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Abstract
Although eye-based interactions can be beneficial for 
people with motor impairments, they often rely on clunky 
or specialized equipment (e.g., stationary eye-trackers) and 
focus primarily on gaze and blinks. However, two eyelids 
can open and close in different orders and for different 
duration to form rich eyelid gestures. We take a first step 
to design, detect, and evaluate a set of eyelid gestures for 
people with motor impairments on mobile devices. We 
present an algorithm to detect nine eyelid gestures on 
smartphones in real time and evaluate it with 12 able-bod-
ied people and 4 people with severe motor impairments 
in two studies. The results of the study with people with 
motor-impairments show that the algorithm can detect the 
gestures with .76 and .69 overall accuracy in user-depen-
dent and user-independent evaluations. Furthermore, we 
design and evaluate a gesture mapping scheme for people 
with motor impairments to navigate mobile applications 
only using eyelid gestures. Finally, we discuss consider-
ations for designing and using eyelid gestures for people 
with motor impairments.

1. INTRODUCTION
Fifteen percent of people in the U.S. have difficulties with 
their physical functioning, among whom almost half find it 
very difficult or impossible to walk unassisted for a quarter-
mile.5 Although specialized devices, such as eye-trackers, 
brain-computer interfaces, and mechanical devices (e.g., 
joysticks, trackballs) can be helpful, they are often clunky, 
intrusive, expensive, or limited in functions supported 
(e.g., text entry). By contrast, as a general-purpose device, 
smartphones can benefit people with motor impairments 
with rich on-board sensors.12 For example, motion sensors 
and the touch screen have been used to recognize users’ 
physical activities (e.g., see Albert et al.1) and assess their 
motor ability (e.g., see Printy et al.16). Microphone allows for 
using speech to enter texts (e.g., see Sears et al.19) or issue 
commands (e.g., see Pradhan et al.15). Camera enables eye-
based interactions for people with motor impairments 
to enter text (e.g., see Pedrosa et al.14), issue gesture com-
mands (e.g., see Rozado et al.17), and navigate a wheelchair 
(e.g., see Araujo et al.2).

Although helpful, eye-based interactions have primarily 
focused on gaze (i.e., eyeball movement14, 17, 22, 23 or blinks10, 23).  
However, human’s two eyelids can be in open or close states 
for short or long periods and in concurrent or sequential 
orders to form a rich set of eyelid gestures, which could 
enrich existing eye-based interactions. In this work, we make 
an initial exploration into the design space of eyelid gestures 
on mobile devices for people with motor impairments.

The original version of this paper is entitled “Eyelid 
Gestures on Mobile Devices for People with Motor 
Impairments” and was published in Proceedings of 
the  22nd International ACM SIGACCESS Conference on 
Computers and Accessibility, 2020.

We first introduce a taxonomy to construct potential 
eyelid gestures. Although some eyelid gestures, such as 
winks, were proposed for hands-free interaction,6 our work 
explores a richer set of eyelid gestures and is the first to pres-
ent an algorithm to recognize them on a smartphone in 
real time. Moreover, we evaluated the performance of the 
algorithm in two user studies with people without and with 
motor impairments. In the first study, 12 able-bodied par-
ticipants performed the nine eyelid gestures in two indoor 
environments and different postures. The overall accuracy 
of user-dependent and user-independent models was .76 
and .68, respectively, which shows that the algorithm was 
robust to differences in environments and postures. We 
then conducted the second study in which four participants 
with severe motor impairments performed the same set of 
gestures. The overall accuracy of user-dependent and user-
independent models was .76 and .69, respectively.

Furthermore, we designed a mapping scheme to allow 
users to navigate mobile applications only using eyelid ges-
tures. We asked the participants with severe motor impair-
ments to complete a set of navigation tasks only using 
eyelid gestures. Results show that they perceived the eyelid 
gestures were easy to learn and the mapping was intuitive. 
They further reported how the eyelid gestures and the map-
ping scheme can be further improved. Finally, we present 
design recommendations for using eyelid gestures for peo-
ple with motor impairments and discuss the limitations 
and future research directions.

