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ABSTRACT
We propose the first approach to synthesize the synchronous 3D
conversational body and hand gestures, as well as 3D face and head
animations, of a virtual character from speech input. Our algorithm
uses a CNN architecture that leverages the inherent correlation
between facial expression and hand gestures. Synthesis of conver-
sational body gestures is a multi-modal problem since many similar
gestures can plausibly accompany the same input speech. To syn-
thesize plausible body gestures in this setting, we train a Generative
Adversarial Network (GAN) based model that measures the plausi-
bility of the generated sequences of 3D body motion when paired
with the input audio features. We also contribute a new corpus
that contains more than 33 hours of annotated data from in-the-
wild videos of talking people. To this end, we apply state-of-the-art
monocular approaches for 3D body and hand pose estimation as
well as 3D face performance capture to the video corpus. In this
way, we can train on orders of magnitude more data than previous
algorithms that resort to complex in-studio motion capture solu-
tions, and thereby train more expressive synthesis algorithms. Our
experiments and user study show the state-of-the-art quality of our
speech-synthesized full 3D character animations.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).
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1 INTRODUCTION
Virtual human characters are a crucial component in many com-
puter graphics applications, such as games or shared virtual envi-
ronments. Traditionally, their generation requires a combination of
complex motion capture recordings and tedious work by animation
experts to generate plausible appearance and movement. The par-
ticular challenges include the animation of the conversational body
gestures of a talking avatar, as well as the facial expressions that
accompany the audio in conveying the emotion and mannerisms of
the speaker. Both are traditionally achieved by manually specified
key-frame animation. Automated tools for animating facial expres-
sions and body gestures directly from speech would drastically ease
the effort required, and allow non-experts to author higher quality
character animations. Further on, such tools would enable users to
drive real-time embodied conversational virtual avatars of them-
selves populating shared virtual spaces, and animate them with
on-the-fly facial expressions and body gestures in tune with speech.
In psycho-linguistics studies, it has been shown that user interfaces
showing avatars with plausible facial expressions, body gestures,
and speech are perceived as more believable and trustworthy [52].
It was also shown that non-verbal behavior is important for convey-
ing information [16], providing a view into the speaker’s internal
state, and both speech and body gestures are tightly correlated,
arising from the same internal process [24, 35].

Prior work on speech-driven virtual characters has been limited
either to the generation of co-verbal body gestures through heuristic
rule-based [34] or learning-based [11, 29, 30] approaches, or the
generation of facial expressions [23] and head movements [42] in
tune with speech. Many learning-based approaches use motion and
gesture training data captured in a studio with complex motion
capture systems [2, 11, 12, 28–30, 48]. In this way, it is hard to
record large corpora of data reflecting gesture variation across
subjects, or subject-specific idiosyncrasies revealing only in long
term observation.

We propose the first approach to jointly generate synchronized
conversational 3D gestures of the arms, torso, and hands, as well as
a simple but expressive 3D face and head movement of an animated
character from speech. It is based on the following contributions:
(1) We contribute a new set of 3D training data annotations1 from
1The dataset can be found in our project webpage:
http://gvv.mpi-inf.mpg.de/projects/3d_speech_driven_gesture/

https://doi.org/10.1145/3472306.3478335
https://doi.org/10.1145/3472306.3478335
http://gvv.mpi-inf.mpg.de/projects/3d_speech_driven_gesture/
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Figure 1: We propose the first approach to jointly synthesize the synchronous 3D conversational body gestures and 3D face
animations of a virtual character from speech input. It is trained using our new contributed 3D facial expression, body, and
hand pose annotation for a large corpus of in-the-wild video of talking people. Images courtesy of Dr. Mark Kubinec.

