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Fig. 1. Illustration of our system. Tailored for first-person view VR applications, we propose a novel perception-aware scene retargeting method. It re-

structures a given virtual scene (a) for users’ small and varied physical spaces (valid area in (b) and (c)). Our technique preserves not only geometric and

topological properties but also perceptual fidelity with the immersive first-person view. It addresses the commonly existing collision problems from previous

method. For instance the red areas in (e). This can be visualized by comparing the sampled HMD views between Huang et al. [2016] (e) and ours (f).

In virtual reality (VR), the virtual scenes are pre-designed by creators. Our

physical surroundings, however, comprise significantly varied sizes, lay-

outs, and components. To bridge the gap and further enable natural naviga-

tion, recent solutions have been proposed to redirect users or recreate the

virtual content. However, they suffer from either interrupted experience

or distorted appearances. We present a novel VR-oriented algorithm that
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automatically restructures a given virtual scene for a user’s physical envi-

ronment. Different from the previous methods, we introduce neither inter-

rupted walking experience nor curved appearances. Instead, a perception-

aware function optimizes our retargeting technique to preserve the fidelity

of the virtual scene that appears in VR head-mounted displays. Besides

geometric and topological properties, it emphasizes the unique first-person

view perceptual factors in VR, such as dynamic visibility and objectwise re-

lationships. We conduct both analytical experiments and subjective studies.

The results demonstrate our system’s versatile capability and practicability

for natural navigation in VR: It reduces the virtual space by 40% without

statistical loss of perceptual identicality.
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1 INTRODUCTION

Virtual reality (VR) means to visually and naturally simulate

varied impossible virtual worlds while users remain in limited

physical spaces. Besides the graphical context, the “simulation”

shall also include natural interactions such as navigation and lo-

comotion, whereas the limited physical spaces are a fundamental

challenge from the broad deployment of VR facilities: Due to the

masked vision from the surroundings, VR users commonly expe-

rience risks hitting obstacles with navigations driven by natural

locomotion.

Recent advancements in redirected walking (RDW) tech-

niques have demonstrated promising possibilities for addressing

this problem. The main ideas are to subtly redirect camera mo-

tion [Langbehn and Steinicke 2018; Nilsson et al. 2018] or alter-

nate geometric appearance [Dong et al. 2017, 2019; Sun et al. 2016].

However, the former solution could introduce discontinuous expe-

rience when the virtual scenes are significantly larger: When the

users are close to obstacles, the unnoticeable redirection gains may

be insufficient. Then, the virtual camera position has to be reset, re-

sulting in sudden and unexpected teleportation. For the latter, the

alternated geometries result in visually distorted appearances, es-

pecially with regularly shaped objects. Moreover, geometry manip-

ulation is typically only applicable to highly occluded road-alike

scenes [Sun et al. 2016].

However, the architectural scene retargeting improves cre-

ators’ productivity by automatically transferring a given three-

dimensional (3D) scene to varied layouts and sizes. It preserves

the creational intention such as spatial connectivity [Huang et al.

2016]. For design purposes, these methods typically apply to third-

person bird-views to expose the whole scene details with the least

occlusions and number of views on a monitor. VR head-mounted

displays (HMDs) and renderings, in comparison, are to simulate

the users’ own eyes inside the scene. Under such immersive set-

tings, the experience is first-person-view dominated and limited

by physical obstacles with users walk to navigate.

So, intelligently re-creating the virtual space while preserving

its visual and spatial perception to VR users remains an open yet

demanding problem. In this article, we present a perception-aware

algorithm that addresses the challenge. Besides topologies and ge-

ometries, biopsychosocial studies on human visual behaviors also

shed light on our approach that measures factors such as scale

[Park et al. 2014], structure [Zelinsky 2013], distance [Henderson

et al. 2008], and visibility [Henderson et al. 2011]. These ensure per-

ceptually similar visual/locomotive/interactive experience to be

perceived by VR users after the restructuring. Mathematically, we

seek the optimized manipulator via a series of analytical modeling,

user-centered view sampling, and hierarchical optimization. The

optimal restructured scene is then rendered in users’ HMD to en-

able natural walk-through within a limited physical space. Our sys-

tem does not introduce shape distortion or interrupting, the two

problems currently faced by RDW.

We conducted subjective studies, numerical analysis, usability

validations, and pressure tests to evaluate the system’s capability

and extendability. They demonstrate that users perceive the re-

structured scene as similar to the original and complete real-world

VR tasks more efficiently and comfortably than existing scene re-

structuring and RDW approaches. Various scenes can be deployed

to home-sized space with the compression ratio of 40%, provid-

ing an interruption-free real walking experience. This is achieved

by preserving both structures and visual similarities from a first-

person perspective. Aiming at popularizing the currently space-

sensitive VR applications, we contribute the following:

• an end-to-end VR system enabling users to continuously walk

through a perceptually similar virtual scene in a small physical

space, without interruption or distorted appearance

• an automatic scene restructuring algorithm inspired by biopsy-

chosocial discoveries and tailored for first-person VR; it

preserves structural/geometric properties and human spatial

scene perception

• systematical validations with computational analysis, psy-

chophysical studies, and real-world usability/stress tests.

To our best knowledge, this is the first scene retargeting method

tailored for immersive locomotion and preserving both structural

and (first-person) perceptual similarities. Figure 1 shows an exam-

ple of our system. We will release the source code to inspire follow-

up research.

