
Ubiq: A System to Build Flexible Social Virtual Reality
Experiences

Sebastian Friston
Ben Congdon
David Swapp

sebastian.friston@ucl.ac.uk
ben.congdon.11@ucl.ac.uk

d.swapp@ucl.ac.uk
University College London

United Kingdom

Lisa Izzouzi
Klara Brandstätter
Daniel Archer
l.izzouzi@ucl.ac.uk

k.brandstatter@ucl.ac.uk
daniel.archer.18@ucl.ac.uk
University College London

United Kingdom

Otto Olkkonen
Felix J. Thiel

Anthony Steed
otto.olkkonen.20@ucl.ac.uk
felix.thiel.18@ucl.ac.uk

a.steed@ucl.ac.uk
University College London

United Kingdom

Figure 1: Ubiq’s social sample application showing cartoony floating avatars

ABSTRACT
While they have long been a subject of academic study, social
virtual reality (SVR) systems are now attracting increasingly large
audiences on current consumer virtual reality systems. The design
space of SVR systems is very large, and relatively little is known
about how these systems should be constructed in order to be usable
and efficient. In this paper we present Ubiq, a toolkit that focuses
on facilitating the construction of SVR systems. We argue for the
design strategy of Ubiq and its scope. Ubiq is built on the Unity
platform. It provides core functionality of many SVR systems such
as connection management, voice, avatars, etc. However, its design
remains easy to extend. We demonstrate examples built on Ubiq
and how it has been successfully used in classroom teaching. Ubiq
is open source (Apache License) and thus enables several use cases
that commercial systems cannot.

CCS CONCEPTS
• Human-centered computing → Collaborative interaction;
Virtual reality; • Computing methodologies → Virtual real-
ity.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VRST’21, December 08–10, 2021, Osaka, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9092-7/21/12. . . $15.00
https://doi.org/10.1145/3489849.3489871

KEYWORDS
social virtual reality, open source, networking, avatars, communi-
cation tools

ACM Reference Format:
Sebastian Friston, Ben Congdon, David Swapp, Lisa Izzouzi, Klara Brand-
stätter, Daniel Archer, Otto Olkkonen, Felix J. Thiel, and Anthony Steed.
2021. Ubiq: A System to Build Flexible Social Virtual Reality Experiences.
In VRST ’21: ACM Symposium on Virtual Reality Software and Technology,
December 08–10, 2021, Osaka, Japan. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3489849.3489871

1 INTRODUCTION
In the past five years, social virtual reality systems (SVRs) have
emerged as one of the most promising applications of consumer VR.
SVRs are characterised by a relatively unstructured experience of
meeting and socialising with other users. While many SVRs provide
game-like environments to explore, the focus is not necessarily
on play. At the time of writing, one leading system, Rec Room,
announced it had more than a million monthly active VR users [23].

SVRs, or collaborative virtual environments (CVEs) have a his-
tory back to at least the 1990s [5, 11, 40, 61]. Common to almost all
CVEs is some sort of representation of the users to each other as
avatars. These avatars convey referencing to shared objects [26]
and non-verbal communication [16] in ways that are difficult in
video-based media. However, different SVRs & CVEs vary signifi-
cantly in the types of avatars they present, the forms of their 3D
user interfaces, and the functionality afforded by the environment.
Recent surveys inventory the diverse design choices made [29, 31]
or compare the support for specific collaborative tasks [38].

https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1145/3489849.3489871

VRST’21, December 08–10, 2021, Osaka, Japan Friston, Congdon, et al.

The systems and infrastructure behind SVRs are also quite di-
verse. There have been many research systems and proposed pro-
tocols (e.g. see review in [60], and Section 2.2), but little standardis-
ation. Early systems were often monolithic; the networking system
was bound tightly into a framework that supported the full range
of capabilities needed, such as rendering, tracking and interaction.
Today, developers typically access those capabilities through one
of a small number of game engines such as Unity or Unreal (see
Section 2.3). Indeed, access to modern consumer VR hardware is
facilitated through packages on one or more of these engines. Com-
plementary to this are toolkits that support networking, but these
are often low-level and rely on external services (see Section 2.2).

Any SVR application needs to support a range of different func-
tions. Thus building novel applications and demonstrations from
scratch involves significant effort. This makes it hard for small
teams such as student or researcher teams to build experimental
systems. In this paper, we introduce Ubiq, an open source platform
for prototyping SVRs. Ubiq provides a framework for developing
SVRs within Unity, along with examples of common application
styles and code for back-end services so that the whole system can
be run without third-party services. This is especially important
for applications with data protection constraints, due to ethical
considerations or because of the use of proprietary data.

From a user perspective, Ubiq supports common features such as
avatar selection, voice communication, shared synchronisation of
objects and other features typical of such systems. From a developer
perspective, Ubiq provides a simple framework and examples for
building practical SVR applications. It is simple to add new types of
shared objects through built-in support of some abstract concepts
such as servers, rooms and messages. However, these are all well
documented so that more experienced developers can extend them.
Ubiq also provides a server that is easy to customise and extend.

After reviewing related work, we describe our design require-
ments (Section 3) and key architectural decisions (Section 4). In
Section 5, we present a range of examples, from the default, no-
configuration-necessary SVR example to some technical feature
examples. In Section 6 we present a variety of evaluations, including
a feature comparison to other SVRs, technical analyses of perfor-
mance, and further examples from using Ubiq in the classroom. We
conclude with some future work including a preview of the feature
roadmap and provision of training materials.

2 RELATEDWORK
2.1 Social VR Systems
One of the most compelling uses of immersive VR is as a collabo-
rative medium. Because the user is tracked, there is a natural way
to represent the user as a 3D avatar. This can then be shared with
other users with a networking strategy (see Section 2.2). Some of
the earliest VR systems had collaborative, social demonstrations
(e.g. Reality Built for Two system from VPL Research [5]). There
were many demonstrations of the potential of this technology in
the early wave of academic VR systems [9, 11, 34, 40, 61]. There is
a large body of work around avatars and the social responses that
they generate [3, 31, 36, 53]. Some particular features of interest
are how users exploit spatial positioning relative to each other and
objects [26] and how users use non-verbal behaviours [16, 47, 69].

Recent interest in consumer VR has led to development of a
plethora of new platforms. Schulz’s blog about social VR [54] lists
over 150 platforms. Over 250 systems are listed in the XR Collab-
oration directory [68]. These new platforms cover a wide range
of activities. While many are purely focused on gaming, a range
of other application has emerged including collaborative design
[66], training [22] and teleoperation [27] (see also the review in
[10]). Recent academic surveys have started to tease apart some of
the distinctive aspects of these platforms [29], the types of avatar
supported [31] or specific functionality such as facial expressions
[62]. Liu & Steed [38] presented a comparative analysis of a num-
ber of popular social VR systems, which we use to evaluate Ubiq’s
features in Section 6.1.

While there are a lot of platforms, a body of recent work high-
lights many avenues for future exploration to support their emerg-
ing uses. These include support of long-term relationships in social
VR [44], the impact of avatar representations on trust formation
[47], requirements for harassment prevention [4] and users percep-
tion of their own avatars [17].

2.2 Networked VR
The networking strategies behind SVR systems are various. As a
class of technologies, networked VR is slightly broader than social
VR systems as individual systems might themselves be distributed
(e.g. cluster rendering [64]), or the system might draw on a variety
of services hosted on the Internet [55, 60]. In general though, net-
worked VR systems are concerned with sharing consistent virtual
worlds in real-time.

Early networked VR systems, such as DIVE [7], MASSIVE [19]
and Blue-C [46] already supported common SVR features. This
included support for heterogeneous systems, avatars, action-based
interaction, message passing and spatially mediated interaction.
Such systems were built with the explicit goal of collaboration.
Early work focused on network architectures, resource distribution
and ownership models. For example, one approach to constructing
systems is scene-synchronisation; a common strategy in networked
VR as the scene graph is a commonality among diverse implemen-
tations [1, 6, 13, 34, 46, 51, 70].

Margery et al [41] classified collaboration into three levels, with
L3 being the highest and referring to multiple users manipulating
the same degree of freedom at the same time. Grimstead et al’s re-
view [20] breaks down howmany systems of the time (2005) fit into
the above categories of access control, architecture and synchroni-
sation. The review showed a definite preference for client-server
architectures. Other reviews (e.g. [57]) focus on specific applications
such as cluster based rendering, which have application-specific
problems (e.g. culling).