more than 33 hours of in-the-wild videos of talking subjects, which
was used for learning a purely 2D gesturing model, without face
expression synthesis, before [15]. To create ground truth, we apply
monocular in-the-wild 3D body pose reconstruction [36], 3D hand
pose reconstruction [55], and monocular dense 3D face reconstruc-
tion [14] on these videos. (2) We propose a CNN architecture that
synthesizes face, body, and hand gestures from speech input. It has
a common encoder for facial expression, body, and hands gesture
which learns the inherent correlation between them and three de-
coder heads to jointly generate realistic motion sequences for face,
body, and hands. In addition to facial expressions and head poses
in tune with audio, it synthesizes plausible conversational gestures,
such as beat gestures that humans use to emphasize spoken words,
and gestures that reflect mood and personal conversational style.
Note that, the goal is not to generate gestures relating to semantic
speech content, or carrying specific language meaning, like in sign
language. (3) Synthesis of body gestures is a multi-modal problem;
several gestures could accompany the same utterance. To prevent
convergence to the mean pose in training and ensure expressive
gesture synthesis, the prior 2D work of Ginosar et al. [15] used
adversarial training [17]. We improve upon this work by not only
designing a discriminator that canmeasure whether the synthesized
body and hand gestures look natural, but also the plausibility of
the synthesized gestures when paired with the ground truth audio
features. Figure 1 summarizes of our contribution. We evaluate our
approach through extensive user study, where the participants rate
our results as more natural and in-tune than the baseline methods.
Please refer to our supplementary video for qualitative results.

2 RELATEDWORK
Prior work looked at the problems of body gesture and face ani-
mation synthesis from audio input largely in separation. Problem
settings differ, as conversational gesture synthesis is a much more
multi-modal setting than speech-driven face animation where the
viseme to phoneme mapping is much more unique. In this paper,
we look at them in combination.

Speech-Driven Body Gestures and Head Motion. The prior art can
be grouped into rule-based and data-driven methods. The seminal
work by Cassell et al. [5] and Cassell [4] show that automatic
body gesture and facial expression generation of a virtual character

can be synchronized with the audio by using a set of manually
defined rules. Other work incorporate linguistic analysis [6] into
an extendable rule-based framework. Marsella et al.[34] develop a
rule-based system to generate body gesture (and facial expression)
by analyzing the content of the text input and audio. However, such
methods heavily rely on the study of language-specific rules and
cannot easily handle non-phoneme sounds.

To overcome these problems, data-driven approaches, which
do not rely on expert knowledge in the linguistic domain, have
attracted increasing attention. Neff et al. [37] propose a method to
create a person-specific gesture script using manually annotated
video corpora, given the spoken text and performer’s gesture profile.
The gesture script is then used to animate a virtual avatar. Levine et
al. [30] use a complex motion capture setup to capture 45 minutes of
training data and trained a Hidden Markov Model to select the most
probable body gesture clip based on the speech prosody in real time.
Levine et al. [29] mapped the audio signal into a latent kinematic
feature space using a variant of Hidden Conditional Random Fields
(CRF). The learned model is then used to select a gesture sequence
via reinforcement learning approach. Mariooryad and Busso [33]
use a combination of Dynamic Bayesian Networks (DBN) to syn-
thesize head pose and eyebrow motion from speech. Sadoughi et
al. [41] extended this approach by modeling discourse functions
as additional constraints of the DBNs. Sadoughi et al. [42] use a
learning-based approach that can leverage text-to-speech (TOS)
system to synthesize head motion and propose a method that can
solve the mismatch between real and synthetic speech during train-
ing. Chiu and Marsella [8] train a Conditional Restricted Boltzmann
Machine (CRBM) to directly synthesize sequences of body poses
from speech. Chiu and Marsella proposed using Gaussian Process
Latent Variable Models (GPLVM) to learn a low dimensional em-
bedding to select the most probable body gestures from a given
speech input [9].

In recent years, deep learning has demonstrated its superiority
in automatically learning discriminative features from big data.
Bidirectional LSTM was used by Takeuchi et al.[47], Hasegawa et
al.[20], and Ferstl and McDonnell [11] to synthesize body gestures
from speech. Similarly, Haag and Shimodaira [18] used LSTM to
synthesize head motion from speech. Kucherenko et al.[25] propose
a denoising autoencoder to learn lower dimensional representa-
tion of body motion and then combines it with an audio encoder
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to perform audio-to-gesture synthesis at test time. Lee et al. [28]
contribute a large scale motion capture dataset of synchronized
body-finger motion and audio, and propose a method to predict
finger motion based on both audio and arm position as input. Ferstl
et al. [12] use a multi-objective adversarial model and make use of
a classifier that is trained to predict the gesture phase of the motion
to improve gesture synthesis quality.

