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Figure 1: We present the first system capable of creating megapixel avatars from single portrait images. Our method outper-
forms its competitors in the quality of the cross-driving results and manages to preserve the high-resolution appearance of
the source image even for out-of-domain examples like paintings, as seen in this example.

ABSTRACT
In this work, we advance the neural head avatar technology to
the megapixel resolution while focusing on the particularly chal-
lenging task of cross-driving synthesis, i.e., when the appearance
of the driving image is substantially different from the animated
source image. We propose a set of new neural architectures and
training methods that can leverage both medium-resolution video
data and high-resolution image data to achieve the desired levels
of rendered image quality and generalization to novel views and
motion. We demonstrate that suggested architectures and methods
produce convincing high-resolution neural avatars, outperforming
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the competitors in the cross-driving scenario. Lastly, we show how
a trained high-resolution neural avatar model can be distilled into
a lightweight student model which runs in real-time and locks the
identities of neural avatars to several dozens of pre-defined source
images. Real-time operation and identity lock are essential for many
practical applications head avatar systems. MegaPortraits website
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1 INTRODUCTION
Neural head avatars [3, 8, 12, 17–19, 22, 23, 25, 26, 30, 34, 38, 39]
offer a new fascinating way of creating virtual head models. They
bypass the complexity of realistic physics-based modeling of human
avatars by learning the shape and appearance directly from the
videos of talking people. Over the last several years, methods that
can create realistic avatars from a single photograph (one-shot)
have been developed [8, 26, 34, 38]. They leverage extensive pre-
training on the large datasets of videos of different people [4, 34] to
create the avatars in the one-shot mode using generic knowledge
about human appearance.

Despite the impressive results obtained by this class of methods,
their quality is severely limited by the resolution of the training
datasets. This limitation cannot be easily bypassed by collecting a
higher resolution dataset since it needs to be simultaneously large-
scale and diverse, i.e., include thousands of humans with multiple
frames per person, diverse demographics, lighting, background, face
expression, and head pose. To the best of our knowledge, all public
datasets [4, 34] that meet these criteria are limited in resolution. As
a result, even the most recent one-shot avatar systems [34] learn
the avatars at resolutions up to 512 × 512.

In our work, wemake three main contributions. First, we propose
a new model for one-shot neural avatars that achieves state-of-the-
art cross-reenactment quality in up to 512 × 512 resolution. In our
architecture, we utilize the idea of representing the appearance
of the avatars as a latent 3D volume [34] and propose a new way
to combine it with the latent motion representations [3], which
includes a novel contrastive loss that allows our system to achieve
higher degrees of disentanglement between the latent motion and
appearance representations. On top of that, we add a problem-
specific gaze loss that increases the realism and accuracy of eye
animation.

Our second and crucial contribution is showing how a model
trained on medium-resolution videos can be “upgraded” to the
megapixel (1024 × 1024) resolution using an additional dataset
of high-resolution still images. As a result, our proposed method,
while using the same training dataset, outperforms the baseline
super-resolution approach [37] for the task of cross-reenactment.
We are thus the first to demonstrate neural head avatars in proper
megapixel resolution.

Lastly, since many practical applications for human avatar cre-
ation require real-time or faster than real-time rendering, we distill
our megapixel model into ten times faster student model that runs
at 130 FPS on a modern GPU. This significant speedup is possible
since the student is trained for specific appearances (unlike the
main model that can create new avatars for previously unseen peo-
ple). Furthermore, the applications based on such a student model
“locked” to predefined identities can prevent its misuse for creat-
ing “deep fakes” while at the same time achieving low rendering
latency.

2 RELATEDWORK
The recent success of neural implicit scene representations [21] for
the problem of 3D reconstruction has inspired several works on
the so-called 4D head avatars [10, 18, 19, 22, 23, 36], which treat
the problem of appearance and motion modeling of the avatars as a

non-rigid reconstruction of the training video. These methods have
different ways of handling the non-rigidity of motion and either
learn it from scratch [22, 23, 36], use pre-trained motion extrac-
tors [10] or pre-computed coarse meshes [18, 19]. While all these
methods can achieve an impressive realism of renders and fidelity
of motions, they require multi-shot training data, are trained sepa-
rately for each avatar, and often fail to represent motions unseen
during training. In contrast, our method can impose motion from an
arbitrary video sequence on an appearance obtained from a single
image while still achieving megapixel resolutions of the renders.

Direct generation of videos via convolutional neural networks,
conditioned on appearance and motion descriptors, is an alternative
approach to talking-head synthesis. While the early works in this
area learned an avatar from the video [17, 30], the follow-up works
added few-shot and one-shot capabilities [3, 8, 25, 26, 34, 38, 39].
Most of these works use explicit representations for the motion,
such as keypoints or blendshapes, while others [3] have adopted
latent motion parameterization. The latter achieves better expres-
siveness of motion if the disentanglement from the appearance is
achieved during training. In our system, we chose the latter ap-
proach and proposed a new method of disentangling the motion
and the appearance descriptors, which significantly improves the
quality of the results.

The resolution of the talking head models is currently upper
bounded by the available video datasets [4, 34], which contain
videos of at most 512×512 resolution. This problem further restricts
the enhancement of the output quality on the existing datasets using
the standard high-quality image and video synthesis techniques [32,
33]. Alternatively, this problem could be treated as single image
super-resolution (SISR). This way, we require only the dataset of
still high-resolution images for training, which is easier to obtain.
However, the quality of the outputs of the one-shot talking head
model varies greatly depending on the imposed motion, which
results in poor performance of standard SISR methods [37]. These
classic approaches rely on supervised training procedures with
an a priori known ground truth, which we cannot provide for the
novel motion data since we only have one image per person. We
address this problem in a novel way by combining supervised and
unsupervised training and achieve considerably better performance
for arbitrary motion data than the solution based on SISR.

