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Classi�er Performance view shows a selected metric for all classi�ers. 
Here, the accuracy metric is used and errors for the �rst two classi�ers 
are clicked as the cyan and magenta selections.

Parallel Metrics view shows performance for all classi�ers for all metrics.

Confusion Matrix Grid shows performance details for all classi�ers.

Cumulative Accuracy view shows the number of models correctly 
classifying each instance.

Histogram view showing the instance distribution over the classes. 

Histogram view showing the instance distribution over the Pages 
feature.

View selection palette allows more views to be added to the workspace.

Selection Controls panel shows the current selections, their relationship, 
and the selection history. It includes controls for performing set 
arithmetic.
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Figure 1: Boxer examining the results of 5 classifiers in the Feature Selection use case of Section 5.2.

Abstract
Machine learning practitioners often compare the results of different classifiers to help select, diagnose and tune models. We
present Boxer, a system to enable such comparison. Our system facilitates interactive exploration of the experimental results
obtained by applying multiple classifiers to a common set of model inputs. The approach focuses on allowing the user to identify
interesting subsets of training and testing instances and comparing performance of the classifiers on these subsets. The system
couples standard visual designs with set algebra interactions and comparative elements. This allows the user to compose and
coordinate views to specify subsets and assess classifier performance on them. The flexibility of these compositions allow the
user to address a wide range of scenarios in developing and assessing classifiers. We demonstrate Boxer in use cases including
model selection, tuning, fairness assessment, and data quality diagnosis.

CCS Concepts
• Human-centered computing → Visualization; Visual analytics; Information visualization;

1. Introduction

Machine learning practitioners often perform experiments that
compare classification results. Users gather the results of different
classifiers or data perturbations on a collection of testing exam-
ples. Results are stored and analyzed for tasks such as model selec-
tion, hyper-parameter tuning, data quality assessment, fairness test-
ing, and gaining insight about the underlying data. Classifier com-
parison experiments are typically evaluated by summary statistics
of model performance, such as accuracy, F1, and related metrics.
These aggregate measures provide for a quick summary, but not
detailed examination. Examining performance on different subsets
of data can provide insights into the models (e.g., to understand
performance for future improvement), the data (e.g., to understand
data quality issues) or the underlying phenomena (e.g., to iden-
tify potential causal relationships). Relying on aggregated data can

miss important aspects of classifier performance. For closer exam-
ination, practitioners rely on scripting in their standard workflows.
The lack of specific tooling makes the process laborious and com-
parisons challenging, limiting how often experiments are examined
in detail.

This paper presents Boxer (Figure 1), a system for the detailed
examination of classifier comparison experiments. Our approach
allows a user to explore a collection of classifier results to iden-
tify interesting subsets of the data and compare performance across
them. Our system enhances standard views with interactions for se-
lection and comparison. The design provides a uniform mechanism
for identifying subsets, choosing appropriate metrics, and assessing
performance over different parts of the data. Users combine views
and build selections to pose comparisons for visual assessment.

Our work applies to the results of classifier experiments: the sys-
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tem operates on pairs of classifier inputs (testing and training data)
and outputs (the predictions made). Boxer treats classifiers as black
boxes: it does not consider the internals of how the classifiers work,
allowing it to be applied broadly and compliment existing, special-
ized tools. To show the potentially large data, the system provides
a set of summary views. These views are variants of familiar dis-
plays, such as bar charts and confusion matrices.

Boxer is built around the unifying abstraction of a box. Boxes
are a “container” for a subset of data elements, and a mark [Ber10,
Wil05] that shows information about this subset. They thus couple
a data abstraction with a graphical abstraction. A visual element,
such as the bar of a bar chart or the square of a confusion ma-
trix (Figure 2), connects input (select subset), display (show subset
size), and comparison (relate subset to others). Users create selec-
tions of data elements of interest by selecting such boxes. The se-
lections are displayed relative to all boxes across the interface: users
can see the overlap between the section and other boxes. Boxer
supports dual active selections, allowing for quick comparison and
building more complex selections by combining simpler ones using
binary set operators (e.g., intersection, union). For example, in Fig-
ure 1, the user has selected the top parts of the leftmost bars in the
Accuracy view (A) as the first (cyan) and second (magenta) selec-
tions. These boxes represent the instances classified incorrectly by
the two classifiers. Cyan and magenta glyphs throughout the inter-
face show the overlap of these selections with other boxes. These
selections can be combined, for example by intersecting their con-
tents to identify instances classified incorrectly by both classifiers.

In summary, the three main innovations of Boxer are: (1) an ap-
proach to classifier comparison that combines subset identification,
metric selection, and comparative visualization to enable detailed
comparison; (2) an architecture of multiple selections and set alge-
bra that allows users to flexibly link views and specify data subsets
of interest; and (3) interaction techniques and visual designs that
make the approach practical. These ideas should be applicable in
other systems for interactive comparison.

2. Related Work

Interactive tools for understanding machine learning models are
motivated by many reasons, see Gleicher [Gle16] or Lipton [Lip16]
for surveys. The range of needs is addressed by approaches that can
be roughly categorized into four groups:

1. Transparent models use learning representations designed
for easy examination, such as generalized additive mod-
els [LCGH13, CLG∗15], rule-based learning [WR15, OW16],
RETAIN [CBS∗16], approximating decision trees [MBVV07,
CS68,Cra96,CS96,MQB19], and sparse linear models [Gle13].

