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ABSTRACT
The interaction context (or environment) is key to any HCI task

and especially to adaptive user interfaces (AUIs), since it represents

the conditions under which users interact with computers. Unfor-

tunately, there are currently no formal representations to model

said interaction context. In order to address this gap, we propose a

contextual framework for AUIs and illustrate a practical applica-

tion using learning management systems as a case study. We also

discuss limitations of our framework and offer discussion points

about the realisation of truly context-aware AUIs.
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1 INTRODUCTION
Research in Adaptive User Interfaces (AUIs) has provided empirical

evidence about the importance of contextual information from the

user’s environment to aid personalisation of UIs [Shankar et al.

2007]. Although there are several works on context-aware AUIs

that explore the role of said environment, this research area remains

open. In practice, users evolve in a physical space together with

other people and devices that often tend to influence the behaviour

of the users. Additionally, a physical space by itself has certain rules

that govern user behaviour and impose additional constraints on
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how users interact with computers, which ultimately determines

how interfaces should be adapted. Nevertheless, classic approaches

to AUIs focus on cues and signals solely collected from users to per-

sonalise interfaces, largely ignoring contextual information. In this

work we propose a general framework which allows to incorporate

the user’s interaction context (or environment) in AUIs by design.

In order to provide contextual grounding for our framework we

first briefly overview related work on AUIs (section 2). Then, in

section 3, we formalise the problem by taking a systems theory

perspective [Maier 1996], and present our proposed framework

inspired by a classic reinforcement learning architecture [Sutton

and Barto 1998; Watkins and Dayan 1992]. In section 4 we present a

case study that illustrates a potential application of our framework.

We finish with implications of our proposal and provide several

points for discussion and future work (section 5).

2 RELATEDWORK
Many studies in AUIs explore the role of user’s feedback on in-

terface personalisation. Some types of feedback collected include:

using natural language programming to optimise behaviour of arti-

ficial agents and task disambiguation [Jiang et al. 2019]; introducing

head-gesture analysis to facilitate hands-free interaction with Head

Mounted displays [Yan et al. 2018]; enabling silent-speech interac-

tion mode with a mobile device by analysing user’s mouth opening

degree [Sun et al. 2018]; utilising users’ mouse behaviour to auto-

matically modify layout of a website [Leiva 2012]; or using user

body postures and physical activity to adjust the features of the

surrounding environment such as ambient light, temperature or

music [Wang et al. 2019].

Another line of research focused on system features that can be

used for interface adaptation. For instance, Jiang et al. [Jiang et al.

2019] proposed a novel layout method that adds OR-constraints

(ORC) to standard constraint-based layout specifications. The pro-

posed method unifies grid layout and flow layout, offering new

possibilities for flexible UIs that were not supported by any other

layout method. In another study, Swearngin et al. [Swearngin et al.

2020] proposed the Scout system to help designers rapidly explore

alternative interface layouts through mixed-initiative interaction

with high-level constraints (e.g. semantic structure, emphasis, order)

and design feedback.
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2.1 AUI Frameworks
Previous formalizations of AUIs have approached the adaptation

problem from different angles. One notable example in this area is

the Supple system [Gajos and Weld 2004] which framed UI adap-

tation as an optimisation problem. Supple minimises user’s effort

by providing interface adaptations that meet device and user ca-

pabilities. However, Supple did not account for the modeling of

environment features.

Similarly, Bouzit et al. [Bouzit et al. 2017] formalised a design

space for user interface adaptation, alas without modelling the

environment. The proposed framework is based on Perception-

Decision-Action cycle that is augmented by Learning-Prediction-

Action, allowing for UI designs that are descriptive, comparative,

and generative.

On the other hand, Abrahão et al. [Abrahão et al. 2021] proposed

a conceptual reference framework for intelligent user interface

adaptation with a set of conceptual adaptation properties that are

crucial for model-based AUIs. While the authors mention an “Envi-

ronmental Model” as a part of their “Context Model” that affects

system adaptation, there is no formulation provided regarding the

elements that define the environment and the role of their interac-

tions.

Overall, while previous work on proposed conceptual modelling

of the system, to the best of our knowledge, conceptual modelling

of the environment has not been proposed yet. Moreover, while

taxonomies of interaction environment exist there are currently

no formalisation of this concept. Bearing in mind the importance

of contextual information that can be obtained from interaction

environment and benefits that it can be for development of AUIs, in

the current paper we propose a conceptual framework formodelling

the environment.