3 METHOD
We propose a system for the one-shot creation of high-resolution
human avatars, calledmegapixel portraits orMegaPortraits for short.
Our model is trained in two stages. Optionally, we propose an
additional distillation stage for faster inference. Our training setup
is relatively standard. We sample two random frames from our
dataset at each step: the source frame x𝑠 and the driver frame
x𝑑 . Our model imposes the motion of the driving frame (i.e., the
head pose and the facial expression) onto the appearance of the
source frame to produce an image x̂𝑠→𝑑 . The main learning signal
is obtained from the training episodes where the source and the
driver frames come from the same video, and hence our model’s
prediction is trained to match the driver frame. In this section, we
will focus on the principal training regime while leaving details of
the architectures to the supplementary materials.
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Figure 2: Overview of our base model. To encode the appearance of the source frame, we predict volumetric features v𝑠 and a
global descriptor e𝑠 from the source image via an appearance encoder Eapp. In parallel, we predict the motion representations
from both the source and driving images using a motion encoder Emtn. These representations consist of the explicit head
rotations R𝑠/𝑑 , translations t𝑠/𝑑 , and the latent expression descriptors z𝑠/𝑑 . They are used to predict the 3D warpings w𝑠→ and
w→𝑑 via the separate warping generators W𝑠→ and W→𝑑 . The first warping removes the source motion from the appearance
features v𝑠 by mapping them into a canonical coordinate space, and the second one imposes the driver motion. The canonical
volume is processed by a 3D convolutional network G3D, and the driving volume v𝑠→𝑑 is orthographically projected into 2D
features and processed by a 2D convolutional network G2D, which predicts an output image x̂𝑠→𝑑 .

3.1 Base model
During the first stage, we train our base model (Figure 2) by sam-
pling two frames x𝑠 and x𝑑 from a random training video. The
driving frame acts as both an input for our system and the ground
truth. The source frame x𝑠 is passed through an appearance encoder
Eapp, which outputs local volumetric features v𝑠 (a 4D tensor with
the fourth dimension corresponding to channels), and the global
descriptor e𝑠 . In parallel, the motion descriptors of the source and
driver images are calculated by separately applying a motion en-
coder Emtn to each image. This encoder outputs head rotations R𝑠/𝑑 ,
translations t𝑠/𝑑 , and latent expression descriptors z𝑠/𝑑 . The source
tuple (R𝑠 , t𝑠 , z𝑠 , e𝑠 ) is then input into a warping generator W𝑠→ to
produce a 3D warping field w𝑠→, which removes the motion data
from the volumetric features v𝑠 by mapping them into a canonical
coordinate space. These features are then processed by a 3D con-
volutional network G3D. Finally, the driver tuple (R𝑑 , t𝑑 , z𝑑 , e𝑠 ) is
fed into a separate warping generator W→𝑑 , which output w→𝑑 is
used to impose the driver motion. The final 4D volumetric features
are therefore obtained in the following way:

v𝑠→𝑑 = w→𝑑 ◦ G3D (w𝑠→ ◦ v𝑠 ), (1)

where ◦ represents a 3D warping operation. The idea behind this
approach is first to rotate the volumetric features into a frontal
viewpoint, remove any face expression motion decoded from z𝑠 ,
process them by a 3D convolutional network, and then impose the
driver head rotation and motion. We use a pre-trained network to
estimate head rotation data, but the latent expression vectors z𝑠/𝑑
and the warpings to and from the canonical coordinate space are
trained without direct supervision.

The volumetric feature encoding and the explicit use of head pose
are inspired by [34]. However, a significant difference with [34]

is that we do not use keypoints to represent expression and in-
stead rely on the latent descriptor [3], which is decoded into the
explicit 3D warping field to represent face mimics in a more person-
independent way. We have also observed that the motion disen-
tanglement scheme proposed in [3] starts to fail when we increase
the capacity of the avatar system to facilitate higher resolutions.
This problem leads to severe appearance leakage from the driv-
ing to the predicted image. To combat that, we propose using a
cycle-consistency loss, which we describe below, and improving the
driving image’s pre-processing pipeline. For more details, please
refer to the supplementary materials.

Finally, the driver volumetric features v𝑠→𝑑 are orthographically
projected into the camera frame using the same approach as in [34].
We denote this operation as P. The resulting 2D feature map is
decoded into the output image by a 2D convolutional network G2D:

x̂𝑠→𝑑 = G2D
(
P(v𝑠→𝑑 )

)
. (2)

We refer to the combination of the networks described above as
Gbase, so that

x̂𝑠→𝑑 = Gbase (x𝑠 , x𝑑 ). (3)

We use multiple loss functions for training, which can be split
into two groups. The first group consists of the standard train-
ing objectives for image synthesis. These include perceptual [14]
and GAN [33] losses that match the predicted image x̂𝑠→𝑑 to the
ground-truth x𝑑 . The other objective regularizes the training and in-
troduces disentanglement between the motion and canonical space
appearance features via the cycle consistency [42] loss.