2.3 Toolkits
Apart from the original vertically-integrated platforms, a number
of toolkits have been made for building CVEs. These began with in-
herently distributed scene graphs and middleware (e.g. [8, 25, 28, 33,
39]), which provided APIs that integrated seamlessly into existing
programming models. Later academic toolkits explored different
models such as modular [34] or component [30] synchronisation,
scene graph abstraction [70], and event-based state distribution [37].

Ubiq: A System to Build Flexible Social Virtual Reality Experiences VRST’21, December 08–10, 2021, Osaka, Japan

Some recent toolkits have been created for specific applications,
such as visualisation [14] or structured collaboration [24]. However,
it is still common for research projects to resort to building their
own vertically integrated systems (e.g. [21, 35, 71]).

In the commercial realm, there are a number of networking SDKs,
even just considering our target platform, Unity (e.g. DarkRift or
Photon; see our comparative analysis in Section 6.2). These SDKs are
typically mid-to-low level, focusing on matchmaking and message
passing. Mirror is the highest-level SDK, synchronising transforms
and animations out of the box. Despite being commercial, many
SDKs are free. However, being game-oriented, they typically make
strong assumptions. For example, they are usually client-server
both in architecture and authority model, and high level features
don’t include logging. Low level SDKs often do not include systems
such as voice chat, which are complex to implement.

Finally, it is common nowadays to build VR experiments on
existing game engines, and some of these engines have networking
support. For example Unreal is inherently networked and this is
reflected in its gameplay logic and state API. Unity currently has
no standard networking API, though it has an experimental low-
level API in recent versions (MLAPI, see Section 6.2) Amazon’s
Lumberyard provides perhaps the highest level API of all such
systems, including state synchronisation but also common game
services such as leader boards.

3 DESIGN REQUIREMENTS
3.1 Strategic
Ubiq was designed to meet three goals that are challenging to fulfil
with commercial SVRs:

Support Teaching VR. This includes networked and social VR. To
do so effectively, a framework should be easy to learn, transparent,
and integrate well with familiar tools. It should not force students to
learn concepts that are not directly relevant to the taught material.

Support Research in VR. This includes distributed experiments [58].
The platform should provide basic features that ‘just work’ so
researchers can work on their experiment rather than the plat-
form. Non-traditional features such as logging and asymmetrical
capabilities are usually required. Research also implies data flow
transparency for compliance with regulations such as the CCPA or
GDPR.

Support Research into Networked VR. Networked VR itself is an
active research topic that requires platforms to experiment with.
This implies transparency with the ability to modify the system and
the flexibility to support different architectures and configurations.

3.2 Platform Analysis
Fulfilling these requirements with commercial platforms is challeng-
ing as these often have one or more conflicting goals. For example,
security considerations prevent most platforms executing arbitrary
code, which would undermine building experiments. Trade-secrets
are protected through keeping source closed.

In early stages of planning, we performed an analysis of a variety
of platforms to see if there was an obvious platform to adopt. A

summary of some key findings can be found in Table 1, which is in-
tended to convey indicative features rather than be comprehensive.
All the platforms provide ways to create new spaces, but these vary
widely in the types of behaviour that can be added, from simple trig-
gers of actions (VRChat), through to custom functionality through
modified clients (Mozilla Hubs). Ubiq is at a slightly different level
and is targeted at experimentation, so the functionality of Unity is
available to modify environments. Mozilla Hubs and Ubiq are open
source, and they both allow developers to self-host servers.

A recent taxonomy [29] investigates SVR applications and em-
phasises novel design choices. All the considered platforms provide
avatars to be embodied, but support for different avatars varies,
with several supporting customisation with a style, and others (e.g.
VRChat and Mozilla Hubs) permitting the import of custom models.
Avatar customisation can be valuable to virtual communities to
facilitate user expression and freedom, though some platforms de-
liberately chose more neutral avatars to prevent harassment within
the VE [32]. Ubiq provides at least two different styles of avatars.

All of the platforms provide voice, but have different ways of
indicating speaking. The commercial platforms do not provide in-
strumentation, though it is possible to extract data via other means
such as screen capture [52].

Instrumentation could be added to Mozilla Hubs (e.g. [67]). Ubiq
includes extensible instrumentation. Most platforms support client-
server (CS) configurations. Only Ubiq supports flexible architectures
as it is posed more as a toolkit with examples. See Section 6.2 for a
technical comparison to some other toolkits.

While there are significant advantages to commercial platforms,
in that they are well-supported and have vibrant communities,
strategic needs drive us towards the type of architecture and support
that Ubiq offers. Mozilla Hubs is very promising and was strongly
considered for our goals. However, it is a moderately complex
platform andwewanted the development experience of an IDE such
as Unity. Thus, Ubiq is designed as a Unity package with samples
that provide basic social VR functionality that can built upon.

4 ARCHITECTURE
4.1 Overview

Framework. Ubiq is a framework for building SVR applications
and experiments. It consists predominantly of Unity Components,
which can be used to build Unity scenes with SVR functionality,
and code for a server. Users integrate Ubiq by importing the source
into their Unity projects.

Unity. We opted for Unity as it is one of the most accessible
platforms for VR research and teaching. It has an inbuilt XR API so
we do not have to code against individual XR SDKs. Unity does not
have a built in high-level networking strategy, so there is scope to
use a variety of mechanisms and conventions.

Project Structure. The framework has a set of core components,
and a small set of dependent samples. The samples are not just
documentation support, but contain significant functionality. The
integrated SVR is implemented as a sample. The motivation is to
allow building functionality that requires some assumptions to be
made, without creating dependencies in the framework. Finally, as

VRST’21, December 08–10, 2021, Osaka, Japan Friston, Congdon, et al.

Table 1: High-level analysis of main features
RecRoom Altspace.VR Mozilla Hubs Spatial VRChat Ubiq

Accessibility Create rooms & actions Create rooms Create rooms/modify code Create rooms Create rooms & actions Create rooms & code
Licence Commercial Commercial Mozilla Commercial Commercial Apache
Self-Hosted No No Yes No No Yes
Avatars Customise cartoony Customise cartoony Cartoony/Flexible Photo-based Flexible Cartoony/Rocketbox
Voice & Indication Spatialised/Icon Spatialised/Icon Spatialised/Animated Spatialised/Icon Spatialised/Icon/Animation Spatialised/Icon
Instrumentation No No No but see [67] No No but see [52] Yes
Multiple Architectures CS only CS only CS only CS only CS only Flexible

a fully working SVR, the samples provide a working starting point
for applications.

4.2 Messaging
Component-Centric Programming. Ubiq is based around the ex-

change of discrete messages directly between Components. These
are instances of classes (typically Unity Components) that imple-
ment a method to receive messages. Users implement networked
behaviour in these classes. This is designed to approximate the
programming model of Unity and be familiar to existing users.

Peers and Connections. A Ubiq network is made up of a set of
Peers. Each Peer may contain many Components, and many con-
nections to other Peers. Messages are delivered directly between
components regardless of the underlying connection architecture.
For example, Peers could form a peer-to-peer mesh by each creat-
ing a connection to all others, or communicate via relay in a star
arrangement.

Components can implement different logical models by control-
ling which other Components they address. For example, by having
two asymmetrical Components exchange messages to implement a
client-server model. For typical shared object code, the API begins
and ends in the Component itself. Users do not have to write any
code outside of their new Component class.

The highly abstract messaging layer prevents reliance on archi-
tectural details that are often baked into the API in other frame-
works. It clearly separates the domains of student work/VR research
and networking research and allows exploring different networking
technology without changing existing applications. A disadvantage
is that new users can’t immediately rely on the expected client-
server model, and are forced to consider what model they need
for their Component. We try to ameliorate this by providing sim-
ple examples. Ultimately, we consider it a necessary trade-off for
maintaining flexibility.

Rendezvous over the public internet does require a fixed service
however. Ubiq uses a client-server architecture for its Rooms system,
where each peer makes one connection to a pre-defined server, and
the server forwards messages between all peers in a Room (see
Section 4.4).

Addressing. Message addresses have two parts: Object Id and
Component Id. Object Id is analogous to a Unity GameObject and
Component Id is analogous to a Unity Component type. Together
these distinguish which individual Component instance(s) should
receive a message. Ids can be defined in different places in the scene
graph. Message exchange is illustrated in Figure 2.

Messages are received by all Components on all Peers that match
both the Object Id and Component Id. That is, the network is respon-
sible for fanout. Controlling these Ids controls message delivery.

