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Figure 1: EYEditor interactions: User sees the text on a smart glass, sentence-by-sentence. In the Re-speaking mode, correction is 
achieved by re-speaking over the text and a hand-controller is used to navigate between sentences. Users can enter the 

Select-to-Edit mode to make fine-grained selections on the text and then speak to modify the selected text. 

ABSTRACT 
On-the-go text-editing is difficult, yet frequently done in ev-
eryday lives. Using smartphones for editing text forces users 
into a heads-down posture which can be undesirable and un-
safe. We present EYEditor, a heads-up smartglass-based solu-
tion that displays the text on a see-through peripheral display 
and allows text-editing with voice and manual input. The 
choices of output modality (visual and/or audio) and content 
presentation were made after a controlled experiment, which 
showed that sentence-by-sentence visual-only presentation is 
best for optimizing users’ editing and path-navigation capa-
bilities. A second experiment formally evaluated EYEditor 
against the standard smartphone-based solution for tasks with 
varied editing complexities and navigation difficulties. The 
results showed that EYEditor outperformed smartphones as 
either the path OR the task became more difficult. Yet, the 
advantage of EYEditor became less salient when both the edit-
ing and navigation was difficult. We discuss trade-offs and 
insights gained for future heads-up text-editing solutions. 
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INTRODUCTION 
Word processing on mobile phones has become an essential ev-
eryday task in our modern lives. According to Statistic Brain, 
781 billion text messages are sent every month in the United 
States alone [10] which is more than 26 billion texts a day or 
94 texts per person each day [11]. This astonishing number 
does not even count the other text-based tasks people perform 
on the phone, i.e., online searches, writing and replying to 
social media posts, emails, etc. 

Although mobile phone-based word processing helps greatly 
with people’s on-the-go information and communication 
needs, it also contributes to a notorious phenomena called 
‘smart-phone zombie’ or ‘heads-down tribe’ [52]. As Mark 
Sharp, a journalist, describes it: “The zombies are everywhere. 
They wander the streets, shopping malls and MTR [metro] 
corridors, heads down and oblivious to the world around them.” 
Such heads-down style has a number of undesirable conse-
quences as it: 1) isolates the user from the environment as 
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the user cannot actively observe the environment and the peo-
ple around them [33]; 2) text entry on the phone requires a 
significant amount of dedicated attention and precise motor 
movements, and imposes high visual, temporal, and physical 
demands on the user [32, 41]; and 3) forces the user into an 
awkward posture, which twists the spine [44] and leads to 
unwarranted exertion of the hand muscles; these can cause 
significant health problems in the long run [25, 21, 44]. De-
spite these serious problems, it is difficult to deny the strong 
information and communication needs that people have on 
the go [35]. Hence, it is necessary to work out alternative 
solutions that can enable users to perform text-based tasks, 
albeit avoiding the discussed problems. 

One potential solution to alleviate the above problems is to per-
form word processing tasks on smart glasses with transparent 
heads-up displays — systems that allow users to access digital 
information in real-time while simultaneously being present 
in the physical world [34, 15]. In that, smart glasses allow 
heads-up interaction with faster attention switching between 
the digital display and the visual surrounding. However, due 
to the lack of input mechanisms, word processing on smart 
glasses is more difficult than on the phone [36]. Past research 
has explored text-entry mechanisms on smart glasses that typi-
cally allow typing text on a small touch panel on the side of the 
glasses and require the user’s hand to be held-up to enter the 
text. Although some of these methods achieved relatively fast 
typing speeds of up to 25 wpm [65], using them still imposes 
significant visual, temporal and physical demands. Voice input 
can potentially solve this problem, as it is hands-free, natural 
to use, and have demonstrated input speeds that are 3 to 5 
times that of touch-based input [47, 4]. Yet, while voice is con-
venient for generating text, it is difficult to edit text with voice. 
Editing requires spatial referencing to delimit where and how 
much of the text needs to be changed. These operations are 
difficult to perform using voice alone [4]. 

In this paper, to overcome some of the previously mentioned 
problems, we propose an on-the-go heads-up text editing solu-
tion, EYEditor, which allows editing text on a smart glass. We 
focus on text-editing as the scope of our investigation because: 
1) it is more complex and demanding than text entry due to the 
increased number of constraints involved in error detection, 
localization and correction; 2) it is an essential component 
of word processing, as without it, a text entry method is less 
useful for serious use and yet, text editing on smart glasses is 
under-explored. 

EYEditor adopts a hybrid approach of voice and manual input. 
Voice is used to modify the text content, while manual input 
through a wearable ring-mouse is used for text navigation and 
selection. Text content is rendered visually on the smart glass 
screen with a sentence-by-sentence presentation. This design 
choice is determined by a controlled study comparing three 
combinations of audio and/or visual output with the visual 
rendering done in two different presentations: sentence-by-
sentence and block text display. 

To test the feasibility, desirability, and viability of EYEditor 
on the go, we conducted a second study comparing it with the 
status-quo smartphone-based text editing technique. Partici-

pants used both our system and the phone to perform simple 
and difficult correction tasks while walking on three different 
path-types. Results showed that EYEditor offered significant 
benefits over the phone as the task OR the path difficulty in-
creased — participants could correct text significantly faster 
while maintaining a higher average walking speed when using 
EYEditor. However, this performance gain over the phone 
narrowed when both the path AND the task demanded high 
visual attention, where participants faced challenges with both 
the techniques. 

Our contribution is threefold: (1) design of EYEditor, a system 
to facilitate on-the-go text-editing on a heads-up display; (2) a 
quantitative evaluation of output modalities on the smart glass 
and an in-depth understanding of how each affects the user’s 
text-correction and path-navigation abilities on the go; and (3) 
a comparative evaluation of our proposed technique against the 
smartphone baseline, based on which we discuss the trade-offs 
and insights gained to inspire the design of future on-the-go, 
heads-up text-editing solutions. 