Perceptual losses match the motion and appearance of the pre-
dicted image x̂𝑠→𝑑 to the ground-truth x𝑑 . We use three types of
pre-trained networks for the perceptual losses: regular ILSVRC (Im-
ageNet) [6] pre-trained VGG19 [27] to match the general content of
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the images, VGGFace [24] trained for face recognition to match the
facial appearance, and a specialized gaze loss based on VGG16 to
match the gaze direction. The latter network was trained to distill
a state-of-the-art gaze detection system [9]. For more details on
the training and usage of gaze loss, please refer to the supplemen-
tary materials. We calculate the weighted L1 distance between the
feature maps obtained for the predicted x̂𝑠→𝑑 and ground-truth
x𝑑 images using all these networks. The final perceptual loss is a
weighted combination of individual perceptual losses:

Lper = 𝑤INLIN +𝑤faceLface +𝑤gazeLgaze . (4)

Adversarial losses ensure the realism of the predicted images. We
calculate these losses using the same predicted and driving images.
Following the previous works, we train a multi-scale patch discrim-
inator [42] with a hinge adversarial loss alongside the generator
Gbase. We also include a standard feature-matching loss [33] to
improve the training stability. The GAN loss for the generator can
therefore be expressed as follows:

LGAN = 𝑤advLadv +𝑤FMLFM . (5)

Cycle consistency loss is used to prevent the appearance leakage
through the motion descriptor. During training, this task is essential
since the motion descriptor is calculated using the same image
as the ground truth. Without this regularizer, severe artifacts are
present when the driver differs from the source in lighting, hair and
beard style, or sunglasses because these features are leaked from
the driver image onto the predicted image.

In order to calculate this loss, we use an additional source-driving
pair x𝑠∗ and x𝑑∗ , which is sampled from a different video and there-
fore has different appearance from the current x𝑠 , x𝑑 pair. We then
apply the full base model to produce the following cross-reenacted
image: x̂𝑠∗→𝑑 = Gbase (x𝑠∗ , x𝑑 ), and also separately calculate a mo-
tion descriptor z𝑑∗ = Emtn (x𝑑∗ ). Note that we will also use the
stored motion descriptors z𝑠∗→𝑑 and z𝑠→𝑑 from the respective for-
ward passes of the base network.

We then arrange the motion descriptors into positive pairs P that
should align with each other: P =

{
(z𝑠→𝑑 , z𝑑 ), (z𝑠∗→𝑑 , z𝑑 )

}
, and

the negative pairs:N =
{
(z𝑠→𝑑 , z𝑑∗ ), (z𝑠∗→𝑑 , z𝑑∗ )

}
. These pairs are

used to calculate the following cosine distance:

𝑑 (z𝑖 , z𝑗 ) = 𝑠 ·
(
⟨z𝑖 , z𝑗 ⟩ −𝑚

)
, (6)

where both 𝑠 and𝑚 are hyperparameters. This distance is then used
to calculate a large margin cosine loss (CosFace) [31]:

Lcos = −
∑︁

(z𝑘 ,z𝑙 ) ∈P
log

exp
{
𝑑 (z𝑘 , z𝑙 )

}
exp

{
𝑑 (z𝑘 , z𝑙 )

}
+ ∑

(z𝑖 ,z𝑗 ) ∈N
exp

{
𝑑 (z𝑖 , z𝑗 )

} . (7)

To conclude, the total loss which is used to train the base model
is the sum of individual losses:

Lbase = Lper + LGAN +𝑤cosLcos . (8)

These losses are calculated using only foreground regions in
both predictions and the ground truth. Hence, our model has no
background generation built into it, which we found empirically to
hinder its performance. Instead, we impose the background post-
training via pre-trained inpainting and matting models. We obtain
the background plate using a state-of-the-art inpainting system [29]
and use the following systems for matting [11, 16]. The background

is combined with the predicted image via alpha-compositing using a
calculated matte. For more details, please refer to the supplementary
materials.

3.2 High-resolution model
For the second training stage, we fix the base neural head avatar
modelGbase, and only train an image-to-image translation network
Genh that maps the input x̂ at the resolution 512×512 to an enhanced
version x̂HR that has the resolution 1024 × 1024. We use a high-
resolution dataset of photographs [15] to train this model, in which
we assume all images to have different identities. It implies that we
cannot form source-driver pairs that only differ in their motion as
we do in the first training stage.

The high-resolution model is trained using two groups of loss
functions. The first group represents the standard super-resolution
objectives, for which use an 𝐿1 loss, denoted as LMAE, and a GAN
loss LGAN. The second group of objectives works in an unsuper-
vised way, and we use it to ensure that our model performs well
for the images generated in a cross-driving scenario. To do that,
for each training image xHR we sample an additional image xHRc ,
and generate its initial reconstruction x̂c = Gbase (xLR, xLRc ), where
xLRc is used to estimate motion, and xLR is used to estimate ap-
pearance. Since we do not have high-resolution ground-truth for
x̂HRc = Genh (x̂c), we can only match its distribution to ground
truth using a patch discriminator. Furthermore, we can enforce con-
tent preservation by applying the cycle-consistency loss at lower
resolution:

Lc
cyc = LMAE

(
DS4 (x̂c),DS8 (x̂HRc )

)
, (9)

where DS𝑘 denotes a 𝑘-times downsampling operator.
The final objective for Genh includes the adversarial and the

perceptual losses calculated for the predicted image x̂HR and its
ground-truth xHR, as well as an adversarial loss Lc

adv, calculated
for x̂HR𝑐 and xHR, and the cycle-consistency loss Lc

cyc:

Lenh = LGAN +𝑤MAELMAE +𝑤c
advL

c
adv +𝑤

c
cycLc

cyc . (10)

3.3 Student model
Finally, we use a small conditional image-to-image translation net-
work GDT, which we refer to as the student, to distill the one-shot
model. We train the student to mimic the prediction of the full
(teacher) model GHR = Genh ∗ Gbase, which combines the base
model and an enhancer. The student is trained only in the cross-
driving mode by generating pseudo-ground truth with the teacher
model. Since we train our student network for a limited number of
avatars, we condition it using an index 𝑖 , which selects an image
from the set of all 𝑁 appearances {x𝑖 }𝑁𝑖=1. Therefore, training pro-
ceeds as follows: we sample the driving frame x𝑑 and the index 𝑖 .
We then match the following two images:

x̂DT
𝑖→𝑑

= GDT (x𝑑 , 𝑖); x̂HR
𝑖→𝑑

= GHR (x𝑖 , x𝑑 ) .