NetworkScene

Avatar

Object Id: 1

Component Id: 1

Hands

Component Id: 2

Head

Firework

Object Id: 2
Component Id: 1

Basketball

Object Id: 3
Component Id: 1

NetworkScene

Avatar

Object Id: 1

Component Id: 1

Hands

Component Id: 2

Head

Firework

Object Id: 2
Component Id: 1

Basketball Manager

Object Id: 4
Component Id: 3

1,1

1,2

2,1

4,3

1,1 1,2 2,1 4,3

Logical Route Actual Route

Figure 2: Diagram showing how Component instances may
address each other, with the actual route taken by the mes-
sages.

For example, symmetrical Components such as Avatars would
use the same classes (Component Ids) to send and receive. The
Object Ids for a Player’s Avatar would be identical across all Peers.
When the Player’s Components sent updates, they would broad-
cast to all other Peers, without the Avatar or Player needing to
know anything about these Peers. Asymmetric communication
is performed by having a Component send a message to another
class’s Component Id, or another object’s Object Id. In this way
client-server models are supported.

For these arrangements to work, different Peers must create
Components with the same Object Ids. These Ids can either be
agreed at design time, or more likely communicated via another
channel, such as a Manager component. For example, when Players
create Avatars, they advertise an Object Id and a Prefab. The Avatar
Manager creates instances at remote Peers with the correct Id.

The motivation for the two-part addressing is to isolate this
synchronisation step from the user. For example, Avatars define
the Object Id, and all Components under the Avatar’s scene branch
use this Id (Figure 2). Only one Id needs to be synchronised for the
entire branch to communicate. A user could add a new Component
to the Prefab to control eye-gaze. When the Avatar is instantiated
at remote peers, communication between the new Components
just works, because the Object Id has been set up by the Avatar
Manager. The new Component class does not need to know about
synchronising Object Ids, and the Avatar Manager does not need
to know about the new class.

NetworkScene & NetworkContext. All networked Components
are associated with a NetworkScene. This is a GameObject that
interfaces between Components and the underlying Peer connec-
tions. It is analogous to the root of a scene graph. When networked

Ubiq: A System to Build Flexible Social Virtual Reality Experiences VRST’21, December 08–10, 2021, Osaka, Japan

Components start, they find their parent NetworkScene and reg-
ister themselves to it. The NetworkScene parses message headers
and is responsible for issuing callbacks on the correct Components.
The NetworkScene is also responsible for transmitting messages
back over its connections. Components send messages through a
NetworkContext convenience object that they receive when reg-
istering. This contains their identity (Object and Component Ids),
and a reference to their NetworkScene.

For convenience, each NetworkScene has a unique Object Id.
This allows Components implementing common services, such as
Spawning and Avatar Management, to be placed below it. Such
Components can then address their counterparts at specific Peers
by using that Peer’s NetworkScene Id. There is a one-to-one rela-
tionship between a Peer and a NetworkScene, though a process may
have multiple Peers & NetworkScenes, each with their own set of
connections.

A Component’s NetworkScene is considered to be the first en-
countered descendent of their common ancestor. The motivation for
this, rather than using direct linage or a singleton pattern, is to pro-
vide flexibility in how scenes are built. NetworkScene Prefabs with
different Components, and so different capabilities, can be created
and added to any scene, rather than making configurations project
wide. Those Prefabs can be used in scenes with other Prefabs which
may include networked Components, without cross-referencing or
relying on variants. It also allows use cases such as local loopback
within a scene, as described in Section 5.2.1.

The Medium is the Message. Messages are only received by their
intended Component(s). By virtue of having received a message,
Components know how it was created, and so how it should be
interpreted. Messages are discrete binary blobs. Users can put any-
thing inside these blobs, but are responsible for serialisation &
de-serialisation. Single-line methods to send and receive arbitrary
objects as Json are included for simplicity. Json was chosen for its
cross-platform support.

The motivation is for message exchange to be simple for new
users, while remaining agnostic to serialisation so advanced users
can choose appropriate methods. For example, sending Avatar trans-
forms might best be done through blitting, as these are fixed size,
latency sensitive, but not too large.

Bootstrapping. All Components, even those with a logical client-
server model, run above the Ubiq messaging layer and assume that
connections between Peers (NetworkScene instances) are already
established. NetworkScene instances create and manage the un-
derlying connections, but user code must give the instructions to
do so. The Ubiq RoomClient Component (Section 4.3) is the only
Ubiq Component that will create a connection on startup. This
design is a consequence of keeping the architecture separate from
the messaging APIs.

4.3 Services
Ubiq implements a number of common SVR features. These are
designed with minimal interdependencies with the expectation that
users may modify or replace them as needed.

XR Input. A Player Controller is defined to allow navigation
and interaction using desktop or common XR controls. The code

is designed with two separate, non-conflicting pathways, allowing
the same Prefab to be used for desktop and XR with no changes.
Ubiq includes a verb-based (use, grasp) system for 3D interaction.
A component is provided to add 3D-ray support to world-space
Unity Canvases, for easily constructing 2D UIs. This system uses
the inbuilt Unity XR toolkit making it compatible with all Unity
supported platforms.

Avatars. An Avatar represents a player. The Avatar Manager
Component creates Prefabs to represent remote players based on
their advertised avatar properties. The default are stylised, floating
avatars. In XR the head and hands are driven with a three-point
tracking rig. On desktop they follow the direction of the camera.

There are no Prefab constraints other than that they have an
Avatar Component at their base. It is straightforward to add addi-
tional Avatars with extended functionality. For example, there are
samples showing how to use the more realistic Microsoft RocketBox
Avatars [18] (Figure 3). The stylised Avatar includes a Component
to change the texture. We have planned to support more social
features by making avatars more expressive through control over
facial expressions [62]. It is expected that developers will want
to add additional Components to support extended customisabil-
ity. Avatar flexibility is important, not only to maximise potential
modalities researchers may require, but the effects of mixed avatars
is itself an active research topic (e.g. [36]).

Figure 3: Example of social gathering between multiple
floating avatars andMicrosoft RocketBox avatars, with over-
head status indicators.

Voice Chat. The Voice subsystem creates audio channels for real-
time voice communication. Channels are established peer-to-peer
according to the WebRtc specification. This allows cross-platform
interaction with web-browsers, which only support WebRtc. Ubiq
uses a C# implementation of WebRtc, rather than the Chromium
library. This makes it easier to integrate with Unity’s audio sys-
tem, more transparent, and avoids the need to maintain platform-
specific binaries. Each VoIP channel is represented at either peer
by a Component, created in code as-required. In the samples, the
VoIP Manager creates new Components as new Peers join a room.

APIs are provided to associate Avatars & VoIP Components with
individual Peers. These are used, for example, by status indica-
tors that exist on the sample Avatars. The status indicators can
show whether an avatar is speaking, as well as provide debugging
information if a VoIP channel fails.

VRST’21, December 08–10, 2021, Osaka, Japan Friston, Congdon, et al.

Object Spawning. Ubiq provides APIs to instantiate Prefabs across
all peers. This mechanism is used to instantiate the Avatars.

Event Logging. The Event Logging subsystem is used for devel-
opment and to instrument user experiments. Users call a method
to write events with arbitrary parameters, similar to other logging
frameworks. However, these events can be transmitted across the
network and collected at a single Peer (e.g. by an experimenter).
Events can be collected post-hoc to support debugging experiments
and applications. User and application events are written as struc-
tured logs in Json. This allows easy ingestion by log aggregators,
and tools such as Matlab, or Pandas in Python, for processing data
programmatically.

Rendezvous and Rooms. The Rooms system allows peers to join
rooms via secrets shared out-of-band. A room is a list of Peers
forming a Peer network. All Peers in the network should exchange
messages with each other. The Rooms system is the only Ubiq com-
ponent that has a logical client-server model. It assumes that the
Peer network has one RoomServer and each Peer has one Room-
Client. RoomServers and RoomClients have different Ids facilitating
asymmetric exchange.

Though there is a logical client-server architecture, the Rooms
system operates above the Ubiq messaging layer, so is still indepen-
dent of the network architecture and requires bootstrapping. The
RoomClient will make the connection to a Peer hosting a Room-
Server if a URI is specified. Ubiq provides a C# RoomServer to
support local loopback, and a NodeJs RoomServer (Section 4.4) for
production.