3 A CONTEXTUAL FRAMEWORK FOR AUIS
We propose that the environment of the user can be understood as

a System-of-Systems (SoS) which contains sub-systems such as the

user, the devicewhich implements the adaptation or personalisation,

other users and entities in the same physical space with the user

that may have a direct or indirect influence on their behaviour or

on the personalisation. Each of these sub-systems posses their own

systemic properties; i.e. components, objectives, relations, behaviour,
structure, interface, environment, and functions [Maier 1996]. Taking

such a systemic view allows to better understand the coexisting

entities, their inter-dependencies, as well as their influence on the

environment and vice versa. Thus, we can formalise the problem of

UI adaptation 𝑝 as a function of the composing systems, given by

𝑝 = 𝑓 (𝑢,𝑑, 𝑒) (1)

where𝑢 is the user,𝑑 is the device to be adapted through its interface,

and 𝑒 is the environment potentially influencing the user as an

independent system as well as containing subsystems itself, such

as other people and devices that may have an impact on the user.

Adapting UIs often entails changing some functionalities such

as information content, presentation layout, or distinctiveness of

an interface to increase its personal relevance to the user. Doing

so requires taking into account not only the user but also environ-

mental constraints and potential influences imposed on the user.

This essentially means devising an efficient strategy to understand

and reason about dynamic interaction responses of the user and,

consequently, adapting the UI to the environmental changes. Imple-

menting this, however, is not a trivial task as it requires to derive

efficient representations of the user, the coexisting entities, and the

environment’s state from high-dimensional sensory inputs, and use

these information sources to generalise past experiences to new

situations in order to better adapt UIs.

Such types of challenging tasks are remarkably solved by hu-

mans and other animals through a harmonious combination of

reinforcement learning (RL) and hierarchical sensory processing

systems [Fukushima and Miyake 1982; Serre et al. 2005]. This in

particular has inspired the development of several RL algorithms

over the years, cf. Nguyen et al. [Nguyen et al. 2020]. Early RL

algorithms were limited to domains in which useful features could

be handcrafted, or to domains with fully-observed low-dimensional

state spaces.

Recently, Deep Q-networks (DQNs) can learn successful policies

directly from high-dimensional sensory inputs using end-to-end

reinforcement learning [Mnih and Kavukcuoglu 2017]. DQNs have

been tested in various complicated tasks and were able to outper-

form all previous RL algorithms [Silver et al. 2016, 2017]. DQNs

have also enabled breakthroughs such as “AlphaGO” [Chen 2016]

and“AlphaStar” [Arulkumaran et al. 2019], which have inspired re-

cent work on AUIs in the context of linear menus [Todi et al. 2021].

These advancements demonstrate the potential of RL to build intel-

ligent agents by giving them the freedom to learn by exploring their

environment and make decisions to take actions that maximise a

long term reward.

We believe that RL can be highly beneficial to AUIs, as it allows

learning through exploration, unlike classic approaches and super-

vised methods, that often require large amounts of labelled data

and are harder to train with continuous action spaces. Taking this

inspiration, in the following we reformulate the goal of AUIs as an

RL task by extending the high-level formalisation in Equation 1.

In classic RL, agents interact with their environment through

a sequence of observations, actions, and rewards [Watkins and

Dayan 1992]. At a given time, an agent takes an observation (i.e.,

information about the state of the environment) and takes an action

that will maximise a long-term reward. The agent then observes

the consequence of the action on the state of the environment and

the associated reward. It then continues to make decisions about

which actions to take in a way that maximises the cumulative future

reward. This is done by learning action value function:

𝑄∗ (𝑠, 𝑎) = max
𝜋
E

[∑︁
𝑡⩾0

𝛾𝑡𝑟𝑡 |𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋

]
(2)

which is the maximum sum of rewards 𝑟𝑡 discounted by 𝛾 at

each time step 𝑡 , achievable by a policy 𝜋 = 𝑝 (𝑎 |𝑠), after making

an observation of 𝑠 and taking an action 𝑎. This means that RL

agents operate based on a policy 𝜋 to approximate 𝑄-values (state-

action pairs) that maximise a future reward. Figure 1 illustrates the

schematics of the different components in classic RL. We refer the

reader to the work of Watkins and Dayan [Sutton and Barto 1998;

Watkins and Dayan 1992] for the details on Q-learning and RL.
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Figure 1: Classic Reinforcement Learning framework [Sut-
ton and Barto 1998].