We train this network using a combination of perceptual and ad-
versarial losses. For architectural details, please refer to the supple-
mentary materials.
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Source Driver Face-V2V [34] Ours
Figure 3: A qualitative comparison of head avatar systems in cross-reenactment scenario (top two rows) and self-reenactment
scenario (bottom row) at 512px resolution. In cross-reenactment, we can see that our approach achieves better preservation of
motion and appearance than the previous state-of-the-art (Face-V2V). In self-reenactment, we achieve the results of compara-
ble quality with the state-of-the-art. For more examples, please refer to the supplementary materials.

4 EXPERIMENTS
We use multiple datasets to train and evaluate our model: Vox-
Celeb2 [4] and VoxCeleb2HQ video datasets, and FFHQ [15] image
dataset. We have obtained a high-quality version of the VoxCeleb2
dataset, which we refer to as VoxCeleb2HQ, by downloading the
original videos and filtering them using both bitrate and image
quality assessment [28]. This leaves approximately one-tenth of
the original dataset (15,000 videos). We use this dataset to train and
evaluate our base model at 512 × 512 resolution while using the
original VoxCeleb2 dataset, filtered using bitrate, for the 256 × 256
resolution. For training a high-resolution model, we used a filtered
version of the FFHQ dataset, which consists of 20,000 images and
has no frames that contain multiple people or children. Lastly, we
use a proprietary dataset of 20,000 selfie videos and 100,000 selfie
pictures to train the student model.

4.1 Training details
We trained the 256 × 256 model for 200,000 iterations with the
batch size of 24, and the 512× 512 model for 300,000 iterations with
the batch size of 16. We used AdamW [20] optimizer with cosine
learning rate scheduling. The initial learning rate was reduced from
2 ∗ 10−4 to 10−6 during training iterations. We used the follow-
ing hyperparameters for the losses: 𝑤IN = 20,𝑤face = 4,𝑤gaze =

5,𝑤adv = 1,𝑤FM = 40, and𝑤cos = 2. We also set 𝑠 = 5 and𝑚 = 0.2
in the cosine loss.

We trained the high-resolution enhancer model for 50,000 iter-
ations with the batch size of 16. We used the same optimizer and
the learning rate scheduling. We set the loss weights to 𝑤MAE =

100,𝑤c
adv = 1,𝑤FM = 100 and 𝑤c

cyc = 10. Finally, for the student
model we distilled 100 avatars. We trained it for 170,000 iterations
with the batch size of 8. For detailed descriptions of all architectures,
please refer to the supplementary material.
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Source Driver FOMM [26] HeadGAN [8] Ours
Figure 4: A qualitative comparison of head avatar systems in cross-reenactment scenario (top two rows) and self-reenactment
scenario (bottom row) at 256 × 256 resolution. Our system significantly outperforms the competitors in cross-reenactment,
achieving more faithful motion and appearance preservation in the generated images. We also show that our system achieves
similar results in self-reenactment. For more examples, please refer to the supplementary materials.

4.2 Baseline methods
We compare our base model with the following systems.

Face Vid-to-vid (Face-V2V) [34] is a state-of-the-art system in
self-reenactment, i.e. when the source and driving images have the
same appearance and identity. Its main features are the volumetric
encoding of the avatar’s appearance and the explicit representation
of the head motion with 3D keypoints, which are learned in an
unsupervised way. In our basemodel, we utilize a similar volumetric
encoding of the appearance but instead encode the face motion
implicitly, which improves cross-reenactment performance.

First Order Motion Model (FOMM) [26] uses 2D keypoints to
represent motion and is another strong baseline for the task of
self-reenactment. Similar to Face-V2V, these keypoints are trained
in an unsupervised way. However, as shown in our evaluation, this
method fails to generate realistic images in the cross-reenactment
scenario.

Lastly, we compare against the HeadGAN [8] system, in which
the expression coefficients of the 3D morphable model [1] are used
as a motion representation. These coefficients are calculated using
a pre-trained dense 3D keypoints regressor [7]. Effectively, this
approach disentangles motion data from the appearance in the 3D
keypoints, but limits the space of possible motions (for example, it
does not allow the control of the gaze direction).

4.3 Cross-reenactment evaluation
Since pre-trainedmodels of FOMMandHeadGAN are only available
at 256 × 256 resolution, we compare them against our base model
trained on a bitrate-filtered VoxCeleb2 dataset. For Face-V2V, we
compare the 512 × 512 model pre-trained on the TalkingHead-
1KH [34] dataset to our base model trained on the VoxCeleb2HQ.
For the evaluation, we use samples from the VoxCeleb2HQ and
FFHQ datasets, downscaled to the training resolution.