Recent work also try to incorporate text-based semantic infor-
mation to improve generation quality of body gestures from speech
[26, 53]. Alexanderson et al. [2] propose a normalizing flow-based
generative model that can synthesize multiple plausible 3D body
gesture from the same speech input and also allows some degrees of
control to the synthesis. Ahuja et al.[1] show that a single learning-
basedmixturemodel can be trained to perform gesture style transfer
between multiple speakers. In contrast, our focus is to find the best
solution of predicting all relevant body modalities from audio using
a single framework, which is a challenging problem even when
trained in a person-specific manner.

Deep learning approaches typically require a large scale training
corpus of audio and 3Dmotion pairs, which is usually captured with
complex and expensive in-studio motion capture systems. To tackle
this, Ginosar et al. [15] propose a learning-based speech-driven
generation of 2D upper body and hand gesture model from a large
scale in-the-wild video collection. With this solution, they are able
to build an order of magnitude larger corpus from community video.
Similarly, the method of Yoon et al. [54] was trained using ground
truth 2D poses extracted from TED Talk videos via OpenPose [3].
Their model employs a Bidirectional LSTM to map audio input into
a sequence of 2D human body pose. In our work, we contribute
additional 3D face, hand, and body annotation for the dataset of
Ginosar et al. [15]. Furthermore, in contrast to existing methods,
we synthesize not only the 3D upper body and hand gestures, but
also head rotation and facial expression of the speaker.

Speech-Driven Facial Expressions. Current techniques can be clas-
sified into: 1) face model-based [7, 10, 32, 38, 49, 50] and 2) non-
model based. Model-based approaches parameterize expressions
in terms of blendshapes, and estimate these parameters from the
audio input. Non-model based approaches, however, directly map
the audio into 3D vertices of a face mesh [23] or 2D point posi-
tions of the mouth [46]. In Karras et al. [23], an LSTM is used
to learn this mapping, and in Suwajanakorn et al. [46], final pho-
torelistic results are generated. Cudeiro et al. [10] use DeepSpeech
voice recognition [19] to produce an intermediate representation
of the audio signal. This is then regressed into the parameters of
the FLAME face model [31]. Taylor et al. [49] use an off-the-shelf
speech recognition method to map the audio into phoneme tran-
scripts. A network is trained to translate the phonemes into the
parameters of a reference face model. Tzikrakis et al. [50] use a
Deep Canonical Attentional Warping (DCAW) to translate the au-
dio into expression blendshapes. Pham et al. [38] directly maps
the audio to the blendshape parameters even though their results
suffer from strong jitter. While current audio-driven facial expres-
sion techniques produce interesting results, most of them show
results on voice data recorded in controlled studios with minimal
background noise [7, 10, 23, 32, 38, 49]. Cudeiro et al. [10] showed
interesting results in handling different noise levels. Nevertheless,

Figure 2: We annotate the in-the-wild conversational video
corpus of Ginosar et al. [15] with 3D parameters of dense
facial reconstruction, handposes, and bodyposes. ImagesOu
courtesy of Dr. Mark Kubinec.

there is currently no audio-driven technique that estimates high
quality facial expressions in-the-wild, as well as estimating the head
motion and body conversational gestures. Our method uses the face
model as the first category. In contrast to other methods, we apply
a simple but effective approach to jointly learn the 3D head and
face animation with body gestures, by directly regressing the facial
parameters captured from a large corpus of community video.

3 DATASET CREATION
3.1 Creating 3D Annotations from Video
A major bottleneck for previous speech-driven animation synthesis
work is the generation of sufficient training data. Many methods
resort to complex in-studio capture of face and full-body motion
with multi-camera motion capture systems. We therefore propose
the first approach to extract automatic annotations of 3D face ani-
mation parameters, 3D head pose, 3D hands, and 3D upper body
gestures from a large corpus of community video with audio. In this
way, much larger training corpora spanning over long temporal
windows and diverse subjects can be created more easily.

