) form the base set of 
classification features used in both models described in the 
next two subsections. We chose to include tap travel and 
time elapsed in this set based on observations we made 
while developing Collect. For tap travel, we observed that, 
at times, the tap-start and tap-end locations were not the 
same, yielding a potential feature to increase classification 
accuracy. For time elapsed, we observed that typing speed 
appeared to impact the user’s input accuracy: the tendency 
to type the wrong key was relatively low when typing 
slowly compared to more quickly.  

Displacement and Acceleration Model 
We hypothesized that one of the major reasons for 
inaccuracy in typing while walking is the general 
movement of the phone and its displacement from a 
relatively stable location with respect to the user. Based on 
this hypothesis, the Displacement and Acceleration Model 
improves tap accuracy by incorporating acceleration 
features in all three axes, and magnitude and direction of 
displacement in the z-axis. To calculate these features, the 
data from the smartphone’s on-device accelerometer was 
first passed through a low-pass filter to remove noise. This 
model also includes the base set of features. 

To calculate the acceleration features, the filtered 
accelerometer data was resampled to 10 samples between 
two consecutive taps. We selected this sampling rate as it 
gave reasonable resolution and did not overly increase the 
number of attributes for the classifier. These 10 samples of 

(x, y, z) values constitute 30 features for the model. When 
dealing with accelerometer data, it is often necessary to 
compensate for gravitational pull on the three axes. We 
found this compensation unnecessary because phone 
orientation stays relatively constant while typing. 

For the displacement magnitude and direction features in 
the z-axis, we first subtracted the mean acceleration from 
the filtered data and then double-integrated it using the 
cumulative sum. The direction in which the phone moved in 
the z-axis was also calculated. To do so, we compared the 
device’s instantaneous acceleration with the moving mean 
acceleration of the device. If the instantaneous acceleration 
was less than the mean, we inferred that the device was 
moving forward. Otherwise, it was moving backward. 

We conducted a 10-fold cross-validation on the WalkType 
Collect data to evaluate the Displacement and Acceleration 
Model. The model improved classification accuracy on 
average from 72.8% (for the Euclidian model) to 94.6%. 
This is a significant increase in overall accuracy (paired-
samples t-test: t15 = 22.23, p < .001). To evaluate the benefit 
of the accelerometer data, we also tested this model after 
removing all accelerometer features. Classification 
accuracy dropped to 90.8% on average, which was a 
significant decrease (paired-samples t-test: t15 = 12.95, p < 
.001). See Figure 4 for a comparison of all models, 
including the Displacement and Acceleration Model.  

Figure 4. Classification accuracy with different models. M1 is 
the Displacement and Acceleration Model and M2 is the 
Walking Pattern Model. The difference in performance of Base 
Features and WalkType illustrates the benefit of the 
accelerometer data. Error bars show standard error. 

Walking Pattern Model 
In analyzing the Collect data, we observed that the phone 
oscillated in a largely repeatable pattern while a user was 
walking and typing. Figure 5 shows one such instance of 
the pattern in the z-axis. The Walktype Pattern Model 
leverages the on-device accelerometer to obtain this pattern 
in all three axes. In addition to the base set of classification 
features, it incorporates four new features per axis. Crossan 
et al. [6] observed a similar pattern and analyzed how it 
could be used to detect phases where the user is more 
comfortable performing target selection with a stylus. We 
use different techniques as a user’s interaction with a device 
while typing is very different while walking.  
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Figure 5. Motion of the phone along z-axis when the user is 
walking. T1 and T2 are two instances of taps; p1 and p2 are the 
elapsed times since the signal crossed the mean. The 
waveform in red is part of the dominant frequency wave. 

To make the model adaptive to different walking speeds, 
we calculated the dominant frequency (e.g., red wave in 
Figure 5) of the user’s motion and its mean amplitude from 
all three axes. This gives us a proxy for detecting changes 
in the user’s speed and intensity of movement. To calculate 
the instantaneous dominant frequency, we took the Fast 
Fourier Transform (FFT) of the accelerometer signal and 
found the frequency with the maximum amplitude. This 
frequency and amplitude constitute the first two features. 
For the third feature, the direction of the last mean crossing 
before the current tap gives a measure of the direction in 
which the device is moving. Finally, to pinpoint where in 
the pattern a tap event occurs, we use the elapsed time since 
the accelerometer signal crossed the mean value of the 
signal, as demonstrated in Figure 5. 

