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(a) View synthesis with motion magnification (b) Frequency-selective magnification with temporal filtering

Figure 1. 3D motion magnification. (a) Novel view synthesis with a gymnast doing a handstand while magnifying the small movements
of the arms needed to remain balanced. (b) Motion magnification based on targeted frequencies through temporal filtering, where the left
tuning fork vibrates at 64Hz and the right at 128Hz. We visualize x-t (space-time) slices to demonstrate the motion.

Abstract

Motion magnification helps us visualize subtle, imper-
ceptible motion. However, prior methods only work for 2D
videos captured with a fixed camera. We present a 3D mo-
tion magnification method that can magnify subtle motions
from scenes captured by a moving camera, while support-
ing novel view rendering. We represent the scene with time-
varying radiance fields and leverage the Eulerian principle
for motion magnification to extract and amplify the varia-
tion of the embedding of a fixed point over time. We study
and validate our proposed principle for 3D motion mag-
nification using both implicit and tri-plane-based radiance
fields as our underlying 3D scene representation. We eval-
uate the effectiveness of our method on both synthetic and
real-world scenes captured under various camera setups.

1. Introduction
We live in a big world of small motions. These mo-

tions, such as human respiration or object vibration, are
hard to perceive with our naked eyes. Video processing
techniques [29, 61, 56] have been developed to extract and
magnify subtle motions captured in a 2D video to high-
light and visualize those motions. These motion magnifi-
cation techniques empower visual analytics tools like de-
tecting the vibrations of buildings and measuring a person’s
heart rate using only a video, without the need for physical
contact [58, 10, 46, 23].

However, we live in a 3D world full of 3D motions. Mag-
nifying motion in 3D, as shown in Figure 1 allows us to
perceive these motions from different views. Furthermore,
modeling the motion in 3D provides a natural separation be-
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2D Method [57] Ours
Figure 2. Motion magnification from a handheld video. Prior
2D motion magnification approaches (e.g. [57]) cannot handle
videos captured by a moving camera, producing severe artifacts.
In contrast, our approach can naturally separate camera motion
from object motion, allowing us to magnify only the motion of the
subject of interest. See Figure 7 for our magnified output.

tween camera motion and the motion of subjects of interest.
This enables magnifying the motion from handheld videos,
as shown in Figure 2. In contrast, prior 2D motion magnifi-
cation methods catastrophically fail in such scenarios.

In this paper, we propose a method for 3D motion mag-
nification using neural radiance fields (NeRF), with mini-
mal modifications to standard NeRF backbones and train-
ing pipelines. Prior methods designed for 2D videos often
leverage the Eulerian perspective, which analyzes and am-
plifies the color variations at each pixel location over time to
magnify motion. In contrast, we bring the Eulerian analysis
to a new domain beyond color space by designing a mag-
nification method operating on the feature embeddings of
NeRF. Our experimental results demonstrate that amplify-
ing temporal variations in the feature embedding of each 3D
point is highly effective in magnifying subtle 3D motion.
We observe that magnifying the point embedding provides
more accurate and robust magnified renderings than Eule-
rian magnification performed directly on rendered images.

Using images captured during a time window when only
subtle motion is visible, we train NeRF to reconstruct the
3D scene with such subtle temporal variations. We ensure
that the only element that changes over time is the point
embedding function, while the MLP layers of NeRF re-
main constant over time. Although the linear Eulerian ap-
proach [61] is agnostic to data dimensionality and is ex-
tensible to point embeddings of NeRF, for the phase-based
Eulerian approach [56], which showed superior properties
over the linear approach, it remains unclear how it may
be applied for NeRF as it specifically constructs a com-
plex steerable pyramid over each 2D image frame. The
recently introduced tri-plane representation for NeRF’s em-
bedding function naturally allows for 2D-specific magnifi-
cation methods like the phase-based approach [7]. Instead
of using the analytical positional encoding to generate point

embeddings, we learn one feature tri-plane at each observed
timestep. These tri-planes can be naturally organized as
feature videos for 2D video-based magnification methods.
Finally, the motion-magnified 3D scene is rendered using
these motion-magnified feature triplanes as the point em-
bedding functions.