For quantitative evaluation, we use the following metrics. Frechet
Inception Distance (FID) [13] is used to compare the distributions of
predicted images and the images in the dataset. Cosine similarity
between the embeddings of a face recognition network (CSIM) [39]
is used to evaluate the preservation of a person’s appearance in the
predicted image. Finally, we conduct two user studies (denoted as
UMTN and UAPP) to evaluate the motion and appearance preserva-
tion. We show the crowd-sourced users a random triplet of images:
a driving example to evaluate motion preservation or a source exam-
ple to evaluate the appearance, alongside the outputs of two random
methods. We then ask each user to pick one of the two outputs
with the better-preserved motion or appearance. We then measure
the percentage of examples where each method was picked. We
conducted our experiment on approximately 2,000 crowd-sourced
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Cross-reenactment
Method FID↓ CSIM↑ UMTN↑ UAPP↑

VoxCeleb2HQ & FFHQ (256 × 256)
FOMM 79.1 0.63 24.0 27.9
HeadGAN 70.0 0.66 23.6 32.1
Ours 68.9 0.72 52.4 40.0

VoxCeleb2HQ & FFHQ (512 × 512)
Face-V2V 63.4 0.70 34.4 45.4
Ours 58.8 0.73 65.6 54.6

Self-reenactment (raw / masked)
Method PSNR↑ SSIM↑ LPIPS↓

VoxCeleb2 (256 × 256)
FOMM 20.6 / 27.5 0.74 / 0.90 0.18 / 0.06
HeadGAN 18.6 / 26.5 0.68 / 0.88 0.20 / 0.07
Ours 18.3 / 27.0 0.67 / 0.89 0.23 / 0.07

VoxCeleb2HQ (512 × 512)
Face-V2V 21.9 / 31.2 0.76 / 0.90 0.18 / 0.06
Ours 20.2 / 30.2 0.72 / 0.89 0.22 / 0.07

Table 1: Quantitative results for cross and self-reenactment.
To evaluate cross-reenactment performance, we measure
FID (lower the better), CSIM (higher the better), and user
preference scores (UMTN measures motion preservation
and UAPP – appearance, both are higher the better). Our
method outperforms its competitors across all metrics at
both resolutions, achieving state-of-the-art results in the
cross-reenactment scenario. The gap is especially noticeable
in the user study, where we achieve significantly better mo-
tion preservation. We use standard PSNR, SSIM (higher the
better), and LPIPS (lower the better) metrics to evaluate the
self-reenactment. We measure each metric using either raw
or masked images. Our method performs similarly to the
competitors when face masking is applied while achieving
reasonable results in the unmasked (raw) scenario.

people, and each evaluation sample was shown, on average, to
twenty different users.

The qualitative results are shown in Figures 3-4, and the quanti-
tative metrics are presented in Table 1. Overall, we can see that our
method outperforms all competitors by some margin. Furthermore,
the first two rows in Figure 4 suggest that our approach is better
at preserving the shape and appearance of the source image and
the motion of the driver image, including gaze direction, than the
FOMM and HeadGAN systems. Compared to the Face V2V system
(Figure 3, first two rows), our implicit pose representation approach
prevents appearance leakage through the driving image, leading
to better preservation of the source image appearance, as well as
driver motion. These observations are confirmed by the quantita-
tive evaluation, in which we outperform our competitors across all
cross-reenactment metrics (Table 1), including both user studies.

Cross-reenactment
Method FID↓ CSIM↑ IQA↑
Base w/ bicubic 51.4 0.67 35.1
HiFaceGAN 49.4 0.65 43.9
Ours 39.2 0.67 49.3

Table 2: Quantitative results on the FFHQ dataset in the
cross-reenactmentmode at 1024×1024 resolution. Besides the
standard cross-reenactment metrics, we additionally per-
form an image quality assessment (IQA, higher the better).
Our super-resolution method improves the resulting im-
age quality compared to the base model with bicubic up-
sampling and the super-resolution baseline (HiFaceGAN), as
seen from the FID and IQA metrics. At the same time, we
preserve the source image appearance, which results in the
same CSIM as the base model.

4.4 Self-reenactment evaluation
We use the same pre-trained models for the self-reenactment ex-
periments as for the cross reenactment and evaluate them on the
samples from the VoxCeleb2 and VoxCeleb2HQ evaluation sets. In
addition, we use the following standard metrics to measure the
difference between the synthesized and ground-truth images: Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM) [35], and the Learned Perceptual Image Patch Similarity
(LPIPS) [40].

We notice that qualitatively we achieve similar performance to
the competitors, especially in the face and hair regions (Figures 3-4,
third row). To quantitatively verify that, we have conducted an
evaluation using masked data. The masks include the face, ears,
and hair regions and are applied to both the target and the predicted
images before calculating the metrics. In this scenario, we achieve
comparable performance to the baseline methods (Table 1) but have
an inferior performance when the unmasked (raw) images are used.

This difference could be caused, among other reasons, by the
lack of shoulders motion modeling in our method. It results in the
misalignment between our predictions and ground truth in the
corresponding regions. We further discuss this issue in the limita-
tions section. Also, our method’s high degree of disentanglement
between motion and appearance descriptors prevents it from leak-
ing the appearance data directly from the driver, which generally
contributes to the reduced performance in self-reenactment.

4.5 High-resolution evaluation
We evaluate high-resolution synthesis only in cross-reenactment
mode since data for the self-reenactment scenario is missing. We
use subsets of a filtered FFHQ dataset for training and evaluation.
We train both our and the baseline super-resolution approaches
using an output of a pre-trained base model Gbase as input and by
sampling two random augmented versions of the training image
as a source and a driver. We use random crops and rotations since
other augmentations could change person-specific traits (e.g. head
width).