RELATED WORK 
There are three broad areas that our work relates to: 

Smart glasses as an emergent platform 
Smart glasses have emerged as an important platform to inter-
act with digital content on the go, due to their unobtrusiveness 
and affordance of maintaining direct visual contact with the 
physical surrounding [5, 39]. To further promote its adoption, 
research needs to invest in uncovering the potentials that smart 
glasses bring as a new paradigm of interaction. Rauschnabel 
et al. [46] theorised that adoption of smart glasses would be 
dependent upon at least one of three factors: 1) Effectance: 
what value does it bring in making one’s life more efficient? 
2) Hedonic: its use in providing fun and entertainment; and 
3) Social: To what degree can it maintain or foster social in-
teractions and relationships. Much research has been done to 
boost the effectance of smart glasses. They have been used in 
industrial applications [38, 31, 62], outdoor training [58, 57], 
touring applications [16, 7], clinical and surgical applications 
[1, 40], education [28], product development and logistics 
[46]. In this paper, we focus on an under-explored use case 
of smart glasses — text editing: to support this task on the go 
while maintaining awareness of the path and surroundings. 

Text interaction on smart glasses 
Research on text entry mechanisms with smart glasses have 
offered many techniques to work around the limited interaction 
possibilities of the small screen and absence of keyboards. 
Strategies have included touchpad [19, 66], mid-air [3, 18, 20, 
24], hand [54, 9, 2, 50], wrist, palm[61] and finger-based input 
mechanisms [6, 64]. More visual strategies include dwell-free 
techniques [27], and techniques that replace dwell operations 
with movement of the eye-pointer [29, 49]. Additionally, head-
based text entry has been shown to achieve relatively high 
input rates of ≈25 WPM [65]. However these systems have 
not been tested in on-the-go scenarios and it is unclear if the 
interaction burden the systems impose is too high for on-the-
go scenarios. Additionally, text entry is a different task from 

CHI 2020 Paper  CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 46 Page 2



text editing, as the latter calls on other cognitive functions for 
error detection, localization and correction. 

For text output, previous work has explored text content pre-
sentation that optimizes users’ reading experience on the go. 
Vadas et al. [59] compared visual and auditory displays for 
text comprehension on the go and found that audio output was 
more suitable for path-navigation. Also, text comprehension 
with audio output was at par with visual output. Rzayev et al. 
[48] explored the effect of two presentation types on text com-
prehension while walking: Rapid Serial Visual Presentation 
(RSVP) and line-by-line scrolling (3 words per line). They 
found that line-by-line scrolling yields higher comprehension 
than RSVP, while walking. However, these results are specific 
to reading and might not hold true for text editing as editing 
calls on additional cognitive functions as discussed before, 
and hence, needs further investigation. 

Voice-based Error Correction 
Azenkot and Lee [4] had found that speech was nearly 5 times 
as fast as keyboard-based text entry, but the efficiency was 
reduced by the combined difficulty of reviewing and correct-
ing speech recognition errors in the absence of specialized 
voice-based editing algorithms. Editing requires spatial ref-
erencing to delimit where and how much of the text needs 
to be changed [12]. Voice-based dictation applications like 
Dragon NaturallySpeaking support a two-step process where 
the user says a first command to make a selection, then dictate 
to modify the selection. Ghosh et al. [17] found that merging 
the two steps was useful for eyes-free editing. To preclude 
the mental effort in remembering commands and in having 
to speak the erroneous text (which may be ungrammatical or 
illogical) [60], McNair and Waibel [37] had first proposed a 
more natural, one-step correction approach. This approach let 
users re-speak over erroneous parts of the text to change it. 
The change is effected by an alignment algorithm that tries to 
align the user utterance to existing parts of the text. Multiple 
research has explored computational models to improve the 
alignment accuracy [60, 13, 53]. We adapted the re-speaking 
approach with an in-house implementation for correcting text 
real-time on our smartglass-based system. 

There exists a body of literature exploring multi-modality in 
voice-based error correction. Halverson et al. [22] studied 
user patterns of voice-based error correction in desktop speech 
systems and found that using a single modality of input might 
lead to spiral depths [43] and cascades [22] that slows down the 
correction process. They suggested switching input modalities 
from voice-only to voice+mouse or voice+keyboard to cut 
down on the error-correction time. Suhm et al. [55] also found 
that the use of multi-modal input improves the error-correction 
speed. Oviatt [42] suggested that multiple input modalities 
might benefit speech recognition. Based on the discussed 
literature, we propose to support multi-modal input in our 
system design by combining voice (for editing the text) with 
manual input (for text selection and navigation). 

FIRST DESIGN OF EYEditor 
Our system combines three interfaces - visual (output), audi-
tory (input-output) and manual input (Figure 2). The voice 

Figure 2: Apparatus showing all three interfaces. 

and manual input are processed separately in a processing unit 
which applies the user’s voice-based correction to the text and 
sends instructions to the visual/auditory output on how the 
edited content should be presented to the user. 

Visual Interface 
We used a Vuzix Blade (henceforth, just ‘Blade’) see-through 
smart glass. The Blade is regarded as one of the most commer-
cially viable and recommended smart glasses in the market 
[56]. It has a 480x480 px display, vertically centered on the 
right glass and runs a web-server running on Android 5.1. 

We developed a host server (Node.js server running on a Mac-
Book Pro, 2017) that subscribes to the Blade server via a 
socket connection. The host server pushes the text content and 
formatting instructions to the Blade server which then renders 
the formatted text on an Android app, running on the Blade. 

