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ABSTRACT 
Existing tools for writing prompts for language models (known as 
“prompt programming”) provide little support to prompt program-
mers. Consequently, as prompts become more complex with the 
addition of multiple input/output examples (“few-shot” prompts), 
they can be hard to read, understand, and edit. In this work, we 
observe that prompts are often used to solve complex problems, 
but lack the strict grammar of a traditional programming language. 
We describe methods for extracting the semantically meaningful 
structure of natural language prompts (e.g., regions of the prompt 
representing a preamble or input/output examples) in the absence of 
a rigid formal grammar, and demonstrate a range of editor features 
that can leverage this information to assist prompt programmers. 
Finally, we relate initial feedback from design probe explorations 
with a set of domain experts and provide insights to help guide the 
development of future prompt editors. 

CCS CONCEPTS 
• Human-centered computing → User interface program-
ming. 
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1 INTRODUCTION 
Large language models (LLMs) (e.g. [1, 3, 11]) can often follow 
natural-language-like instructions [2], and are increasingly de-
signed for this purpose [12]. These capabilities allow users to rapidly 
accomplish many tasks through “prompt programming” [2, 13] (i.e., 
the process of engineering a natural language prompt [8]). 

Prompt programming allows users to express their program-
ming intent in plain language, rather than a specially designed 
programming language. For example, to create a basic English-
French translation prompt, it is sufcient to provide a few examples 
to the model, followed by the word or phrase to translate: 

English: Hello. French: Bonjour 
English: Let’s go to the market. French: 

More recent instruction-tuned models [7, 12] are able to perform 
that translation with an even simpler expression of intent, such as: 
Translate the following phrase into French: Let’s go to the 
market. 

While early work has explored methods for aiding prompt en-
gineers to fnd efective prompts [9, 10], existing prompt editing 
interfaces (e.g., [4, 6]) only provide basic text editing interactions. 
Just as programmers often need to perform editing operations over 
syntactically or semantically meaningful components in their code 
(e.g., refactoring, inserting code completions, etc.), prompt program-
mers often need to perform editing operations over semantically 
meaningful regions of their prompt (e.g., inserting a few-shot exam-
ple, renaming keywords, refactoring the template for all examples, 
etc.). However, the lack of a predefned grammar for prompts makes 
it difcult to support these interactions. Therefore, prompt program-
ming presents a fundamentally new challenge for programming 
tools: how do you support programming without a well-defned 
programming language? 

In this paper, we consider the opportunities and challenges of cre-
ating a dedicated LLM prompt editor. Taking existing feature-rich 
integrated development environments (IDEs) as points of inspi-
ration, we consider how we can support common IDE features 
in the context of prompt writing. Though language models do 
not require rigid programming semantics, prompt programmers 
nonetheless write prompts containing semantically meaningful 
components (e.g., regions of the prompt that set context, provide 
input/output examples, etc.). We leverage this observation to infer 
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(a) TagStruct: Manual metadata markup lan-
guage proxy 

(b) SelectStruct: Rich text editor for manual 
metadata labeling 

(c) AutoStruct: Heuristic-Based Just-In-Time 
Grammar Detection 

(d) AutoStruct+: Revised Heuristic-Based JIT Grammar Detection 

Figure 1: Semantic Structure Prototypes: Manual Labeling and Automated JIT Grammar Detection 

an approximate “grammar” for the prompt program that describes 
the semantic structure of the prompt. This “grammar” makes it 
straightforward to provide common IDE capabilities such as syntax 
highlighting and refactoring. 

We demonstrate this approach with a set of functional proto-
types that act as design probes (fg. 1). With these prototypes, we 
explore both manual annotation of prompt metadata representing 
the prompt’s approximate grammar, and the benefts and challenges 
of inferring this metadata automatically as the prompt is being cre-
ated (we call this “just-in-time/JIT grammar inference”). We then 
explore how this semantic structure for a prompt can be opera-
tionalized to support prompt programmers in dedicated prompt 
editing environments. 

Finally, we gathered preliminary feedback on these design probes 
from a set of domain experts. We present insights from these pilot 
tests of the various prototypes, and describe open questions, design 
challenges, and opportunities for supporting prompt programmers 
in the future. 

Taken altogether, we make the following contributions with this 
paper: 

• We identify a new research challenge for the development of 
programming language tool support: supporting the practice 
of prompt programming when there is no rigid grammar or 
syntax for the “language” of prompt programs. 