These features in the x-axis are particularly useful in 
detecting the user’s footstep pattern. We observed that 
when users’ feet hit the ground, their taps tended to shift 
slightly towards the center of the keyboard. We also 
observed that a shift to the left was more common when the 
left foot hit the ground, and a shift to the right was more 
common when the right foot hit (Figure 6). When we do the 
analysis shown in Figure 5 on the x-axis data, we can detect 
which foot strikes the ground. If the current x-axis data is 
less than the mean, then the user’s left foot has landed, and 
vice-versa for the right foot. Because the effect of the foot-
strike on the user’s accuracy would attenuate over time, we 
also calculated the time since the last foot hit the ground. 
This calculation was performed in exactly the same way as 
for the z-axis (Figure 5). 

We provide the classifier with the tap location on the 
screen, the direction in which the phone is going in y- and 
z-axes, and the last foot that struck the ground. We also 
provide three temporal components denoting time since the 
last change in direction in the three axes. On 10-fold cross-
validation with the Collect data, the Walking Pattern Model 
outperformed the Displacement and Acceleration Model 

with a mean classification accuracy of 95.7% compared to 
94.6%, a significant difference (t15 = 5.11, p < .001).   

 
Figure 6. The Walking Pattern Model takes into account error in 
typing when the user’s left or right foot just strikes the ground. 

Combined WalkType Model 
The Combined WalkType Model is a composite of the three 
sub-models: the Displacement and Acceleration Model, the 
Walking Pattern Model, and the Euclidean Model. A 
majority voting approach is used, whereby for each finger-
touch, the key selected by at least two of the three internal 
models is output to the text stream. When all three models 
disagree, the Walking Pattern Model prevails, since it 
model performed the best in isolation on the WalkType 
Collect data. Figure 7 shows a block diagram detailing the 
approach. The Euclidian Model is included because, 
although classification accuracy was high for both of the 
accelerometer-based models, some keys become major 
sources of errors as they got masked by adjacent keys. An 
example confusion matrix is shown in Figure 8. Here a 
more frequently occurring key dominates adjacent keys, for 
example, “A” dominates “S”. To counter this problem we 
combined the two models along with the Euclidean model. 
As mentioned earlier, the Euclidean model selects the key 
containing tap location. Although simple and non-adaptive, 
this model increases the probability of less-frequently 
occurring keys like “W” being correctly classified. 

 
Figure 7. Block diagram of major components of WalkType’s 
Model Building phase. 

The mean classification accuracy of the Combined 
WalkType Model is 97%, significantly higher than both the 
Displacement and Acceleration Model and the Walking 
Pattern Model (paired two-tailed t-tests, respectively: t15 = 
6.51, p < .001; t15 = 5.94, p < .001). 
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Figure 8. Frequently occurring keys dominate adjacent keys. ‘s’ 
is dominated by ‘a’, ‘r’ & ‘w’ are dominated by ‘e’. 

The Combined Walktype model also incorporates key-
target anchoring [14]. After incorporating the three models, 
there were still taps that, although clearly landing in a key’s 
center, did not get classified correctly. Gunawardana et al. 
[14] addressed this issue in the context of adjusting key-
press probabilities based on a language model. Their work 
demonstrated that anchoring some part of the key increases 
overall typing accuracy. We thus define an anchor area in 
the middle of each visual key; a tap within that anchor area 
bypasses the classification models and instead returns the 
visual key. We reserved the central 20% along the x-axis 
and 50% along the y-axis of each key as the anchor area. 
Introducing anchors further increased the overall accuracy 
of the WalkType Combined model to 97.28% (significant 
compared to without anchors: t15 = 5.193, p < .001).  

This final model was used in WalkType. Referring back to 
Figure 4 shows the cumulative improvement in accuracy for 
each component within this final model. In a verification 
step, we confirmed that the accelerometer features are, 
indeed, a critical component of WalkType. Removing these 
features drops classification accuracy by 6.8% (SD = 2.6) 
on average across participants.  

WalkType Online 
All simulations in the previous section were run offline 
with Weka. The final step in the process of creating 
WalkType was to port the model to an iPhone 3G for online 
use and evaluation. To do so, we first ported the 
classification models generated by Weka into the iPhone 
and then optimized and synchronized their operations to 
work in real-time. The online version of WalkType first 
filters the accelerometer data, and then sends it to the 
Combined WalkType Model for classification.  

EVALUATION 
While the model-building phase demonstrated the potential 
of WalkType to improve key-press classification accuracy, 
the goal of our controlled evaluation was to see whether our 

simulation results would transfer to a real typing task. In 
particular, we sought to see whether WalkType would 
lessen the text entry performance degradation incurred by 
walking compared to sitting. 