In particular, we use the dataset of Ginosar et al.[15] which
features 144 hours of in-the-wild video of 10 subjects (e.g. talk show
hosts) talking into the camera in both standing and sitting poses.
From these videos, Ginosar et al.extracted 2D keypoints of the arms
and hands, as well as 2D sparse face landmarks. They used a subset
of these annotations to train a network synthesizing only 2D arm
and finger motion from speech. While showing the potential of
speech-driven animation, their approach does not synthesize 3D
body motion; does not synthesize 3D motions of the torso, such as
leaning, which is an element of personal speaker style; and does
not predict 3D head pose and detailed face animation parameters.
To train a method jointly synthesizing the latter more complete
3D animation parameters in tune with input speech, we annotate
the dataset with state-of-the-art 3D face performance capture and
monocular 3D body and hand pose estimation algorithms, see Fig. 2.
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For monocular dense 3D face performance capture, we use the
optimization-based tracker [14] that predicts parameters of a para-
metric face model, specifically: 64 expression blend shape coeffi-
cients, 80 PCA coefficients of identity geometry, 80 PCA coeffi-
cients of face albedo, 27 incident illumination parameters, and 6
coefficients for 3D head rotation and position. The face tracker ex-
pects tightly cropped face bounding boxes as input. We use the face
tracker from Saragih et al.[44] for bounding box extraction and tem-
porally filter the bouding box locations; we experimentally found
this to be more stable than using the default 2D face landmarks in
Ginosar’s dataset for bounding box tracking. For training our algo-
rithm, we only use the face expression coefficients 𝜃𝐹𝑎𝑐𝑒 ∈ R64 and
head rotation coefficients R ∈ 𝑆𝑂 (3) (we use the 3D head position
found by the body pose tracker).

For 3D body capture, we need an approach robust to body self-
occlusions, occlusions by other people, occlusions of the body by
a desk (sitting poses by talk show hosts) or occlusions by camera
framing not showing the full body, even in standing poses. We
therefore use the XNect [36] monocular 3D pose estimation ap-
proach designed to handle these cases. Specifically, in each video
frame we extract 3D body keypoint predictions from Stage II of
XNect for the 13 upper body joints (2 for head, 3 for each arm, 1 for
neck, 1 for spine, 3 for hip/pelvis). This results in a 39-dimensional
representation K ∈ R39 for the body pose. We group the head
rotation R predicted by the face tracker together with 3D the body
keypoints K in a 42-dimensional vector 𝜃𝐵𝑜𝑑𝑦 ∈ R42.

To perform hand tracking, we employ the state-of-the-art monoc-
ular 3D hand pose estimation method of Zhou et al.[55]. To ensure
good prediction results, we first tightly crop the hand images using
the 2D hand keypoint annotations provided by Ginosar et al.[15]
before feeding it to the 3D hand pose predictor. Since the hands can
be occluded or out of view, we also employ an off-the-shelf cubic
interpolation method to fill-in potentially missing 3D hand pose
information. This results in 21 joints prediction for each hands,
which we group into a 126-dimensional vector 𝜃𝐻𝑎𝑛𝑑 ∈ R126.

To improve the robustness of our data, we exclude the data if
the prediction confidence of the face landmarks or hand keypoints
within a certain number of frames falls below a given threshold. This
is obtained by reinterpreting the maximum value of the 2D joint
heatmap prediction of the body parts produced by the tracker as a
confidence measure. We also remove 4 out of 10 subjects provided
by Ginosar et al.[15] due to the low resolution of the videos which
lead to poor quality 3D dense face reconstruction results. Our final
3D dataset consists of more than 33 hours of videos from 6 subjects.
We use the same training, validation, and test split as the original
2D dataset, which make up to around 80%, 10%, and 10% of the total
data respectively, even after accounting for the excluded data.

We temporally smooth our 3D body and hand pose prediction
as well as the head rotation results using a Gaussian filter with
a standard deviation of 𝜎 = 1.5 to improve visual quality of our
output. The same filter is also applied to the ground truth sequences
in our video results.

3.2 Audio features pre-preprocessing
Similar to Suwajanakorn et al.[46], we compute the MFC coeffi-
cients of each input video frame after normalizing the audio using

FFMPEG [13, 39]. We make use of CMU Sphinx [27] for comput-
ing the coefficients, and use 13 MFC coefficients and an additional
feature to account for the log mean energy of the input. These, to-
gether with their temporal first derivatives, yield a 28-dimensional
vector F𝑀𝐹𝐶 ∈ R28 representing the speech input at each time
step. MFCC encodes the characteristics of how human speech is
perceived, which make it useful for a wide range of applications
such as speech recognition. Encoding the characteristics of speech
perception make MFC coefficients a good representation for pre-
dicting facial expressions because modulation of face shapes is a
part of the speech production process. For predicting body gestures,
the change of MFCC features over the sequence carries the rhythm
information needed to produce beat gestures.