• We introduce techniques for understanding and automati-
cally inferring the semantic structure of few-shot prompts 
as one response to this challenge, and instantiate these tech-
niques through a set of prompt editor prototypes (fg. 1) 
inspired by IDEs for traditional programming. 

• Finally, we provide insights and feedback from domain ex-
perts in initial pilot testing of these prototypes, suggesting 
implications for future work. 

2 ANATOMY OF A PROMPT 
Unlike traditional programming languages, LLM prompts do not 
have a predefned grammar. However, being composed of natural 
language, prompts have inherent semantic structure that refects 
the programmer’s intent. As we will demonstrate through our de-
sign probes below (Section 3), if we can identify the structural 
components of a prompt (what we call the prompt’s metadata), 
we can derive an approximate “grammar” for each prompt. In this 
section, we defne common structural components of prompts. 

Zero-shot prompts are the simplest form of LLM prompts. 
These prompts simply state the problem to solve or the text to 
complete without providing repeated input and output examples. 
In the case of the English-to-French translation example, Fig. 2a 
demonstrates a zero-shot formulation of the prompt. Few-shot 
prompts (Fig. 2b) build on zero-shot prompts by including multiple 
examples of inputs and outputs. In practice, prompts can include 
many examples (the number of examples is often constrained by 
the maximum size of input, i.e., the input window of the model). 
A preamble is any text provided before the repeated examples in 
a few-shot prompt. Preambles are often used to describe the task 
the LLM is expected to perform or to provide additional contextual 
information to the model (Fig. 2c). 

In few-shot prompts, examples often share a common structure 
consisting of template components (static text that is the same 
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The translation of the English phrase “Let’s 
go to the market” in French is 

(a) Zero-Shot 

English: Hello 
French: Bonjour 
English: How are you? 
French: Comment ça va? 
· · · 
English: Let’s go to the market. 
French: 

(b) Few-Shot 

Translate the following English phrase to 
French. 
English: Hello 
French: Bonjour 
· · · 
English: Let’s go to the market. 
French: 

(c) Few-Shot with a Preamble 

Figure 2: Example LLM prompts with varying semantic structures 

in each repeated example) and data (inputs and outputs that are 
unique for each example). For example, in Fig. 2b, English: and 
French: are template components and Hello, Bonjour, How are you?, 
Comment ça va?, and Let’s go to the market are data. Importantly, 
template components aren’t necessarily required and when exam-
ples contain template components, they are not limited to a single 
input or a single output. 

3 PROTOTYPES: EXTRACTING THE 
SEMANTICALLY MEANINGFUL 
STRUCTURE OF A PROMPT 

Just as IDEs require knowledge of code syntax and semantics to 
support editing features, prompt editors need to have an under-
standing of the semantic structure of natural language prompts. For 
few-shot prompts, it is sufcient to know 1) the set of shared tem-
plate components and 2) the locations they occur at in the prompt 
(Fig. 3). From this information (which we refer to as prompt meta-
data), we can fnd the locations of the preamble, each example, 
and the input/output data within each example. We can consider 
the list of template components repeated for each example as an 
example template defning the shared structure for all examples 
in the prompt (Fig. 3). 

We consider this metadata a just-in-time (JIT) grammar, ap-
proximating the semantic structure of the prompt. This grammar 
and semantic structure is computed as-needed (hence, “just-in-
time”), and represents the system’s current estimate of the con-
ceptual intent (e.g., preamble, examples, etc.) rather than its exact 
underlying syntax. This distinction parallels the fundamental difer-
ence between programming language code (where parsing focuses 
on abstract syntactic representations) and natural language prompts 
(where the focus is on conceptual intent), and highlights the core 
challenge in developing prompt editors: defning a robust process of 
acquiring prompt metadata. 

3.1 Semantic Structure Prototypes 
We developed a series of prototypes (Fig. 1) to explore two potential 
avenues for acquiring the metadata that describes the semantically 
meaningful structure of a prompt: manual structure labeling, and 
automated structure inference. 

For manual structure labeling, we explored two prototypes. Tag-
Struct (Fig. 1a) is a Markdown editor with a live-rendered HTML 
view we appropriated as a proxy for an editor supporting a hypo-
thetical custom prompt markup language. SelectStruct (Fig. 1b) 
is a custom rich text editor with support for labeling semantically 

meaningful regions by selecting text and applying a semantic style 
(akin to italicizing text in a standard rich text editor). 