Participants 
Sixteen participants (8 male, 8 female) ranging in age from 
21 to 40 years (M = 29.7, SD = 5.7) were recruited. Five of 
these participants also participated in the model-building 
study. All participants had more than 10 years of experience 
with computers and self-rated as intermediate to expert 
computer users. Fourteen participants were near-expert 
touch screen smartphone users with approximately 2-3 
years’ worth of use. Two participants did not own touch 
screen smartphones and had little experience with them. 

Apparatus 
Participants used our custom experiment software on an 
Apple iPhone 3GS that has a 3.5-inch capacitive screen 
with 480 × 380 pixels. The application was developed using 
Objective-C. It recorded all of the users’ screen interactions 
as well as movement data from the accelerometer.  

Figure 9 shows a screenshot. The presented phrase appears 
atop the screen, wrapping onto a second line if necessary. 
Entered text, in dark blue for contrast, appears immediately 
below. When the user types a key, keystroke feedback is 
displayed at the top of the keyboard exactly above the 
position where the user tapped. Because WalkType uses 
finger-travel and elapsed time as features, the decision of 
which key was pressed occurs when the user lifts his or her 
finger. Accordingly, we modified the key-press feedback to 
occur when the finger is lifted, as opposed to when the user 
touches the screen, as occurs for the built-in iPhone 
keyboard. In the bottom-right corner of the text area, the 
current trial number is displayed, with a trial being equal to 
one phrase. Finally, the backspace functionality for the 
keyboard was also modified: a swipe anywhere on the 
screen from right-to-left backspaced one character. 

 
Figure 9. Testing interface showing the presented phrase, 
transcribed phrase, trial number and keystroke feedback. 

Procedure 
The procedure was designed to fit in a single 45-minute 
session. Each session began with an introduction to the 
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tasks and experiment software. Participants were asked to 
familiarize themselves with the application and to ask any 
clarifying questions. This learning phase lasted 
approximately 5 minutes, until the user was comfortable 
with the system and had completed at least 5 phrases 
without assistance. For the walking tasks, we followed an 
approach similar to Kane et al. [21], wherein participants 
followed a human pacesetter, remaining within 3-5 feet. To 
simulate a routine and unconstrained environment, the 
pacesetter ensured that the walking speed was consistent at 
about 1.07 m/s (3.51 feet/s), a pace that comfortably 
accommodates a wide range of age and abilities [10]. The 
walking tasks were performed in a relatively quiet corridor 
of a university building.  

For each condition, participants completed 30 test phrases, 
24 of which were randomly selected from the MacKenzie 
and Soukoreff phrase set [27]. Apart from these, every fifth 
phrase was a randomly selected pangram to cover all letters 
in the alphabet. Participants were asked to hold the phone in 
both hands and type with their thumbs. We asked 
participants to type quickly and accurately, and to fix errors 
unless those errors were noticed “far behind” their current 
point of entry. Finally, participants were requested to 
complete each trial without failing to keep walking and 
were offered a rest period at the end of each trial. 

Design & Analysis 
The study was a within-subjects 2×2 factorial design. The 
factors and levels were: 

• Interface: WalkType and Control. Both interfaces used 
the same experiment software but the underlying key-
press classification models were different. WalkType 
used the final combined model from the previous 
section, while Control was non-adaptive, using only the 
Euclidian model. 

• Posture: Walking and Sitting.  

Presentation of the interfaces was counterbalanced. Within 
each interface, postures were also counterbalanced. With 30 
trials (test phrases) in each condition, participants 
performed 2×2×30=120 trials each, for a total of 1920 trials 
in the study. Overall, we collected 57,663 key presses from 
16 participants. 

The main measures were speed, calculated as words per 
minute (WPM), and uncorrected error rate, following 
Soukoreff and MacKenzie [37]. Uncorrected errors 
represent those errors left in the transcribed text. Corrected 
errors, which are errors made during entry, are of less 
interest, as such errors slow WPM and are thus subsumed 
by it. Also, to evaluate whether participants could perceive 
any difference between the two systems, at the end of the 
session we asked them to rate which one of the two systems 
they preferred and why. To guard against any bias, 
participants were not initially made aware of which 
keyboard was Control and which was WalkType. 