4 METHOD
Our approach produces a temporal sequence of 3D facial expres-
sion parameters, head orientation, 3D body, and 3D hand pose
keypoints given a speech signal as input. Temporal variations in
these aforementioned parameters contain the gestural informa-
tion. As described in section 3.2, the speech input is pre-processed
to yield MFC based feature frames F𝑀𝐹𝐶 [𝑡] ∈ R28 for each dis-
crete time step 𝑡 . We indicate the facial expression parameters at
each time step as 𝜃𝐹𝑎𝑐𝑒 [𝑡] ∈ R64, 3D keypoints for both hands
as 𝜃𝐻𝑎𝑛𝑑 [𝑡] ∈ R126, and the head orientation and 3D body key-
points are represented together as 𝜃𝐵𝑜𝑑𝑦 [𝑡] ∈ R42. The temporal
sequences are sampled at 15𝐻𝑧.

4.1 Network Architecture
Similar to other adversarial learning-based approaches, our model
consists of 2 main neural networks that we refer as the generator
network 𝐺 and discriminator network 𝐷 . We follow the design
of prior human motion and gesture synthesis approaches [15, 21,
22] by using 1D convolutional networks to model the temporal
relationship of the audio and body features across different frames.

We employ a 1D convolutional Encoder-Decoder architecture for
the generator network 𝐺 to map the input audio feature sequence
F𝑀𝐹𝐶 [0 : 𝑇 ] to 3D face expression parameter sequence 𝜃𝐹𝑎𝑐𝑒 [0 :
𝑇 ], 3D body pose parameter sequence 𝜃𝐵𝑜𝑑𝑦 [0 : 𝑇 ], and 3D hand
pose parameter sequence 𝜃𝐻𝑎𝑛𝑑 [0 : 𝑇 ] which is also trained in a
supervised manner.

Our 1D convolutional architecture for the generator𝐺 is adapted
from a reference implementation [51] of the U-Net [40] architecture
originally proposed for 2D image segmentation. Our architecture
utilizes a single encoder, comprised of 8 1D [Conv-BN-ReLU] blocks
with a kernel size of 3, and is interleaved with MaxPool after every
second block except the last. The last block is followed by an up-
sampling layer (nearest neighbour). Each of face, body, and hand
sequences utilize a separate decoder to learn body-part specific
motion characteristics. The decoders are symmetric with the en-
coder, and comprised of 7 1D [Conv-BN-ReLU] blocks and a final
1D convolution layer, interleaved with upsampling layers after ev-
ery second block. The decoders, being symmetric with the encoder,
utilize skip connectivity from the corresponding layers in the en-
coder. The discriminator network is designed to predict whether
its input audio and pose features are real or not. This network com-
prised of 6 1D [Conv-BN-ReLU] blocks with a kernel size of 3, and
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Figure 3: Our approach produces a temporal sequence of 3D facial expression parameters, head orientation, and 3D keypoints
of the upper body and hands given a speech signal as input.We employ an adversarial loss in which the discriminator network
tries to distinguish whether the input audio and body pose features are real or generated by the generator network.

is interleaved with MaxPool after every second block. Afterwards,
it is followed a linear and sigmoid activation layers.

A schema of the architecture is shown in Figure 3.

4.2 Training Details
For each sequence of sampled speech features F𝑀𝐹𝐶 [0 .. 𝑇 −1], and
annotated 3D face expression parameter sequence 𝜃𝐹𝑎𝑐𝑒 [0 .. 𝑇 − 1],
3D body pose parameter sequence 𝜃𝐵𝑜𝑑𝑦 [0 .. 𝑇 − 1], and 3D hand
pose parameter sequence 𝜃𝐻𝑎𝑛𝑑 [0 .. 𝑇 − 1], we extract 64 frame
(≈ 4sec) sub-sequences in a sliding window manner, with a 1 to
5 frame overlap between consecutive sub-sequences depending
on the number of data points of the subject. Each mini-batch for
training comprises of a random sampling of such 64-frame sub-
sequences extracted from all training sequences. We use Adam for
training, with a learning rate of 5𝑒 − 4, a mini-batch size of 25,
and trained until 300,000 iterations per subject. Since the generator
network is fully convolutional, at deployment our network can
handle input speech features of arbitrary duration.