To evaluate the performance of 3D magnification with
NeRF, we first create a synthetic dataset of scenes with sub-
tle motions and measure the magnification quality against
synthetically magnified ground truth videos. The phase-
based approach operating on tri-plane features leads to the
best performance compared to other alternative approaches
considered in our experiments. To further validate the prac-
ticality of the proposed method, we use our pipeline to pro-
cess several real-world captured scenes with varying camera
setups, scene compositions, and subject motions. Our re-
sults show that our proposed approach for 3D motion mag-
nification achieves robust performance for real-world cap-
tures in the presence of image noise and camera poses.

To summarize, our contributions are:

• We introduce the problem of 3D motion magnifica-
tion. We demonstrate the feasibility of applying Eule-
rian motion analysis for 3D motion magnification us-
ing standard NeRF backbones and training pipelines.

• We extend Eulerian analysis to a new domain beyond
color space, exploring strategies to modify and filter
point embedding and comparing their trade-offs.

• We demonstrate successful 3D motion magnification
results on various real-world scenes with different mo-
tions, scene compositions, and even handheld videos
unsupported by previous 2D methods.

2. Related Work

Video motion magnification. Prior approaches to video
magnification fall under two categories, inspired by fluid
dynamics: Lagrangian [29] and Eulerian [61, 56, 57, 37,
65]. The Lagrangian perspective tracks individual pixels as
fluid particles and estimates their motion vectors to warp
pixels in the image. Lagrangian-based approach to mo-
tion magnification computes the optical flow explicitly and
uses the estimated flow to magnify the motions of the pix-
els [29]. The performance, however, is limited by the ac-
curacy of flow estimation. On the other hand, the Eulerian
perspective analyzes the changes at fixed pixel locations,
amplifying the temporal variations at each pixel/location
to magnify motion. This approach bypasses the need for
explicit feature tracking or optical flow estimation, which
can be inaccurate and costly. Two variants of the Eulerian
approach are linear [61] and phase-based [56, 57]. Linear
Eulerian [61] constructs Laplacian pyramids over the video
frames and amplifies the color variation of each pixel over
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Figure 3. Method overview. (a) 3D scene representation with NeRF consists of two main components: 1) Coordinate Transformation uses
an embedding function E to map the input point p ∈R3 to a high-dimensional embedding vector E(p) ∈Rn. The embedding function can
be analytical (positional encoding) or learned (tri-plane). 2) The Projection Function θ (usually an MLP) takes in the point embedding and
viewing direction, and regresses them into the output color c and opacity σ at p. (b) We study scenes with subtle motions. To model the
tiny variations with NeRF, we change E over time while fixing the projection function. (c) At a given point p, we analyze its embedding
variations over time: [Et0(p), ...,EtT−1(p)]. We perform temporal filtering to isolate and amplify embedding variations within a certain
frequency range and then send the amplified embedding to the MLP θ , resulting in motion-magnified 3D rendering.

time. Phase-based Eulerian [56, 57] operates on the phase
variations at each pixel, extracted from a complex steer-
able pyramid [50, 17] decomposition of each video frame.
Later work focuses on magnifying larger motion with affine
transform and isolated regions of interest with matting [12],
using linear-based methods instead of hand-designed filters
[37], and adopting a second-order approximation (with ac-
celeration) instead of first-order methods [65]. Video-based
motion magnification has also been applied to extract sig-
nals like sound waves from videos recording objects, like a
bag of chips, deform and oscillate [11, 48]. Our work builds
upon classical Eulerian motion magnification but extends it
1) from 2D to 3D and 2) from color space to the point em-
bedding space of radiance fields. Our results show that the
Eulerian principle still holds in the point embedding space.