2 RELATED WORK

2.1 Real Walking in VR

Walking-based navigation is one of the ultimate goals for inter-

active immersion in VR. However, it has not been fully realized

due to the naturally mismatched sizes and shapes between virtual

and physical scenes. To address this problem, researchers have de-

ployed two major types of means to redirect VR users’ walking

path to save physical space usage.

Rotational and translational gains [Azmandian et al. 2017; Nils-

son et al. 2018; Suma et al. 2011], blink [Langbehn et al. 2018], or

saccade [Sun et al. 2018] change blindness introduce opportunities

of subtly redirecting virtual camera motion without being noticed.

They have been broadly adapted in recent VR research. However,

to prevent significant sickness, these gains are controlled below

the noticeable thresholds. Consequently, the spatial saving ratio

remains low. That is, the physical spaces must still be large enough

for users to walk through a virtual scene. As a tradeoff, frequent in-

terruptions from resetting or teleportation is introduced, thereby

significantly lowering the immersion. Our restructuring approach

preserves spatial perception without differing camera changes.

Geometric distortions have been introduced to reduce the inter-

ruptions. In [Dong et al. 2017, 2019; Sun et al. 2016], users directly

perceive a different virtual scene. The main idea, is to warp the vir-

tual scene floor plan to fit into a given physical space, with as sub-

tle as possible distortion. However, the distortions indiscriminately

apply to not only walkable grounds but also regularly-shaped ob-

jects. In comparison, our method only restructures the scene with-

out sacrificing objectwise appearance.

Real walking in limited physical space can also be realized

by manipulating the scene structure. For instance, Suma et al.

[2012] compressed virtual indoor environments into smaller phys-

ical spaces by tiling individual rooms unnoticeably. Vasylevska

et al. [2013] and Vasylevska and Kaufmann [2017] proposed a
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flexible space that dynamically generates indoor scenes and fur-

ther demonstrated the effectiveness of longer, smoothly curved

corridors with more corners. In contrast, our goal is to perceptu-

ally preserve visual experience to arbitrary scenes regardless of the

original design types.

2.2 Retargeting Images and 3D Scenes

Image retargeting is an essential topic in computer graphics and

vision [Shamir and Sorkine 2009; Vaquero et al. 2010]. The goal

is to preserve the salient objects without visual artifacts. So far, a

variety of content-aware methods have been presented with the

following: (1) discrete solutions [Avidan and Shamir 2007; Mans-

field et al. 2010; Rubinstein et al. 2008, 2009] that remove a seam

of minimal importance to preserve image content or (2) continu-

ous approaches [Gal et al. 2006; Jin et al. 2010; Wang and Lai 2009;

Wang et al. 2008] that optimize a mapping between the source and

target images, driven by saliency-based distortion importance. Ru-

binstein et al. [2010] presented a comprehensive perceptual study

and analysis of the state of the art.

With 3D models, a non-homogeneous resizing method preserv-

ing the main characteristic features and structures has been pro-

posed in Kraevoy et al. [2008]. The geometric approach focuses on

a single model. Whereas, navigation involves entire 3D scenes in-

cluding inter-object connectivities. By considering that Lin et al.

[2011] and Huang et al. [2016] presented interactive methods that

re-create new scenes via preserving structural styles or insert-

ing/removing discrete patterns. These approaches synthesize irreg-

ular architectural models by reusing the structural elements from

the input. However, we do not seek a global and generic scene

restructuring algorithm, but instead a VR-tailored retargeting

method for adaptive navigation with varied physical spaces. That

is, we introduce perception-aware metrics to maintain the percep-

tual fidelity of 3D scenes inside HMD’s first-person views. More-

over, existing solutions rely on repetitive structural patterns or uni-

form layouts [Huang et al. 2016], limiting the applicable scenarios.

Approaches have also been proposed to re-create a plausible lay-

out from discrete elements. With user-specified physical spaces

and virtual elemental relationships, Scenograph [Marwecki and

Baudisch 2018] adaptively generates corresponding scenes while

maintaining narrative structures for walk-through. The method

mandatorily depends on a pre-defined narrative storyline and user

intervention. Common designer-created 3D scenes, however, may

only contain static geometry properties than the required seman-

tic and temporal information. Yu et al. [2011] extract spatial re-

lationships on the furniture placement from indoor scenes sam-

ples. Then, the system encodes the knowledge into priors that are

later used to synthesize novel scenes. Hartmann et al. [2015] syn-

thesizes new polygonal layouts by employing a deformation to an

original domain. Similarly to Huang et al. [2016], the system aims

at design applications. Under this scenario, the generated contents

are presumed to be visualized with third-person perspectives and

minimal occlusions. Immersive medium, in comparison, usually

displays content with a user’s eyes as the virtual camera, result-

ing in significantly different spatial understanding and strong oc-

clusion from local-only views. Existing scene retargeting methods

mainly optimize the spatial positions and scale of objects for differ-

ent application purposes such as scene design/visualization than

immersive walk-through. Thus, we are motivated to propose an au-

tomatic scene retargeting approach tailored for VR walk-through

with minimal user-specification by tailoring for first-person-view

dynamic visibilities and spatial perception.