We supervise our generator network 𝐺 with the following loss
terms:

L𝑅𝑒𝑔 = 𝑤1 ∗ L𝐹𝑎𝑐𝑒 +𝑤2 ∗ L𝐵𝑜𝑑𝑦 +𝑤3 ∗ L𝐻𝑎𝑛𝑑 . (1)
L𝐹𝑎𝑐𝑒 is the L2 error of facial expression parameters

L𝐹𝑎𝑐𝑒 =

𝑇−1∑
𝑡=0

∥𝜃𝐹𝑎𝑐𝑒 [𝑡] − 𝜃𝐹𝑎𝑐𝑒 [𝑡] ∥2 .

L𝐵𝑜𝑑𝑦 is the L1 error of 3D body keypoint locations and head ori-
entation, and L𝐻𝑎𝑛𝑑 is the L1 error of 3D hand keypoint locations

L𝐵𝑜𝑑𝑦 =

𝑇−1∑
𝑡=0

∥𝜃𝐵𝑜𝑑𝑦 [𝑡] − 𝜃𝐵𝑜𝑑𝑦 [𝑡] ∥1,

L𝐻𝑎𝑛𝑑 =

𝑇−1∑
𝑡=0

∥𝜃𝐻𝑎𝑛𝑑 [𝑡] − 𝜃𝐻𝑎𝑛𝑑 [𝑡] ∥1 .

We define 𝑤1 = 0.37, 𝑤2 = 600, and 𝑤3 = 840 to ensure that each
term is equally weighted during training.

In practice, we observe that only employing L1 or L2 error for
body keypoints results in less expressive gestures, as has also been

pointed out in priorwork on 2D body gesture synthesis of Ginosar et
al. [15]. Inspired by the adversarial training approach of Ginosar et
al.[15], we show that incorporating an adversarial loss using a
discriminator network 𝐷 which is trained to judge whether an
input pose is real or fakely generated by the generator 𝐺 , can lead
to more expressive gestures that are also in-sync with the speech
input. When trained together with the generator network in a
minimax game scenario, it will push the generator to produce a
higher quality 3D body and hand pose synthesis in order to fool the
discriminator. We follow similar approach to the work of Ferstl et
al.[12] by using not only the pose, but also the audio features as
input to the discriminator. This way, the discriminator is not only
tasked to measure if the input gesture looks real, but it also needs
to determine if the gesture is in-sync with the input audio features
or not. Since the multi-modality of the body gestures mainly occurs
for the body and hands, we exclude the facial expression parameters
from the adversarial loss formulation:

L𝐴𝑑𝑣 (𝐺, 𝐷) = EF𝑀𝐹𝐶
[log(1 − 𝐷 (F𝑀𝐹𝐶 ,𝐺

∗ (F𝑀𝐹𝐶 )))]
+ EF𝑀𝐹𝐶 ,𝜃𝐵𝑜𝑑𝑦 ,𝜃𝐻𝑎𝑛𝑑

[log𝐷 (F𝑀𝐹𝐶 , 𝜃𝐵𝑜𝑑𝑦, 𝜃𝐻𝑎𝑛𝑑 )] (2)

where𝐺∗ indicates that we only use the predicted 𝜃𝐵𝑜𝑑𝑦 and 𝜃𝐻𝑎𝑛𝑑

outputs of the original generator network 𝐺 .
Combined with the direct supervision loss, our overall loss is:

L = L𝑅𝑒𝑔 +𝑤 ·min
𝐷

max
𝐺

L𝐴𝑑𝑣 (𝐺, 𝐷) (3)

where𝑤 is set to be 5.
Our networks are trained on subject specific training sets in order

to capture the particular gesture characteristics of the subject.

5 RESULTS
Our proposed approach addresses essential aspects of animating
virtual humans: synthesizing facial expressions, body, and hand
gestures in tune with speech. For visualization of our results, as well
as for the user study, to allow observers to focus on the face and
body motion, we render an abstract 3D character that showcases
all the important skeletal and facial elements without the risk of
falling in the uncanny valley, following similar approaches in prior
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work [15, 30]. Since our approach only predicts upper body motion,
we fuse it with a pre-recorded base motion of the lower body in
both sitting and standing scenarios.
Since the synthesis of conversational gestures is a multi-modal
problem, direct comparison with the tracked annotations would not
be meaningful for all aspects of the synthesized results, particularly
for evaluating the realism of the synthesized gestures. We evaluate
our method through extensive user studies to judge the quality and
the plausibility of our results, andwe compare it to various baselines.
Further, we measure the prediction of the facial expressions by
comparing the 3D lip keypoints extracted from selected vertices
of the predicted dense 3D face model against the automatically
generated ground truth lip keypoints that we obtained from the
source image. A qualitative example of our synthesis result is shown
in Figure 4. Please see the accompanying video for extensive audio-
visual results.