2. Per-instance explanations provide methods that explain individ-
ual decisions or local groups, examples include expert system
tracing [Wei80, Wal84], variable sensitivities [TKDB17], influ-
ential feature identification [SDV∗16, AHM∗17], locally linear
models [RSG16], and instance examination [KDS∗17].

3. Internal inspection approaches provide tools to examine specific
types of complex models such as neural nets [SGPR18,LSL∗17,
MCZ∗17]. Variants of these approaches exploit knowledge of
model structure, such as the Treepod [MLMP18] system that
helps users understand trade-offs in decision tree classifiers.

4. Black box methods which do not consider the internals of the
model, but instead rely on observations of their input/output
pairs. Our work falls into this last category, providing a general
approach that works with a range of model types.

Spinner et al. [SSSE20] develop a pipeline for model analysis
and comparison that organizes such methods into three categories
that focus on model input, model output, and model internals. In the
latter category, a range of methods have been proposed to “open up”
those black boxes and provide a view of the inner workings of ML
models. Examples include representations of prototypical data in-
stances [MV16, YCN∗15, AB16], structural overviews of complex
models [LSC∗18,WSW∗17], and explaining the influence of model
structure on its output [HPRP20,RFFT17,ZF14,AR15]. DeepCom-
pare [MMD∗19] allows instance-level comparisons of deep learn-
ing models and connecting decisions back to structural properties
of the models. In contrast, our work is strictly black box and fo-
cuses on using the results of existing experiments on models, and
making comparisons between multiple models.

Black box methods are often designed for very specific goals.
Ma et al. [MXLM20], for example, support the identification of
feature combinations that elicit a specific response from a model.
Ye et al. [YXX∗19] enable users to assess and increase the quality
of training data labels. Another important goal is the analysis of
fairness of predictions. Friedler et al. [FSV∗19] review classifier
fairness and provide measures. Cabrera et al. [CEH∗19] present a
method for analyzing fairness by generating subsets of the data with
different prediction performance. In contrast, Ahn and Lin [AL20]
focus on identifying instance-level bias. In contrast, our approach
supports a broad range of tasks with flexible mechanisms to analyze
different aspects of data and classifier performance.

Some prior black box approaches support a range of tasks.
ModelTracker [ACD∗15] is an interface designed to provide an
overview of model performance and detailed inspection of in-
stances and their features through interaction. In contrast, we pro-
vide a range of views that are linked through subsets of the classifi-
cation data and allow in-depth comparisons between models. The
What-If-Tool [WPB∗20] enables users to compose a range of vi-
sualizations, including bar chars and confusion matrices on subsets
of their data by slicing sets based on feature values. In contrast, we
enable the creation of more complex subsets based on set algebra,
and enable comparisons between models based on these sets. Man-
ifold [ZWM∗19] provides specialized variants of standard displays
to show correlations between model decisions and their relation to
the underlying data. In contrast, we provide more flexible composi-
tion of views with comparative elements and selection construction.

Black box methods are also used to test the stability and robust-
ness of a trained model [Bre01]. Such sensitivity analysis meth-
ods perturb the values of input features. They can identify relation-
ships between outputs and features [HPB∗14, ŠK14], even in com-
plex models [SGK17, OJ02, STY17]. Lee et al. [LSC19] provide a
systematic approach to test for the contributions of single features
to model errors, and for potential interactions between features. A
conceptually similar approach is generating prototypical inputs for
a model [SVZ13]. Our approach is designed to examine the results
of such experiments.

There is a long standing effort in ML to develop metrics
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for assessing model performance [Pow11, WFH11]. Some met-
rics address specific tasks such as interpreting the performance
changes [SVC∗10]. Similarly, visualization approaches extend ba-
sic chart types (e.g., ROC curves and confusion matrices) to present
more information and serve as interactive tools for achieving spe-
cific user tasks. For example, tools exist for characterizing er-
rors in regression models [MP13], examining classification results
within their original context [SAMG14], adjusting weights from
confusion matrices [KLTH10, TLKT09], and showing probabil-
ity distributions in multi-class classifiers [AHH∗14]. In particular,
Squares [RAL∗17] enables in-depth comparison of classification
models based on visual summaries of instance-level predictions
and classifier probabilities. However, the approach does not sup-
port subsetting of the dataset and comparisons between subsets. In
contrast, our work focuses on comparing models by identifying the
subsets of instances that make up these metrics.

Visual comparison approaches have been developed for many
model types. For example, approaches exist for specialized types
of models, such as sequence models [MXC∗20, SGB∗19], or for
specific data types, such as set data [AMA∗14]. Other approaches
focus on clustering [KEV∗17, CD19], topic models [AG16], word
vector embeddings [HG18], and climate models [DWOB20]. In
contrast, our work focuses on making comparisons between dis-
crete choice classifiers from existing classifier experiment data.

3. Comparison of Classification Models

We consider comparing the results of classifier experiments. A
classifier is a machine learning model that predicts a label from a
data instance. Supervised machine learning builds classifiers using
a training set of instances for which the labels are known. Classi-
fiers may be evaluated by assessing their predictions on this training
set (known as resubstitution), but are more commonly evaluated on
a testing or hold-out set of instances. A classifier experiment as-
sesses the performance of one or more classifiers over a set of in-
stances. An experiment may involve multiple classifiers, comparing
performance on a common testing set, or involve the same classifier
with multiple variants of the testing set.