Static radiance fields. NeRF [35] has become the main-
stream approach for representing 3D scenes and demon-
strates high-quality view synthesis results. Various tech-
niques have been introduced to improve NeRF in sev-
eral aspects, including training and rendering acceleration
[24, 36, 2, 18, 42, 8], reducing aliasing [3], unbounded

scene modeling [4, 63], and optimizing poses [27, 34]. Fac-
tor Fields [9] present a unified framework summarizing var-
ious NeRF variants and other neural signal representations
as mainly composed of two components: (1) a Coordinate
Transformation that maps input coordinates into an embed-
ding space, and (2) a Projection Function that maps the em-
beddings into a value in the field. In this paper, we adopt a
similar perspective and focus on analyzing the relationship
between point embedding and subtle motions. We propose
magnifying subtle motions through Eulerian magnifications
of point embeddings in NeRF. We demonstrate successful
applications of this approach on NeRF with both positional
encoding-based embedding [35, 24] and tri-plane embed-
ding [7, 18].

Dynamic scene representations. Extensive research
has been devoted to extending NeRF for modeling dy-
namic scenes. One line of work learns a deformation
field and uses it to warp a canonical NeRF for each
timestep [41, 39, 40, 55, 25]. Alternatively, one can di-
rectly learn a space-time radiance field with time as an ad-
ditional coordinate [26, 62, 19, 1, 52, 31, 18, 6, 47]. A
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major challenge of reconstructing dynamic scenes is cap-
turing time-synchronous multi-view observations. While a
multi-camera setting is ideal for acquiring high-quality data
[66, 5, 30], researchers have explored the more challeng-
ing but practical setting of single-camera captures, lever-
aging priors such as consistent depth [62, 32, 21], optical
flow [26, 19, 31], or human prior [20, 60]. We demonstrate
the applicability of 3D motion magnification in both multi-
camera and single-camera setups.

Implicit representations. Implicit representations have
emerged as powerful tools for modeling signals [51, 13, 38,
28, 43, 53, 54, 15, 16, 14, 49]. Mai and Liu [33] study 2D
videos with implicit neural representation and model mo-
tions in videos by learning spatially invariant phase shifts in
the positional encoding function. Our experiment on mag-
nification based on position encoding functions shares sim-
ilar ideas. However, unlike Mai and Liu [33], we learn spa-
tially varying phase shifts and magnify 3D motion.

3. Preliminaries

Eulerian motion magnification. The Eulerian-based mo-
tion analysis focuses on the changes at a fixed spatial loca-
tion over time instead of tracking a specific particle (pixel).
The linear Eulerian approach converts the color variation
over time at each pixel into a 1D vector, using the Fourier
transform to obtain its temporal frequency components, and
filters the frequencies corresponding to the desired motion.
The color intensity changes within the desired frequency
range are then amplified and added back to the original val-
ues to create a motion-magnified video (where subtle mo-
tions become more visible).

To offer an intuition on why amplifying per-pixel color
intensity could magnify motion across the frame, let
f (x, t) = g(x+δ (t)) denote a signal with motion over time
described by the shift δ (t). The first-order Taylor series ex-
pansion of g(x+δ (t)) about the point x can be written as:

g(x)+g′(x)(x+δ (t)− x) = g(x)+g′(x)δ (t).

With observations at multiple timesteps t, we can easily
filter out the static g(x) term and keep the dynamic term
g′(x)δ (t). If we multiply g′(x)δ (t) by α and add it back to
the original signal, we get

g(x)+(1+α)g′(x)δ (t)≈ g(x+(1+α)δ (t)),

which is equivalent to magnifying the motion by α .
The phase-based Eulerian approach amplifies phase

variations over time instead of color amplitude variations.
The phase here is extracted from a complex steerable pyra-
mid constructed from the original frames. The connection
between phase and motion can be established through the
Fourier shift theorem: if a function f (x) is shifted by a dis-

tance δ in its domain, it would be equivalent to multiplying
its Fourier component F (k) by a phase factor e−i2πkδ :

F{ f (x−δ )}(k) = F{ f (x)}(k)e−i2πkδ ,

where F denotes the Fourier transform operator and k de-
notes the frequency component. In other words, extract-
ing the phase changes over time reveals the motion-induced
pixel shift in space by δ . After amplifying the phase
changes, the motion-magnified signal can be generated with
an inverse Fourier transform.