2. EYELID GESTURE DESIGN AND RECOGNITION

2.1. Design
Eyelid state refers to the state of two eyelids and has four 
possible values: both eyelids open, both eyelids close, only the 
right eyelid close, and only the left eyelid close. Technically, 
an eyelid can also be in a half-closed state (e.g., squinting). 
However, sustaining eyelids in a half-close state can cause 
eyelids to twitch or cramp.6 Moreover, our investigation 
found that it is still challenging to robustly recognize half-
closed states with current technology. Thus, we focus on the 
four states when constructing eyelid gestures. Future work 
could explore the potentials of “half-closed” eyelid states. 
As the “both eyelids open” state is the most common state 
when humans are awake, we use it as the gesture delimiter to 
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of probability pairs of each eye being open (PL, PR).9 The 
details of how the API estimates probability can be found in 
the work of G. LLC.9 Figure 2 shows some examples of the 
probabilities of two eyes being open in the nine eyelid ges-
tures performed by a user. Notice that when the user closes 
the right or left eye, the probability of this eye being open 
is not necessarily the same, and the probability of the other 
eye being open might also drop at the same time. It suggests 
that the probability estimation of the API9 is noisy, and there 
are variations in the probability estimations even when the 
same user performs the same gesture.

To cope with the variations in probability estimations, 
our algorithm incorporates an eyelid-state Support Vector 
Machine (SVM) classifier to classify an input pair (PL, PR) into 
two states: open (O) if both eyes are open and close (C) if any 
eye is closed. Because the “both eyes open” (O) state is used 
as the gesture delimiter, the algorithm then segments the 
stream of probability pairs between the delimiter. The algo-
rithm then computes the duration of a segment and filters it 
out if its duration is too short because extremely short seg-
ments are likely caused by spontaneous blinks (50–145 ms20) 
or noises in probability estimations. We tested different 
thresholds for duration from 150 to 300 ms and adopted 
220 ms for its best performance. Next, the duration of the 
segment is fed into another SVM classifier, which further 
distinguishes if it is a short-duration or long-duration gesture 
(see Figure 1). The algorithm then resamples the sequence 
of probability pairs (PL, PR) in the segment to ensure all 

label the start and end of an eyelid gesture.
In addition to the four eyelid states, humans can control 

the duration of an eyelid state.6 As it can be hard to memo-
rize the exact duration of a state, we discretize duration into 
two levels—short and long. Short duration refers to the time 
it takes to intentionally close an eyelid (e.g., longer than a 
spontaneous blink (50–145 ms)20) and open it immediately 
afterward. Long duration is closing an eyelid, sustaining it 
for some time, and then opening it. As users may have dif-
ferent preferences for holding the eyelids in a state, it is ideal 
to allow them to decide on their preferred holding duration 
as long as they keep it consistent. For simplicity, in this work, 
users are instructed to count a fixed number of numbers 
(e.g., three) by heart while holding eyelids in a state.

By controlling the eyelid states and their duration, we 
could construct an infinite number of eyelid gestures with 
one or more eyelid states between the gesture delimiter. As 
an initial step toward exploring this vast design space, we 
focused on recognizing nine relatively simple eyelid ges-
tures, which consist of only one or two eyelid states between 
the gesture delimiter. Figure 1 shows these nine eyelid 
gestures and their abbreviations.