We compare against two baselines. First, we consider bicubic
upsampling of the output of the basemodel, and second, we evaluate
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Source Driver Ours (base w/ bicubic) HiFaceGAN [37] Ours (HR)
Figure 5: A qualitative comparison of different super-resolution methods applied to the output of our base model. While per-
forming better than a baseline bicubic upsampling, we can see that the state-of-the-art super-resolution method (HiFaceGAN)
cannot achieve the same level of high-frequency details fidelity as our approach. Digital zoom-in is recommended.

a state-of-the-art face super-resolution system (HiFaceGAN) [37].
The results are presented in Figure 5, and Table 2. In the quantitative
comparison, we use an additional image quality assessment metric
(IQA) [28] to measure the resulting image quality. Our method
outperforms its competitors both qualitatively and quantitatively
by generating more high-frequency details and, at the same time,
preserving the identity of the source image.

Finally, in Figure 6 we show the results for the distillation of
our base and high-resolution models into a small student network
designed to work for a limited number of avatars. The architecture
we chose for the distillation achieves 130 frames per second on the
NVIDIA RTX 3090 graphics card in the FP16 mode. The total model
size for the student containing 100 avatars is 800 megabytes. This
model can closely match the performance of the teacher model. It
thus achieves a PSNR of 23.14 and LPIPS of 0.208 (w.r.t. the teacher
model) averaged across all avatars.

4.6 Ablation study
We conducted an extensive ablation study to evaluate the contribu-
tions of individual components within our method. Therefore, we
evaluate the importance of the proposed cycle consistency losses
for the base and high-resolution models. The qualitative results are
shown in Figure 7. Overall, both losses substantially improve the
disentanglement between the motion and appearance. The quantita-
tive evaluation confirms this: the base model without Lcos achieves
an FID of 34.8, compared to the final 28.6, and the high-resolution
model without cycle losses has an FID of 39.6, compared to the
final FID of 39.2. We also provide an in-depth evaluation of the
architectural choices in the supplementary materials.

5 CONCLUSION
We have presented a new approach for synthesizing high-resolution
neural avatars. To the best of our knowledge, this approach is

Source Driver Ours (HR) Ours (dist)
Figure 6: Results of the distilled version of our system
trained for 100 avatars. It closely matches the prediction
of the teacher model while being approximately ten times
faster at the inference, achieving up to 130 FPS on a modern
GPU.

Source Driver w/o Lcos w/o Lc
∗ Ours (HR)

Figure 7: Ablation study. Both contrastive loss Lcos and un-
supervised super-resolution losses Lc

adv and Lc
cyc (denoted

as Lc
∗) improve the performance of our method in the cross-

driving scenario.

the first to achieve megapixel resolution. We have also explored
a possible application of the proposed method in practice, which
involves locking the identities of the avatars by training a dedicated
student network. Using the student network also increases the
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Source Driver 1 Ours 1 Driver 2 Ours 2
Figure 8: The limitations of ourmethod include the inability
to model large head rotations, which stems from the near
frontal views distribution in the training data (1st example),
and the lack of shoulders motion modeling (2nd example).

rendering speed while achieving similar quality of renders to our
full one-shot model.

Two main limitations of our system stem from the properties of
our training set. First, both the VoxCeleb2 and the FFHQ datasets
that we use for training tend to have near frontal views, which
degrades the quality of rendering for strongly non-frontal head
poses (Figure 8). Secondly, as only static views are available at high
resolution, a certain amount of temporal flicker is present in our
results (see supplementary video). Ideally, this needs to be tackled
with special losses or architectural choices. Lastly, our system lacks
the modeling of shoulders motion. Addressing the issues mentioned
above remains our future work.
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A NETWORK ARCHITECTURES
Here we describe the architectures of our networks, conduct an
in-depth evaluation of the architectural choices and provide details
about preprocessing of the dataset.

A.1 Base model
In the architecture of our base model, we replace all BatchNorms
with GroupNorms, and all convolutional layers, except the first and
the last ones, are used with weight standardization.

Appearance encoder Eapp. The network consists of two parts.
The first part produces a 4D tensor of volumetric features 𝑣𝑠 that
represent the person’s appearance from the source image. It in-
cludes several residual blocks followed by average pooling. We
reshape the resulting 2D features to 3D features and then apply
several 3D residual blocks to compute the final volumetric repre-
sentation. The scheme shown in Figure 9 (a).

The second part produces a global descriptor e𝑠 that helps retain
the appearance of the output image. We use a ResNet-50 architec-
ture with custom residual blocks. The architecture of our residual
block can be seen in Figure 11 (c), where 𝑛 denotes the dimension
of a convolutional layer (either 2D or 3D) and x denotes the number
of output channels.

Motion encoder Emtn. We use two separate ResNet-18 networks
as encoders to separately predict the head pose and expression
vector. The head pose prediction network is pre-trained, while the
expression prediction network is trained from scratch.

Warping generators W𝑠→ and W→𝑑 . When both source and
driver tuples (R𝑠/𝑑 , t𝑠/𝑑 , z𝑠/𝑑 , e𝑠 ) are predicted, we can produce 3D
warpingw𝑠→ andw→𝑑 . Both warpings consist of two parts: one in
charge of rotation and translation (wrt

...) and another one in charge
of emotion changing (wem

... ).
To get the first part: for wrt

→𝑑
we multiply identity grid on trans-

formationmatrix and forwrt
𝑠→ wemultiply identity grid on inversed

transformation matrix.
To get wem

𝑠→ and wem
→𝑑

we use two separate warping generators
(see Figure 9 (b)) with the same architecture contain several 3D
residual blocks where all GroupNorms changed on Adaptive Group-
Norms (marked as ResBlock3D* on the scheme), whereas inputs we
use sums z𝑠 + e𝑠 and z𝑑 + e𝑠 respectively. To generate adaptive pa-
rameters, we multiply the foregoing sums and additionally learned
matrices for each pair of parameters.