Users create rooms through the RoomClient. They receive a
three-digit code for new rooms which can be shared out-of-band
to allow other users to join. The RoomClient features a number of
events that are emitted as it and other Peers leave or join a room.
Components can register for these to implement behaviours such
as automatically establishing voice chat to new peers, or creating
avatars to represent them.

Scene Management. Ubiq messaging is agnostic to the scene. An
experimenter, for example, may want an overview scene with addi-
tional components for command and control. The NetworkScene
is designed to persist between scene changes, detaching the Scene
from the Room. Ubiq includes an optional component for chang-
ing scenes at runtime, allowing Peers in a Room to move through
different scenes together.

4.4 Server
Ubiq includes a server to facilitate rendezvous and room manage-
ment. This is implemented on NodeJs. There is also an example
C# implementation within Unity itself (see Section 6.2). The server
accepts connections from Peers, over which it can exchange Ubiq
messages. Initially, the server will sandbox the connection. Mes-
sages addressed to the RoomServer are forwarded to the common
RoomServer instance, while others are discarded. Once the Peer
negotiates membership of a room, the server will begin to forward
messages between all the Peers in the room using the previously
sandboxed connection(s).

5 EXAMPLES
5.1 Social Example
The Hello World sample is intended to demonstrate Ubiq features,
but itself functions as a complete SVR application, with UI for
rendezvous, voice chat, avatars and interactive objects.

The example is made of four Prefabs: (1) the passive, static envi-
ronment, (2) the NetworkScene Prefab with Manager Components
for the various subsystems, (3) the Player Prefab which hosts the
XR Input functionality, and (4) a Menu for driving the application.

The Menu is a world-space Canvas with controls for browsing,
creating and joining rooms. Additionally, a box is placed in the
room that can spawn fireworks. The firework is intended as an
introductory minimal working in-situ example of how to code
shared objects. The scene includes Components for all the services
referred to in Section 4.3. The default behaviour of these services
with regards to new peers means the scene acts as a fully functional
meeting place, as well as a launchpad to other scenes.

Figure 4: First-person view of theHelloWorld sample with a
remote peer firing a Firework spawned from the interactive
box. The Menu system includes controls for joining rooms
with codes shared out-of-band.

5.2 Technical Examples
5.2.1 Local Loopback. The Local Loopback sample (Figure 5, left)
shows two Peers running in a single Unity scene. This takes ad-
vantage of how Components find their NetworkScene (Section 4.2).
As the search proceeds upwards, it is possible to create multiple
‘Peers’ in one scene, simply by placing what would be the regular
scene content under an empty GameObject. The NetworkScenes in
each branch are independent; they could connect to a local server
also in the scene, or to a production server. Connecting them all
to the same room allows their Components to exchange messages
as if they were on seperate machines, but in practice under one
process. This example shows how a developer can test distributed
functionality, while having a single interface to trap events and
debug code, and without having to set up a network or multiple
machines.

5.2.2 Boids. The Boids sample (Figure 5, right) shows a flock of
autonomous agents, where different agents are controlled by dif-
ferent Peers without a central authority. Each Peer has a Boids
Manager, which computes the state of its agents, based on the in-
ertia of the whole flock. The Manager exchanges its agents’ states

Ubiq: A System to Build Flexible Social Virtual Reality Experiences VRST’21, December 08–10, 2021, Osaka, Japan

with instances on the other peers. Each peer has a copy of the
entire flock, and peers calculate the same inertia independently to
control their agents. Consequently, the flock moves collectively,
even though control over individual agents is split between peers.
This example provides a starting point to explore more complex
simulations involving physics, prediction and compression.

Figure 5: Local-loopback views of theHelloWorld SVR (left),
and three Boids Peers sharing one flock with the same state
(right). Each NetworkScene is offset in space.

6 EVALUATION
6.1 User-Level Functional Comparison
Table 2 compares Ubiq’s functionality with other SVRs using the
task model from Liu & Steed [38] along with their analysis of
six well-known social VR systems: VRChat [65], RecRoom [50],
AltSpaceVR [42], BigScreen [2] , Spatial [56], and Mozilla Hubs [45].
Their model breaks down tasks, such as finding other users, into
interaction cycles that classify how the system is used to achieve a
goal - or whether it is even possible. The interaction cycles used in
Table 2 are explained below. Some tasks require two cycles, e.g. "2D
+ Switch" indicates both 2D and out-of-VR interaction are necessary.
Others can be achieved in different ways, e.g. "3D/2D" suggests the
user can choose between 2D or 3D interaction for that task.

• 2D - interacting with 2D interfaces, e.g. menus
• 3D - interacting with 3D objects
• Goal - searching for a target in the environment
• Exploratory - exploring the environment for understanding
• Collaboration - interacting with other users
• System - system notifications are displayed
• Switch - action can only be completed outside VR

Ubiq supports most of the common SVR subtasks. The biggest
differences come from tasks that require the system to have the
concept of Peer groups, e.g. Group Moving. As Ubiq does not have
user accounts there is no system for building friends lists. Users
must share join codes out-of-band to meet in a room. Accounts
could be added to Ubiq without significant changes. It would re-
quire adding a UI to login to an external service, and updating the
local Peer with persistent data from it. Both tasks would be quite
straightforward.

Ubiq includes a 2D menu system for creating public and private
rooms. Users communicate through voice chat, and by gesturing
with the head and hands, but there is no system to control facial
expressions. Because it is open source, Ubiq supports extending
fidelity at a functional level, which is not possible in other systems
that may allow different 3D models, but only on a fixed rig.

Ubiq lacks other features that some of these platforms support.
For example, it has few built-in tools for scene modification, in-
ventories of objects, libraries of games, etc. While it is primarily
targeted at research and teaching, there are no particular restric-
tions in building some of these functionalities on top of Ubiq. As
we will see in Section 6.4, as the system is based around Unity, it is
relatively easy to build game-like experiences of high quality.

6.2 Technical Comparison
Table 3 compares Ubiq with some of the more mature networking
frameworks that are available for Unity. Photon [15] and Dark-
Rift [12] are commercial solutions but have free services for smaller
projects. UNet is a Unity built-in networking package that was
deprecated, but revived as Mirror [43]. MLAPI [63] is the recent
Unity Multiplayer API. At the time of writing this was still exper-
imental. These other frameworks are low-to-mid level. This may
be because creating high level networking APIs requires too many
strict assumptions which are incompatible with a flexible tool such
as Unity. While Ubiq is designed primarily for Unity, it has support
for cross-platform play with web browsers. Being fully open source,
Peers could be written for other platforms too.

Ubiq is distinct in that its client-server architecture is not inher-
ent. If an ownership/host model is used it must be implemented
in user code. All other systems, even the unhosted ones, assume a
client-server architecture with processes themselves identifying as
clients or hosts/servers. In Ubiq, different Components within the
same application can use different models.

Voice support is also a core feature. The only other framework
to provide this is Photon. Ubiq uses the open WebRtc standard for
negotiating peer-to-peer connections, providing full transparency
of the audio dataflow.

Ubiq includes a NodeJs server. The server is not necessary for
messaging, but supports rendezvous and matchmaking for the
Rooms system and social samples. Most other frameworks require
a server to be written by the user. This will be less effort than it
sounds however, as the APIs have the client-server model inbuilt,
so server functionality will consist mainly of gameplay logic. Pho-
ton provides the option to rent a managed server. We provide free
public access to our development servers, and the source allowing
users to self-host if they prefer.

6.3 Performance
The bandwidth of an SVR is dominated by developer decisions
about update frequency. This is flexible in Ubiq, but it interesting
to understand the latency and overhead with Ubiq’s current con-
ventions. We captured a typical SVR session with 8 users lasting 22
minutes to characterise the network behaviour. We recorded the
latencies between all peers, and the throughput at one peer. This
also serves as a demonstration of Ubiq’s built-in instrumentation.

Peer-to-peer latencies are shown in Figure 6. Latencies were
sampled continuously at 1 Hz, by each peer to all others, measured
as half the round trip time. The eight peers were split across three
regions on a continent (A,B,C). The distances between the nearest
cities were 260 km (A-B), 1250 km (B-C), 1000 km (C-A). Two peers
were on the same local network.

VRST’21, December 08–10, 2021, Osaka, Japan Friston, Congdon, et al.