For automated structure detection, we developed AutoStruct 
(Fig. 1c). This prototype consists of an HTML textarea component 
for composing a prompt and a heuristic-based algorithm for auto-
matically detecting the semantically-meaningful components of the 
prompt. The output from this algorithm is the prompt metadata (Sec-
tion 3.2). Following initial testing with this prototype, we developed 
a revision, AutoStruct+ (Fig. 1d), that improved upon the Auto-
Struct heuristics for prompt metadata detection and implemented 
several prompt editor features (Section 4). 

3.2 Inferring Prompt Metadata Automatically 
Implementing AutoStruct and AutoStruct+ required developing a 
method to automatically infer prompt metadata (the JIT grammar). 
Without the rules of a programming language’s predefned grammar 
to rely upon, we must rely instead on heuristics to infer the JIT 
grammar. We implemented these heuristics as regular expressions 
applied to the prompt to extract template component strings. The 
heuristics include: 

• Template components must be at least 3 characters in length 
and occur multiple times in the prompt. 

• The frst occurring template component must start at the 
beginning of a line. 

• No template component may be a prefx of another template 
component. 

• All template components must occur in every example, ex-
cept the fnal example. 

These heuristics seek to strike a balance that allows for correct 
inference of template components for most prompts while not 
being overly prescriptive with respect to the expected structure of 
natural language prompts. While this implementation allows for 
rapid prototyping, heuristics inevitably result in edge cases where 
the JIT grammar cannot be accurately inferred. We discuss ways to 
overcome this limitation in the Discussion section. 

4 APPLYING METADATA TO BUILD A 
PROMPT EDITOR 

Our four prototypes difer in how the JIT grammar is detected, 
whether by explicit user actions (TagStruct, SelectStruct) or auto-
matically (AutoStruct, AutoStruct+). These prototypes then allow 
us to implement a range of IDE-inspired prompt editor features to 
improve the experience of prompt programming. 
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Figure 3: Prompt Metadata and Semantic Structure Overview. Template components are identifed with manual labeling or 
heuristic-based detection. Given the template components, the prompt can be parsed into the preamble (text before the frst 
template component) and examples (each containing the set of template components and input and output data). 

4.1 Semantic Highlighting 
As prompt programmers iterate on a few-shot prompt, they often 
add examples (e.g., to increase example diversity). As the number 
of examples grows, prompts can became unwieldy, and difcult 
to read and understand. However, with even a few examples, the 
prompt metadata described in section 3.2 allows us to apply styles 
that visually distinguish the semantically meaningful components 
of the prompt (similar to syntax highlighting for code in IDEs). 

In SelectStruct and AutoStruct+ (Fig. 1), we implemented three 
types of semantic highlighting. First, we styled the font color of 
template components and example input/output data to help pro-
grammers perceive/comprehend structure within examples. Sec-
ond, we visually grouped examples by adding additional visual 
padding above and below each example to help programmers per-
ceive/comprehend the overarching structure of the prompt. Finally, 
we explored displaying contextual information above examples 
to assist prompt programmers in more quickly understanding the 
context of a given example. 

4.2 Refactoring 
Another key pain point for prompt programmers using existing 
prompting tools is when the prompt programmer wants to change 
the template that is shared by all examples in the prompt (i.e., edit 
a template component, such as the “English” and “French” terms in 
the example in fgure 3). Changing the shared template for a single 
example requires that change be propagated to every example in the 
prompt. In Prototypes B and D, we implemented a "mass editing" 
feature which ensures that changes to example template compo-
nents are automatically refected in the corresponding template 
components for all examples simultaneously. 

4.3 Autosuggest and Prompt Templates 
Code completion for contextually appropriate symbols (e.g., vari-
able names) and valid code templates (e.g., the scafolding for a 
loop) are important features in traditional IDEs. We drew upon 
these ideas to implement similar features to support prompt pro-
grammers in writing their prompts. As observed in section 3, tem-
plate components from a prompt’s metadata can be viewed as an 
example template with placeholders for input and output data. In 
SelectStruct, we suggest these templates as code completions, al-
lowing the user to focus on adding new content rather than typing 

repeated template text. Furthermore, knowledge of the example 
template and the data in each input/output feld for each instantia-
tion of the template allows us to suggest appropriate new values for 
these felds as new examples are inserted. In SelectStruct, when the 
user inserts a suggested prompt template, or types a know template 
component, the prototype sends a request to the language model 
itself containing a list of corresponding example inputs or outputs 
from the preceding examples in order to generate an appropriate 
suggestion for data to insert. This feature can help the user to fnd 
creative new example data for their prompt. 