2.2. Recognition algorithm
Our algorithm is implemented on Samsung S7 running 
Android OS 8.0. It first obtains images from the front cam-
era (30 frames per second) with 640 × 480 resolution and 
leverages Google Mobile Vision API to generate a stream 
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Figure 1. The illustrations and abbreviations of the nine eyelid gestures that our algorithm detects. Each letter in a gesture abbr. depicts its 
key eyelid states between the common start and end states (i.e., “both eyelids open”). The dash line indicates holding the eyelid(s) in the 
state that it follows. For example, “B-R-” represents the gesture that starts from “both eyelids open,” transitions to “Both eyelids close,” 
sustains in this state for some time (-), transitions to “only the Right eyelid close,” sustains in this state for some time (-), and ends at “both 
eyelids open.” Similarly, the “double blink” gesture ‘BOB’ includes “Both eyelids close,” “Both eyelids Open,” and “Both eyelids close” 
between the common start and end states.
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Figure 2. The probabilities of two eyes being open when a user performs each of the nine eyelid gestures. The blue (solid) and cyan (dashed) 
lines represent the probabilities of the left and right eye being open respectively.
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segments contain the same number of probability pairs (50 
and 100 samples for short and long gestures, respectively). 
Next, the resampled same-length vector is fed into the cor-
responding short-duration SVM classifier or a long-duration 
SVM classifier. Finally, the short-duration classifier detects 
whether the segment is R, L, B, or BOB; and the long-dura-
tion classifier detects whether the segment is R-, L-, B-, B-R-, 
or B-L-. All SVM classifiers are implemented using scikit-
learn library with the Radial Basis Function kernel and 
default parameters.13 More details can be found in original 
articles.4,8 Our source code is available at: https://github.
com/mingming-fan/EyelidGesturesDetection.

3. STUDY WITH PEOPLE WITHOUT  
MOTOR IMPAIRMENTS
We conducted the first study to understand how well our 
algorithm recognizes eyelid gestures on a mobile device for 
people without motor impairments before testing with peo-
ple with motor impairments.

3.1. Participants
We recruited 12 able-bodied participants aged between 23 
and 35 (M = 26, SD = 4, 5 males, and 7 females) to participate 
in the study. Their eye colors include brown (11) and amber (1). 
Seven wore glasses, one wore contact lenses, and four did 
not wear glasses or contact lenses. No one wore false eye-
lashes. The study lasted half an hour, and participants were 
compensated with $15.

3.2. Procedure
We used a Samsung S7 Android phone as the testing device 
to run the eyelid gesture recognition evaluation app (see 
Figure 3) in real time. To increase evaluation validity, we col-
lected training and testing data in two different offices. We 
first collected training data by asking participants to keep 
their eyelids in each of the four eyelid states and then per-
form each of the nine eyelid gestures five times following the 

instructions in the app although sitting at a desk and hold-
ing the phone in their preferred hand in one office. We then 
collected testing data by asking them to perform each eye-
lid gesture another five times although standing in another 
office room and holding the phone in their preferred hand. 
The differences in physical environments and postures 
increased variations between training and testing data. 
Similarly, the variations in ways how they held the phone in 
their preferred hands also introduced variations between 
training and testing data.

To collect data samples for each eyelid state, the evalu-
ation app first presented a target eyelid state on the top 
side of the screen (see Figure 3a and b) in a random order. 
Participants were asked to first prepare their eyes in the 
state and then press the green “START” button to start 
data collection at a speed of 30 frames per second. The app 
beeped after collecting 200 frames, and the button turned 
to yellow to indicate that the data collection for this eyelid 
state was done. The app presented another eyelid state and 
repeated the procedure until data samples for all four eye-
lid states were collected. These data were used to perform 
10-fold cross-validation1 of the eyelid state classifier on the 
phone in real time. The training process took on average 
558 ms.

To collect the training data for each of the nine eyelid ges-
tures, the evaluation app presented a target gesture on the 
top side of the screen (see Figure 3c and d). Participants were 
asked to press the green “START” button and then perform 
the target gesture. Upon finishing, participants pressed the 
“STOP” button. The app recorded and stored the stream of 
eyelid states during this period. The app presented each eye-
lid gesture five times randomly. Thus, the app collected five 
samples per gesture for each participant, which was used to 
train the eyelid gesture classifier on the phone in real time. 
The training process took on average 102 ms.

To collect testing data, participants performed each eyelid 
gesture five more times although standing in another office 

Figure 3. (a)–(d) present the data collection UIs for eyelid states (a, b) and for eyelid gestures (c, d). 1 shows the name of eyelid states or 
eyelid gestures, 2 shows the face detection result, and 3 shows the control buttons, such as “start,” “cancel,” and “redo.” During eyelid 
gesture evaluation, detected eyelid state is shown in 4.