Table 2: Task-based functional comparison
Task Subtask VRChat RecRoom AltSpaceVR BigScreen Spatial Mozilla Hubs Ubiq

Identification Identify Others Explore Explore Goal + 3D Explore Explore Explore 2D
Identify Speaker Explore+2D Explore Explore + 2D Explore + 2D Explore + 2D Explore 2D
Identify Interactor Explore 3D Explore Explore Explore Explore Explore

Communication Express Emotion 2D 2D 2D - - 2D -
Gesture Collaboration/2D Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration
Mark Friends 2D + Switch 2D + Switch 2D + Switch - - - -
Text 2D + System 2D + System 2D - - System -

Navigation Group Gather Goal Goal Goal Goal Goal Goal Goal
Group Moving Goal/2D 2D 2D/Goal 2D 2D - -
Room Transport 2D 2D/Switch 2D 2D/Switch 2D/Switch Switch Switch

Manipulation Create Objects - 2D + 3D - 2D 2D 2D 2D/3D
Move Objects 3D 3D 3D 3D 3D 3D 3D
Pass Objects Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration Collaboration

Coordination Create Room 2D 2D 2D 2D 2D - 2D
Invite Others 2D + System 2D/Switch 2D + System Switch 2D + Switch Switch Switch
Public Room Meeting 2D + Goal 2D + Goal 2D + Goal 2D + Goal - - 2D + Goal
External Source Sharing - - - Switch Switch - -
System Notification System System System - - - System

Table 3: Technical Comparison to other Unity frameworks. (*)All solutions would support a third-party voice solution such as
Dissonance [49], but the solution would not be open source. (**)Users must create their own server code using the framework
APIs.

Photon DarkRift UNet/Mirror MLAPI Ubiq

Network Architecture Client-Server Client-Server Client-Server Client-Server Flexible
API Level Low-mid level Low-mid level Low-level Low-level Low-mid level
Voice Photon Voice No* No* No* Built-In
Transport Own Options Various integrations Unity.Transport (options) Various, inc. WebSockets
Platforms Unity Unity Unity Unity Unity/NodeJs/Browser
SocialVR Additional No No No Out-Of-Box
Client Licence Closed Commercial Source MIT Unity Apache
Service Cost Rental Self-Hosted Self-Hosted** Self-Hosted** Free/Self-Hosted

1 2 3 4 5 6 7 8

From Peer

1

2

3

4

5

6

7

8

T
o

 P
e

e
r

125.2

117.3

128.8

130.5

21.39

29.02

28.99

35.57

25.59

73.02

126.9

22.33

22.12

22.75

29.67

18.99

66.61

30.09

21.76

29.59

38.1

27.55

75.6

29.39

22.59

29.96

34.72

26.23

75.02

32.46

24.01

31.83

31.29

28.07

75.53

29.18

20.64

29.4

29.05

36.09

78.31

62.59

54.52

61.84

61.79

66.96

58

134.9

140

171.9

132.5 145.7 136.3 140.5 144.6 171.3

50

100

150

NA

Figure 6: Average latencies (in ms) between all peers in the
session.

0 200 400 600 800 1000 1200 1400

Time (seconds)

0

50

100

150

200

250

K
B

y
te

s
 P

e
r

S
e

c
o

n
d

0

20

40

60

80

100

O
v
e

rh
e

a
d

 (
%

)

All Avatar Audio
In & Out Out Overhead

Figure 7: Throughput &Overhead of the desktop client.Mea-
surements include the bandwidth consumed by the latency
measurements.

Figure 7 shows the throughput and messaging overhead on one
client. The SVR is symmetrical, so the throughput should be pro-
portionally representative of all peers. For performance reasons
though, throughput was captured on a desktop peer, which had a
higher update rate and so higher transmission rate than the others.
Figure 7 shows the overall bandwidth, as well as a breakdown of
the bandwidth dedicated to avatar data and voice data.

The step changes in bandwidth as new peers join can be seen,
especially in the audio, which uses the fixed-rate G722 codec. At
the busiest point bandwidth is stable between 150-200 Kbyte/s. The
largest proportion of the bandwidth is used for the avatar data.

Ubiq messages are prefixed by a length and address, a total of 14
bytes. Audio channels establish their own per-dyad connections,
so do not have this overhead. Figure 7 shows the overhead of the
prefix as a proportion of the Ubiq message bandwidth. Though this
will vary with the type of data being sent (the message length), in
the capture session it was very stable at approximately 20%.

To measure capacity, we created a bot to emulate a user, and
connected increasing numbers of bots to a room while monitoring
performance. The QoE at the client was approximated by FPS, and
the QoS of the server by the peer-to-peer latencies through it. We
found the server (dual-2.2 GHz/4GBRAMVM) could handle 50 users
in a room before significant increases in latency were observed.
A client running on a 2.5GHz/Embedded Graphics desktop could
support 30 peers before the FPS dropped below the native rate (60).

6.4 Teaching Use
Ubiq was used as a basis for the coursework of our Virtual Environ-
ments module in the teaching year 2020/2021. Students worked in
groups of 3-5 to develop an SVR environment that required several
users to collaborate or compete. Teaching was remote, so a key

Ubiq: A System to Build Flexible Social Virtual Reality Experiences VRST’21, December 08–10, 2021, Osaka, Japan

motivation was that students could meet in the SVR as a group.
Ubiq supplied common features, and examples on implementing
shared interactive objects, allowing students to focus on building
interesting interactions. The ability of Ubiq to work with and with-
out XR was important as it was not possible to supply all students
with VR headsets due to their geographic spread.

The students worked on this project part-time (20%) for two
months under regular supervision, and developed a range of appli-
cations. It was left up to them whether the SVR would be a game or
serious work environment, but naturally, most applications were
the former. Of sixteen projects developed, two are described here
to provide examples of what the students were able to realise.

Figure 8: Example student projects: view of the normal-scale
player inTwo-ScaleMaze (left) and of balls being fed into the
hopper in front of another player in Transballer (right).

Two-Scale Maze. Two-Scale Maze (Figure 8, left) is a combination
of a sliding puzzle and a labyrinth. Players must arrange tiles on a
table to assemble a maze that can be traversed. However, some tiles
are covered, so the only way to see how they should fit together is
for at least one of the players to shrink to a fraction of their size and
traverse the incomplete maze while communicating to the full-size
players what needs to be changed.

Transballer. Transballer (Figure 8, right) is a collaborative take
on the Fantastic Contraption-style game. Players begin in an empty
roomwith a spawn point and a goal. The challenge is to use assorted
items in their inventory to create a scaffolding to carry balls across
the room. The challenge can be increased with the addition of
obstacles and multiple spawn points.

These applications demonstrate decidedly non-trivial function-
ality, which would be difficult to implement on some platforms.
Two-Scale Maze has interaction take place at different scales. Not
only did the messaging have to support scale transitions, but many
in-built systems such as physics and lighting assume a uniform scale.
To overcome this challenge the team used two different scale scenes
and leveraged Ubiq’s agnostic messaging to create the impression
that users were in the same scene. Transballer had to support large
numbers of shared physical objects controlled by multiple users.
Keeping a physics simulation consistent across multiple clients is a
complex problem which the team addressed by creating a compre-
hensive per-object peer-to-peer ownership model.

These demonstrations, and others, will be made available as a
showcase of work in Ubiq. Some of the students have chosen to
make their projects open source.

7 FUTUREWORK
We have planned additional features and experiments to perform
with Ubiq. To improve accessibility for researchers, we will add
additional tutorials on common use cases, and provide a number of
real distributed experiments, including our In-The-Wild presence
experiment [59] and collaborative embodiment experiment [48].
To expand the feature-set and potential use cases, we will enhance
the rooms system with new models for scalability, and improve
the in-built avatar customisation. We will add a demonstration
of persistent accounts to support groups. We are also developing
cross-platform support further, including a web client example. In
the first instance this will be a visualiser that can perform com-
mand and control, though as Ubiq’s messaging is platform agnostic
there is nothing preventing it becoming a fully symmetrical peer.
Additionally, examples of procedural clients that can connect to
provide data from external sources will be added. Our aim is to
have Ubiq synchronise users across multiple heterogeneous AR &
VR devices.

8 CONCLUSIONS
We present Ubiq, a system for building cross-platform SVR in Unity.
Ubiq was created to fulfil goals that are unlikely to be addressed
by commercial SVRs, owing to conflicts with their business model.
These include being open source to support new features, the abil-
ity to self-host for data protection and cost concerns, and being
agnostic to the network architecture to support network research.
This is in addition to services such as logging and remote code
execution which are often not exposed in commercial systems.

Ubiq is foremost a framework. Its expected use case is for small
teams to use it to build their own applications. As a starting point,
a fully functional SVR sample is provided out of the box.