The results of a classifier experiment are a set of data instances, a
correct label for each instance, and, for each classifier, a prediction.
Boxer uses this data as input. The data instances themselves are
useful, as many tasks involve building connections back to the un-
derlying data. However, the measure in most classifier experiments
is correctness: whether the predictions match the correct labels.
These results are summarized by counting the different outcomes
across a set of answers. A confusion matrix counts all possible out-
comes (if there are l labels, there are l× l possible outcomes to be
counted). Metrics of classifier performance reduce this matrix to a
single number. For example, accuracy counts the number of correct
predictions (the prediction matches the correct label), and divides
by the total number of instances. Other metrics, such as F1, pre-
cision, recall, error rate, and mathews coefficient, summarize the
counts of confusion matrices in different ways. See Chapter 5 of
Witten, et al. [WFH11] or Powers [Pow11] for comprehensive dis-
cussions. Even more metrics are possible if additional information,
such as confidence, is available for the predictions. Selecting an
appropriate metric is an important part of assessing classifiers.

3.1. Tasks of Classifier Comparison

Many tasks in classifier development and assessment involve com-
parison of classifier results. Model selection, tuning, and fairness
assessment rely on examination of testing results between classi-
fiers. Even the selection of an appropriate metric can be informed
empirically. Other tasks, such as data quality assessment, feature
engineering, and gaining insights from data can make use of a col-
lection of classifiers and their results.

However, classifier comparison typically considers summary
metrics over the entire testing set. This hides information about
which instances different classifiers get right or wrong. This in-
formation may be useful across a range of tasks. For example:

• In model selection, having information beyond summary met-
rics can determine performance in more important and relevant
cases. This can help adapt test metrics to predict real world per-
formance.
• In model tuning, understanding where a model works (or

doesn’t) can help choose strategies for improving performance
and confirm that interventions work as expected.
• In fairness assessment, different subgroups of instances can be

compared to identify ones being treated unfairly.
• In data quality assessment, identifying interesting instances can

point to problems or opportunities in the underlying data. For
example, view can show that errors as associated with missing
data.
• In studying the underlying data, identifying specific instances

or differences between groups can help test theories or identify
underlying mechanisms behind the data.

We will provide examples of such scenarios in Section 5.

The range of tasks that can use subset selection and assessment
is broad and diverse. However, in working with practitioners per-
forming these tasks, a core pattern of elemental operations emerge.
Users must (1) identify an appropriate subset of the instances; (2)
select an appropriate metric; (3) compare performance across clas-
sifiers; and (4) relate these results in both the broader context as
well as specific details. This process is often exploratory and itera-
tive: a user examines a metric across a number of subsets, making
comparisons that suggest different combinations. The typical prac-
tice of using scripting to query data to create subsets and perform
evaluations does not support rapid exploration or visualization that
enhances comparison or helps contextualize results.

Rather than designing specific support for the broad range of
tasks, our strategy is to provide flexible support for elemental oper-
ations common across tasks, and provide mechanisms to combine
these operations to support workflows that address tasks.

3.2. Boxes and Selections

Many classifier comparison explorations involve two basic oper-
ations: (1) defining subsets of instances, and (2) comparing per-
formance and specific predictions between these subsets. By com-
posing these two elements, we can construct many more complex
tasks. For example, by comparing the subset of instances a classi-
fier gets wrong with the subset formed by histogram bins (e.g., of
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Figure 2: Visualizations composed of boxes and selections: Each
bar of a bar chart (a) and square of the confusion matrix (b) is
a box corresponding to a subset of the data. All boxes show their
overlaps with the current selections with color coded stripes. Dots
in bars indicate small non-zero values.

a feature), we can see where in the dataset an error occurs. Our de-
sign focuses on providing fluent and flexible support for these basic
operations.

We support subsets through the abstractions of boxes and selec-
tions. A box connects a data abstraction to a visual abstraction. A
box represents a specific subset of the instances, which can be de-
fined as a query over the entire collection. A box also connects to
a visual element that summarizes the subset. For example, a bar
of a bar chart represents a subset of instances (the query is the x
range of the bar) and a visual element (the rectangle encoding the
count of the subset with height). A selection is a subset of instances
of interest to the user. At any given time, there may be an active
selection that is being explicitly highlighted.

Boxes and active selections connect: boxes serve to create selec-
tions (e.g., clicking on a box sets the active selection), and the active
selection can be presented visually in each box to enable compari-
son by showing the intersection between the box and the selection.
This is possible because each box represents a subset of the data.
The queries serve as textual descriptions that describe selections,
for example in history views. Our system supports two active se-
lections. Both selections are shown in all boxes (Figure 2). The left
and right mouse button are used to make corresponding selections.
Consistent coloring is used throughout the interface: cyan for the
first active selection, magenta for the second. We use vivid colors
that contrast other interface elements even at small sizes [Sza18].
Multiple selections extend prior abstractions of aggregation (e.g.,
[SDW09, EF10]) to better support composition and comparison.

Dual active selections are a key feature of Boxer. A single active
selection does not allow for comparisons between selections, and

 

 

 

Selected (black) and unselected (gray) 
fractions of the dataset.

Selector for the first and second selection set. 
Users can choose sets from the selection history 
list by id. The button right clears both selections.