(b)(a) (c) (d)
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“out-of-box” with reasonable accuracy for a user, but the per-
formance could be improved if the classifier is trained with 
the user’s data samples (i.e., user-dependent classifier).

4. STUDY WITH PEOPLE WITH SEVERE MOTOR  
IMPAIRMENTS

4.1. Participants
Although people with motor impairments are relatively 
small population,3, 21 we were able to recruit four people with 
severe motor impairments (PMI) for the study with the help 
of a local organization of people with disabilities. Table 1 
shows participants’ demographic information. One partici-
pant wore contact lens, and the rest did not wear glasses or 
contact lens. The study lasted approximately an hour, and 
each participant was compensated with $15.

4.2. Procedure
The studies were conducted in participants’ homes. Figure 5 
shows the study setup. We asked participants to sit in their 
daily wheelchair or a chair. We positioned an Android phone 
(Huawei P20) on the top of a tripod and placed the tripod 
on their wheelchair tables or desks so that the phone was 
roughly 30–50 cm away from their faces and its front camera 
was roughly at their eye level.

We slightly modified the evaluation app (see Figure 3) to 
accommodate the participants’ motor impairments. Instead 
of asking them to press “START” and “STOP” buttons, the 

room using the same app and aforementioned procedure.

3.3. Results
To evaluate the eyelid state classifier, we performed 10-fold 
cross validations; to evaluate the eyelid gesture classifier, we 
performed user-dependent and user-independent evaluations.

Eyelid state evaluation. We performed a 10-fold cross-
validation on each participant’s data and averaged the per-
formance across all participants. The overall accuracy was 
.92 (SD = .09). The accuracy for each eyelid state was as fol-
lows: both eyelids open (.98), right eyelid close (.89), left eyelid 
close (.85), and both eyelids close (.96). Because both eyes open 
were the gesture delimiter to separate eyelid gestures, we fur-
ther trained a classifier to recognize only two eyelid states by 
grouping the last three states (with an eyelid close) together. 
The average accuracy was 0.98 (SD = .02).

User-dependent eyelid gesture evaluation. For each 
participant, we trained a user-dependent classifier with 
five samples for each gesture and tested it with another 
five samples. We then averaged the performance of the 
classifier for each gesture across all participants. The 
average accuracy of all gestures was .76 (SD = .19) and 
the average accuracy for each gesture was as follows: L 
(.93), R (.78), B-R- (.78), B-L- (.78), B (.77), L- (.77), B- (.75), 
R- (.73), and BOB (.57). This result suggests that user-
dependent gesture classifiers were able to detect eyelid 
gestures when users were in different indoor environ-
ments and postures. We further computed the confu-
sion matrix to show how gestures were misclassified in 
Figure 4a. In addition, the average time it took for par-
ticipants to complete each gesture was as follows: R (745 
ms), L (648 ms), B (668 ms), R- (2258 ms), L- (2010 ms),  
B- (2432 ms), B-L- (4169 ms), B-R- (4369 ms), and BOB (2198 
ms). It shows that more complex gestures took longer to 
complete overall.

User-independent eyelid gesture evaluation. To assess 
how well a pretrained user-independent eyelid gesture clas-
sifier would work for a new user whose data the classifier 
is not trained on, we adopted a leave-one-participant-out 
scheme by keeping one participant’s data for testing and 
the rest participants’ data for training. The average accuracy 
of all gestures is .68 (SD = .17), and the average accuracy for 
each gesture was as follows: L (.88), R (.78), B-L- (.77), B (.75), 
L- (.7), B-R- (.63), R- (.6), B- (.57), and BOB (.47). We also com-
puted the confusion matrix to show how gestures were mis-
classified in Figure 4b. This result suggests that a pretrained 
user-independent eyelid gesture classifier could be used 
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Figure 4. Study 1: The confusion matrix of user-dependent (a) and 
user-independent (b) evaluations, respectively (columns: ground 
truth; rows: predictions; and N/A means not recognized).