Functionality-wise Ubiq lacks features pertaining to persistent
users, such as the ability to build friend-groups. However it has
a number of services that other systems are missing or do not
expose, such as logging and instrumentation. Ubiq is most distinct
in that it decouples messaging from network architecture. Users
control the authority and routingmodels themselves through Ubiq’s
addressing scheme. Importantly, they can use different models on
a per-Component basis. Ubiq does include a server. This is not
necessary for Ubiq to function, but is a practical requirement for
rendezvous over the public internet.

Ubiq meets the framerate goals of platforms such as the Oculus
Quest and shows relatively low bandwidth consumption in small
group meetings. Ubiq has been tested in a classroom setting and
used successfully by students without prior networking experience.

Many toolkits have been presented over the years. However VR
applications are moving away from integrated platforms towards
commerical game engines. Ubiq has been built for this new prac-
tice, adapting lessons from previous designs to modern tools, and
maximising the use of standards and integrations. The design scope
is kept deliberately large to capture niche use cases. Ubiq has a
number of internal and external users with substantial projects to
maintain momentum, and we make our documentation available to
other teaching teams. Ubiq is available at https://github.com/UCL-
VR/ubiq under the permissive, commercial friendly Apache license.

https://github.com/UCL-VR/ubiq
https://github.com/UCL-VR/ubiq

VRST’21, December 08–10, 2021, Osaka, Japan Friston, Congdon, et al.

REFERENCES
[1] Jérémie Allard, Valérie Gouranton, Loïck Lecointre, Sébastien Limet, Emmanuel

Melin, Bruno Raffin, and Sophie Robert. 2004. FlowVR: A Middleware for Large
Scale Virtual Reality Applications. In Parallel Processing. 10th International Euro-
Par Conference. Springer Berlin Heidelberg, 497–505. https://doi.org/10.1007/978-
3-540-27866-5_65

[2] Bigscreen Inc. 2021. Bigscreen. Retrieved April 14, 2021 from https://www.
bigscreenvr.com/

[3] Frank Biocca, Chad Harms, and Judee K. Burgoon. 2003. Toward a More Robust
Theory and Measure of Social Presence: Review and Suggested Criteria. Presence:
Teleoperators and Virtual Environments 12, 5 (Oct. 2003), 456–480.

[4] Lindsay Blackwell, Nicole Ellison, Natasha Elliott-Deflo, and Raz Schwartz. 2019.
Harassment in Social VR: Implications for Design. In 2019 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR). 854–855. https://doi.org/10.1109/VR.
2019.8798165 ISSN: 2642-5254.

[5] Chuck Blanchard, Scott Burgess, Young Harvill, Jaron Lanier, Ann Lasko, Mark
Oberman, and Mike Teitel. 1990. Reality Built for Two: A Virtual Reality Tool. In
Proceedings of the 1990 symposium on Interactive 3D graphics (I3D ’90). Association
for Computing Machinery, New York, NY, USA, 35–36.

[6] Pietro Buttolo, Roberto Oboe, and Blake Hannaford. 1997. Architectures for
Shared Haptic Virtual Environments. Computers & Graphics 21, 4 (1997), 421–429.
https://doi.org/10.1016/S0097-8493(97)00019-8

[7] C Carlsson and O. Hagsand. 1993. DIVE A Multi-User Virtual Reality System.
Proceedings of IEEE Virtual Reality Annual International Symposium - VRAIS ’93
(1993), 394–400. https://doi.org/10.1109/VRAIS.1993.380753

[8] François Chardavoine, Sylvain Ageneau, and Benoît Ozell. 2005. Wolverine: A
Distributed Scene-Graph Library. Presence: Teleoperators and Virtual Environments
14, 1 (2005), 20–30. https://doi.org/10.1162/1054746053890297

[9] E. F. Churchill and D. Snowdon. 1998. Collaborative Virtual Environments: An
Introductory Review of Issues and Systems. Virtual Reality 3, 1 (March 1998),
3–15.

[10] Jeremy Dalton. 2021. Reality Check: How Immersive Technologies Can Transform
Your Business. Kogan Page Publishers. Google-Books-ID: gzQPEAAAQBAJ.

[11] Bruce Damer. 1997. Avatars!; Exploring and Building Virtual Worlds on the Internet.
Peachpit Press.

[12] Dark Rift. 2021. DarkRift Networking. Retrieved July 16, 2021 from https:
//www.darkriftnetworking.com/

[13] F. Drolet, M. Mokhtari, F. Bernier, and D. Laurendeau. 2009. A Software Architec-
ture for Sharing Distributed Virtual Worlds. In Proceedings of the 2009 IEEE Virtual
Reality Conference. IEEE, 271–272. https://doi.org/10.1109/VR.2009.4811050

[14] Florent Dupont, Thierry Duval, Cédric Fleury, Julien Forest, Valérie Gouranton,
Pierre Lando, Thibaut Laurent, Guillaume Lavoué, and Alban Schmutz. 2010.
Collaborative Scientific Visualization: The COLLAVIZ Framework. In 2010 Joint
Virtual Reality Conference of EuroVR - EGVE - VEC, Vol. 2010.

[15] Exit Games. 2021. Photon. Retrieved July 16, 2021 from https://www.
photonengine.com/

[16] Marc Fabri, David J. Moore, and Dave J. Hobbs. 1999. The Emotional Avatar:
Non-Verbal Communication Between Inhabitants of Collaborative Virtual En-
vironments. In Gesture-Based Communication in Human-Computer Interaction
(Lecture Notes in Computer Science), Annelies Braffort, Rachid Gherbi, Sylvie Gibet,
Daniel Teil, and James Richardson (Eds.). Springer Berlin Heidelberg, 269–273.

[17] Guo Freeman, Samaneh Zamanifard, Divine Maloney, and Alexandra Adkins.
2020. My Body, My Avatar: How People Perceive Their Avatars in Social Virtual
Reality. In Extended Abstracts of the 2020 CHI Conference on Human Factors in
Computing Systems (Honolulu, HI, USA) (CHI EA ’20). 1–8.

[18] Mar Gonzalez-Franco, Eyal Ofek, Ye Pan, Angus Antley, Anthony Steed, Bernhard
Spanlang, Antonella Maselli, Domna Banakou, Nuria Pelechano, Sergio Orts-
Escolano, Veronica Orvalho, Laura Trutoiu, Markus Wojcik, Maria V. Sanchez-
Vives, Jeremy Bailenson, Mel Slater, and Jaron Lanier. 2020. The Rocketbox
Library and the Utility of Freely Available Rigged Avatars. Frontiers in Virtual
Reality 0 (2020). https://doi.org/10.3389/frvir.2020.561558 Publisher: Frontiers.

[19] Chris Greenhalgh and Steven Benford. 1995. MASSIVE. ACM Transactions on
Computer-Human Interaction 2, 3 (9 1995), 239–261. https://doi.org/10.1145/
210079.210088

[20] Ian J. Grimstead, David W. Walker, and Nick J. Avis. 2005. Collaborative Vi-
sualization: A Review and Taxonomy. Proceedings - IEEE International Sympo-
sium on Distributed Simulation and Real-Time Applications, DS-RT (2005), 61–69.
https://doi.org/10.1109/DISTRA.2005.12

[21] Jan Gugenheimer, Evgeny Stemasov, Julian Frommel, and Enrico Rukzio. 2017.
ShareVR: Enabling Co-Located Experiences for Virtual Reality Between HMD
and Non-HMD Users. Conference on Human Factors in Computing Systems -
Proceedings (2017), 4021–4033. https://doi.org/10.1145/3025453.3025683

[22] Chris Gunn, Matthew Hutchins, Duncan Stevenson, Matt Adcock, and Patricia
Youngblood. 2005. Using Collaborative Haptics in Remote Surgical Training. In
First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems. IEEE, 481–482. https://doi.org/10.1109/
WHC.2005.141

[23] Scott Hayden. 2021. ’Rec Room’ Now Has Over 1 Million Monthly Active VR Users.
Retrieved July 10, 2021 from https://www.roadtovr.com/rec-room-1-million-
monthly-active-users/

[24] Zhenyi He, Ruofei Du, and Ken Perlin. 2020. CollaboVR: A Reconfigurable
Framework for Creative Collaboration in Virtual Reality. Proceedings - 2020 IEEE
International Symposium on Mixed and Augmented Reality, ISMAR (2020), 542–554.
https://doi.org/10.1109/ISMAR50242.2020.00082

[25] Gerd Hesina, Dieter Schmalstieg, Anton Furhmann, and Werner Purgathofer.
1999. Distributed Open Inventor. In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology - VRST ’99. ACM Press, New York, New York,
USA, 74–81. https://doi.org/10.1145/323663.323675

[26] Jon Hindmarsh, Mike Fraser, Steve Benford, Chris Greenhalgh, and Christian
Heath. 2000. Object-Focused Interaction in Collaborative Virtual Environments.
ACM Transactions on Computer-Human Interaction 7, 4 (2000), 477–509.