To calculate WPM and uncorrected error rate, we used 
StreamAnalyzer [41]. Statistical analyses were done using 
SPSS 19. We tested for effects of presentation order on the 
main measure of typing speed using a 3-way ANOVA with 
presentation order of the interfaces as a between-subjects 
factor and Interface and Posture as within-subjects factors. 
No main effect of presentation order was found, indicating 
that overall counterbalancing was effective. However, there 
was an asymmetric skill transfer: a significant interaction 
occurred between presentation order and Interface on 
typing speed (F1,14 = 5.569, p = .032, η2 = .288). The 
control condition benefited more when it followed 
WalkType than vice versa. Since this asymmetric skill 
transfer only injures WalkType’s performance relative to 
the control condition, we are confident that our 
comparisons are still trustworthy. We present results from a 
2-way repeated measures ANOVA with Interface and 
Posture as within-subjects factors. 

For uncorrected error rate, we used the nonparametric 
Aligned Rank Transform [15,40] with Interface and 
Posture as within-subjects factors. We used this 
nonparametric procedure because uncorrected error rate is 
highly skewed toward zero and violates normality. All 
pairwise comparisons were protected against Type I error 
using a Bonferroni adjustment. 

RESULTS 
Speed (WPM) 
Speed results are shown in Figure 10. Overall, WalkType 
improved typing speed regardless of whether the user was 
sitting or walking: on average 31.1 WPM (SD = 10.7) 
compared to 28.3 WPM (SD = 9.6) in the control condition. 
This difference was significant, as seen in a main effect of 
Interface on typing speed (F1,15 = 6.777, p = .020, η2 = 
.311). No significant main effect of Posture was found. 

 
Figure 10. WalkType resulted in higher typing speeds than the 
control condition, particularly while participants were walking. 
Error bars are 95% confidence intervals. 

We had expected WalkType to improve performance more 
for walking than for sitting, which would be seen through 
an interaction of Interface × Posture on typing speed. This 
interaction was only a trend (F1,15 = 3.485, p = .082, η2 = 
.189). Based on our hypotheses, however, we conducted 
pairwise comparisons of the two interfaces within each 
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level of Posture. (See Games [11] for justification of 
pairwise comparisons on trend-level effects.) 

Pairwise comparisons showed that participants benefited 
more using WalkType while walking than while sitting. For 
walking, WalkType improved typing speed by 12.9% 
compared to the control interface, which was a significant 
difference (p = .002). For sitting, in contrast, no significant 
difference was found between the two interfaces (p = .166).  

Uncorrected Error Rate 
Figure 11 shows mean error rates per condition. Mirroring 
the speed results, participants exhibited a marked 
improvement in error rate while using WalkType. A main 
effect was found for Interface on error rate, indicating that, 
overall, WalkType significantly reduced errors compared to 
the control condition (F1,15 = 22.339, p < .001, η2 = .598). 
Posture also significantly affected error rate, with walking 
resulting in increased errors compared to sitting (F1,15 = 
9.316, p = .008, η2 = .383). 

 
Figure 11. WalkType resulted in lower error rates than Control, 
especially for walking. Error bars are 95% confidence intervals. 

Of perhaps more interest is how WalkType impacted errors 
compared to the control condition while walking. A 
significant Interface × Posture interaction for error rate 
showed that the effectiveness of the interfaces differed by 
posture (F1,15 = 13.139, p = .002, η2 = .472). Pairwise 
comparisons revealed that WalkType was particularly 
effective at accommodating the situational impairments 
introduced by movement. Compared to the control 
condition, error rates decreased from 10.5% to 5.8% with 
WalkType, which was a significant difference (p = .004). 
No significant difference in error rate was found between 
the two interfaces for sitting. 

Preference 
At the end of the study we asked participants which of the 
two interfaces they preferred. Preferences reflected 
performance results, with 14 out of 16 participants choosing 
WalkType over Control (χ2

(1,N=16) = 7.56, p = .006). 

DISCUSSION 
Our goal was to develop an adaptive soft keyboard that 
leverages accelerometer data to compensate for the 
situational impairments introduced while walking. 
WalkType successfully improved both typing speed and 
error rates, particularly for users walking. On average, 

WalkType improved typing speed by 12.9% and reduced 
uncorrected error rates by 45.2% while participants were 
walking. Although there were no visual differences between 
the control interface and WalkType, participants perceived 
the performance benefit of WalkType and overwhelmingly 
preferred it to the control condition.  

The Combined WalkType Model uses a majority voting 
approach between the three models. We also tried to 
combine these models into one single model with one 
decision tree, but the performance of the system decreased 
considerably because the number of features increased and 
became unwieldy. 