ID Gender Age Motor impairments Hand function Note

P1

P2

P3
P4

F

F

M
M

29

32

53
63

Cervical spinal cord injury (C5)

Cervical spinal cord injury (C6)

Cervical spinal cord injury (C5)
Two forearms amputation

Having difficulty holding and grasping; using a ring holder 
stand for her phone
Having difficulty extending and strengthening fingers; using 
an index finger’s knuckle to touch her phone
Having no control over individual fingers; moving forearms to 
move hands and using a ring fingertip to touch his phone
Using his prosthetic arms to hold and interact with his phone

Car accident in 2012; 
using a wheelchair
Acute myelitis in 2003; 
using a wheelchair
Car accident in 2004; 
using a wheelchair
Electric shock during 
high-voltage work in 1989

Table 1. The demographic information of the people with motor impairments.
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app used a 10-s countdown timer to automatically trigger 
the start and end of each task. In cases where participants 
needed a pause, they simply asked the moderator to pause 
the task for them. The participants followed the instructions 
of the evaluation app to keep their eyelids in instructed eyelid 
states so that 200 frames were collected for each eye lid state. 
These data were used to evaluate the eyelid state classifier in 
a 10-fold cross-validation. Next, the participants followed the 
instructions of the evaluation app to perform each gesture five 
times, which were used as training data for user-dependent 
evaluation. After a break, the participants followed the same 
procedure to perform each gesture five times again, which 
were used as testing data for the user-dependent evaluation.

4.3. Results
Eyelid state evaluation. We performed a 10-fold cross-
validation on each participant’s data and averaged the per-
formance across all participants. The overall accuracy was 
.85 (SD = .15), and the accuracy for each eyelid state was as 
follows: both eyelids open (.99), right eyelid close (.65), left 
eyelid close (.79), and both eyelids close (.99). We noticed that 
individual differences exist. For example, P2 had trouble con-
trolling her right eyelid and consequently had much lower 
accuracy for closing the right eyelid: both eyelids open (.997), 
right eyelids close (.02), left eyelids close (.57), and both eyelids 
close (1.00). When the last three eyelid states (with at least one 
eyelid close) were grouped into one close state, the accuracy of 
the two-state classifier was more robust: .997 (SD = .004).

User-dependent eyelid gesture evaluation. We performed 
the same user-dependent evaluation as Section “User-
dependent eyelid gesture evaluation”, and the overall accu-
racy of all gestures was .76 (SD = .15). The accuracy for each 
gesture was as follows: B-R- (1.00), B- (.95), B (.95), L- (.85), L 
(.80), R (.75), R- (.60), B-L- (.55), and BOB (.35). We computed 
the confusion matrix (see Figure 6a) to show how gestures 
were misclassified. Similarly, we also computed the average 
time to complete each gesture: R (699 ms), L (889 ms), B (850 ms), 
R- (3592 ms), L- (3151 ms), B- (3722 ms), B-L- (6915 ms), B-R- 
(6443 ms), and BOB (3002 ms).

User-independent eyelid gesture evaluation. We per-
formed the same user-independent evaluation as Section 
“User-independent Eyelid Gesture Evaluation”, and the 

overall accuracy was .69 (SD = .20). The accuracy of each ges-
ture was as follows: B- (.95), B-R- (.90), B (.85), L (.75), L- (.65), 
R- (.55), B-L- (.55), BOB (.55), and R (.50). We also computed 
the confusion matrix (see Figure 6b) to show where the mis-
classifications happened.

4.4. Interacting with mobile apps with eyelid gestures
Navigating between and within mobile apps is a common 
task that is typically accomplished by a series of touch 
actions on the screen. App navigation happens at three 
levels: between apps, between tabs/screens in an app, and 
between containers in a tab/screen of an app. Tab is a com-
mon way of organizing content in an app. Screen is another 
way of organizing content, usually in the launcher. Within a 
tab, content is further organized by containers, often visually 
presented as cards.