Adopting this to the context of AUIs, the agent corresponds to

the device 𝑑 which operates based on some policy 𝜋 . The action

taken by the device 𝑎𝑡 at any time step 𝑡 corresponds to selecting

an optimal UI configuration layout denoted by x = (𝑥1, . . . , 𝑥𝑁 )

representing a configuration over 𝑁 features. The observation state

𝑠𝑡 then corresponds to the combination of the state of the user

𝑠𝑢𝑡 and the state of the environment 𝑠𝑒𝑡 . The reward the device

receives 𝑟𝑡 for selecting a configuration x is the sum of the rewards

deemed appropriate for the corresponding states of the user and

the environment: 𝑟𝑡 = 𝑟𝑢𝑡 + 𝑟𝑒𝑡 . Figure 2 illustrates the problem of

AUIs as an RL task.

Following the classic RL formulation, at each step the approxima-

tion of the optimal Q-value function𝑄∗
will be refined by enforcing

the Bellman equation [Watkins and Dayan 1992], which can be

reformulated for our AUI setting by substituting an action 𝑎 with

the task of selecting a configuration x given by

𝑄∗ (𝑠, x) = E𝑠′∼𝜀
[
𝑟 + 𝛾 max

x′
𝑄∗ (𝑠 ′, x′) |𝑠, x

]
, (3)

which states that given any state-configuration pair 𝑠 and x, the
maximum cumulative reward achieved is the sum of the reward for

that pair, 𝑟 , plus the value of the next state we end up with, 𝑠 ′. The
value at state 𝑠 ′ will be the maximum over all possible configura-

tions x′ at 𝑄∗ (𝑠 ′, x′). Thus, the optimal policy 𝜋∗ corresponds to
selecting the best UI configuration in any state, as specified by 𝑄∗

.

In this iterative process, the Bellman equation is used as a value-

iteration algorithm to refine 𝑄∗
:

𝑄𝑖+1 (𝑠, x) = E
[
𝑟 + 𝛾 max

𝑥 ′
𝑄𝑖 (𝑠 ′, x′) |𝑠, x

]
, (4)

where 𝑄𝑖 converges to 𝑄
∗
as 𝑖 approaches to infinity.

In the context of AUIs, we are interested in finding an optimal

policy on which the device operates in order to select the best

possible configuration given the states of the user and the envi-

ronment. Since users in such settings experience cognitive and

physical workload, they respond differently depending on: indi-

vidual skills, UI familiarity, preferences, etc. In particular, these

user states may correspond to implicit interactions which are often

hard to detect and analyse. Nevertheless, considerable advances

have been made in inferring emotional, cognitive, and behavioural

states through response monitoring of various biosignals [Dinh

et al. 2020], for example electrocardiography [Cairns et al. 2016],

electroencephalography [Höller et al. 2017], or eye-gaze [Menges

et al. 2019] and mouse [Brückner et al. 2021] movements. Thus,

such biosignals can be leveraged as an underlining technique of our

approach to iteratively infer user states to find the best personalised

UI configuration through an optimal policy given the inferred user

states.

4 USE CASE: LEARNING MANAGEMENT
SYSTEMS

With the COVID-19 pandemic, the use of learning management

systems has increased dramatically [Szopiński and Bachnik 2022].

Since these systems can be accessed with different devices (e.g. desk-

top, mobile, tablet) and in various environments (e.g. home-office,

conference rooms, common areas in universities), it is important

that the UI can consider these environments for adaptation. For the

purpose of demonstrating our proposed framework, we will con-

sider a use case where an AUI accounts for changes in environment

in order to improve the user’s remote learning experience.

Mark is a student participating in a remote lecture that is broad-

casted live on an online learning platform. Mark is attending from

his apartment (environment(e)), which he shares with other stu-

dents. When the lecture starts, Mark joins from his living room

using a laptop and listens to the audio via laptop speakers, as he

does not have any headset available. The current layout of the

content presentation on his laptop (device (d)) corresponds to a

configuration (x) chosen by the AUI. Some time later, a persistent

drilling noise starts coming out from his neighbour’s flat, so the

AUI automatically activates closed captions. The captions appear

to be too small to read, which makes Mark lean closer to the screen.

The AUI detects this movement and modifies the font size to im-

prove readability. After 20 minutes, the drilling noise stops and

the QA session starts, so Mark switches on his microphone to ask

a question. As he begins to speak, suddenly one of his flatmates

enters the living room. The AUI recognises a visual change in the

environment and automatically blurs Mark’s background to min-

imise the distracting impact that it may have on other students who

are currently attending the lecture. Shortly after the doorbell rings.

Mark is now alone in the apartment so he should answer the door.

However, since the QA session is still going on, Mark continues

listening to it via his mobile phone as he walks towards the door.

The AUI modifies the layout to account for the limitations of the

small screen display. The lecture concludes as Mark opens the door:

it is a deliveryman with the headphones that he recently ordered.