2.3 Scene Perception

Preserving the perception of a virtual scene requires the under-

standing of how the human understands spaces. Moser et al. [2008]

revealed how creatures perceive the space at the cell level. Further,

human scene perception has been studied with biomedical data

[Epstein and Baker 2019]. Psychologically, our scene perception in-

volves both human visual behaviors and inter-object identification

[Henderson and Hollingworth 1999; Konkle et al. 2010]. Our geo-

metric algorithm considers these factors by minimizing perceived

changes. These biological and psychophysical understandings mo-

tivate the computer applications in scene recognition [Zhou et al.

2014] and modeling [Oliva and Torralba 2001]. However, these

human-oriented research has not been well-considered in VR sce-

narios, where the first-person view users play the main role in

the whole experience. Vasylevska and Kaufmann [2017] thus ex-

plore means of compressing a space while preserving the percep-

tion of spatial arrangement. Its scope lies in regular shapes and

indoor scenes that share structures within several categories. Our

method applies to generic virtual spaces without limited by pre-

defined structures, with the consideration of scale, objectwise re-

lationships, and visibility.

3 METHOD

In this section, we first define the problem in Section 3.1, followed

by the novel retargeting approach in Section 3.2 and Section 3.3.

3.1 Problem Definition and Goal

Input. The input consists of a virtual (V) and physical (P) floor

plans.V contains a set of salient objects,S � {si }. As a non-trivial

condition, we assume the area of P is smaller than that ofV .

Goals & challenges. Our goals are twofold. First, users walk

freely in P as in real life for exploring V without collision, cam-

era teleportation, or visual warning. Second, the system shall not

introduce the geometric curving of the salient objects.

Inspired by the retargeting techniques [Huang et al. 2016;

Shamir and Sorkine 2009; Vaquero et al. 2010], we seek a restruc-

turing mapping Φ so that each mapped salient object Φ(si ) lies

within the physical floor plan P. Then, users walk freely in P to

navigate through a virtual scene, which contains Φ(si ),∀si and is

perceptually similar to the input virtual scene. However, we face

two challenges to achieve this goal. First, it is challenging to incor-

porate first-person-view constraints in computing Φ for VR naviga-

tion. Second, generic numerical optimizations are unable to satisfy

the hard constraint Φ(si ) lies within the physical floor plan P for

all si without introducing appearance distortion. To this end, we

propose a VR-tailored energy function. It seeks Φ by rearranging

the salient objects ofV so that users perceive no curved si and are

allowed to walk freely in P.
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Fig. 2. An ablation study of Equation (2). (a) A sampling view from the

original scene. ((b) and (c)) The same viewpoint from the retargeted scene

without/with Escale. Severe artifacts of shape distortion are created in (b)

without the scale-preserving term, such as the almost disappeared floor

lamp, and the severely deformed coffee table with no objects on it.

3.2 Retargeting

Representations. The key idea, of com-

puting Φ is to move the salient objects

in V while preserving visual and percep-

tual similarities. For convenience, each si

is represented as its enclosed bounding

box containing three parameters: (i) center ci , (ii) length li , and

(iii) width wi (see the right inset). We minimize the following en-

ergy function to determine an optimal placement S� = {s�i }:

{s�i } = arg min
{si }

Er ({si }), (1)

where Er is the weighted sum of terms described below.

Preserving scale perception. Size is an active cue when we per-

ceive a scene [Park et al. 2014]. So, to obtain a similar yet smaller

virtual environment, we need to reshape objects through resiz-

ing. Hence, we target a non-uniform scaling transformation with

a limited range to minimize the visual shape distortion. The

scale-preserving term is introduced to avoid generating over- or

under-sized objects, as demonstrated in Figure 2. The total scale-

preserving energy, Escale, is the sum of all the per-object terms:

Escale =
∑
{i }

El,si
+ Ew,si , (2)

where El,si
and Ew,si preserve objectwise length and width, re-

spectively. Denote the scaling factor of length (or width) for si as

ρi = li/l
0
i (or ϱi = wi/w

0
i ), where l0i (orw0

i ) is the length (or width)

of the input si . We encourage ρi and ϱi to be constrained in a range:

El,si
= φ

(
ρi

ρmin
− 1

)
+ φ

(
1 − ρi

ρmax

)
,

Ew,si = φ

(
ϱi

ϱmin
− 1

)
+ φ

(
1 − ϱi

ϱmax

)
,

(3)

where ρmin, ρmax, ϱmin, and ϱmax are the corresponding minimum

and maximum scaling factors for two directions. When scaling fac-

tors are constrained, the aspect ratio of the scaling is also theoreti-

cally controlled. These parameters are related to the ratio of space

compression and can be specified by users according to the exper-

imental requirements. Since the area of P is smaller than that of

V , we set the maximum scaling factor to 1, ensuring scene ob-

Fig. 3. An ablation study of Equation (4) and Equation (5). (a) A sampling

view from the original scene. ((b) and (c)) The same viewpoint from the

retargeted scene without/with Eobject and Escene. The structure-preserving

term preserves the layout. The office door is blocked by the plant in (b),

which will affect walking in the scene.

jects not to be enlarged. In our experiment, ρmin = ϱmin = 0.8,

ρmax = ϱmax = 1.0. The barrier penalty function φ is as follows:

φ (x ) =
1

x +
√
x2 + ϵ2

.