Table 1: User study result measuring both the natu-
ralness and synchronization between the synthesized
face+body+hand gesture and speech.

Method Naturalness Synchrony.
Ground truth 4.29 ± 0.86 4.39 ± 0.77

Conv.net. direct regress. 3.54 ± 1.11 3.78 ± 1.08
LSTM (adapted from [45]) 3.15 ± 1.03 3.21 ± 1.11

Adv. loss on
veloc. (adapted from [15]) 3.03 ± 0.98 3.38 ± 0.95

Adv. loss on
audio+3D pose (ours) 4.05 ± 0.85 4.00 ± 0.91

5.1 Baseline Comparisons
We evaluate our approach against other methods that perform body
gesture prediction which use audio features as input. Other baseline
methods are trained using the same MFCC features described in
3.2. Our first baseline is the direct regression 1D CNN model of our
proposed network architecture without using the adversarial loss.
Next, we compare our method against a Recurrent Neural Network
(RNN)-based Long Short-term Memory (LSTM) architecture by
Shlizerman et al.[45] which was originally designed to temporally
predict 2D hand and finger poses. Since the original method was not
designed to handle multi-modal data, we train three LSTM models
for face, body, and hand gesture separately on our 3D data.

We trained an adaptation of Ginosar et al.[15] using our proposed
model and trained the adversarial loss to distinguish between the
real and fake synthesis of the gesture in the velocity space similar
to their proposed approach and use this version as our baseline
comparison. We also compare our method against the work of
Alexanderson et al.[2] by retraining their method on our in-the-
wild 3D data. Their model was originally trained on clean mocap
data of 3D body pose without face or hand annotations. We found
that the model is sensitive to the hyperparameters used. Because
of this, we decided to only train it on the body and hand data to
simplify the problem. We manually searched for an optimal set
of hyperparameters that can produce the best results in terms of
naturalness and synchronization based on the recommendation of

the authors. Following their instruction, we conducted multiple
experiments by varying the number of units 𝐻 between 512, 700,
and 800 and the number of flow-steps 𝐾 from 8 up to 16. We found
that the MoGlow-based model produces the best results when using
the number of units 𝐻 = 800 and number of steps 𝐾 = 10.

Please also refer to our supplementary video for the qualitative
results of the baseline methods.

5.2 Gesture Synthesis User Study Evaluation
We conducted two separate user studies for the qualitative evalua-
tion of our proposed method.

For the first user study, we compare methods that synthesize the
3D face, body, and hand gestures from audio. In this study, the partic-
ipants were shown 3 out of 6 randomly selected video sequences (12
seconds/sequence) synthesized by our proposed method, baselines,
and the ground truth (tracked) annotations. This study involved 67
participants. Each user was asked to judge the naturalness and the
synchronization between the audio and the generated 3D face and
body gestures on a scale of 1 to 5, with 5 being the most plausible
and 1 being the least plausible. As shown in Table 1, the ground
truth sequences are perceived as both the most natural and in-tune
with the input speech compared to other synthesized gesture videos,
which is rated at 4.29± 0.86 and 4.39± 0.77, respectively. Compared
to other baseline methods, the participants agree that our results
look more natural and in tune with the speech audio with the score
of 4.05 ± 0.85 in term of naturalness and 4.00 ± 0.91 in terms of
synchronization with the speech.

Table 2: User study result measuring both the naturalness
and synchronization between the synthesized body+hand
gesture and speech. The users were specifically asked to ig-
nore the quality of the facial expression.

Method Naturalness Synchrony.
MoGlow [2]) 2.88 ± 1.02 3.11 ± 1.13

Ours 4.01 ± 0.82 3.93 ± 0.92

We also conducted a second user study evaluating only the syn-
thesis of the 3D body and hand gestures and compare our method
with the MoGlow-based model of Alexanderson et al.[2]. For this
study, the participants were specifically asked to ignore the quality
of the face expressions in the video. To ensure a fair comparison,
all videos presented in this study were synthesized by using the
3D facial expression predicted by our method. Similar to the first
study, each of the 45 participants were asked to rate the quality of
the gestures from 3 out of 6 possible videos for each method on a
scale between 1 to 5. As shown in Table 2, our method is rated as
both more natural and in-sync with the audio.