[27] Peter F. Hokayem and Mark W. Spong. 2006. Bilateral Teleoperation: A His-
torical Survey. Automatica 42, 12 (2006), 2035–2057. https://doi.org/10.1016/j.
automatica.2006.06.027

[28] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan. 2001.
WireGL: A Scalable Graphics System for Clusters. In Proceedings of the ACM
SIGGRAPH Conference on Computer Graphics. 129–140.

[29] Marcel Jonas, Steven Said, Daniel Yu, Chris Aiello, Nicholas Furlo, and Douglas
Zytko. 2019. Towards a Taxonomy of Social VR Application Design. In Extended
Abstracts of the Annual Symposium on Computer-Human Interaction in Play Com-
panion Extended Abstracts (CHI PLAY ’19 Extended Abstracts). Association for
Computing Machinery, New York, NY, USA, 437–444.

[30] Vasily Y. Kharitonov. 2013. A Software Architecture for High-Level Develop-
ment of Component-Based Distributed Virtual Reality Systems. Proceedings -
International Computer Software and Applications Conference (2013), 696–705.
https://doi.org/10.1109/COMPSAC.2013.111

[31] Anya Kolesnichenko, Joshua McVeigh-Schultz, and Katherine Isbister. 2019. Un-
derstanding Emerging Design Practices for Avatar Systems in the Commercial
Social VR Ecology. In Proceedings of the 2019 on Designing Interactive Systems
Conference (San Diego, CA, USA) (DIS ’19). Association for Computing Machinery,
New York, NY, USA, 241–252.

[32] Anya Kolesnichenko, Joshua McVeigh-Schultz, and Katherine Isbister. 2019. Un-
derstanding Emerging Design Practices for Avatar Systems in the Commercial
Social VR Ecology. In Proceedings of the 2019 on Designing Interactive Systems
Conference (DIS ’19). Association for Computing Machinery, New York, NY, USA,
241–252.

[33] Dan Lake, Mic Bowman, and Huaiyu Liu. 2010. Distributed Scene Graph to
Enable Thousands of Interacting Users in a Virtual Environment. In 9th Annual
Workshop on Network and Systems Support for Games. IEEE, 1–6. https://doi.org/
10.1109/NETGAMES.2010.5679669

[34] Marc Erich Latoschik, Christian Fröhlich, and Alexander Wendler. 2006. Scene
Synchronization in Close Coupled World Representations using SCIVE. The
International Journal of Virtual Reality 5, 3 (2006), 47–52. http://trinity.inf.uni-
bayreuth.de/download/SCIVE-IJVR06.pdf

[35] Marc Erich Latoschik, Florian Kern, Jan Philipp Stauffert, Andrea Bartl, Mario
Botsch, and Jean Luc Lugrin. 2019. Not Alone Here?! Scalability and User Experi-
ence of Embodied Ambient Crowds in Distributed Social Virtual Reality. IEEE
Transactions on Visualization and Computer Graphics 25, 5 (2019), 2134–2144.
https://doi.org/10.1109/TVCG.2019.2899250

[36] Marc Erich Latoschik, Daniel Roth, Dominik Gall, Jascha Achenbach, Thomas
Waltemate, and Mario Botsch. 2017. The Effect of Avatar Realism in Immersive
Social Virtual Realities. In Proceedings of the 23rd ACM Symposium on Virtual Re-
ality Software and Technology (VRST ’17). Association for Computing Machinery,
New York, NY, USA, 1–10.

[37] Marc Erich Latoschik and Henrik Tramberend. 2011. Simulator X: A Scalable and
Concurrent Architecture for Intelligent Realtime Interactive Systems. In 2011 IEEE
Virtual Reality Conference. 171–174. https://doi.org/10.1109/VR.2011.5759457
ISSN: 2375-5334.

[38] Qiaoxi Liu and Anthony Steed. 2021. Social Virtual Reality Platform Comparison
and Evaluation Using a Guided Group Walkthrough Method. Frontiers in Virtual
Reality 2 (2021). https://doi.org/10.3389/frvir.2021.668181

[39] Blair MacIntyre and Steven K. Feiner. 1998. A Distributed 3D Graphics Library.
In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques - SIGGRAPH ’98. 361–370. https://doi.org/10.1145/280814.280935

[40] Giuseppe Mantovani. 1995. Virtual Reality as a Communication Environment:
Consensual Hallucination, Fiction, and Possible Selves. Human Relations 48, 6
(1995), 669–683.

[41] David Margery, Bruno Arnaldi, and Noel Plouzeau. 1999. A General Framework
for Cooperative Manipulation in Virtual Environments. In Proceedings of the
Eurographics Workshop in Vienna, Austria, May 31-June 1, 1999 (Eurographics).
Springer Vienna, Vienna, 169–178. https://doi.org/10.1007/978-3-7091-6805-
9_17

[42] Microsoft. 2020. AltspaceVR. Retrieved July 10, 2021 from https://altvr.com/
[43] Mirror 2021. Mirror Networking. Retrieved July 16, 2021 from https://mirror-

networking.com/

https://doi.org/10.1007/978-3-540-27866-5_65
https://doi.org/10.1007/978-3-540-27866-5_65
https://www.bigscreenvr.com/
https://www.bigscreenvr.com/
https://doi.org/10.1109/VR.2019.8798165
https://doi.org/10.1109/VR.2019.8798165
https://doi.org/10.1016/S0097-8493(97)00019-8
https://doi.org/10.1109/VRAIS.1993.380753
https://doi.org/10.1162/1054746053890297
https://www.darkriftnetworking.com/
https://www.darkriftnetworking.com/
https://doi.org/10.1109/VR.2009.4811050
https://www.photonengine.com/
https://www.photonengine.com/
https://doi.org/10.3389/frvir.2020.561558
https://doi.org/10.1145/210079.210088
https://doi.org/10.1145/210079.210088
https://doi.org/10.1109/DISTRA.2005.12
https://doi.org/10.1145/3025453.3025683
https://doi.org/10.1109/WHC.2005.141
https://doi.org/10.1109/WHC.2005.141
https://www.roadtovr.com/rec-room-1-million-monthly-active-users/
https://www.roadtovr.com/rec-room-1-million-monthly-active-users/
https://doi.org/10.1109/ISMAR50242.2020.00082
https://doi.org/10.1145/323663.323675
https://doi.org/10.1016/j.automatica.2006.06.027
https://doi.org/10.1016/j.automatica.2006.06.027
https://doi.org/10.1109/COMPSAC.2013.111
https://doi.org/10.1109/NETGAMES.2010.5679669
https://doi.org/10.1109/NETGAMES.2010.5679669
http://trinity.inf.uni-bayreuth.de/download/SCIVE-IJVR06.pdf
http://trinity.inf.uni-bayreuth.de/download/SCIVE-IJVR06.pdf
https://doi.org/10.1109/TVCG.2019.2899250
https://doi.org/10.1109/VR.2011.5759457
https://doi.org/10.3389/frvir.2021.668181
https://doi.org/10.1145/280814.280935
https://doi.org/10.1007/978-3-7091-6805-9_17
https://doi.org/10.1007/978-3-7091-6805-9_17
https://altvr.com/
https://mirror-networking.com/
https://mirror-networking.com/

Ubiq: A System to Build Flexible Social Virtual Reality Experiences VRST’21, December 08–10, 2021, Osaka, Japan

[44] Fares Moustafa and Anthony Steed. 2018. A Longitudinal Study of Small Group
Interaction in Social Virtual Reality. In Proceedings of the 24th ACM Symposium
on Virtual Reality Software and Technology (Tokyo, Japan) (VRST ’18). Association
for Computing Machinery, New York, NY, USA, Article 22, 10 pages.