Here ϵ is a small increment. The intuition of the barrier penalty

is visualized beside the function. It prevents the scaling from ex-

ceeding the allowed range. Without it, strong shape distortion

is inevitable. For example, the coffee table in Figure 2(b) is over-

deformed to support objects on it, and the floor lamp is severely

distorted.

Preserving structural perception. We perceive a scene starting at

the level of objectswise relationships [Zelinsky 2013]. Our next re-

targeting goal is preserving structures in object-level and respect-

ing the original design arrangement/layout in scene-level. To com-

pute a new layout that preserves the original structure, we first

perform a uniform scaling onV so that the scaledV (denoted as

Vs ) is fully inside P. The scale is computed as min{lp/lv ,wp/wv },
where lv and wv (or lp and wp ) are the length and width of V
(or P), respectively. We then utilize Vs as a guiding layout. The

structure-preserving term includes an object-level loss and a scene-

level loss as in Figure 3. One of the plants is incorrectly placed in

front of the office door, impeding indoor walking. In the object-

level energy, we encourage that similar locating in Vs for each

salient object:

Eobject =
∑
{i }

es[‖ci−ci,s ‖22−R], (4)

where s and R are two constants and ci,s is the center of the scaled

si inVs .

s is a penalty parameter. Since the exponential function in Eobject

increases monotonically, a larger s will lead to a stronger attraction

between ci and ci,s . Since e0 = 1, when ‖ci−ci,s ‖22 = R, Eobject = 1.

In practice, R is used to penalize the distance between ci and ci,s .

A larger R indicates less constraint on distance.

We set s to 1.0 and R to 0.5 m in our experiments.

At the scene level, we ensure consistent adjacent connectiv-

ity among each salient object in Vs . That is, the mutual relation-

ship between si should be preserved. We encourage the distance
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Fig. 4. An ablation study of Equation (6). (a) A sampling view from the

original scene. ((b) and (c)) The same viewpoint from the retargeted scene

without/with Espace. Top-down views are also shown in the top row. As

shown in (b), the road in the study room is too narrow to walk without the

space-preserving term, which make it impossible to walk in the scene.

between two objects to be close to the correspondence inVs ,

Escene =
∑
{si }

∑
sj ∈Ω(si )

‖ci − cj ‖22
‖ci,s − cj,s ‖22

+
‖ci,s − cj,s ‖22
‖ci − cj ‖22

. (5)

Here, Ω(si ) = {sj | ‖ci,s − cj,s ‖2 ≤ ϵd }, where ϵd is a distance

threshold for defining neighborhoods. We set ϵd to 3.0 m in our

experiments.

Preserving spatial perception. Similarly to scales, studies also

show the critical role of spatial distance when we perceive a scene

[Henderson et al. 2008]. Walking space is a critical factor for both

the continuous walking experience and the perceived relationships

among objects. A remarkable example is shown in Figure 4. With-

out the space-preserving term, the main walkable virtual areas

(i.e., the ground floor areas excluding objects, or being manually

specified by the designer) may be too narrow, as shown in Fig-

ure 4(b). Users may have difficulties walking through the study

room. Therefore, we constrain the walkable width to be greater

than dwidth. That is, the distance between any two objects (si , sj )
on both sides of the road should not exceed dwidth. Here, the roads

are areas that users can walk through in the virtual scene. It can

either be manually specified according to designers’ intentions or

automatically defined as the ground area excluding placed objects.

To this end, a barrier functionψ is introduced:

ψ (d ) =
⎧⎪⎪⎨
⎪⎪
⎩

(
max(0, ϵ

d−ξ
− 1)

)2
, if d > ξ ,

+∞, otherwise.

Here ϵ and ξ are two positive param-

eters. If d − ξ > ϵ , then ψ (d ) = 0. The

sides of si and sj on the road are de-

noted as ei = x1x2 and ej = y1y2 (see

the right inset). We define their distance

di, j as

di, j = min{dp2s (x1, ej ),dp2s (x2, ej ),dp2s (y1, ei ),dp2s (y2, ei )},

Fig. 5. An ablation study of the visibility-preserving term Evisibility. (a) A

sampling view from the original scene. ((b) and (c)) The same viewpoint

from the retargeted scene without/with Evisibility. In the original scene (a),

the arrow of the sculpture is designed to point to the middle tree in a row

of trees. This design intent is maintained using the visibility-preserving

term, as shown in (c). An unsatisfactory result is shown in (b), the arrow

incorrectly points to the street light.

where dp2s is the point-line distance. The energy for constraining

the road width is as follows:

Espace =
∑

(si ,sj )

ψ (di, j ), (6)

where ξ = dwidth and ϵ = 10 in our experiments. dwidth can be

specified by users, and it is always related to the size of physical

space. In our experiment, it is set to 0.45 m.

To circumvent overlaps among elements, we introduce a

collision-avoidance term to encourage separation between two ad-

jacent objects. The collision avoidance term has a similar form

as Equation (6) with the width set to 0. We continue to utilize

the aforementioned guidance layout Vs . The roads in Vs serve

as an initial setting for retargeting. If the initial di, j is less than

dwidth, then we zoom out those objects while fixing the bounding

box of Vs until di, j > dwidth. To guarantee overlap-free, our line

search explicitly enforces the satisfaction of road width and colli-

sion avoidance constraints during optimization.