Neural radiance fields as 3D scene representations.
NeRF models the radiance in a scene as a continuous func-
tion, which takes as input a 3D spatial coordinate p ∈ R3

and a viewing direction d ∈ S2, and outputs the radiance
color c (observed from viewing direction d) and density σ at
that point. Notably, the spatial coordinate p is transformed
into a feature representation through some embedding func-
tion E, before a projection function (MLP) regresses it into
the final prediction:

f (p,d) = MLP(E(p),d) = (c,σ).

With subtle and unknown scene motions, we assume this
time-varying scene can be formulated as f (p+ δ (p, t),d).
If MLP is fixed across time, then the unknown motion
δ (p, t) can be recovered by analyzing the temporal vari-
ations of E(p, t). However, where do we access E(p, t)?
Whereas in the 2D video case, the data of interest is directly
recorded by a camera and is available for analysis, here we
only have access to a collection of 2D images that may have
observed the 3D subtle motions during capture. In the fol-
lowing subsection, we discuss how to reconfigure NeRF to
model subtle 3D motions by varying the function E(p, t).

4. Method

We assume the availability of: 1) Multi-view observa-
tions to reconstruct a static NeRF, and 2) video recording of
the subtle scene motions, either with a time-synchronized
multi-camera setup or a single moving camera.

The general workflow of our method is as follows: 1) We
train a static NeRF from image observations that can be as-
sumed as motionless. 2) For each timestep t ∈ [0,T −1] in
the video observations, we finetune the embedding function
Et so that the NeRF rendering matches with the observa-
tions at t. 3) After finetuning all T embedding functions Et ,
we magnify motions by amplifying the temporal variations
of each sampled point used in NeRF rendering.

In this section, we describe how we repurpose NeRF to
capture subtle motions and perform magnification by ana-
lyzing the point embeddings learned by NeRF. We begin our
discussion with the base case of the standard NeRF with po-
sitional encoding as the point embedding function. We then
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Figure 4. 3D motion magnification on synthetic scenes. We generated each synthetic scene by periodically vibrating object parts. We
magnify the subtle motion encoded in NeRF reconstruction using the approaches discussed in Sec. 4, and visualize the motion here as
a 2D space-time slice image. The corresponding location of each space-time slice is indicated by a red line on the rendered view. All
four approaches successfully capture and magnify the motion, although the linear Eulerian approach, Linear - Tri-Plane, is more prone to
intensity overshooting [56], manifested as bright and dark spots in the space-time slice.
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Figure 5. Quantitative comparison. We evaluate the quality of motion-magnified renderings as a function of the magnification factor
used, using positional encoding (Left) and tri-plane (Right) as the point embedding function. With positional encoding, we evaluate
two approaches to vary point embedding through phase shifts in the sine waves: Position Shift (shifting each 3D point) and Encoding
Shift (shifting each frequency). With tri-plane, we evaluate two approaches to vary learned point embeddings: Linear - Tri-Plane (linear
magnification on tri-plane) and Phase - Tri-Plane (phase-based magnification on tri-plane). For both embedding functions, we compare
against two baseline methods for video motion magnification: Linear - Video (linear magnification on the NeRF-rendered video) and
Phase-Video (phase-based magnification on the NeRF-rendered video). Results from two embedding functions are separated to enable
better assessments of the impact of different magnification approaches and avoid confounding with the inherent performance gap between
different embedding functions and MLP architectures.

describe our preferred approach with tri-plane as the em-
bedding function for NeRF, which leads to a natural integra-
tion with the phase-based Eulerian magnification technique
previously designed for videos.