EYEditor’s screen-space is divided into two parts: the text-
content space that can render up to 8 lines of text with word-
wrapping (≈21 characters per line), and the speech transcrip-
tion space which reserves 2 lines to show a live transcription 
(speech-to-text) of the users’ utterances. For optimum read-
ability while rendering single sentences on the Blade screen, 
the text is centralized both horizontally and vertically [48]. 

Audio Interface 
EYEditor supports voice-based correction of text through an 
audio interface. The audio interface supports input/output 
using a pair of Bose QC35 headphones (with microphone) 
connected via Bluetooth to the MacBook Pro. We used the 
MDN Web Speech API [63] for both speech-transcription of 
user utterances and speech-synthesis to deliver the system 
audio output. After pilot tests to determine the users’ comfort-
able listening comprehension rate for text editing, the audio 
rate was fixed at 0.7x for text-content playback. 

Voice-correction of the text can be achieved by re-speaking 
over erroneous parts of the text. For example, to correct ‘quick 
red fox’, user says, “quick brown fox”. In the previous ex-
ample, ‘red’ gets repaired to ‘brown’; ‘quick’ and ‘fox’ are 
the left/right repair-contexts, i.e., matching word(s) to the 
left/right of the intended repair. A more detailed discussion on 

CHI 2020 Paper  CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 46 Page 3



correction-by-respeaking is presented in the Appendix. Addi-
tionally, our system supports command-based deletion of text 
using the DELETE keyword, e.g., “DELETE <phrase>”. 

Manual-Input Interface 
Previous research has shown that navigation-based tasks are 
faster, easier and more accurate with manual input than speech 
[8, 51]. Therefore, we introduced a small ring-mouse (Sanwa 
Supply 400-MA077) hand-controller to our system for text 
navigation purposes. The controller has 4 buttons and a central 
trackpad that supports both swipe gestures and button-press. 
For the purpose of this study, we reprogrammed the default 
controls of the mouse. The first design of EYEditor supported 
two functions: 1) going forward/backward in the text by swip-
ing right/left on the trackpad; and 2) undo/redo operations by 
pressing/long-pressing the right button. 

STUDY 1: OUTPUT MODALITY AND CONTENT PRESEN-
TATION 
One essential question to answer is: How should we present 
the information to the users using the new smart glass plat-
form for on-the-go text editing? Our goal is to balance the 
users’ path-navigational needs and text editing needs on the go. 
Therefore, we need to find a solution that offers the optimal 
trade-off between these two sets of requirements. In particular, 
we narrow down to two important factors for investigation: 
the output modality and the presentation of the text content to 
be visually presented on the smart glass screen. Note that the 
output modality only pertains to the display of the text content. 
The system status feedback for text change confirmations or 
error feedback are always delivered through auditory messages 
and is outside the scope of our study. 

While the output modality can be purely audio or visual, or a 
combination of both, it needs exploration of the trade-offs that 
each modality would present while editing the text on the go. 
Also, for visual presentation of the text content, it is important 
to explore how much of the text should be presented so that it 
strikes the right balance between presenting enough context 
for editing the text and minimizing the visual/cognitive load 
of processing the presented content. 

Research Questions and Hypotheses 
We designed our study around three main questions — 

Q1. What effect does the modality of output have on the users’ 

text-correction and path-navigation abilities? 
Previous research has highlighted the trade-off between audio 
and visual output for on-the-go text reading comprehension 
[59]. Audio was slower, but allowed better path navigation and 
presented a lower task-load. Does the same trade-off between 
audio-only and visual-only output apply to on-the-go text edit-
ing tasks? We hypothesize that while visual output would 
allow faster editing, audio would allow better path navigation, 
but also present increased task-load due to the difficulty in 
error detection and correction without visual output. Further-
more, does combining audio and visual output allow faster 
corrections and better path-navigation? We hypothesize that 
the redundancy of information in the bi-modal output would 

allow faster corrections but present more path-navigation diffi-
culties and increase the task-load. 

Q2. How does the text presentation affect users’ text-

correction and path-navigation abilities? 
Seeing more text on screen can allow the user to form a higher-
level understanding of the text, thus making it easier to process 
and edit the text, but more text might also cause more distrac-
tion, thereby increasing the path-navigation challenges. We 
expect increasing the amount of text displayed will lead to 
faster corrections as it would present more context of the text 
and reduce the number of navigation operations needed to 
scan through the text. However, less visual output would be 
easier for path-navigation. 

Q3. How does path difficulty affect the user performance in 

different modalities and text presentations? 
We hypothesize that showing more text on the display, while 
might be beneficial on a simple path, would lead to a decline 
in performance on a more difficult path as both the text and the 
path would demand higher visual attention. Audio-only mode 
might be the least affected by variations in path difficulty. 

Q4. Is correction by re-speaking sufficient? 
If the user utterance contains a repair-context that has repeated 
occurrences in the text then it might result in an unintended 
alignment. However, with our current design, the user may 
undo and re-attempt, including more context words in their 
next utterance to remove possibly any ambiguity in the align-
ment. We wanted to understand how easy or difficult it was 
for users to recover from a misalignment while balancing the 
cognitive load of navigating their path. 

Modes of Output 
To investigate our research questions, we designed 5 output 
modes, each exploring a combination of audio and/or visual 
modality. The visual output can be rendered in two different 
presentations: text-block and sentence-by-sentence (Table 1). 
A text-block in our experiment was defined as the maximum 
amount of text (≈33 words) that can be rendered on the text-
content space of the Blade display. In block rendering, users 
can scroll through the text by swiping up/down on the hand-
controller trackpad. Figure 3 shows all the output modes. 