3D convolutional networkG3D. Next, we process volumetric rep-
resentation after the first warping to get canonical volume where
source motion removed from the appearance features. For this,
we apply Unet-like architecture with several downsample units
consists of 3D residual block and downsample operation, followed
by the same number of upsample units consists of 3D residual
block and upsample operation. The scheme shown in Figure 9 (c).
Sample(z, x, y) mean sample operation that changes depth, height,
width in z, x, y times respectively. For example, z=1/2 means down-
sample along depth dimension in 2 times and z=2 means upsample
along depth dimension in 2 times.

2D convolutional network G2D. Finally, to predict an output
image from a processed volume, we first use orthographically pro-
jection P that is consists of reshape operation and 1x1 convolution.
While more complex projection operators could be used (like volu-
metric ray marching), we found such simple approach is sufficient
for our applications, the same way as it has been done in [32]. Then
we utilize the network includes 8 residual blocks on the same res-
olution and number of feature maps, then gradually apply units
contain upsampling and residual blocks with successively decreas-
ing number of output channels. The scheme shown in Figure 9
(d).

A.2 High-resolution model
High-resolution model contain 2 parts: encoder and decoder. Both
of them you can see on the scheme shown in Figure 11. Encoder,
that takes x̂𝑠−>𝑑 as an input, contain just conv layer followed by
2 residual blocks and produce 3D feature tensor f𝑠−>𝑑 . Decoder,
that takes output features f𝑠−>𝑑 and produce hi-resolution version
of input x̂HR

𝑠−>𝑑 , recalls 2D convolutional network from the base
model, it also includes 8 residual blocks on the same resolution and
number of feature maps, followed by two upsampling with residual
blocks and three residual blocks on high-resolution.

A.3 Student model
The encoder of a student model is ResNet18, and the generator
consists of residual blocks with SPADE normalization layers, in
each SPADE block a tensor used for normalization is fixed for a
specific avatar. During the forward pass we select which tensor to
use in normalization layer to switch between predefined avatars.
Using such procedure during the training, we force our model to
store all the identity-specific information into SPADE blocks. Also,
to compress the final model we tweak a size of spatial dimension of
normalization tensors (which dominate the size of the whole model)
in SPADE blocks: by default these tensors must be of the same shape
as a corresponding input feature map, instead, we compress them
spatially and use bilinear upsampling to output the feature map of
the right size. More precisely, we bound the resolution of an inner
identity tensor by 64.

B ADDITIONAL INFORMATION
B.1 Training details
Gbase and GHR. As augmentation for both source and target im-
ages, we use color jitter and random flip. As for driving image,
before sending it to Emtn we do a center crop around the face of
a person. Next, we augment it using a random warping based on
thin-plate-splines, which severely degrades the shape of the facial
features, yet keeps the expression intact (ex., it cannot close or open
eyes or change the eyes’ direction). Finally, we apply a severe color
jitter.

For LGAN loss we use multi-resolution patchGAN where the dis-
criminator produces the patch-level prediction. We apply spectral
normalization for both Gbase and GHR.

For AdamW optimizer we used the following parameters: be-
tas=(0.5, 0.999), eps=1e-8, weight decay=1e-2 for both Gbase and
GHR and correspond discriminator.
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Figure 9: Architectures of components of Gbase.
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Figure 10: Architectures of components of Genh.

Student
The student model was trained to predict the corresponding predic-
tion of the teacher model for a fixed set of identities. We used a stan-
dard set of losses for such setup, specifically, adversarial and three
kinds of perceptual losses. Adversarial training was done with mul-
tiscale discriminator on four resolutions. Perceptual losses are the
same that were used to train teacher model: standard VGG19 loss,
gaze loss and VGG Face loss. Additionally, to check how student
model handle self-reenactment mode, we train separate student
model on 10 avatars, using persons from 10 random test videos.
Student model achieved PSNR of 19.25 and SSIM of 0.682 (while
teacher model achieved 21.34 and 0.768 correspondingly). You can
see an example in Figure 17.

B.2 Two stage training
Initially, we have evaluated some of the feasible configurations for
the end-to-end training. First of all, end-to-end training with the

full enhancer network or even a single decoder layer at 1024x1024
resolution would not fit into the memory of our available GPUs. We,
therefore, tried freezing a pre-trained encoder and fine-tuning a de-
coder with an additional upsampling block, combining both of the
objectives and with some weighting coefficient. We have observed
a significant decrease in the quality of the results, compared to a
separately trained network, across three different weights. Since it
is effectively doing super-resolution without high-resolution con-
ditioning, maintaining its high capacity is crucial for the network
to generate the missing high-frequency details. You can see some
comparison in Figure 9.

B.3 Datasets preprocessing
We obtain the VoxCeleb2HQ dataset by first downloading the origi-
nal videos from the VoxCeleb2 [4] dataset. These videos are pro-
cessed using an off-the-shelf face [41] and keypoints [2] detectors
and cropped frame-by-frame around the head regions. Then, the
obtained cropped frames are first filtered by their resolution, to
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Figure 11: Architectures of components of the student model. Dashed lines correspond to the optional blocks (i.e. used only if
channel/resolution configuration needs to apply some transform, either upsampling or change the number of channels). Each
SPADE tensor shape𝑊 × 𝐻 is at most 64 × 64.

exclude all crops that are smaller than 512×512. We call this process
a bitrade filtering. Then, we additionally rank the frames from the
remaining videos by their image quality assessment (IQA) scores,
calculated using a pre-trained system [28]. We then remove the bot-
tom 50% of the videos using the mean IQA score across its frames,
thus arriving at the 15,000 videos that we use for training.