In the presented scenario the changes in the environment such

as the drilling noise (acoustic signal), someone entering the room

(background visual signal), walking towards the door (posture

change), etc. are signals collected from the user as well as the

environment that serve as input to interpret the state of user (𝑠𝑢𝑡 )

and environment (𝑠𝑒𝑡 ). In RL, rewards guide the exploratory nature

of an agent. Hence, in our proposed framework, the device expects

some form of feedback from the user and the environment in the

form of a reward (r), either positive or negative, for choosing the
content presentation (x) given their observed states. It should be

noted that modelling such a reward is rather a challenging task

due to difficulties in interpreting the true meaning of multi-modal

signals collected from the users and their environment. Nonethe-

less, the above use case illustrates how modelling and responding

to the changes in user environment can contribute to an improved
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Figure 2: User interface adaptation as an RL task.

learning experience by using signals capture from the environ-

ment to automatically adapt user interface to different interaction

circumstances.

5 CURRENT CHALLENGES AND
IMPLICATIONS

Although our framework paves a path towards incorporating the

environment in the design of AUIs, the RL formulation suffers

from a scalability problem. This is due to the fact that one must

compute𝑄 (𝑠, x) for every state-configuration pair in order to select

the best UI configuration. This is computationally infeasible as

the configuration space is potentially infinite, only limited by the

number of elements that can be adapted. Take for example the

domain of web applications: with CSS and JavaScript it is possible

to modify any UI element at will [Leiva 2011].

Recent research in RL has addressed the scalability problem by

using function approximators, typically a neural network, to esti-

mate the action-value function 𝑄 (𝑠, 𝑎;𝜃 ) ≈ 𝑄∗ (𝑠, 𝑎) where 𝜃 is the

trainable parameters (weights) of the neural network [Mnih and

Kavukcuoglu 2017]. Deep Q-learning is one of the most commonly

used techniques to approximate optimal action-value functions

using a neural network. Hence, we can define our Q-function ap-

proximator using a neural network too. This means that, in the

forward pass while training the network, we use a loss function to

minimise the error of the Bellman equation, thereby determining

how far 𝑄 (𝑠, x) is from the target 𝑄∗ (𝑠, x), given by

𝐿𝑖 (𝜃𝑖 ) = E𝑠,x∼𝜌 (.) [𝑦𝑖 −𝑄 (𝑠, x;𝜃𝑖 )]2 (5)

where,𝑦𝑖 = E𝑠′∼𝜀 [𝑟 + 𝛾 maxx′ 𝑄 (𝑠 ′, x′;𝜃𝑖−1) |𝑠, x]. Then, then back-
ward pass is a gradient update with respect to the Q-function pa-

rameters 𝜃 .

It is also evident from recent works that there are different varia-

tions of DQN that have enjoyed a huge success in RL tasks such as

Actor-Critic methods [Xiang et al. 2019], which combine DQN with

Deep Deterministic Policy-Gradient Algorithms (DDPG) [Lillicrap

et al. 2015] and a multi-agent version of actor-critic methods [Lowe

et al. 2017; Ryu et al. 2020]. We are optimistic that our proposed

framework, complemented by such techniques, may overcome scal-

ability issues and open new, interesting research opportunities in

AUIs, as it enables adaptation by learning through exploration.

Overall, our proposed contextual framework can bring several

practical benefits. Firstly, it allows a contextual modelling approach

of AUIs that incorporates environment and accounts for its con-

stituent elements. Secondly, framing the problem as an RL task

opens possibility of multidisciplinary research at the intersection

of Machine Learning, Cognitive Science and Psychology. Thirdly, if

applied in practise, the RL architecture empowers us to learn com-

plex interaction responses of users and their environment through

exploration, which, in turn, can lead to design of more seamless

and user-friendly AUIs. Furthermore, although we have used a

single user setting to illustrate the proposed architecture, it could

be extended to more complicated interaction scenarios such as

multi-user setting and group adaptation, where single adaptation

is applied to multiple users.

Nevertheless, we would like to note that there are several open

questions that need to be addressed before the practical implemen-

tation of our framework becomes feasible. Firstly, determining the

reward function poses a challenge as it requires keeping the user

in the loop in order to provide their feedback based on system’s

actions. Secondly, the system needs to correctly interpret and act

on a multitude of signals from the environment that may poten-

tially have contradictory meaning. Thirdly, due to complexity of

the environment, the neural network requires to be exposed to a

large number of examples which makes training extremely time

consuming and negatively impacts scalability of the system.

We anticipate that by concerted collaborative efforts, the AUI

community will begin to address these challenges to pave way to

practical implementation of the proposed contextual framework in

the future.
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