The audio-visual modes provide a reading-while-listening ex-
perience where both the modalities are active at the same time. 
For modes supporting audio output, playback of the text con-
tent is delivered through a Text-to-Speech (TTS) reader. To 
maintain consistency with the text presentation in the visual-
only modes (Vs, Vb), the audio playback of the text is sentence-
by-sentence in the AVs mode and continuous in AVb. Also, in 
our pilots, we noticed that editing text in an audio-only mode 

Audio Audio+Visual Visual 

TEXT BLOCK invalid AVb Vb 
SENTENCE A AVs Vs 

Table 1: Output modes combining output modalities and pre-
sentations. 
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Figure 3: Screenshots of the Blade display showing the five output modes (Aud=Audio, Vis=Visual). Audio icons indicate support 
for audio-output. In green font is the transcribed user utterance. 

was cognitively very challenging if a continuous stream of 
audio was presented. Hence, we precluded continuous audio 
playback in the A mode. The audio-output modes support 
barge-in interaction [17] i.e., when the user makes a change 
utterance (user interrupt), the TTS instantly pauses and the 
correction is done in real time. 

The scope of the correction for modes with audio-support 
is always set as the interrupted sentence. Block rendering 
modes, AVb and Vb, have a visual marker to indicate a sentence 
selection. For AVb, the sentence being read by the TTS gets 
auto-selected, while for Vb, the user can select a sentence to 
mark the scope for correction. For both AVb and Vb, the scope 
is the whole text, but prioritized by the selection, i.e., first the 
selected sentence is searched for a possible alignment, but if 
unsuccessful, rest of the text is searched. 

Apparatus 
The apparatus used was EYEditor as per its first design. 

Participants 
10 volunteers (6M, 4F, Mean Age=25.8 years, SD=3.79) took 
part in the study. None of the participants had prior experience 
of using a smart glass. All the participants had obtained at 
least one university degree taught in English. 

Design and Procedure 
A repeated-measures within-participant design was used. The 
independent variables were output mode Mode (A, AVb, AVs, 
Vb, Vs) and path-type Path-type (Simple, Stair). A fully crossed 
design resulted in 10 combinations of Mode and Path-type per 
participant. 

Each participant performed the experiment in one session 
lasting approximately one hour. The session was blocked by 
output mode, with a participant walking on 2 path-types for 
each output mode. Presentation of the output modes were 
counterbalanced using Latin Square across all the participants. 
This resulted in 2 groups of 5 participants in each group. One 
group walked the simple path first, while the other group 
walked the stair-path first. 

For each output mode, participants had to correct two para-
graphs of text, one for each path-type. Each paragraph com-
prised of 5 simple sentences with each sentence having an 
average number of 8-9 words. The words were extracted 
from 3 different texts with their Flesch reading ease scores 

[26] fixed between 70-80. There were about 4 words per 
line (SD=.75) or ≈21 characters per line (Mean=20.82 char-
acters, SD=2.48). Each sentence was embedded with two 
one-word errors (one each in the subject and the predicate) 
by adding/deleting/replacing correct words from the text. The 
errors served as correction opportunities for the participants. 
Only semantic (meaning) and syntactic (grammatical) errors 
[30] were embedded to ensure that the errors were identifiable 
without prior knowledge of the text. 

We chose two different paths for the experiment, one for each 
path-type. Each path was 30 meters long. For the correction 
task, participants looped on the same path until they had com-
pleted exactly 5 of the 10 possible corrections, after which they 
were asked to “Stop”. The first path condition was a simple 
straight path with no obstacles, while the second consisted of 
two flights of stairs. For the stair-path, participants alternated 
between first climbing down and then climbing up. 

Before using each output mode, participants were briefed on 
the particulars of that mode after which they were given a 
single warm-up block to familiarize themselves with the mode. 
During the warm-up, participants corrected a sample piece of 
text while walking. At the start of the experiment, participants 
were given a short reading task on the Blade to familiarize 
themselves to reading text on a smart glass. 

Participants filled out an unweighted NASA-TLX question-
naire [23] to report their subjective task load at the end of 
each output mode condition and another about their subjective 
preferences at the end of the experiment. We also interviewed 
the participants for 2 to 3 minutes at the end of the experiment. 

Data Collection 
We recorded 100 (= 5 Mode x 2 Path-type x 10 participants) 
measured trials in total. We measured task completion time, 
TCT, and stopping percentage, STP, defined as the percentage 
of TCT in which participants stopped walking during a task. 

Results 
Task Completion Time 
A repeated measures analysis of variance (ANOVA) was per-
formed on TCT ∼ Mode x Path-type. There was a significant 
main effect for Mode (F4,36 = 261.80, p < .001) and Path-type 
(F1,9 = 26.63, p < .001) on TCT. Post hoc multiple means 
comparison tests between the 5 output modes showed that Vs 
was significantly faster than others for both path-types, both 
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Figure 4: Comparative evaluation of the output modes. 

at the p < .001 level. Text-editing was faster when visual 
output was available. Yet, block presentation reduced the per-
formance steeply, more so when the higher visual demand 
was coupled with demand on the audio-channel (Figure 4a). 
Between the path-types, participants were significantly faster 
on the simple-path (84.02s± 30.96) than the stair-path (92.99s 
± 33.92). 

There was also a significant interaction effect Mode x Path-
type (F4,36 = 4.07, p < .01) on TCT. As mentioned earlier, Vs 
was unaffected by this interaction. Among the other paths, 
there was interaction between AVs and Vb, and between AVb and 
A. Each of these interactions showed that block-level visual 
performed faster (non-significant) than audio-supported modes 
on the simple path; on the difficult path audio-supported modes 
were faster. Furthermore, for modes with block-level visual, 
participants slowed down significantly on the stair path than on 
the simple path. Both AVb-stair and Vb-stair were slower than 
AVb-simple (p < .001) and Vb-simple (p < .05), respectively. 