4.1. NeRF with Positional Encoding

We first describe how Eulerian magnification in the em-
bedding space can be achieved on standard NeRF with po-
sitional encoding. Motivated by prior work on motion-
adjustable neural representations for video [33], we keep
the main backbone of NeRF intact and separately train a
small MLP g that learns to apply phase shifts in the posi-
tional encoding functions. However, different from prior
work [33], with video observations from the scene, we or-

ganize the images by their captured time and train a sepa-
rate MLP g for each timestep. Effectively, g learns to adjust
the embedded representation of each point so that the NeRF
output from the projection function (MLP θ ) is consistent
with the time-varying observations. Weights of the MLP θ

are shared across all time steps, and the only difference lies
in the point embeddings. There are two options to induce
phase shifts to the positional encoding function: position
shift and encoding shift.

Position shift. To model motion exclusively through
changing the point embeddings, we let g directly predict
the 3D position shift of the queried point p: g(p, t) =
∆p ∈ R3. We add ∆p to p before applying positional en-
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Figure 7. Real-world single-camera motion magnification. Despite the monocular view of the dynamic scene, we can render novel views
while magnifying subtle motion. We visualize the motion as a 2D image slice through time.

coding, obtaining a time-varying point embedding function

E(p, t) = PosEnc(p+g(p, t)),

which is equivalent to applying a phase shift of ω · g(p, t)
within each sine wave sin(ωx) used in positional encod-
ing. Note that the phase shifts for all K frequencies have
the same direction and only differ in magnitude, which is
scaled by different ω ∈ [1, ...,K].

Encoding shift. Note that motion does not only lead to
geometric changes in the 3D scene since it would also cause
appearance changes like shadows and reflections. There-
fore, attributing all the scene variation to shifts in 3D posi-
tion is not sufficient. Instead, we may let g learn a separate
shift for each encoding frequency. In other words, with
φω ∈ R3, let g(p, t) = [φ1,φ2, ...,φK ] ∈ R3×K , and the point
embedding function becomes

E(p, t) = [sin(ω1 p+φ1), ...,sin(ωK p+φK)].

This setup treats positional encoding as a feature gener-
ator that produces an embedding with 3K channels. As
shown in later sections, this “motion-agnostic” approach
still learns to capture the true motion while outperforming
the approach that only accounts for position shifts.

With either of these two approaches to vary the point
embeddings in a standard NeRF with positional encoding,
we can render magnified motions by linearly amplifying the

temporal variations of g(p, t), and then rendering the point’s
color and opacity with NeRF.

4.2. NeRF with Tri-plane Learnable Embedding

We now describe our preferred approach using tri-plane
as the embedding function for NeRF. Later experiments
suggest that the tri-plane-based approach achieved bet-
ter magnification quality than the positional encoding ap-
proach. Tri-plane [7, 18] has been recently proposed as an
efficient way to obtain learnable embedding for points in
NeRF rendering. Compared to NeRF with the analytical
positional encoding, NeRF with tri-planes as the point em-
bedding function can achieve similar representation capac-
ity with far fewer MLP layers and, thus, faster inference.

In our use case of NeRF, the tri-plane formulation has a
nice implication of reducing the 3D scene into a collection
of 2D feature planes. Such a decomposition preserves the
relative spatial relationship between points, instead of ran-
domly hashing points into features. This observation sug-
gests we may achieve 3D motion magnification by directly
processing the feature planes and potentially outperform-
ing the aforementioned linear magnification within the po-
sitional encoding function.

Specifically, we train a separate tri-plane embedding
function for each timestep while the MLP-based projection
function is shared across time. With this setup, all sub-
tle temporal changes in the scene (motion or appearance)
would need to be encapsulated in the temporal changes of
the 2D feature images of the tri-plane. The point embedding
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Figure 8. Varying the angles of deviation from observed views.
As the deviation angle increases, magnifying through the embed-
ding space consistently outperforms the baseline approaches that
operate on the color space.
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Figure 9. Varying noise levels in training views. When we per-
form Eulerian magnification on the tri-plane embedding space,
Phase - Tri-Plane is more robust than Linear - Tri-Plane in the
presence of noise. The finding is analogous to previous analy-
sis [56] on color space magnification (validated by the two base-
line results: Linear - Video and Phase - Video).

function here can be written as

E(p, t) = Project(p,TriPlanet),

where the embedding of p is obtained by projecting p onto
the tri-plane and aggregating the corresponding features.