To allow people with motor impairments to accomplish 
the three types of navigation using eyelid gestures only, we 
iteratively designed a mapping scheme between the ges-
tures and the types of navigation (see Figure 7) by following 
two design guidelines: 1) navigation directions should be 
mapped consistently with the eyelid being closed (e.g., clos-
ing the right/left eyelid navigates forward/backward to the 
next opened app); and 2) the complexity of the eyelid gestures 
for the lowest-level to the highest-level navigation should 
increase. Because navigating between apps has the most 
significant overhead,7 we assign the eyelid gestures with two 
eyelid states (e.g., B-R-, B-L-) to this level of navigation. In 
addition to navigation, BOB is used for selecting an item.

Evaluation. We designed app navigation tasks to measure 
how well participants would be able to learn the mappings 
and use the eyelid gestures to accomplish various naviga-
tion tasks. The evaluation app simulated three mobile apps 
(APP1, APP2, APP3), which were color coded (see Figure 8). 
Each app contains three tabs (TAB1, TAB2, TAB3). Each tab 
contains four containers numbered from 1 to 4. The outline 
of the container in focus is highlighted in red. The focus of 
attention was on the first container in TAB1 of APP1 when 
the evaluation started. Each participant was given a practice 
session that contained five navigation tasks, and the target 
item for each navigation was randomly generated. The app 

Figure 5. P1, P2, and P3 sat in their daily wheelchairs. P4 did not use 
a wheelchair and sat in a chair in front of a desk. The smartphone to 
be evaluated was mounted on the top of a tripod, which was placed 
on the wheelchair trays or the desk with its front camera roughly at 
their eye levels. R
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Figure 6. Study 2: The confusion matrix of user-dependent (a) and 
user-independent (b) evaluations, respectively (columns: ground 
truth; rows: predictions; and N/A means not recognized).
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spoke out a target location using Android’s text-to-speech 
API and also showed it on the bottom left of the UI. Each 
participant was asked to use eyelid gestures to navigate the 
focus of attention to the target item. Once the target loca-
tion was reached, the next navigation task was delivered 
in the same manner. The practice session took on aver-
age less than 5 min to complete. Afterward, the evaluation 
app generated another five randomized navigation tasks 
for participants to work on. Upon completion, partici-
pants were asked whether each gesture was a good match 
for completing the corresponding task (i.e., “would that 
gesture be a good way to complete the navigation?”), and 
whether each gesture was easy to perform (i.e. “rate the dif-
ficulty of carrying out the gesture’s physical action”) using 
7-point Likert-scale questions, which were used to elicit 
feedback on gesture commands (e.g., see Morris et al.11 
and Naftali and Findlater18).

Subjective feedback. The average ratings of the physi-
cal difficulty of carrying out the eyelid gestures were as fol-
lows (the higher the value, the easier the gesture): BOB 
(7), B- (7), R (6.8), L (6.5), L- (5.5), R- (5.5), B-R- (5.5), and 
B-L- (5.5). Three out of the four PMI participants felt eye-
lid gestures were easy to learn and they were getting better 
after a brief practice. “It was hard for me to perform some 
gestures because I had barely trained for these gestures other 
than blinking. For example, I had difficulty closing both eye-
lids first and then opening the left eyelid alone. I think the 
reason was that I had better control over the right eyelid than 
the left, and I had not practiced this gesture before. However, 
I did find it became more natural after I practiced for a couple 
of times.-P3”

The rest PMI participant felt that the gestures requiring 
to open one eyelid at first and then both (i.e., B-L- and B-R-) 
are fatiguing. Instead, they proposed new eyelid gestures in 
the opposite direction, such closing one eye first and then 
closing the other one (e.g., L-B-, R-B-).

For those long eyelid gestures, our method required 
users to sustain their eyelids in a state (i.e., open or close) 
for a period (i.e., counting three numbers by heart). P1 
expressed that she would like to be able to customize the 
duration, such as shortening it: “I noticed that a long hold-
ing time did help the system distinguish my ‘long’ gestures 
from ‘short’ ones well. But I was a bit frustrated about the long 
holding time because I felt somehow it wasted time. The sys-
tem could allow me to define the duration for ‘short’, ‘long’, or 
perhaps even ‘long-long’. For example, it could ask me to per-
form these gestures and then learns my preferred duration for 
short and long gestures.”