Stopping Percentage 
We measured Stopping Percentage (STP) in our experiment to 
investigate how different mode and path combinations affect 
participants’ natural walking. The assumption is that the more 
distraction an output mode induces, the more the participants 
stop and vice-versa. Hence, STP is an indicator of how well 
an output mode allows path-navigation. 

A repeated measures ANOVA showed a significant main effect 
of Mode (F4,36 = 112.099, p < .001) and Path-type (F1,9 = 
48.102, p < .001) on STP. Post-hoc analysis with Bonferroni 
corrections revealed that with Vs and A, participants stopped 
significantly less than with AVs, Vb, and AVb, all at the p < .001 
level. Although participants stopped less in Vs than A for both 
path-types, there was no significant difference between the 
two modes. AVb presented significantly more challenges than 
the other output modes, all at the p < .001 level. These results 
showed that simultaneous audio and visual output or visual 
output with higher visual load caused more disruption in the 
editing process while walking. 

There was significant Mode x Path-type interaction (F4,36 = 
3.249, p < .05) on STP. As Figure 4b shows, for all output 
modes, STP on the stair-path was higher than the simple-
path. However, the difference was non-significant for A and 
AVs. Thus, modes with audio-output were less affected by the 
change in path-type provided the visual load was low. If the 
visual load was high or there was no audio output, partici-

pants found the difficult path significantly more challenging 
as compared to the simple path. 

Subjective Task Load 
A repeated measures ANOVA showed a significant main effect 
of Mode on the overall unweighted NASA-TLX score (F4,36 = 
264.72, p < .001). Post hoc multiple means comparison test 
showed that on the overall score, the sorted order of modes 
from lower to higher task-load was: Vs < Vb (p < .001) < AVs < 
A (p < .01) < AVb (p < .001). Results for individual indices are 
given in the Appendix. 

Subjective Preference and Feedback 
In a post-study questionnaire, we asked participants to indicate 
their preferred output mode for each path-type. 100% and 80% 
of the participants chose Vs (visual-only, sentence-by-sentence) 
as their preferred mode for the simple and the difficult path, 
respectively. When interviewed, all 10 participants mentioned 
that Vs was easy to use, while AVb was “difficult and frus-
trating”. Also, there was a general consensus that reading 
text-blocks was more difficult than reading single sentences. 
Moreover, correcting text was difficult with audio-only output, 
but navigating paths, especially stairs, felt easier. 

Discussion 
Q1. What effect does the modality of output have on the users’ 

text-correction and path-navigation abilities? 
The results confirmed our hypothesis that overall, participants 
were faster and more comfortable with the editing task when 
they had visual output of the text. Participants corrected the 
text almost 3 times as fast with sentence-level output as com-
pared to audio. Also, visual output had lower task load than 
audio. However, whether audio offered advantage over visual 
output for path-navigation depended on the text presentation— 
while audio was better than block text presentation, it had no 
significant advantage over sentence-by-sentence presentation. 

Bi-modal output, as we expected, presented high cognitive 
load, but contrary to our hypothesis, was ≈54% slower than 
the visual-only modes. Hence, we recommend avoiding 
simultaneous bi-modal output for future designs exploring 
smartglass-based text editing. 

Q2. How does the text presentation affect users’ text-

correction and path-navigation abilities? 
The amount of text rendered on screen significantly affected 
the user performance. Hence, our hypothesis that more con-
text of the text would result in faster correction did not hold, 
irrespective of the path conditions. However, as we expected, 
block-level output did present more path-challenges and in-
creased task-load over sentence-level presentation. 

Q3. How does path difficulty affect the user performance in 

different modalities and text presentations? 
Among all the modes, Vs was the only mode that performed 
equally well on both path-types. In fact, Vs was the best mode 
for both editing and path-navigation, irrespective of the path 
difficulty. Moreover, modes that required less visual attention 
to the text (A, AVs, Vs) were less susceptible to changes in path 
difficulty than modes that required more visual attention (AVb, 
Vb), thus, confirming our hypothesis. 
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Figure 5: Hand-controller functions in the Re-speaking Mode 
(left) and the Select-to-Edit Mode (right). 

Q4. Is correction by re-speaking sufficient? 
We observed that if re-speaking resulted in a misalignment, it 
was difficult for first time users to strategize how much context 
to include in their next correction attempt. Sometimes, users 
made the exact same utterance on their second or third attempt 
despite failing to get the intended result in the previous at-
tempt(s). Furthermore, some users, in their repeated attempts, 
re-spoke the whole sentence, thereby increasing the chances 
of a recognition error in some part of the utterance. Thus, 
setting the exact scope for the correction was desirable, but 
difficult when limited to only re-speaking based correction. 
This reflected in the participants’ subjective feedback where 
40% of the participants mentioned that if re-speaking resulted 
in a misalignment, they wanted finer control over the text so 
that they could precisely select the intended repair region. 

IMPROVED DESIGN OF EYEditor 
Based on our findings from Study 1, we included only Vs 
(visual-only with sentence-by-sentence rendering) as part of 
the updated design of EYEditor. The base framework used in 
EYEditor’s final design inherited all the components directly 
from the Vs mode. Additionally, we added new functionalities 
to the hand-controller (Figure 5) to let the user have manual 
control over the text selection process. The updated system 
now operates in two modes, each allowing a different granular-
ity of control over the text. The left controller button toggles 
between the two modes. The modes are (Figure 1): 

Re-speaking Mode: By default, the system starts up in this 
mode. Users can change the text by re-speaking and has 
sentence-level control over the text, i.e., they can navigate 
between the sentences by swiping on the hand-controller. 