With a separate tri-plane constructed for each timestep,
we establish a key connection to prior video magnifica-
tion methods: we essentially obtain a video for each tri-
plane feature channel, on which we could either apply lin-
ear magnification and amplify the temporal changes of
each pixel in the feature image, or phase-based magnifi-
cation with complex steerable pyramids constructed over
each channel of the 2D feature image. Our experimental re-
sults confirm the feasibility of this 2D-inspired approach.
The performance comparison in Section 5.2 between the
linear and phase-based approaches also validates the orig-
inal findings from when these two approaches were applied
to perform Eulerian processing of color spaces.

5. Experimental Results
We evaluate the performance of the proposed method

using synthetic scenes in Section 5.2. We create ground
truth sequences for the magnified motion and quantitatively
compare the different approaches for 3D motion magnifi-
cation. We then present our results on real-world captured
data in Section 5.3. We first deploy our method on real-
world multi-view video observations. After validating its
effectiveness on real-world multi-view data, we further ap-
ply our method to real-world video sequences captured us-
ing a single-camera. As a result of extending motion mag-
nification to 3D, our method successfully magnifies 3D mo-
tions from handheld-captured videos with camera shake, a
scenario unattainable by prior work that focused on stabi-
lized 2D videos.

5.1. Implementation Details

Positional encoding as point embedding. We train a 3-
layer MLP with 32 hidden channels to predict g(p, t) and
apply the resulting phase shifts in positional encoding. We
implement the network with nerfacc [24]. To train a static
NeRF for the first timestep, we optimize for 50,000 steps,
and for the remaining timesteps, we finetune the embed-
ding function for 10,000 steps. After training, for each
point p, we obtain its time-varying phase shifts g(p, t).
To render with magnified motion within a time window
[0, ...,T − 1], we Fourier transform [g(p,0), ...,g(p,T − 1)]
along the time dimension, use a bandpass filter to isolate the
motions within the frequency range of interest, amplify the
components within the passband range, and then apply in-
verse Fourier transform to obtain the magnified predictions.
The magnified predictions are added inside the positional
encoding as phase shifts, followed by the standard NeRF
rendering with MLP inference.

Tri-plane as point embedding. Our implementation
builds on K-Planes [18]. To aggregate the embedding from
different planes, we adopt concatenation instead of the de-
fault Hadamard product, and we only set the triplanes at
a single scale for simplicity. To train a static NeRF for
the first timestep, we optimize for 30,000 steps, and for
the remaining timesteps we finetune the embedding func-
tion for 10,000 steps. After training, we compose a video
for each feature plane within [0, ...,T −1]. Then, we apply
2D magnification methods directly on these feature videos.
For the linear approach, we temporally filter and amplify
the feature value variations within a frequency range. For
the phase-based approach, we construct a complex steer-
able pyramid over the feature image, temporally filter and
amplify the phase variations, and then collapse the pyra-
mid back into the image space; the resulting feature image
would exhibit magnified motions [56]. To produce motion-
magnified rendering, we embed each sample point with the
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processed triplane features and then use the MLP to project
the embedding into color and density output as usual.