B.4 Evaluation of the architectural choices
In addition to the ablations we describe in the main part of the paper,
we decided to conduct a series of additional experiments to evalu-
ate the impact of the key features in our method. We demonstrate
results of an additional ablation study in Figure 12. The following
parts were eliminated separately: (a) architecture without encoder
e𝑠 , (b) the warping for source image w𝑠→, (c) driver augmentation,
(d) added block to predict background directly with person appear-
ance, (e) base model. We show that e𝑠 helps to preserve identity
information, especially on tight turns. Without warping generator
w𝑠→ the preservation of whole structure of the shoulders and head
worsen and artifacts appeared on ears. If turn off driver augmenta-
tion, apparently the model shows significant worsening of results
in terms of identity preservation (see the eyes and ears zones, and
artifacts on the cap and temples). Additionally, we train our model
to predict background and person together. The preservation of
the identity dropped as long as the whole image quality. Mainly
because the capacity spent on the background modeling.

B.5 Gaze loss
To get more natural facial appearance, we put into operation spe-
cialized gaze loss based on gaze and blink estimation models. Our
model was trained to distill a state-of-the-art gaze detection system
(RT-GENE) [9] and blink estimation model (RT-BENE). [5]. We dis-
tilled two systems in one model with two heads with the common

backbone, one to predict gaze direction and another one to predict
blink. First, we infer both models on 60k random frames from our
dataset. We did this in order to extract the maximum information
from the images of the eyes. As a backbone for our model we used
VGG-16 that takes one image of the eye (either left or right) and
predict latent vector with size 256, next we sum both vector to
get bound representation of eyes. We also derive features from 2D
keypoints, for this we use a simple network consists of 3 liner layers
with ReLU activations that produce latent vector with size 64. Next,
we utilize 2 separate heads, both contain only 2 liners layers with
ReLU activations. For the gaze prediction head we use as an input
sum of eye vectors concatenated with keypoint vector and for blink
prediction just sum of eye vectors.

We train this model for 60 epoches with batch size equal to 64.
We use Adam optimizer with initial learning rate equal to 0.8e-3,
betas=(0.9, 0.999), eps=1e-08, weight decay=0 and one cycle learning
rate schedulewith steps per epoch equal number of batches in epoch
and pct start=0.1. We use MAE and MSE losses with 𝑤MAE = 15
and𝑤MSE = 10, we treat predictions from RT-GENE and RT-BENE
as ground truth.

B.6 Explicit control of the pose
Our system allows some explicit control of a human pose on an
output image. First, we can either preserve scale of the source
image, that could be utilized in video conference, or use scale and
translation (𝑠&𝑡 ) from the driving image to fully mimic the driver
(Figure 13). Despite the fact that we didn’t pay any attention to
disentangle expression and head rotation, we found that we can
both make formalization (Figure 14) and apply head rotation from
frontal pose on moderate angels, we found that it works at least for
15°angles (Figure 15).
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Source Driver w/o e𝑠 (a) w/o w𝑠→ (b) w/o augs (c) w/ BG (d) Ours

Figure 12: Additional ablation study. We qualitatively evaluate the individual components of our base model (last column).
We observe the positive influence of crucial part of our method. The details of the evaluation described in Section 2.3.

Source Driver Source 𝑠&𝑡 Driver 𝑠&𝑡
Figure 13: Results with different scales and translations

Source Reconstructed Frontalized
Figure 14: Result of frontalization

C ADDITIONAL RESULTS
We demonstrate the comparison of our method for both cross-
and self-reenactment in Figure 18 for 256 × 256 resolution and in
Figure 19 for 512 × 512. Also, we show qualitative comparison in
cross-reenactment scenario for 1024 × 1024 resolution in Figure 20.

Moreover, we attach a few demonstration videos for onemegapixel
resolution and video comparison for cross-reenactment 256 × 256
and self-reenactment 512 × 512 scenarios. We strongly encourage
reader to check this video.

One of the interesting points is that the model learns meaningful
features in volume tensor, that encodes the geometry of the give
source to v𝑠 with the shape 96 × 16 × 64 × 64 and attach the video
of animation this volumetric tensor in supplementary files.
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Source Roll +15° Roll -15° Roll +15° Roll -15° Pitch +15° Pitch -15°
Figure 15: Result of the explicit head rotation.

Source Driver One stage, fine-tuned Final
Figure 16: A qualitative comparison of one stage training with fine-tuned decoder and our final two stage training. Pay special
attention to the area around the eyes, glasses, teeth, hair and skin, where the difference between the two approaches is most
noticeable.

Source Driver Teacher Student
Figure 17: Result of student model in self-reenactment mode.
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Source Driver FOMM [26] HeadGAN [8] Ours
Figure 18: A qualitative comparison of head avatar systems in cross-reenactment scenario (top four rows) and self-reenactment
scenario (bottom two rows) at 256 × 256 resolution.
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Source Driver Face-V2V [34] Ours
Figure 19: A qualitative comparison of head avatar systems in cross-reenactment scenario (top three rows) and self-
reenactment scenario (bottom two rows) at 512px resolution.
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Source Driver Ours (base w/ bicubic) HiFaceGAN [37] Ours (HR)
Figure 20: A qualitative comparison of different super-resolution methods applied to the output of our base model. While per-
forming better than a baseline bicubic upsampling, we can see that the state-of-the-art super-resolution method (HiFaceGAN)
cannot achieve the same level of high-frequency details fidelity as our approach. Digital zoom-in is recommended.
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