Select-to-Edit Mode: This mode gives the user word-level 
control over the text. Swiping on the trackpad moves a yellow 
marker (indicates selection) over the words in the current 
sentence. While on a selection, pressing the trackpad button 
toggles between word-selection and range-selection. Selected 
text can be replaced with a voice-utterance. A selection can 
be deleted either by saying the DELETE keyword or by long-
pressing the trackpad button. Also, pressing the top/down 
button places the cursor before/after a selection and allows the 
user to insert spoken content at the cursor location. 

STUDY 2: COMPARISON WITH SMARTPHONE SOLUTION 
While the smartphone (henceforth, just ‘phone’) demands 
full visual attention (visual-exclusivity) and is generally used 

heads-down, the smart glass (henceforth, just ‘glass’) allows 
the user to share their visual bandwidth between the digital 
screen and the path (visual-flexibility). In this study, our ob-
jective is to understand how the two platforms compare in 
handling the trade-offs between the users’ text-editing and 
path-navigation needs for on-the-go text-editing tasks. To in-
vestigate the trade-offs in different situations, we consider two 
important factors: difficulty of the editing/correction task and 
path difficulty. 

Research Questions and Hypotheses 
Our exploration is based on three research questions — 

Q1: How does each platform handle the visual/cognitive de-

mands of editing on the go? 
Visual-exclusivity and visual-flexibility present a trade-off be-
tween supporting the user’s text-editing and path-navigation 
needs. While the phone’s visual-exclusivity might be neces-
sary for difficult correction tasks as it channels the users’ full 
attention to the task, it might not be suitable for difficult paths. 
Similarly, the glass’s visual-flexibility might be useful for sim-
ple tasks but it is unclear if it would have any added advantage 
over the phone and how it would affect the users’ editing and 
path-navigation abilities for more difficult paths/tasks. 

With users’ prior experience in phone-based text editing, we 
expect that on simple paths demanding less visual attention, 
the phone will outperform the glass. Conversely, on difficult 
paths, the glass will allow better focus on the path, but with 
lower correction efficiency. 

Q2: What role does posture play in the usability of each plat-

form on various path-types? 
Heads-down text-editing is not ideal as it diverts users’ atten-
tion from the path. Yet, smartphone users frequently have their 
heads down while typing on the phone. Thus, we want to ex-
plore if EYEditor will perform better when a heads-up posture 
is required, i.e., in more visually challenging conditions. 

We hypothesize that heads-down editing on the phone would 
be faster on simple paths due to minimal visual attention re-
quired on the path, while EYEditor would be more optimal on 
difficult paths for simple corrections. Yet, it is unclear how 
our system would compare to the phone when making difficult 
corrections on difficult paths. 

Q3: Is our solution viable for future considerations? 
So that our solution can inspire future designs, our criterion 
for viability is that EYEditor should offer additional benefits 
over using phones, especially on more challenging paths. 

Study Design 
We controlled the difficulty of the experimental conditions 
by varying the path complexity and the complexity of the 
correction tasks. Table 2 lists the independent variables and 
their levels. A repeated measures design with 2 Technique 
(Glass, Phone) x 3 Path-type (SimPath, ObstPath, StairPath) 
x 2 Task-Complexity (Easy, Hard) resulted in 12 conditions 
per participant. The experiment was performed in one session 
lasting approximately 90 to 100 minutes. 
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Table 2: Study 2 Design Table. The rows under an independent variable column indicate its levels. All paths measure 50m from 
start (green pin) to finish (red pin). For ObstPath, one round measures ≈28.5m, taking 1.75 rounds to complete the path. 

We designed the paths to simulate realistic paths and obstacles 
encountered in on-the-go scenarios. For the correction tasks, 
each text comprised of 8 logically connected sentences on a 
given topic (selected from a diverse range of general topics) 
and were embedded with errors that served as correction oppor-
tunities for the participants. To avoid potential bias due to the 
error processing depth, the errors were randomly distributed 
between the first and the last word, under the following con-
straints: simple sentences had one error each in the subject and 
the predicate, compound sentences had one error in each of the 
two constituent simple sentences and complex sentences had 
one error each in the dependent and the independent clause. 
As in Study 1, the errors were syntactic or semantic in nature. 
The Task-Complexity levels simulate realistic general purpose 
correction scenarios within a body of text. 

Participants 
12 volunteers (6M, 6F) aged between 18 to 36 years (mean 
age = 24.5 years, SD = 4.78) were recruited for the study. An 
equal number (n=6) of native and non-native English speakers 
were recruited to minimize any potential bias due to speech 
recognition accuracy. None of the participants had prior expe-
rience of using a smart glass but all of them had been regular 
smartphone users for at least the past 5 years. Each participant 
received an equivalent of ≈11 USD as compensation for their 
participation. No participants from Study 1 or any of our pilot 
studies were repeated in this study. 

Apparatus 
For the glass technique, the improved EYEditor was used. For 
the phone technique, we let participants use their own mobile 
phones to allow maximum familiarity of the device. Also, we 
did not constrain the participants’ mobile typing experience 
to allow for a realistic comparison of our proposed technique 
with the existing technique. Hence, participants could edit the 
text on their preferred note-taking application and were free 
to use any existing typing/correction aids such as auto-correct, 
auto-complete, swipe typing, voice-input, etc. In keeping with 

preserving platform familiarity, text on the mobile phone was 
presented as a single paragraph. 