Select training or test
dataset of both

Fraction of selected
instances only in the
magenta selection set.

Overlap
between
both sets

Relationship Widget

Fraction of selected
instances only in the
cyan selection set.

Selection history contains all previous 
selections, their size and a textual 
description of what was selected. Past 
selections can be assigned to current 
selection based on their id.

Figure 3: The Selection Control view provides information about
the active selections and controls to adjust them. The view provides
a textual description of the active selections, as well as a visual in-
dicator that relates these subsets to the overall data set and to each
other. The lower row of the indicator shows the relation between the
two active selections, including their intersection and differences.
Clicking on the indicator selects that subset, allowing for easy set
operations (e.g., clicking on the middle area to select the intersec-
tion). The Selection Control view provides a history list of previous
selections, which can be clicked to recall one.

does not allow for an interface for selection composition. More than
two active selections may enable richer comparisons, but comes
at the expense of visual clutter, the need to reserve more colors
(precluding their use elsewhere in the system), and a need to find
new methods for showing and interacting with the sections. Dual
selections are sufficient for creating complex subsets by composing
binary set operations (e.g., intersection, union, subtraction).

Information about the active selections are shown in the Selec-
tion Control view (Figure 3). This view provides a textual descrip-
tion of current and previous selections, a history of previous selec-
tions allowing them to be recalled by clicking, and a widget that
shows the relationship between the two active selections. The Se-
lection Control view allows for set arithmetic operations to be per-
formed between the two selections using the relationship widget.
For example clicking on the overlap of the two selections creates a
new selection that is their intersection.

The box abstraction helps create a uniform and flexible mech-
anism for expressing set comparison as well as a consistent user
experience. Boxes in our system support four features. First, they
have an associated query that finds the instances in their subset and
allows for textual description. Second, they have some visual repre-
sentation that displays the size of the set. Third, the visual elements
of a box are clickable, serving as input to identify that the subset
associated with the box is of interest to the user. Fourth, each box
displays a comparison with the active selections. Our system sup-
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ports two active selections, so each box must show three quantities:
the number of instances in the box’s associated subset, the size of
the intersection of the box’s set with the first selection, and the size
of the intersection of the box’s set with the second selection. Ex-
amples are shown in Figure 2.

Each rectangular region of a bar chart, stacked bar chart, or con-
fusion matrix is a box. Other visualizations, including pie charts,
hexbin plots, and treemaps, could similarly provide a set of regions,
each corresponding to a box. The four features of boxes give an
interaction mechanism and visual grammar for displaying compar-
isons. All visualizations built from boxes serve as mechanisms to
specify selections, and to make comparisons between the set de-
fined by the box and other sets of interest to the user.

Users build selections by selecting boxes and combining them
with binary set operations to make more complex selections. Users
make detailed comparisons by seeing how the selections compare
to each other or against boxes across different views.

4. Boxer Views

Boxer provides users with a number of view types that can be com-
bined in the workspace as needed. The box mechanism allows for
specifying sets of interest and performing comparisons in these fa-
miliar views, allowing users to couple simple displays to address
complex tasks. Our design explores the use of a few basic views
and a general composition mechanism, rather than designing more
specialized views. Other view types could be added in the future.
However, introducing new views has a cost: users must be able
know when to apply them. Boxer had other views that have not
proven useful in practice, and were removed.

4.1. Bar Chart-based Views

Many of Boxer’s main views use bar charts that divide the instances
in different ways. Bars correspond to boxes: they can be used to se-
lect their contents as well as to display their overlap with the two
active selections, as shown in Figure 2. Boxer’s bar charts illus-
trate non-zero values with circles (e.g., Figure 4.2, 4.4, 8) which
are hidden if the bar becomes large enough. This allows small sub-
sets (such as rare instances) to be seen and selected as the data
grows. Charts allow for normalization to enable comparisons be-
tween sub-bars (Figure 8).

The Classifier Performance view (Figure 1a, 4.1, 5 left) shows
the performance of each classifier in a stacked bar. A variety of
metrics can be chosen. For metrics that are ratios of subset counts
(e.g., accuracy, precision, and recall), the bars are stacks of boxes.
This view provides a simple overview of classifier performance,
and an easy way to select sets of instances (e.g., what classifier
predicts correctly). The view allows sorting by value to facilitate
identification and comparison of the best or worst classifiers.

The Histogram (Figure 1e, 1f, 4.2-5) view shows the distribu-
tion of the data across a feature. This includes the data features as
well as the actual and predicted classes. The user can place multiple
histograms to show different distributions. Continuous features are
bucketed, and discrete features can be sorted in various ways (e.g.,
sort by quantity to emphasize the largest categories). Histograms

provide an important mechanism for selection as well as compar-
ative display. Combining bars from multiple histograms using set
operations can specify complex selections.

The Cumulative Accuracy view (Figure 1d, 4.2), shows how
many classifiers correctly labeled each data instance. For example,
the viewer can identify items that no classifiers predicted correctly
or that all classifiers predicted correctly. This view may be used
to select challenging instances, or to see if a selected set contains
easy items. The Cumulative Accuracy view includes a pareto line
allowing the user to quickly assess and select the cumulative sum.