The average ratings of the mappings between eyelid ges-
tures and the levels of navigation were as follows (the higher 
the value, the better the mapping): R (6.08), L (6.08), R- 
(5.83), L- (5.83), B- (5.67), B-R- (5.33), and B-L- (5.33). All 
four PMI participants felt the mappings were natural. In 
particular, participants appreciated that more complex 
eyelid gestures were assigned to less-frequent but high-
cost commands (e.g., switching apps) although simpler 
eyelid gestures were assigned to relatively more-frequent 
but low-cost commands (e.g., switching between contain-
ers or tabs within an app). “As a person with a cervical spine 
injury, it is common for me to commit false inputs. Making 
apps-switching harder can prevent me from switching to other 
apps by accident. Since I use in-app functionalities more often 
than switching between apps, I prefer having simple eyelid 
gestures associate with frequent in-app inputs, such as scroll-
ing up to view new updates in a social media app.-P1”

In addition, P4 felt that it would be even better to allow a 
user to define their own mappings in cases where the user 
is unable to open or close both eyelids at the same level of 
ease. Furthermore, P2 and P4 wished to have an even harder-
to-perform gesture as the “trigger” to activate the recog-
nition. “I have difficulty holding my phone stable and might 
have falsely triggered the recognition more often than others.  
I may need more time to place the phone at a comfortable posi-
tion before using it. During this time, I may accidentally trigger 
false commands to the phone. Therefore, a harder-to-perform 
gesture, perhaps triple winking, might be a good one for me to 
trigger the recognition.-P4 (with prosthetic arms)”

We further asked participants about the usage scenarios 
of the eyelid gestures. Participants felt that eyelid gestures 
are handy when it is inconvenient to use their hands or fin-
gers. “Eyelid gestures are useful when I lie down on my stomach 
and rest. I have better control over my eyelids than my fingers. In 
fact, I can barely control my fingers. Similarly, I would like to use 
it when I cook or take a bathroom. Also, because it is extremely 
difficult for me to press buttons on a TV remote, I’d love to use 
the eyelid gestures to switch TV channels.-P2”

Overall, we found that participants would like to apply 
eyelid gestures on various types of electronic devices (e.g., 
TVs, PCs, smartphones, tablets) in daily activities. Moreover, 
we found that participants preferred the eyelid gesture 
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tabtab tab screen screen screen

R- container container

R R L

R LR LL-

R- R- R-B-R-

B-L-L- L- L-
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Figure 7. The mapping scheme for navigating apps (B-R-, B-L-), tabs/
screens (R-, L-), and containers (R, L).

Figure 8. (a)–(d) are the app navigation UIs. 1 shows the containers, 
2 shows the tabs, 3 shows the current app name, and 4 shows the 
target item of current trial. Three types of navigation are illustrated: 
between containers in a tab (a, b), between tabs within an app (a, c), 
and between apps (a, d).
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people are awake. However, other delimiters might enable 
new eyelid gestures, such as “blinking the right/left eye twice 
(although keeping the other eye closed).”

User-defined eyelid gesture design. Our study showed 
that people with motor impairments preferred customiz-
ing eyelid gestures to use in different contexts and to avoid 
false activation of recognition based on their ability to con-
trol their eyelids. Thus, it is imperative to understand what 
eyelid gestures people with motor impairments would 
want to create and use. Co-design workshops with people 
with motor impairment and gesture elicitation studies are 
viable approach to uncover user-defined eyelid gestures.

Eyelid gestures and hybrid eye gestures. We explored 
a subset of possible eyelid gestures with one or two eye-
lid states between the gesture delimiter (i.e., both eyelids 
open). There are other gestures with two or more eyelid 
states, such as “winking three times consecutively.” Although 
such gestures seem to be more complex, they might be more 
expressive and thus easier to remember. Future work should 
explore the trade-offs between the complexity and expressive-
ness of eyelid gestures.