5.3 Facial Expression Evaluation
In Table 3, we compare the 3D lip keypoints of the generated face
vertices corresponding to the facial expressions predicted by various
approaches against the image-based face tracker’s 3D lip keypoints
in a neutral head pose. The comparisonwas performed on the whole
test set which consists of 578 sequences (12 seconds/sequence)
across all subjects. As a sanity check baseline, we also compute the
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Figure 4: Qualitative results of our approach. Motion visualization is based on the Harris shutter effect. Image courtesy of Dr.
Mark Kubinec.

Table 3: Quantitative comparison to baseline methods for lip motion prediction error against the ground truth (in mm).

Method Oliver Meyers Ellen Kubinec Stewart O’Brien
Conv. network direct regression 0.29 0.35 0.29 0.28 0.39 0.37

LSTM (adapted from [45]) 0.3 0.36 0.30 0.32 0.41 0.39
Adv. loss on velocity (adapted from [15]) 0.29 0.35 0.3 0.29 0.39 0.38

Random 0.49 0.57 0.47 0.43 0.57 0.52
Adv. loss on audio+3D pose (ours) 0.29 0.35 0.28 0.28 0.39 0.37

difference between the optimization-based tracked annotations of
one sequence, to the optimization-based annotations on a different
sequence chosen randomly. The evaluation shows that our proposed
method achieves similar or slightly better performance against
other proposed baselines. This result also demonstrate that our
unified whole-body architecture is suitable for simultaneous face
expression synthesis at decent quality, and better than simultaneous
face synthesis with other body gesture synthesis architectures. Note
here that we are not claiming that our design advances the state-of-
the-art in face-only expression synthesis. This is outside the scope
of our work and left for future work.

6 DISCUSSION
Although mouth expressions are strongly correlated with speech,
the rest of the intended generation targets such as body gestures
do not have a one-to-one mapping. Coupled with the noisy na-
ture of our monocular data, as observed in our experiments, this
multi-modal nature of the problem makes both designing and an-
alyzing a stable expressive model challenging. We also observe
that a lower value of 𝐿1 or 𝐿2 loss on the validation set does not
always guarantee to produce a qualitatively better gesture synthe-
sis, which further shows the importance of the adversarial loss.
The data is also inherently noisy due to the use of 3D monocular
trackers, which may to lead to jittery 3D motion that can affect the
performance of our model and comparison baselines. However, we
observe the effect of the noise to be minimal as it can be suppressed
by applying temporal filters to the prediction output.

We also argue that the discriminator network can potentially be
used as a plausibility metric to rate the quality of a gesture synthesis
from speech, similar to how the inception score is used [43], if
trained with enough gesture and noise variations. One way to

validate this idea is to train the model to classify whether its audio-
gesture pair input is in-sync or off-sync. The ground truth audio-
gesture pairs can be used directly as in-sync (positive) samples,
while off-sync (negative) samples can be prepared by pairing the
audio sequence with a different gesture from a random pair.

When we train our discriminator network in this setup, it can
reliably classify unseen test pairs of subject "Oliver" with a high
accuracy of 87.4%. Unfortunately, since the classifier is trained only
on ground-truth motion sequences, it is not yet possible to extend
this model as a quantitative metric for gesture synthesis methods.
When we tested this classifier on the baseline models, it produces
inconsistent results. For example, it rates our proposed model to be
more plausible than the ground truth sequences, which contradicts
the result of the user study. A specific dataset containing different
gesture noise characteristic may be required if we want to extend
this classifier into a more general gesture plausibility metric.

7 CONCLUSION
We propose the first approach for full 3D face, body, and hand ges-
ture prediction from speech to automatically drive a virtual charac-
ter or an embodied conversational agent. We leverage monocular
dense face reconstruction and body pose reconstruction approaches
on in-the-wild footage of talking subjects to acquire training data
for our learning-based approach, generating 3D face, body, and
hand pose annotations for ≈ 33 hours of footage. Our key insight
on incorporating an adversarial penalty not only on the 3D pose but
also its combination with the audio input allows us to successfully
generate expressive body gestures that are in-sync with the speech.
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