Preserving perceptual visibility. Visibility

is a main component in computer graphics,

VR (a first-person view dominated visual

media), and film story-telling. Besides these

scenarios, the cue of openness also drives

the perception of the real-world [Hender-

son et al. 2011; Hillier and Penn 1991; Peponis et al. 2004]. The role

of a physical layout is closely tied to visibility. To avoid missing de-

sign intentions, we preserve the visibility of both major areas and

objects, as shown in Figure 5. For instance, in Figure 5(b), the ar-

row incorrectly points to the street light instead of the middle tree

in a row of trees. However, a comprehensive visibility analysis of

the virtual scene could be impossible due to the infinite number of

viewpoints and user-controlled camera orientations. The visibility

here is defined based on the line-of-sight between the observer po-

sitions and objects. For example, the TV or bookshelf in Figure 1

should be fully visible when the users sit on the sofas while fac-

ing them. The observer positions and objects are sampled within

S based on their semantics (e.g., the frequency of human activity

and the importance of object) in reality. We represent the viewshed

as a triangle with a vertex located at the observer position (see the
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Fig. 6. An ablation study of linear equality constraints LECs. (a) A sam-

pling view from the original scene. ((b) and (c)) The same viewpoint from

the retargeted scene without/with LECs. Top-down views are also shown

in the top row. Two tables are not aligned in (b) while the alignment is

achieved using linear equality constraints in (c).

up inset). Then we adopt the same energy form as the road width

term in Equation (6) with a varied threshold ϵ as the visibility en-

ergy Evisibility. During retargeting, we preserve the (in)visibility of

these objects by keeping them (in)outside the corresponding view-

shed frustum. In our experiments, the designer’s salient objects

and sampling views are specified according to the design intent.

Automatically analyzing scenes to weight samples with visibility

importance is orthogonal yet compatible with the current system.

Linear equality constraints. Finally,

we add several linear equality con-

straints (LECs) to visually preserve

details, as in Figure 6. We first impose alignment constraints. Phys-

ical environments often contain functional object groups or regu-

larly shaped organization, named superstructure. One of the most

important superstructures is alignment (see the up inset). It is de-

fined by a sequence of salient objects arranged along a line (e.g.,

a row of bookshelves against a wall). To build the alignment con-

straints, we first detect any two or more objects aligned by a line

intersecting one of their edges. For simplification, we only con-

sider two axis-aligned directions in this article. The alignment con-

straints are achieved by enforcing equal coordinates in the aligned

direction.
Then, the adjacency constraints

are used. Adjacency is another kind

of spatial configuration that is fre-

quently used in the physical environ-

ment (see the right inset). Some functions of the objects are

achieved by building adjacencies (e.g., kitchen cabinetry). It is also

worth noting that some physical environments are composed of

many components that are visually adjacent but physically dis-

connected (e.g., a wardrobe against a wall). To build the adjacency

constraints, we first detect any pairs of objects whose distance be-

tween each other is less than a set threshold. In our experiment,

the threshold is set to 0.01 m. Note that we treat each linear wall

segment as a wall object in this article. Our goal is to maintain the

adjacencies between these pairs of objects during retargeting. The

adjacency constraints are satisfied by enforcing equal coordinates

of the adjacent edges.

Fig. 7. An ablation study of our regularity optimization. (a) A sampling

view from the original scene. ((b) and (c)) The save viewpoint from the re-

targeted scene without/with regularity optimization. Top-down views are

also shown in the top row.

Optimization problem. The energy terms are weighted to form

the resulting energy as follows:

Er ({si }) = ωscaleEscale + ωobjectEobject + ωsceneEscene

+ ωspaceEspace + ωvisibilityEvisibility,
(7)

where ωscale, ωobject, ωscene, ωspace, and ωvisibility are the positive

weights. The optimization problem becomes

min
{si }

Er ({si })

s.t. AX = b,
(8)

where X denotes the variable vector that is formed by stacking

all centers, lengths, and widths in column format, and AX = b

indicates the linear equality constraints.

Optimization details. The first and second derivatives of the ob-

jective function Er ({si }) can be analytically obtained. We adopt

Newton’s method to solve the optimization problem benefiting

from its fast convergence. In each iteration, the line search’s step

size ensures the constraint satisfaction of the walkable width and

collision avoidance.

Our algorithm terminates when the step size is less than 10−6

or the maximum iteration number we set is reached. The optimiza-

tion process is offline and usually takes a few minutes. Please refer

to the supplementary video to visualize the process. We will re-

lease the implementation of our optimization.

3.3 Optimizing Salient Objects

Salient objects plays a main role in determining spatial perception.

They appearance shall be further optimized (including location,

size, and components optimization) during retargeting. All salient

objects are considered for further optimization. We develop two

optimization mechanisms: (1) regularity and (2) hierarchy.

Regularity. In a complex scene, repetitive components usually

exist in one salient object, such as the four-seat sofa and three

rows of bookcases in Figure 1. However, we are not sensitive to

the exact number of repetitive objects. Decreasing the number can
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Fig. 8. An ablation study of our hierarchical optimization. (a) A sampling

view from the original scene. ((b) and (c)) The same viewpoint from the

retargeted scene without/with hierarchical optimization. Top-down views

are also shown in the top row. With our hierarchical optimization, the ob-

ject sizes resemble the input sizes while satisfying other constraints, such

as structure-preserving constraints and perceptual visibility constraints.