[45] Mozilla Corporation. 2021. Mozilla Hubs. Retrieved April 14, 2021 from https:
//hubs.mozilla.com

[46] Martin Naef, Edouard Lamboray, Oliver Staadt, and Markus Gross. 2003. The
Blue-C Distributed Scene Graph. In Proceedings of the 2003 IEEE Virtual Reality
Conference. IEEE Comput. Soc, 275–276. https://doi.org/10.1109/VR.2003.1191157

[47] Ye Pan and Anthony Steed. 2017. The Impact of Self-Avatars on Trust and
Collaboration in Shared Virtual Environments. PLOS ONE 12, 12 (Dec. 2017),
e0189078.

[48] Ye Pan and Anthony Steed. 2017. The impact of self-avatars on trust and
collaboration in shared virtual environments. PLoS ONE 12, 12 (2017), 1–20.
https://doi.org/10.1371/journal.pone.0189078

[49] Placeholder Software. 2021. Dissonance Unity Voice Chat. Retrieved July 16, 2021
from https://placeholder-software.co.uk/dissonance/

[50] Rec Room Inc. 2021. Rec Room. Retrieved April 14, 2021 from https://recroom.com
[51] Marcus Roth, Gerrit Voss, and Dirk Reiners. 2004. Multi-Threading and Clustering

for Scene Graph Systems. Computers and Graphics (Pergamon) 28, 1 (2004), 63–66.
https://doi.org/10.1016/j.cag.2003.10.004

[52] David Saffo, Sara Di Bartolomeo, Caglar Yildirim, and Cody Dunne. 2021. Re-
mote and Collaborative Virtual Reality Experiments via Social VR Platforms. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
Number 523. Association for Computing Machinery, New York, NY, USA, 1–15.
https://doi.org/10.1145/3411764.3445426

[53] Ralph Schroeder. 2010. Being There Together: Social Interaction in Shared Virtual
Environments. Oxford University Press.

[54] Ryan Schulz. 2020. Comprehensive List of Social VR Platforms and Virtual Worlds.
Retrieved July 10, 2021 from https://ryanschultz.com/list-of-social-vr-virtual-
worlds/

[55] Sandeep Singhal and Michael Zyda. 1999. Networked Virtual Environments: Design
and Implementation. Addison Wesley, Reading, MA.

[56] Spatial Systems Inc. 2021. Spatial. Retrieved April 14, 2021 from https://spatial.io/
[57] Oliver G. Staadt, Justin Walker, Christof Nuber, and Bernd Hamann. 2003. A

Survey and Performance Analysis of Software Platforms for Interactive Cluster-
Based Multi-Screen Rendering. EGVE ’03: Proceedings of the Workshop on Virtual
Environments (2003), 261–270. https://doi.org/10.1145/769953.769984

[58] Anthony Steed, Daniel Archer, Ben Congdon, Sebastian Friston, David Swapp, and
Felix J. Thiel. 2021. Some Lessons Learned Running Virtual Reality Experiments
Out of the Laboratory. arXiv:2104.05359 [cs.HC]

[59] Anthony Steed, Sebastian Frlston, Maria Murcia Lopez, Jason Drummond, Ye
Pan, and David Swapp. 2016. An ’In the Wild’ Experiment on Presence and
Embodiment using Consumer Virtual Reality Equipment. IEEE Transactions on
Visualization and Computer Graphics 22, 4 (2016), 1406–1414. https://doi.org/10.
1109/TVCG.2016.2518135

[60] Anthony Steed and Manuel Fradinho Oliveira. 2009. Networked Graphics: Build-
ing Networked Games and Virtual Environments. Elsevier. Google-Books-ID:
76C_quJqVXcC.

[61] Valerie E. Stone. 1993. Social Interaction and Social Development in Virtual
Environments. Presence: Teleoperators and Virtual Environments 2, 2 (1993), 153–
161.

[62] Theresa Jean Tanenbaum, Nazely Hartoonian, and Jeffrey Bryan. 2020. "How do I
make this thing smile?": An Inventory of Expressive Nonverbal Communication
in Commercial Social Virtual Reality Platforms. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems (CHI ’20). Association for
Computing Machinery, New York, NY, USA, 1–13.

[63] Unity Technologies. 2021. MLAPI - Unity Multiplayer Networking. Retrieved July
16, 2021 from https://docs-multiplayer.unity3d.com/

[64] G. Voß, J. Behr, D. Reiners, and M. Roth. 2002. A Multi-Thread Safe Foundation
for Scene Graphs and its Extension to Clusters. In EGPGV ’02: Proceedings of
the Fourth Eurographics Workshop on Parallel Graphics and Visualization. 33–37.
https://doi.org/10.1145/569673.569679

[65] VRChat Inc. 2021. VRChat. Retrieved April 14, 2021 from https://www.vrchat.
com/

[66] Robert E. Wendrich, Kris-Howard Chambers, Wadee Al-Halabi, Eric J. Seibel,
Olaf Grevenstuk, David Ullman, and Hunter G. Hoffman. 2016. Hybrid Design
Tools in a Social Virtual Reality Using Networked Oculus Rift: A Feasibility Study
in Remote Real-Time Interaction. In International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, Vol. 1B.
https://doi.org/10.1115/DETC2016-59956

[67] Julie Williamson, Jie Li, Vinoba Vinayagamoorthy, David A. Shamma, and Pablo
Cesar. 2021. Proxemics and Social Interactions in an Instrumented Virtual Re-
ality Workshop. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. Number 253. Association for Computing Machinery, New
York, NY, USA, 1–13. https://doi.org/10.1145/3411764.3445729

[68] XR Ignite. 2021. Interactive Directory of XR Collaboration Platforms. Retrieved
July 10, 2021 from https://xrcollaboration.com/directory/

[69] Nick Yee, Jeremy N. Bailenson, Mark Urbanek, Francis Chang, and Dan Merget.
2007. The Unbearable Likeness of Being Digital: The Persistence of Nonverbal
Social Norms in Online Virtual Environments. CyberPsychology & Behavior 10, 1
(Feb. 2007), 115–121. Publisher: Mary Ann Liebert, Inc.

[70] Bob Zeleznik, Loring Holden, Michael Capps, Howard Abrams, and Tim Miller.
2000. Scene-Graph-As-Bus: Collaboration Between Heterogeneous Stand-Alone
3-D Graphical Applications. Computer Graphics Forum 19, 3 (2000), 91–98. https:
//doi.org/10.1111/1467-8659.00401

[71] Lian Zhang, Qiang Fu, Amy Swanson, AmyWeitlauf, Zachary Warren, and Nilan-
jan Sarkar. 2018. Design and Evaluation of a Collaborative Virtual Environment
(CoMove) for Autism Spectrum Disorder Intervention. ACM Transactions on
Accessible Computing 11, 2 (2018), 1–22. https://doi.org/10.1145/3209687

https://hubs.mozilla.com
https://hubs.mozilla.com
https://doi.org/10.1109/VR.2003.1191157
https://doi.org/10.1371/journal.pone.0189078
https://placeholder-software.co.uk/dissonance/
https://recroom.com
https://doi.org/10.1016/j.cag.2003.10.004
https://doi.org/10.1145/3411764.3445426
https://ryanschultz.com/list-of-social-vr-virtual-worlds/
https://ryanschultz.com/list-of-social-vr-virtual-worlds/
https://spatial.io/
https://doi.org/10.1145/769953.769984
https://arxiv.org/abs/2104.05359
https://doi.org/10.1109/TVCG.2016.2518135
https://doi.org/10.1109/TVCG.2016.2518135
https://docs-multiplayer.unity3d.com/
https://doi.org/10.1145/569673.569679
https://www.vrchat.com/
https://www.vrchat.com/
https://doi.org/10.1115/DETC2016-59956
https://doi.org/10.1145/3411764.3445729
https://xrcollaboration.com/directory/
https://doi.org/10.1111/1467-8659.00401
https://doi.org/10.1111/1467-8659.00401
https://doi.org/10.1145/3209687

	Abstract
	1 Introduction
	2 Related Work
	2.1 Social VR Systems
	2.2 Networked VR
	2.3 Toolkits

	3 Design Requirements
	3.1 Strategic
	3.2 Platform Analysis

	4 Architecture
	4.1 Overview
	4.2 Messaging
	4.3 Services
	4.4 Server

	5 Examples
	5.1 Social Example
	5.2 Technical Examples

	6 Evaluation
	6.1 User-Level Functional Comparison
	6.2 Technical Comparison
	6.3 Performance
	6.4 Teaching Use

	7 Future Work
	8 Conclusions
	References