The Selection Performance view (Figure 6g, h, i, and 5 right)
shows the performance of each classifier across both selections.
The user can select a variety of different metrics (accuracy, F1,
etc.). Because the bars are associated with selections (and colored
accordingly), they do not serve as boxes. In contrast, the Per-Class
Performance view provides boxes while showing the performance
of each classifier for each of the actual classes of the instances. The
user selects a metric (accuracy, F1, etc.) for this faceted bar chart.

4.2. Matrix-based Views

Matrix-based views arrange boxes in a fixed grid. Because the size
is fixed, color encodes for the size of the subset the box corre-
sponds to. The color encoding allows for rough comparison be-
tween squares: detailed values can be revealed by hovering. Small
bars, color-coded to match the selection scheme, show the overlap
between the active selections and the box’s subset – a full bar means
that all of the box’s instances are in the selection. Matrix cells can
be clicked for selection.

The Confusion Matrix Grid view (Figure 1c) provides the stan-
dard view of classification results for each classifier. It shows each
classifier’s performance, broken down by label. This allows us to
compare classifiers based on their prediction profile per class.

The Pairwise Consensus view shows the agreement and dis-
agreement between each pair of classifiers as a matrix. It conveys
the number of instances for which two classifiers predict the same
label. The matrix is split on the diagonal to distinguish agreement
on correct vs. incorrect instances. This view is useful in identifying
correlations between classifiers, for example to assess ensembling.

4.3. Other Views

Boxer provides views designed to help with metric selection. The
Standard Metrics view provides a simple table of many met-
rics across all classifiers. The Parallel Metrics view (Figure 1b)
presents the same information in a parallel coordinates chart. Simi-
lar to [DWOB20], parallel coordinates help identify correlation be-
tween metrics. The view uses an ordered coloring based on a se-
lected metric to aid in order comparison.

The Instance List view shows a tabular display of the instances
in the active selections. Instances are color-coded to indicate which
selections they are part of. Users can select instances, allowing for
fine-grained, instance-level modification of selections.

The Selection Controls panel was described in Section 3.2 and
Figure 3. In addition to selection display and interaction, it allows
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users to switch between training set, selection set, or both. The
Boxer interface allows viewing all data instances, or limiting the
views to either training or testing data.

5. Use Cases

This section provides some example scenarios where Boxer can be
used to address tasks in classifier development. These examples are
chosen to highlight how Boxer’s key ideas can be applied in com-
mon machine learning settings. The examples come from student
data scientists working with standard data sets, as well as from our
collaboration with literature scholars to use statistical techniques to
help analyze historical text corpora.

All examples were completed using the Boxer system. Boxer
is built as a web application, written in TypeScript and using the
Vue.js application framework and D3.js for drawing visualizations.
The system loads all data, both classification results as well as fea-
ture and meta-data for all data instances into memory at startup and
performs all computations within the browser. Boxer is efficient
enough to handle data sets with tens of thousands of instances. We
discuss scalability issues in Section 6.1.

5.1. Model Selection and Tuning: Movies

We consider a simple use case that shows how Boxer’s views can
be combined to diagnose classifier problems. We use boxer in de-
veloping a classifier to predict movie ratings from IMDb. Our data
consists of 5,044 movies with 27 features. 25% are sequestered for
final assessment. Classifiers predict a movie’s rating (low, medium,
high). A stratified sampling of 200 movies per class is held out from
the 75% remaining. A variety of classifiers were constructed, none
with acceptable accuracy.

Using boxer, we examine the results (Figure 4). The Classifier
Performance view confirms the poor performance. The Cumulative
Accuracy shows large numbers of instances that are easy and hard
(all or no classifiers are correct). We select these easy and hard
subsets. In a Histogram view, we can see the hard elements are
in the high class. Examination of the training set shows that there
are few examples of this class. We build a new classifier (offline)
that accounts for this skew. Using boxer, we can confirm that this
has superior performance, although its errors are still biased. While
conventional tools can show skew, the example shows how Boxer’s
flexible mechanisms allow performance effects to be connected to
data issues.

5.2. Model Selection and Data Discovery: Literary Features

This use case considers a corpus of 59,989 documents from a his-
torical literary collection: Text Creation Partnership (TCP) tran-
scriptions of the Early English Books Online (EEBO). Of these
documents, 1,065 have been identified as plays, 1,974 as science
documents, and most are neither. The data counts the 500 most
common English words in each document. While all documents
have been classified by experts, we construct classifiers using the
data to support theories that different types of documents use words
in different ways [WH10, Gle13]. Specifically, we are interested if
a small set of words can identify document classes. Boxer allows us

to compare the performances of classifiers built from different sets
of words to confirm the impact of word choice on performance.

We create decision tree classifiers using a variety of univari-
ate feature selection strategies. Each selects 10 words to count for
features. The feature selection methods were: most relevant by a
CHI-squared univariate feature selector (C), most common features
(N), randomly chosen features (R), and, as a baseline, the features
deemed worst (out of the 500 candidate words) by the CHI-squared
test (W). A testing set of 200 documents per class was used.

We compare the results in Boxer (Figure 1). The Parallel Met-
rics view shows a consistent ordering of the classifiers across all
metrics: C is slightly better than R and N, which are much better
than W. Using the Classifier Performance view to see the accu-
racy details, we can select the mistakes made by the top classifiers
(cyan for C’s mistakes, and magenta for R’s mistakes). We see that
the errors are relatively evenly distributed among the classes in a
Histogram view of the class distribution. This is surprising given
the skewed training distribution. We also see in the Performance
view that different classifiers make different errors (e.g., only half
of C’s errors are made by N). Overall, the Cumulative Accuracy
view shows that there are very few instances that all classifiers were
wrong on (2.6%), and a Histogram view of document lengths lets
us see that performance is relatively consistent over the range of
document lengths.