Procedure 
Our study was conducted in indoor lighting conditions to 
ensure maximum text visibility on the smart glass. The ex-
periment began with a briefing of the tasks. Then participants 
walked a 20 meter segment of each of the 3 paths twice, at 
their normal walking speed. The two trials were averaged to 
compute each participant’s Preferred Walking Speed (PWS) 
on each path. 

The glass block started with a reading exercise where the 
participants familiarized themselves to read text on the glass 
screen. This was followed by a training session and a sin-
gle warm-up session for practice. The reading, training and 
practice sessions, combined, lasted between 20 to 25 minutes. 
The phone block was preceded by a warm-up session where 
participants corrected a sample text on their phone while walk-
ing. For both the techniques, we instructed the participants to 
correct as many errors as possible while walking the path at 
their comfortable walking speed. The entire session was video 
recorded for further analysis. 

After each block, participants filled out an unweighted NASA-
TLX questionnaire to report their subjective task load after 
each technique block. At the end of the study, they completed a 
subjective preference questionnaire and were then interviewed 
for about 5 to 7 minutes. 

Data collection 
We collected 144 (= 2 Technique x 3 Path-type x 2 Task-
Complexity x 12 participants) measured trials in total. The 
measured variables are listed in Table 2. 

Results 
Corrections per second 
A repeated measures analysis of variance was performed on 
CPS ∼ Technique x Path-type x Task-Complexity. There was 
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(a) (b) (c) 

Figure 6: (a)-(b) Measured outcomes comparison. (c) Preferred Technique for 12 participants (S=Simple, D=Difficult). 

a significant main effect for Technique (F1,11 = 14.87, p < 
.01), Path-type (F2,22 = 39.65, p < .001), and Task-Complexity 
(F1,11 = 130.75, p < .001). Participants’ correction speed (in 
CPS) with the glass (.135± .05) was overall faster than with the 
phone (.097± .046) (p<.01). Furthermore, the correction speed 
was significantly lower on ObstPath (p<.001) and StairPath 
(p<.001) than on SimPath; however, there was no significant 
difference between ObstPath and StairPath (Figure 6a). 

Furthermore, there was a significant Technique x Path-type 
(F2,22 = 15.31, p < .001), Path-type x Task-Complexity 
(F2,22 = 20.55, p < .001), and Technique x Path-type x Task-
Complexity (F2,22 = 17.583, p < .001) interaction effect on 
CPS. Post hoc multiple means comparison tests with Bon-
ferroni correction revealed that overall, glass and phone per-
formed similarly on both SimPath and StairPath; yet, glass 
significantly outperformed phone on ObstPath (p<.01). On 
SimPath, while there was no significant difference between the 
glass (.176± .058) and the phone (.175 ± .04) for easy tasks, 
for hard tasks, glass (.117 ± .026) performed significantly 
better (p<.05) than phone (.068 ± .016). On ObstPath, glass 
was significantly faster for both easy (p<.01) and hard tasks 
(p<.05). On StairPath, glass (.158± .049) outperformed phone 
(.108± .027) (p<.05) for easy tasks, while for hard tasks, there 
was no significant difference between the two techniques. 

Percentage of Preferred Walking Speed 
PPWS can be interpreted as: the lower its value, the slower 
the participant is walking compared to their normal walking 
speed [14, 45]. Thus, PPWS quantifies the effect that a device 
used on the path had on the user’s ability to focus on the path. 
We performed a repeated measures ANOVA on PPWS ∼ Tech-
nique x Path-type x Task-Complexity. There was a significant 
main effect of Technique (F1,11 = 10.776, p < .01), Path-type 
(F2,22 = 5.14, p < .05), and Task-Complexity (F1,11 = 21.958, 
p < .001) on PPWS. PPWS with the phone (65.76 ± 15.12) 
was significantly lower than the with the glass (76.33 ± 16.43) 
(p<.01). Also, unsurprisingly, there was a significant decrease 
in walking speed while making difficult corrections than sim-
ple ones (p<.001). Furthermore, there was a significant Tech-
nique x Path-type (F2,22 = 7.825, p < .01), and Technique x 
Path-type x Task-Complexity (F2,22 = 5.012, p < .05) interac-
tion effect on PPWS (Figure 6b). 

Post hoc comparisons with Bonferroni corrections showed that 
the glass (73.14 ± 11.43) allowed participants to maintain a 

significantly higher (p<.01) PPWS as compared to the phone 
(56.6 ± 10.21) on ObstPath. The higher PPWS of glass on 
ObstPath was true for both easy and hard tasks (both at the p < 
.05 level). For the other paths and task-difficulties, there was 
no significant difference between the glass and the phone. 

Subjective Results 
A paired sample t-test was conducted on the NASA-TLX 
scores for the glass and the phone to compare their subjective 
task loads. In the overall unweighted score, the task load with 
the glass (37.92 ± 12.21) was significantly lower (p<.01) than 
with the phone (56.58 ± 11.34). Results for individual indices 
are given in the Appendix. 

In the post-study questionnaire, ≈92% of participants reported 
that smart glasses can be a viable alternative to the phone for 
on-the-go text-editing. In another question, they indicated 
their preferred technique for various task-path combinations. 
The results are reported in Figure 6c. 

Discussion 
Q1. How does each platform handle the visual/cognitive de-

mands of editing on the go? 
Overall, participants could both walk and correct the text faster 
with the glass than with the phone. The glass also presented 
a lower task-load. The results were surprising given that all 
our participants were first time users of the smart glass. In 
particular, the glass had significant advantage over the phone 
when either the path or the task presented a high cognitive load. 
Hence, our hypothesis that the glass will allow participants 
to walk faster on difficult paths was validated; however, our 
hypothesis that phone’s correction efficiency on simple and 
difficult paths would exceed that of the glass’s did not hold. 