The books become very small in (b) but can almost maintain original size

in (c).

reduce visual distortion, as shown in Figure 7: With one repetitive

swing removed, the sizes of the others are significantly more pre-

served. The goal of our regularity optimization is to automatically

determine the number of repetitive components.

A posterior method is proposed. We determine whether to delete

repetitive components based on the obtained shape distortion af-

ter the retargeting optimization. First, we determine objects with

repetitive components that are visually intensive and not related

to the interaction of applications. Such objects, denote them as

{sR }, can be automatically detected or manually specified. We use

a penalty term to minimize the distortion from retargeting:

PR =
∑
{i }

fp (ρi , ρmin, ρmax) + fp (ϱi , ϱmin, ϱmax), (9)

fp (x , xmin, xmax) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

xmin − x , if x < xmin,

x − xmax, if x > xmax,

0, otherwise.

Then, we detect and delete the repetitive components to lower the

energy by traversal. The specific steps are as follows:

(1) Conduct the retargeting optimization and calculate the

penalty term PR . Then we build a queue QR and push all ob-

jects of {sR } into QR .

(2) If QR � ∅, then pop an object from QR and denote this object

as sR . Otherwise, stop the update.

(3) If the number of repetitive components of sR is greater than 1,

then delete a repetitive component of sR and run the retarget-

ing optimization with the new penalty term denoted as PR
new.

Otherwise, go to Step (2).

(4) Calculate the reduction between PR and PR
new. If it exceeds

a specified threshold, then accept the deletion, update PR to

PR
new, and go to Step (3). Otherwise, restore the deleted repe-

titions of sR and go to Step (2).

Without the automated optimization, it is difficult for users to man-

ually adjust the number of components, since it is hard for them

to predict the shape distortion.

Hierarchy. In some situations, the salient objects in the virtual

scene can be regarded as a sub-scene, such as the desk in the bed-

room, the cabinet in the kitchen, or certain areas in the park. Af-

ter we finish the global optimization of the whole virtual scene,

we use the same retargeting algorithm on components in this sub-

scene for further optimization. This hierarchical retargeting step

can further lower the distortion of small-scale objects, as shown in

Figure 8. Although our retargeting optimization is currently per-

formed in 2D, this hierarchical optimization can be regarded as

performing the optimization in 3D.

3.4 Discussion

Choosing salient objects. For the maximal generality, we con-

sider all objects in the input virtual scene as being salient while

constructing S. For accelerated computation, we use two posi-

tional relationships to group several objects into a set as a single

unit: (a) adjacent repetitive relationship and (2) hierarchical rela-

tionship. For example, based on the adjacent repetitive relation-

ship, the three rows of bookcases in Figure 1 are treated as a single

salient object for the retargeting optimization, and then the reg-

ularity optimization is used to determine the final number of the

repetitive components. According to the hierarchical relationship,

a table and the objects on it are considered as one salient object,

and then the hierarchy optimization is applied after the retarget-

ing optimization. However, the subset of S for constructing the

objectwise visibility term in Section 3.2 was manually indicated by

creators. As future work, we foresee semantic analysis may shed

light on making the whole system fully automatic.

Preserving the functionality. In practice, directly removing the

repetitions of the salient objects may potentially affect the func-

tionality and interactivity. For instance, in Figure 1(d), deleting the

repetitive part of the bookshelf may change its capacity. The de-

signers have the freedom to identify these objects as non-deletable

should the application scenarios requires user interaction.

Complex workspaces. Our method is adaptive to the physical

workspaces that are irregularly-shaped and/or containing interior

obstacles. This can be achieved by introducing “ghost object” (with

fixed shapes and sizes) in virtual scenes at the corresponding po-

sitions. The retargeting procedure remains unchanged. While us-

ing the system, users are guided away from the irregular physical

boundaries and prevent them from colliding with these virtual ob-

stacles. Figure 9 shows two examples.

4 IMPLEMENTATION

Space and positional tracking. The size of our physical

workspace P is 5.6 m × 5.6 m, as shown in Figure 10(a). Eight

Nokov motion capture cameras locate the users with 3 markers

on their heads (Figure 10). There are no physical obstacles

inside P.

Rendering system. An Oculus DK2 HMD connected to a laptop is

used to render the binocular views of the retargeted virtual scene
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Fig. 9. Using “ghost objects” to adapt to irregularly-shaped real

workspaces. Top: Two representative types of real workspaces. The left one

contains an interior obstacle. The right one of non-rectangular boundaries.

Middle: Corresponding retargeting results. A chair is added in the virtual

scene as a ghost object to avoid the obstacle. A cupboard and a water dis-

penser serve as buffer areas to keep users inside the non-regular bound-

aries and prevent them from hitting the boundary. Bottom: The ghost ob-

jects in HMD views.

Fig. 10. Experimental setup. Eight motion capture cameras are used to

track the users’ positions (a). During walking, the laptop and power supply

are in the basket carried by users (b).

M. To ensure high rendering performance, the laptop is equipped

with Intel i7-6700HQ CPU, NVIDIA GTX1070 GPU, 16GB RAM,

powered by an uninterruptible power supply (Figure 10(b)).

The perceived rendering performance is decided by the tracking

rate and the computation. In our implementation, the rendering

images have a resolution of 1, 182 × 1, 464. Our tracking system

provides more than 80 FPS. Overall, we achieve more than 60 FPS.