5.3. Feature Sensitivity Testing: Plays

We use Boxer to provide more insight into the results of a vari-
able sensitivity experiment. The data set is a collection of 554
plays written in the Early Modern Period (1470-1660). Five lin-
guistic features (selected form [IK11]) are used. We classify plays
with one of four genres (Comedy, History, Tragedy and Tragi-
comedy). Ground truth is known; the goal is to use the classi-
fier to determine relationships between the linguistic features and
genre [WH10, Gle13]. Our experiment uses a Support Vector Ma-
chine (SVM) classifier trained with class weights to counteract a
skewed training distribution. A stratified sample of 20% was re-
moved as the test set. The training set has very few of the under-
represented classes.

After training, a feature sensitivity experiment identifies which
features contribute to the classifier’s performance. We create a vari-
ant of the data set for each feature. In each data variant, small per-
turbations (positive and negative) are added to its corresponding
feature’s value for all entries in the data set. The resulting data sets
have twice as many items as the original (one for positive addi-
tions to the feature, one for negative ones). Each data variant is run
through the classifier. Here, we consider only the testing set. Such
experiments are preferred to simply examining model coefficients
because they test the effects of the variables near the actual data.

The standard approach to analyzing such an experiment is to
compute summary statistics over each feature’s data variant and
compare these to the baseline. More advanced approaches [LSC19]
can check for the statistical significance of these differences. The
experiment results show that for feature Negavity (N), the classi-
fier performs much worse than the baseline using standard metrics
(accuracy and Mathews correlation). Two features PersonProperty
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Figure 4: Movie model selection use case (Section 5.1). From left to right: (1) The Classifier Performance view shows low performance for
all classifiers; (2) We then select easy (cyan) and hard (magenta) instances in the Cumulative Accuracy view; (3) A Histogram view of the
test set shows us that all hard (magenta) instances are in the high class; (4) A Histogram view of the training set shows class skew; (5) A
Histogram view shows that the errors of the new classifier (magenta) are still biased, but less than the best prior classifier (cyan).

Figure 5: Sensitivity testing use case (Section 5.3). The Classifier
Performance view (left) shows that (PP and DA) perform similar to
the baseline. Selecting baseline correct (cyan) and incorrect (ma-
genta) shows considerable overlap with DA, but not PP. This sug-
gests the model is sensitive to PP, despite similar aggregate per-
formance to the baseline. The Selection Performance view (right)
shows this as well: PP achieves 20% accuracy on the baseline’s
errors.

(PP) and DirectAddress (DA) achieve similar performance to the
baseline. Standard procedure would conclude that the classifier is
sensitive to N but not PP and DA. However, closer examination
in Boxer reveals otherwise. The Classifier Performance view (Fig-
ure 5) shows that PP and DA have similar accuracy to the baseline.
Selecting the correct and incorrect subsets for the baseline allows
us to compare with the perturbed results. For DA, the overlaps are
substantial, for PP there is less overlap. While PP gets the same
number of instances correct, it is correct on different ones, suggest-
ing the model is sensitive to this feature.

5.4. Model Selection: Mushroom Imputation

We consider adapting a classifier to identify poisonous mushrooms.
The initial training of the baseline classifier uses the color feature,
but we would like to build a new classifier that does not use this fea-
ture. We consider two approaches to imputing the missing feature:
using the mode of the data and training a decision tree to classify
the color based on other features. In addition to the baseline classi-
fier, we build two new models: mode and smart that use the imputed
versions of the color feature. Note that mode is effectively not using
the color feature, as it is constant across its data set.

We assess these strategies with a testing set of 2,000 (of 8,124)
randomly selected instances. The Parallel Metrics view shows that
the imputed models perform worse than baseline on all metrics.
The smart model performs better than mode on all metrics except
recall, which is likely to be important (we don’t want to eat a poi-
sonous mushroom). To understand these differences, we can select
the instances where the baseline and smart classifiers are incorrect
and see that the latter is almost a proper subset of the former.

We wish to understand if the lower performance of the smart
classifier can be attributed to imputation mistakes. We select the
instances where the baseline is correct and where smart is wrong,
and intersect them. Examining these sets in a Histogram view of the
color feature, we see that most of the errors are white mushrooms.
Looking at the imputed feature over this set, we see that the smart
imputer never labels these as white. These mistakes of the imputer
likely cause the misclassifications.

5.5. Fairness Assessment: Recidivism

We consider a standard test case for fair learning: the Broward
County recidivism dataset, popularized by ProPublica [ALMK16].
This data set was initially used to show unfairness of a commer-
cial system, but has emerged as a benchmark for machine learn-
ing fairness [FSV∗19]. The task is to predict whether a person will
commit a crime within two years (two year recidivism). The data
set includes ground truth. Classifiers built for this problem are of-
ten unfair in that they skew errors towards racial and gender bias.
Specialized tools, such as FairVis [CEH∗19], are designed for as-
sessing classifier fairness. In this use case, we show how Boxer’s
flexible mechanisms can be used for similar purposes.