4.4 Structured Editing 
While LLM prompts are simply a string of natural language text, 
knowledge of the prompt’s metadata allows for prompts to also be 
viewed as data objects consisting of an optional preamble and a 
table of example data, with each row corresponding to an example 
and each column corresponding to an input or output feld in the 
example template. Fig. 1d shows an example of how this type of 
data could be rendered as a table of values. We refer to the plain-text 
view of a prompt as the freeform view, and the structured view of 
a prompt as the data view. 

Importantly, the freeform and data views of a prompt are equiv-
alent, though the data view may provide additional afordances 
which become useful as the scale of the example dataset increases. 
For instance, the data view of a prompt may support integration 
with large datasets stored in diferent formats (e.g., connecting a 
prompt to large external dataset and automatically sampling a se-
lection of examples to include in the fnal prompt submitted to the 
model). Additionally, displaying a prompt in the data view allows 
for separately editing the prompt template and the data. Finally, 
the data view may also be a helpful form factor when working to 
prepare a prompt for prompt tuning [5]. 

5 PILOT EXPLORATORY STUDIES 
We piloted a series of semi-structured interviews and design ideation 
sessions with domain experts using the probes described above (see 
fg. 1). These sessions were not designed to be rigorous evalua-
tions of the prototypes, but rather to further develop our initial 
design ideas and discover limitations and challenges. The mixed 
levels of fdelity of the various design probes presented in each 
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session supported the goal of encouraging ideation and creative 
exploration. 

Topics explored in these sessions varied (and evolved across ses-
sions), including: JIT grammar inference, structured editing, seman-
tic highlighting, refactoring, autosuggest, and prompt templates. 
Altogether, the sessions included 8 participants, 7 of whom are do-
main experts with extensive experience writing LLM prompts, and 1 
of whom is more novice (only having written several prompts). Ses-
sions lasted between 30 minutes and one hour and were conducted 
via an online video conferencing tool. We describe the initial fnd-
ings from these sessions below, but we leave rigorous evaluation 
and analysis of these prototypes to future work. 

5.1 Participants did not want to manually tag 
prompt semantics 

We found that because manually tagging or selecting prompt seman-
tics required some efort (even if minimal), participants wondered 
if there was sufcient pay-of, especially when the number of few-
shot examples is small. This suggests that prompt editors may need 
to automatically infer prompt grammar, and deal with grammar am-
biguities automatically, with a way to either “fail softly” or correct 
and recover when the parsing fails. 

5.2 Users needed clear separation between 
visual markups to the prompt and the 
prompt itself 

When asked to mark up semantic units of the prompt, users were 
concerned about which parts of the prompt were being sent to the 
model. This was especially true with TagStruct, where users wanted 
to ensure that the text used to mark up the prompt was not also 
being sent to the model. For these reasons, semantic highlighting 
also confused users without programming experience with IDEs. 
For example, one non-programming user wondered whether the 
bolding or text colors would also be sent to the model. For this 
reason, we updated the AutoStruct+ prototype to show two views, 
with an explicit toggle to switch between viewing the plain text 
prompt and the prompt with semantic highlighting. 

5.3 Semantic Highlighting may aid reading 
prompts and collaboration 

In general, participants appreciated semantic highlighting, espe-
cially because they saw it as a way to reduce the efort of reading 
and understanding prompts. In our design sessions, several partic-
ipants spontaneously brainstormed the ways in which semantic 
highlighting could be implemented. Using colors to diferentiate 
between template components and data was particularly seen as 
helpful. Some users felt that the improved legibility would be par-
ticularly useful when sharing their prompt with collaborators. 

5.4 Participants found structured editing useful 
and intuitive, but difered on utility of 
structured views 

Participants were divided on preferences between the freeform 
view and the structured data view. Participants who preferred the 
freeform view indicated that this was because it allowed iteration, 

integrated with other tools (e.g. python notebooks), and was subjec-
tively faster to use (keyboard-only editing is an experience that is 
familiar to people who write code with IDEs). Multiple participants 
cited the ability to quickly copy-paste as a beneft of the freeform 
view over the structured data view. In the SelectStruct and Auto-
Struct+ prototypes, these participants found it useful to quickly 
edit all instances of a template component simultaneously, and to 
be able to quickly insert suggested example templates. 