5 EVALUATION

We first conduct psychophysical studies in Section 5.1 to com-

pare our system with three alternative solutions: rescaling

(Section 5.1.1), existing retargeting method (Section 5.1.2) and

Fig. 11. The original indoor scene and the retargeted result using our

method. Top: Floor plans of the original indoor scene and our result. Mid-

dle: several sampling HMD views from the original indoor scene. Bottom:

Corresponding views from our result.

redirected walking techniques (Section 5.1.3). The first two are

evaluated via two-alternative-forced-choice (2AFC) exper-

iment; the third is measured via task efficiency and simulator

sickness metrics. Then, we perform usability tests (Section 5.2)

and algorithm evaluations (Section 5.3) to validate our capa-

bility and extendability under various challenging settings.

In the following experiments, we cover various scenarios as

much as possible to simulate real-world applications, including

indoor/outdoor/human-made/natural spaces. Note that designers

created the scenes orthogonal to our system. The elements’ sizes

and positions were designed to reflect their physical realities.

5.1 Comparisons

Scene. For consistency, Section 5.1.1 to Section 5.1.3 share a vir-

tual scene input: As shown in Figure 11, we applied a 9 m × 12 m

indoor environment. It consists of a living room, a kitchen, a bath-

room, a study room, and a master bedroom to simulate an arbitrary

virtual home space. We thus added furniture and daily supplies into

the scene. All models were properly scaled and placed. The indoor

scene is compressed into a 5.85 m × 7.8 m space by our retargeting

optimization.

5.1.1 Comparisons with Rescaling.

Rescaling techniques. To enable exploring the larger V via nat-

ural walking in P, two immediate solutions could be deployed:
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Fig. 12. Comparison with uniformly scaling and existing retargeting

method. Five pairs of HMD views sampled from original scene (a), Scale-

XY (b), Scale-XYZ (c), the retargeted scene by Huang et al. [2016] (d), and

the retargeted scene by our method (e) are shown.

• Uniformly scale the user’s walking speed so that users do not

get out of the physical workspace P.

• Uniformly rescale V (denoted as Vs ) so that it fits into P.

Then users walk freely in P to experienceVs .

The unnoticeable translational speed gain is limited within a

small range (0.86–1.26 according to Azmandian et al. [2016]). It

determines the maximum capability of the former approach. We

conducted preliminary experiments for validation: Users reported

significant sickness immediately and unable to finish the task.

Thus, we further compare our method with the latter. To trans-

form the input virtual environment into a small real workspace, a

uniformly scaling on the whole scene is a straightforward solution,

as demonstrated in Figure 12. As a baseline method for retargeting

3D scenes, we perform a uniformly scaling on the input virtual en-

vironmentV so that the scaledV (denoted asVs ) is totally in P.

The scale is computed as

min

{
lp

lv
,
wp

wv

}
,

where lv and wv (or lp and wp ) are the length and width ofV (or

P). There are two options of uniformly scaling for 3D scenes. The

first one is to scale only in the length and width directions by pre-

serving the height, denoted as Scale-XY. The second is uniformly

scaling the scene in three dimensions at the same time, denoted

as Scale-XYZ. In this case, the height of the user’s viewpoint is

maintained to be normal. We then conduct a static experiment to

determine whether this advantage is visible in practice.

Participants. We recruit 20 participants for each experiment

(ages 21–28, 6 females). All of them had had the VR experience.

Stimuli and Tasks. In this experiment, a virtual camera is first

set to automatically roam along the path with specified walking

and steering speeds in the indoor scene. The walking path is de-

signed to maximize spatial coverage. Then, the above walking pro-

cess is divided into 40 segments based on the roaming time, and

we randomly sample a snapshot of view for each one. With that,

we obtain 40 snapshots of different views.

In each trial, the participant completed a2AFC task. Specifically,

(s)he was first shown a view snapshot from the original scene for

4 s as the pedestal stimulus. It follows by one from the scene gener-

ated by our method (OURS) and the other by uniformly rescaling

Fig. 13. Statistical violin plot of the 2AFC studies’ results from Section 5.1.

The X axis indicates the three comparisons. The Y axis shows the pro-

portional votes of OURS, of the 800 trials (40 trials/subject × 20 subjects)

in each comparison. White dots and the thick black lines indicate means

and quartiles respectively. The dashed line on 50% indicates a random

guess rate given the 2AFC task. The consistent distribution close to 100%

shows that our method significantly outperforms rescaling and Huang

et al. [2016] in preserving first-person view perceptual similarity in VR.

Individual votes are plotted in Appendix C.

(Scale-XY/XYZ) successively. The order of the two is random. The

participants were then instructed to choose the one visually clos-

est to the pedestal. The snapshots were all shown to users in VR.

Each subject was shown 40 trails with one from each segment.

Results and Discussion. Appendix C plots the individual votes.

As summarized in Figure 13, of 40 trials, on average 84.4%

(33.74/40, STD 11.9%) snapshots of OURS are chosen by partic-

ipants when comparing to the uniformly scaling Scale-XY. The

value is higher for conditions comparing with the uniformly scal-

ing Scale-XYZ with a score of 93.6% (37.45/40, STD 8.0%). Sub-

jects reported that the uniformly scaling Scale-XY introduces dis-

tortion artifacts while the uniformly scaling Scale-XYZ brings a

visual experience being exposed to a Lilliputian world for users. In

comparison, OURS restructures the virtual scene in the sense of

non-homogeneous and can more reliably produce higher-quality

scenes. These differences are intuitively demonstrated in Figure 12.