Moreover, there was a general consensus among participants 
that alternating attention between the text on the glass screen 
and the visual surrounding felt much easier and more seamless 
as compared to the phone. The availability of peripheral vision 
was key to this outcome and was particularly useful to have 
when visual attention was needed both on the task AND on the 
path. Yet, for difficult paths, participants had mixed feedback 
about the benefits of the glass’s visual-flexibility. 25% of the 
participants believed that the glass’s flexibility can instill a 
false sense of security while in effect drawing their attention 
away from hazards; however, the other 75% agreed that the 
glass would be more suitable for navigating difficult paths. 
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Q2. What role does posture play in the usability of each plat-

form on various path-types? 
Confirming our hypothesis, the glass did perform better in 
visually challenging conditions when a heads-up posture was 
required to navigate path challenges. Yet, although there was 
no significant difference between ObstPath and StairPath in 
terms of participants’ average performance measures, the glass 
outperformed the phone on ObstPath but not on StairPath. 
From analysis of the participants’ video logs and interview 
data, it was revealed that the path challenges of StairPath were 
more easily detected heads-down. Since, participants were 
correcting on the phone heads-down, it was “just a matter of 
glancing sideways” to be sure of their footing on the stairs, 
whereas with the glass, the participants had to shift posture 
from heads-up to heads-down, which created some discomfort 
and delay. However, despite the path-navigation advantage of 
using the phone heads-down on the stairs, performance of the 
glass was on par with the phone. 

That even on the simple path participants performed better 
with the glass when the task was difficult (high visual load), 
proved that heads-up posture was better for visually chal-
lenging situations. Furthermore, this finding implied that for 
visually intensive tasks, if the participants lost view of their 
surrounding (as with the phone), they slowed down even if 
they had prior knowledge that the path was free of obstacles. 

Q3. Is our solution viable for future considerations? 
EYEditor indeed satisfied our criterion for viability as it of-
fered significant task performance and path-navigation benefits 
over the phone for visually challenging conditions. In addition, 
generally, participants felt comfortable with the system. 75% 
of the participants mentioned that the learning curve for using 
our system felt short and they could easily and quickly adapt 
to the system. A key component of the acceptance came from 
the ability to correct by re-speaking. While the number of cor-
rections done by re-speaking was about 3.5 times the number 
using the Select-to-Edit mode, the time spent on re-speaking 
was only 1.6 times of that spent in Select-to-Edit. Thus, using 
re-speaking was easier and faster. In general, Select-to-Edit 
was used as a fall-back when re-speaking failed due to ei-
ther limitation of the algorithm or speech recognition errors. 
42% of the participants likened Select-to-Edit to phone-based 
editing, while 75% preferred re-speaking to even typing on 
the phone. Hence, there was general consensus that making 
complex corrections on the glass was easier than on the phone 
because of the ability to correct by re-speaking on the glass. 
On the other hand, 25% of the participants had an ongoing 
preference for the phone. They reported that they were more 
confident with the phone as they were familiar with it. 

Based on our results and user feedback, we believe that the 
smartglass-based display and the support for respeaking-based 
correction were the key contributors to the effectiveness of 
our approach. Yet, the other design considerations enhance 
the viability of our solution—while our proposed content pre-
sentation style allows optimal utilization of the display, the 
Select-to-Edit mode allows the user a finer-grained control 
over the editing process, and the manual input is efficient for 
text navigation and selection. 

Overall, Study 2 shows that our smart glass solution, EYEditor, 
offered certain advantages over the phone and helped maintain 
better path awareness. Hence, EYEditor might potentially 
be safer to use on the go. Yet, we found there is a cognitive 
bottleneck when both the editing and navigation were more 
challenging, where the advantages of EYEditor becomes less 
salient especially while walking down stairs. 

Limitations and Future Work 
Although we tested on-the-go scenarios with realistic path 
challenges, we could not extend the study outdoor to preserve 
maximum text visibility on the smart glass display. How 
ambient light and ambient noise of outdoor conditions would 
affect our system’s performance remains to be seen. Also, 
voice interaction can sometimes be undesirable in public for 
security/social reasons. An in-depth study of safety and social 
factors warrants further investigation in future work. One 
potential design consideration to make the user experience 
safer might be to interleave audio output with visual output. 
As Study 1 had shown that while audio-only was difficult to 
use for editing text, it did offer path-navigation benefits. 

Furthermore, our system can benefit from a more intelligent 
and adaptive re-speaking algorithm with language analysis and 
predictive text. Finally, our speak-to-edit mode functionality 
can benefit from more intuitive ways to invoke/exit the mode 
(or, through modeless operation) and support for quicker, non-
sequential text selection, for example, by dividing the text into 
zones, or by allowing both horizontal and vertical selection as 
with mouse/touch-based input. 

CONCLUSION 
We presented EYEditor, a novel heads-up, smartglass-based 
text-editing solution optimized for on-the-go use cases with a 
combination of voice and manual input. An iterative design 
process with two controlled experiments gained us the follow-
ing insights as take-away messages: 1) text content should 
be presented visually, sentence-by-sentence to optimize users’ 
text-correction and path-navigation capabilities on the go; 2) 
overlapping audio and visual output (reading-while-listening) 
or overloading the screen space with text is highly distracting 
for on-the-go text-editing and should be avoided; 3) our hy-
brid solution supports mobility while text-editing better than 
typing on a smartphone for more complex paths/tasks, until 
users’ attention span reaches a limit. In conclusion, our paper 
takes a significant step forward in understanding how to de-
sign heads-up interactions for on-the-go text-editing. This is 
also our first step to establish the feasibility, desirability and 
viability of using smart glasses as an interactive platform in 
on-the-go scenarios. 
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