The WalkType models were built using data collected both 
while participants were walking and while they were 
sitting. While experimenting with different models, we 
observed that using only the training data from walking 
further increased classification accuracy for walking, but 
decreased accuracy for sitting. Based on this finding, we 
combined the two datasets for the final WalkType model. 
However, detecting whether a user is walking or sitting and 
dynamically switching between different models—one 
trained on walking data and one trained on sitting data—
would likely provide a further performance benefit.  

Our analysis showed that the major source of incorrect 
classification was confusion between adjacent keys in the 
same row. We created a confusion matrix on the basis of 
our classification results and found that 72.8% of incorrect 
classifications were of adjacent keys. Further examination 
into whether misclassifications occurred more towards the 
left or right sides of the keyboard showed that 
misclassifications occurred about evenly in this regard. The 
split of same-row errors was 48.4% to the right of the 
intended key and 51.6% to the left. This predominance of 
same-row confusion shows that it was easier for users to 
reliably hit in the vertical direction compared to the 
horizontal direction. That users could do this was somewhat 
unexpected. While walking, most vibrations are along the y-
axis, i.e., the phone moves backward and forward more 
relative to the user. We anticipated, incorrectly, that this 
would lead to more inter-row misclassifications. 
(Thankfully, WalkType is data-driven, and thus it did not 
suffer for our misconception.) 

Most researchers examining effects of walking on user 
interfaces do not use a pacesetter as we did, but either ask 
participants to “walk normally” or employ a treadmill 
[1,30,32]. Kane et al. [21] also used the pacesetter approach 
to make sure that participants walked at near constant 
speeds, while enabling them to be “off the treadmill” and in 
a natural context. Some of the features we have 
incorporated, such as the dominant frequency of the user’s 
walking pattern and its amplitude, may be useful in 
adapting to different walking speeds. Additional testing is 
needed to determine how well WalkType performs with 
varying walking speeds and whether additional training 
data is needed to model that context.  
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During the model-building phase, we collected typing data 
in a condition where users were given feedback only as to 
whether they had hit a key, but not whether they hit the 
correct key. In comparison, in the final user study, 
participants saw which letters they had entered, which 
could have led them to more accurate typing behavior. This 
leads to an interesting conjecture—that training the system 
on more realistic data, like we collected in our evaluation, 
could further improve performance.  

Finally, our study concentrates on the scenario where users 
hold the phone in both hands and type with their thumbs. It 
will also be interesting to explore how our models perform 
on data collected with users holding the phone in one hand 
and typing with the index finger of the other hand. 

FUTURE WORK 
The text entry improvements obtained by leveraging the 
accelerometer suggest a similar approach may be useful for 
mobile interaction more broadly. Stabilizing input with 
techniques similar to those proposed in our work, and 
making the device aware of users’ movement patterns and 
gait may, for example, be useful in accounting for 
vibrations when users are trying to press a button or move a 
slider control. 

Additional sensors may also be useful in further improving 
WalkType’s classification model. We used only data from 
the accelerometer to infer device position and rotation. The 
obvious extension is to evaluate whether the built-in 
gyroscope would be better suited for inferring rotation. 

Personalization is also a promising area of future work for 
WalkType. Our explorations of the WalkType training data 
indicate that personalized models, where the system is 
trained only on one user’s data, may increase classification 
accuracy over models generated from data from all 
participants. A prior simulation study [33] on mobile touch 
screen typing data also supports this conjecture.  

From our model-building data we observed that users were 
regularly off by a character when they tried to tap the keys 
on the borders of the screen, like “A”, “Q”, SPACE, etc. At 
times, participants’ taps landed on the bezel of the device 
instead of on its keys. Our signal processing filtered out the 
vibrations caused by tapping of the screen while walking. 
We believe if we separate vibrations from walking and 
tapping, then there is potential to leverage the tapping 
vibrations to detect taps on the bezel and change the 
system’s behavior accordingly, e.g., by entering the most 
likely intended letter.  

CONCLUSION 
Using mobile devices in a variety of environments can lead 
to situational impairment due to, among other sources, 
vibration and divided attention. We have introduced 
WalkType, an adaptive system for mobile touch screen 
devices that leverages the on-device accelerometer to 
compensate for vibrations and extraneous movements 
caused by walking. We performed two studies with 16 

participants each, first to collect the data for WalkType’s 
model, and then to evaluate the generated models. 
WalkType increases users’ typing speeds from 28.3 WPM 
to 31.3 WPM, and also reduces the number of uncorrected 
errors from 10.5% to 5.8% while participants are walking. 
While WalkType focused on touch screen text entry, its 
approach may be useful for mobile input in general. 
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