The data set contains 6,172 instances (chosen by the criteria
of [FSV∗19]) and 14 numeric features (created by one-hot encod-
ing the categorical features in the initial seven feature data set).
20% are held for testing. We consider three classifiers trained on
the data, a baseline random forest, and two hand-tuned variants (C3
and Pos). In the Parallel Metrics view, we can see that C3 achieves
higher scores for all metrics. We question whether it achieves these
improvements in a fair manner.

Analysis of this case is shown in Figure 6. We use a Histogram
view of the race feature to select Caucasian and African-American
instances. Various views in boxer clearly show the unfairness.
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Parallel Metrics view      shows the C3 classi�er
has better performance by all metrics.

A histogram of race      selects Caucasian(cyan)
and African-American (magenta) instances.

The Overall Performance view      shows C3's 
overall higher precision, but a lack of overlap
with cyan.

The Confusion Matrix Grid view      shows
many false positives for African-Americans
and many false neg. for Caucasians for C3.

Histograms show the distribution of  selected
sets across the actual      and the C3-predicted
class      .

The Performance Selection views in the third
line compare accuracy     , precision     , and
recall      for C3 on the subsets.
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Figure 6: Boxer in the recidivism use case (Section 5.5).

While a Selection Performance view shows similar accuracies for
the selections, the precision and recall are very different. C3 has
high precision but low recall for Caucasians, and high recall but
low precision for African-Americans. That is, its errors are biased
to predict no for Caucasians and yes for African-Americans. While
other classifiers make more errors, their errors are more uniformly
distributed. This can also be seen in the confusion matrices.

To explore further, we consider the effect of gender. We select
the subset of female instances by left clicking in a histogram and
intersect this with the African American subset (using the rela-
tionship widget). C3 has 0 recall on this subset of African Ameri-
can females, while other classifiers achieve more balanced perfor-
mance. While these findings could have been found using script-
ing [FSV∗19] or using specialized tools [CEH∗19], Boxer can
identify them using subset selection and comparative visualization.

5.6. Bias and Data Discovery: Literary Dating

In this use case, we again consider the TCP collection of historical
documents (Section 5.2). We construct classifiers that determine
whether a document is written after 1642 based on the 500 most
common words in the corpus. While ground truth is known, effec-
tive classifiers can help understand how word usage changed at this
critical date that marks the beginning of the English Civil War. The
collection is skewed (only 25% of the documents were written be-
fore 1642). For the experiment, we took a random sample of 12,000
documents, and held out 30% using stratified sampling. While the
testing set is balanced (1,800 per class), the training set is highly
skewed (only 15% before 1642). We constructed a number of clas-
sifiers using various methods.

An image from an analysis session with Boxer is shown in Fig-

ure 7. On the training data, several classifiers achieve nearly per-
fect performance. However, the Parallel Metrics view (on the test
set) shows that most classifiers provide high recall but low preci-
sion, suggesting that they were unable to successfully account for
the class skew (in the training set). The SVM100W (a support vec-
tor machine using class weights and more regularization) provides
the best performance in all metrics other than recall. The more bal-
anced performance can also be seen in the Confusion Matrix grid.
We focus on this classifier for our assessment.

We would expect that performance may be biased near the class
boundary, as documents written near the boundary year may be
similar to those on the other side (unless there was a dramatic
change at the boundary). To check this effect, we select the er-
rors of the classifier and view the selection in a histogram of dates
(Figure 8). Normalizing this histogram (to account for the skewed
distribution), confirms that most errors are in the buckets near the
boundary. In contrast, the skewed classifiers generally made many
errors in other buckets before 1642.

One explanation for the errors may be document length: near
the civil war, many short documents were written (e.g., legal de-
crees). To explore this, we select the shortest documents and create
a subset of documents written near the boundary. The skewed dis-
tributions in the lower left and center of Figure 7 make the result
hard to interpret, but normalizing these histograms show that short
documents are over-represented in the time period. However, inter-
secting the two sets (to select the short documents in the period)
allows us to consider performance. Intersecting this set with the
errors (and comparing with the total errors) show that prediction
performance is better on short documents (Figure 8). This can also
be seen in the Selection Performance view. Alternatively, we can
select errors and period documents to see that there is a skew to-
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Figure 7: Boxer in the literature use case (Section 5.6). In the Classifier Performance view (top left), we see that SVM(100W) performs
best in terms of accuracy. (1) From the Metrics Parallel and the Confusion Matrix views we learn that it is also the most balanced in terms
of other metrics. (2) To assess whether classification is biased around the decision date (1642), we select the errors of the model (magenta),
and view them on a date Histogram view and see that most errors happen in that period. (3) To test whether document length plays a role
for these errors, we then select the shortest documents in the set in a document length Histogram view. (4) In the Performance Selection view
(bottom right) reveals that shorter document (magenta) seem to be easier then longer ones.

Figure 8: Errors on all (magenta) and short documents (cyan)
across temporal bins of documents. The right view is a normalized
version of the left one. We can see that around 1642 there is a higher
error rate in general, but the error rate on short documents is low.

wards short documents. Using Boxer’s ability to create subsets and
compare them, we can examine details of classifier performance.

6. Discussion

We have presented a comprehensive approach for interactive com-
parison for machine learning classifier results, and a prototype im-
plementation, Boxer. The approach combines subset identification,
metric selection, and comparative visualization to enable detailed
comparison of classifier results. We demonstrate the effectiveness

of our approach for a range of datasets and model types through
use cases.