Furthermore, the literature has explored gaze gestures 
for people with motor impairments to entry texts, draw on 
computer screens, and navigate wheelchairs. Thus, it is 
worth exploring ways to combine eyelid gestures with gaze 
to create hybrid eye gestures to enrich touch-free interac-
tions for both people with and without motor impairments.

7. CONCLUSION
We have taken a first step toward designing eyelid gestures 
for people with motor impairments to interact with mobile 
devices without needing to touch the devices. We have 
presented an algorithm to detect nine eyelid gestures on 
smartphones in real time and demonstrated that it could 
recognize nine eyelid gestures for both able-bodied users 
in different indoor environments and postures (i.e., sitting 
and standing) and for people with motor impairments with 
only five training samples per gesture. Moreover, we have 
designed a gesture mapping scheme for people with motor 
impairments to navigate apps only using eyelid gestures. 
Our study also shows that they were able to learn and use 
the mapping scheme with only a few minutes practice. 
Based on participants’ feedback and our observations, we 
proposed five recommendations for designing and using 
eyelid gestures.

Our work only scratches the surface of the potential of 
eyelid gestures for people with motor impairments and for 
the general public for hands-busy scenarios. Future work 
includes conducting larger scale studies with more people 
with a diverse set of motor ability in different environments, 
exploring a richer set of eyelid gestures by allowing for cus-
tomization and using different gesture delimiters, and com-
bining eyelid gestures with other input modalities, such as 
gaze and facial gestures.
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system to allow them to 1) customize the eyelid gesture 
holding time and the mappings between gestures and the 
triggered commands; 2) use a hard-to-perform gesture to 
activate the recognition to reduce false positives; and 3) 
interact with computing devices in scenarios when fingers 
or hands are inconvenient or unavailable to use.

5. DISCUSSION
Our user studies with people without and with motor impair-
ments have shown that our algorithm was able to recognize 
their eyelid gestures on mobile devices in real time with rea-
sonable accuracy. This result is encouraging because they 
only had less than 5 min to practice the gestures. Thus, we 
believe our algorithm opens up a new opportunity for peo-
ple with motor impairments to interact with mobile devices 
using eyelid gestures.

We present five recommendations for designing and 
using eyelid gestures for people with motor impairments: 1) 
because not all users could open and close two eyelids with 
the same level of ease, it is important to estimate how well a 
user can control each eyelid and then only use the gestures 
the user can comfortably perform; 2) because a predefined 
duration for holding an eyelid in a state may not work the 
best for everyone, it is desirable to allow for customizing the 
duration. Indeed, participants suggested that the system 
could learn their preferred duration from their gestures; 3) 
use the eyelid gestures with two or more eye states (e.g., B-R-, 
B-L-) to trigger rare or high error-cost actions because users 
perceive such gestures more demanding and less likely to be 
falsely triggered; 4) allow users to define a “trigger” gesture 
to activate the gesture detection to avoid false recognition; 
and 5) allow users to define their own gestures to enrich their 
interaction vocabulary.

6. LIMITATIONS AND FUTURE WORK
Although our participants did not complain about fatigue 
due to short study duration, performing eyelid gestures for 
a long time might be fatiguing. Furthermore, our study only 
included a small number of people with motor impairments. 
Future work should conduct larger scale studies with more 
participants who have a more diverse set of motor impair-
ments for longer periods to better understand practices and 
challenges associated with using eyelid gestures.

As a first step toward designing eyelid gestures for peo-
ple with motor impairments, our work opens up promising 
future research directions.

Eyelid states. Our eyelid gesture design space is based 
on four eyelid states with eyelids either open or close. As is 
described in Section 2, eyelids could also be in half-closed 
states (e.g., squinting). Including half-closed states into the 
design space would result in more eyelid gestures.

Duration of eyelid states. We divided the duration of an 
eyelid state into two discrete levels: short and long. However, 
more levels are possible. Indeed, a participant in Study 2 
suggested “long-long” duration. Future work should study 
the levels of duration that users could reasonably distin-
guish to uncover more eyelid gestures.

Gesture delimiter. We used “both eyelids open” as the 
gesture delimiter as it is the default state of the eyes when 
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