Participants who preferred a structured view indicated that the 
structured data table may better facilitate collaboration with mul-
tiple collaborators working together as it allowed participants to 
visually separate out rows each collaborator was working on. Addi-
tionally, participants who preferred the structured data view found 
it useful to have the ability to operate over "rows" of data and edit 
template components in a table. Participants also proposed that the 
structured form factor could support data sheet functionality (e.g., 
randomizing the data order, or drag-and-drop to reorder rows). 

Taken together, these fndings suggest an additional beneft of 
inferring JIT grammar: it allows for multiple views of the same 
underlying data to suit diferent participants. For instance, future 
work could consider views that prioritize real-time collaboration, 
or data auditing. 

5.5 Current tools do not scafold formation of 
useful mental models 

In our sessions, we found that participants had several questions 
about whether they were formulating efective prompts, and even 
what constitutes an efective prompt. For instance, participants 
wondered if delimiters were necessary to hint the model (e.g., the 
“:” after English in fg. 2b), and if so, was there a “best” delimiter 
to use? Participants also wondered if line breaks, formatting, and 
white space afected their prompt performance, and if so, how they 
could improve it. 

While participants’ mental models were infuenced by the tools 
they currently used and their preferences for prompt views (e.g., 
those that preferred structured views were less concerned with 
formatting issues), overall, we found that current tools (whether 
model “Playgrounds”, or Python notebooks) did little to build efec-
tive mental models. 

6 DISCUSSION AND IMPLICATIONS FOR 
FUTURE WORK 

This paper identifes a new challenge to programming tool design – 
supporting prompt programming, where there is no well-defned 
programming language. In our prototype-driven explorations, we 
found that users expected programming support to be automatic, 
and found such automatic support useful. However, challenges 
remain in scafolding useful mental models and in making pro-
gramming tools accessible to non-traditional programmers who 
use prompt programming. This work also opens up new research 
questions, some of which we discuss below. 
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6.1 Mitigating and handling errors in JIT 
grammar parsing 

Our prototypes use heuristics for detecting the grammar of the 
prompt. By defnition, heuristics are not always reliable. For exam-
ple, in our testing, we found a prompt that summarized SQL queries 
in natural language for which our heuristic-based algorithm incor-
rectly detected SELECT and WHERE as template components because 
they occurred more frequently that the actual template components 
in the prompt (as a result of SQL subqueries in the example data). 

Our heuristic-based approach may be improved by employing 
models trained on labeled semantics from prompt, or program 
synthesis techniques [14]. But our experience suggests that graceful 
degradation of tool support or recovery from errors may be equally 
important. This problem is made more complex because users may 
be unable to distinguish between grammar parsing errors and the 
possibility they wrote a “bad prompt” (Section 5.5). 

6.2 Leveraging users’ implicit knowledge about 
writing prompts 

Our participants repeatedly shared that they took a long time to 
learn how to write “efective” prompts (e.g., accurate classifers, 
generation free of hallucinations, etc), and that they felt that current 
tools required them to learn primarily through experimentation 
and intuition. 

In general, we found that experienced prompt programmers 
possessed a lot of implicit knowledge about how to write prompts, 
such as how to scope down a problem to a scope that the LLM 
can solve. Tool support could accelerate such learning, for instance, 
through nudging users towards creating more well-scoped prompts. 

6.3 Limitations 
Models are changing rapidly, and consequently, the way prompt 
programmers design prompts will also change to accommodate the 
abilities of the models they are target. With the rise of instruction-
tuned models [7, 12], techniques for supporting prompt program-
mers that are designed for few-shot prompts, such as those de-
scribed in sections 3 and 3.2 may become less relevant. 

7 CONCLUSION 
In this work, we explored challenges and opportunities for support-
ing prompt programmers through the development of prompt editor 
features that operate over the semantic structure of LLM prompts. 
We presented methods for automatically inferring a prompt’s se-
mantic structure, and showed how this structure can be leveraged 
to implement editor features like semantic highlighting, autosug-
gest, and structured data views. We conducted initial pilot testing of 
these prototypes and presented key insights from this early testing. 
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