6.1. Scalability

The classifier comparison problem can scale along all three “axes
of hardness” [Gle18] with many instances, classifiers to compare,
and complex relationships between classifiers. Boxer has been used
to analyze experiments with up to tens of thousands of instances, a
dozen classifiers, a dozen labels, and dozens of features. Boxer’s in-
browser JavaScript implementation grows sluggish at these scales.
Providing interactive performance for larger data will require more
efficient mechanisms to perform the set computations and will
probably require sharing some of the computations in a back-end
server. The more interesting scalability challenges relate to how
well the Boxer design can handle larger problems.

The visual summaries used by Boxer are independent of instance
quantity: they show aggregate quantities (e.g., counts). A bar chart
appears the same if the Y axis represent 100 or a million. However,
one challenge is dynamic range: small values in big sets can be
important (e.g., identifying a few errors in a massive training set).
Even at current scales, interesting bars may be a fraction of a pixel
tall, and similar issues exist for color encodings. To combat these
dynamic range issues, box designs use special encodings for small
values. Zero (empty sets) are encoded differently than small sets,
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and small sets are given special encodings that provide them with
sufficient area to be clickable.

Instance views, such as lists, represent a different scalability
challenge. With large numbers of instances, selections may con-
tain many items. Presently, Boxer handles the performance issues
of long lists by on-demand paging, and the usability of long lists
by allowing for sorting and filtering. Future extensions could pro-
vide more automated assistance in finding interesting elements in
long lists, such as representative subset sampling. In general, scal-
ability concerns have led us to avoid per-instance displays, like the
scatterplots used in Manifold [ZWM∗19] or the stacks in Model-
Tracker [ACD∗15].

Scaling to large numbers of classes and classifiers represent de-
sign challenges. The visual elements of bar charts and matrices
must become smaller as the number of categories to show grows.
For moderate numbers, matrix re-ordering techniques can help our
designs remain useful for larger data. However, different visual de-
signs may be required to afford comparisons between large num-
bers of features or classifiers. At present, Boxer treats features in-
dependently: the user must select specific features to examine. To
better scale to large numbers of features, Boxer will need to incor-
porate interest operators to help guide users to interesting features.

6.2. Other Problem Types

Boxer is designed for the results of discrete choice classifiers. Ex-
tending the prototype and concepts to other problem types is im-
portant future work.

Probabilistic Classification Results: Boxer treats prediction
probabilities as metadata features for analysis. This provides for
limited analysis. Future extensions to handle probabilistic classi-
fiers may adapt existing designs such as Squares [RAL∗17] and
Confusion Wheels [AHH∗14], as well as standard metrics, such as
ROC curves, and and area under the curve (AUC/ROC).

Continuous Prediction Problems: Presently, Boxer treats regres-
sion problems by discretizing the output into a set of discrete
classes. Existing visualizations for assessing regression models
(e.g., [MP13]) could be extended with the box abstractions.

Problems without Ground Truth: If “correct” labels are not
known, Boxer selects a model as the “gold-standard.” This limits
application in unsupervised tasks. Supporting “differently correct”
answers within the Boxer framework will require designs for bet-
ter exploring agreement, perhaps by adapting designs for clustering
assessment (e.g., [KEV∗17, CD19]).

6.3. Limitations

Boxer presently uses a number of basic visualization designs. Other
visualizations, such as scatterplots or non-linear dot plots [RW18],
may be useful to better understand instance distributions. Adapt-
ing visualizations to work within Boxer requires identifying mech-
anisms for specifying selections as well as displaying overlaps with
active selections. For example, with a scatterplot, overlap may be
shown by coloring the dots and selection may be accomplished with
brushing. However, computing the overlap to display new selec-
tions must be made efficient, and concise textual descriptions of

brushing results are required to integrate into the selection man-
agement mechanisms.

Boxer presently is a stand alone tool for viewing experiment re-
sults. It provides no support for helping to design and run appro-
priate experiments. Better coupling with the experimental process
offers opportunities as the increased facilities to analyze experi-
ments suggests the potential for non-standard experiments. Simi-
larly, Boxer is decoupled from the model building process. Inte-
grating Boxer into an automated learning pipeline (e.g., [CHH∗19,
GHG∗19, SCF∗19, WMJ∗19]) may provide a mechanism to more
directly apply insights to improve models.

A key factor in Boxer is usability. The complexity of Boxer’s
interface is kept low by the choice of familiar visualizations and
the use of a small set of basic abstractions that are used uniformly.
However, in order to make complex analyses, a user must combine
these basic elements in potentially complex ways. In principle, such
complex assemblies are built up gradually from parts, but a user
must know what combinations are possible and useful. To address
these issues we plan to include pre-configured layouts to answer
specific questions (as in [SSSG16]) and workflow-based guidance
to suggest potential next steps to a user [CGM∗17].

6.4. Conclusion

Despite these limitations, the Boxer prototype shows the potential
for the approach to help users with comparing classifiers in ma-
chine learning experiment results. We are continuing to work with
machine learning practitioners to refine the system and understand
its potential. The key innovations of Boxer, the consistent use of
the box abstraction, the use of multiple selections with set algebra,
and the specific interface designs for connecting boxes and selec-
tions should be applicable in creating scalable systems for explor-
ing comparisons of objects beyond machine learning classifiers.
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