5.2. Synthetic Scenes

Data Generation. We use the standard Blender scenes
[35] and simulate motions in different object parts. We ren-
der each scene for one second at 30 frames per second. The
simulated motions are periodic, ranging from 3 Hz to 5 Hz.
We also render sequences with ground truth magnified mo-
tions under factors 5, 10, 20, 50, and 100.
Qualitative Evaluation. We magnify motions in the
Blender scenes with the approaches described in Sec. 4. Re-
sults in Figure 4 show that all four approaches successfully
model and magnify tiny motions in the observations. Con-
sistent with previous findings in video magnification [56],
the linear Eulerian approach leads to more artifacts, such as
clipped color intensities and noise amplification.
Quantitative Evaluation. We evaluate the results against
ground truth magnified frames using structural similarity in-
dex measure (SSIM) [59], and LPIPS [64] with AlexNet
[22] as the backbone. We also render a video from the
trained NeRF without magnification for baseline compar-
isons at each test view. We then apply classical 2D methods
directly on the video to magnify subtle motions. As shown
in Figure 5, our 3D magnification methods outperform the
2D baseline methods in producing motion-magnified ren-
derings consistent with the ground truth renderings.
Sensitivity Aanalysis. In Figure 8, we analyze magnifi-
cation quality as the test viewpoints deviate from the ob-
served viewpoints. In Figure 9, we plot magnification qual-
ity as noise levels increase in the captured frames. Previous
work [56] on color space magnification has found that the
phase-based approach is less sensitive to noise than the lin-
ear approach; we observe similar phenomenon during our
magnification in the embedding space.

5.3. Real-world Scenes

We test our methods on several real-world scenes cap-
tured with different camera setups.
Multi-Camera Setup. We first validate our method on the
publicly available dataset from HumanNerf [66], compris-
ing short videos from six cameras simultaneously capturing
a scene with a person standing in the center. We extract a
brief period where the person is relatively static but still ex-
hibits subtle body movements. In Figure 6, we present the
magnified results from different viewpoints; the full videos
are available in the supplementary material.
Single-Camera Setup. As a multi-camera setup may be
prohibitively inconvenient and expensive for many users,
we further deploy our method on a single-camera setup.
We design a capture procedure that consists of two stages.
Step 1: we first capture a moving camera video of the static

scene, which will be used to train a static NeRF. Step 2: we
capture a single-view video of the dynamic scene, which
is used to finetune the point embedding function in NeRF
to model the time-varying scene. After the two-stage cap-
ture, we perform NeRF training and render magnified mo-
tions using the previously described pipeline. This two-step
capture approach is prevalent in video-based motion mag-
nification application scenarios, where people identify un-
wanted motion in static civil structures under normal con-
ditions [46, 23]. We also highlight that our method sup-
ports handheld capture and does not require a tripod,
unlike previous 2D-based approaches that would fail with-
out a steady capture, as shown in Figure 2. This is possible
since our method uses the estimated poses of each frame
independently when updating the radiance fields on the dy-
namic sequence. Hence, an accurate pose estimation re-
moves the need for a perfectly still capture. We show the
results using monocular capture in Figure 1 of a gymnast
holding a handstand and in Figure 7 on a person trying to
balance on one leg and a person breathing. We also show
observed space-time slices compared to our magnified ones
with NeRF reconstruction.

6. Limitations
Data captured in real-world environments can be blurry

due to defocus and camera shake, degrading the quality
of NeRF. The training of NeRF assumes the knowledge
of camera poses, so its performance depends heavily on
the accuracy of pose estimation, often using RGB-based
structure-from-motion (SfM) algorithms [44, 45]. The es-
timations are mostly reliable but not flawless due to lens
distortions that require specific calibrations, which may not
be performed by common pipelines for NeRF-based 3D re-
construction. More importantly, inaccurate pose estimation
would exacerbate the ambiguity between camera motion
and scene motion, which could hinder magnifying subtle
scene motions or lead to false motion magnification. There-
fore, real-world data should be captured under conditions
where accurate camera intrinsic and extrinsic parameters
are accessible, either from reliable RGB-based SfM with
textured surfaces in the scene, or from cameras that support
6-DoF tracking during capture.

7. Conclusion
We present a 3D motion magnification method that ap-

plies Eulerain processing principles to analyzing NeRF em-
beddings over time. While classical magnification meth-
ods (developed originally for 2D videos) process pixel col-
ors directly, we show that processing the point embeddings
of NeRF successfully generalizes those approaches and al-
lows magnifying motions in 3D renderings. We believe our
work will motivate further research towards integrating tra-
ditional signal processing techniques into neural fields.
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