A binomial test on the voting with p < 2.2e−16 for both compar-

isons indicates that participants statistically rate OURS as being

visually more similar to the pedestal stimulus than scene scaling.

Naive rescaling produces highly noticeable shape distortion even

if the scaling factor is small. Consequently, it introduces an unre-

alistic and sickening visual experience.

5.1.2 Comparisons with Previous Retargeting Method.

Implementation. Beyond uniformly rescaling, retargeting vir-

tual scenes to different target scales has been introduced in 3D

design research [Huang et al. 2016]. However, instead of keeping

design intentions or artistic themes in the space layout, our goal is

to reserve the perceived first-person view in VR HMDs. In this ex-

periment, we compare our method with an existing retargeting

method (RETARGETING) [Huang et al. 2016]. Since OURS is

fully automatic while user intervention would affect the results of

Huang et al. [2016], we choose to apply the no-interaction version

of RETARGETING.

Participants, Stimuli, and Tasks. For a fair comparison, this

experiment follows the same participant group and tasks as in
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Section 5.1.1. As visualized in Figure 12, the stimuli were OURS as

sampled in Figure 12(e) and the corresponding views implemented

via the approach in Huang et al. [2016] as sampled in Figure 12(d).

Results and Discussion. Appendix C plots the individual votes.

As summarized in Figure 13, of 40 trials, on average 87.8% (35.1/40,

STD 5.5%) snapshots of OURS are chosen by participants when

comparing to the restructured scene views generated by RETAR-

GETING. As intuitively illustrated in Figure 12(d), RETARGETING

restructures the scene by preserving its global structure for design

purposes than local, occluded, and first-person views in a VR set-

ting. Consequently, it may make some walkable areas in the re-

targeting scene too narrow to walk through, and even introduces

unnecessarily perceived objectwise overlaps.

5.1.3 Comparisons with Redirected Walking. Redirected walk-

ing [Nilsson et al. 2018] utilizes the limited sensitivity of human

perception to create a sense of space that is much larger than the

physical surroundings. That is, the virtual environment is interac-

tively and imperceptibly rotated when the user navigates a large-

scale virtual environment by real walking. In this experiment, we

compare our proposed method with a typical redirected walking

technique, Steer-to-Center (S2C) technique as in Hodgson and

Bachmann [2013] and Azmandian et al. [2016].

Participants. We recruited 38 participants. Twenty of them had

had the VR walking experience. During the experiment, 5 partic-

ipants experienced general sickness and could not complete the

whole task set. We thus dropped these cases in the result analysis,

resulting in 33 users (ages between 21 and 30, 12 females) in total.

Stimuli and Task. Each participant was instructed to complete

the experiment with three steps: a warm-up/reference training and

two formal trials. The training process is first provided for all par-

ticipants to get familiar with the scene and interactive operation.

To ensure the validity and fairness of the experiment, the partici-

pants were allowed to see the interior of rooms from the doors in

the living room. Following a 10-minute break, the subjected con-

ducted the two formal trials with a rest for an hour in between.

For each trial, participants were instructed to complete the simu-

lator sickness questionnaire (SSQ) [Kennedy et al. 1993] before

and after. With the same original scene, each trial is from one of

these two conditions: one using OURS and the other uses S2C. The

orders were counterbalanced. The tasks of both were the same: col-

lecting the required objects for travel as quickly as possible. Specif-

ically, participants were instructed to find 10 hidden objects in the

scene and put them at the target position. Note that they were

only allowed to pick items sequentially, but were hinted what and

in which area the next item, would be. Since the translation gain

in the redirected walking techniques changes users’ speed thus

time consumption, we combine the same translation gain with our

method for fair performance comparison with S2C. The size of the

walkable area in the retargeted scene is 5.6 m× 7 m. After using the

translation gain, users can walk freely to experience the retarget-

ing scene in our 5.6 m × 5.6 m workspace. In the experiments, we

used 1.26 as the gain level to ensure task completion with minimal

discomfort across participants.

Fig. 14. Time consumption result from Section 5.1.3.

Table 1. Statistics of SSQ Score Gains after Each Trial in Section 5.1.3

Experiment δ nau
avg /δ nau

dev
δ ocu

avg /δ ocu
dev

δ diso
avg /δ diso

dev
δ tot

avg /δ tot
dev

RDW 30.1/30.3 15.6/20.3 26.6/28.6 12.4/12.2

Ours 6.4/11.6 3.9/10.4 7.6/19.4 3.2/6.4

We report the average and the standard deviation for each metric.

Metrics. To evaluate and compare between the two conditions,

we design both objective and subjective metrics.

First, task completion efficiencies intuitively reflect users’ per-

ceptual familiarity with the original scene as the pedestal. So, we

chose them as an objective measurement. With an identical task,

the shorter time consumption indicates the validity and quality of

the perceived scene. Since our method can effectively compress the

virtual scene, the walking distances for picking up items are much

shorter than those in the RDW task. For fairness, we rescaled the

time consumption of RDW by the space compression ratio of our

method during comparisons. Therefore, the performance measure-

ment is independent of the particular translational gain choice.

Beyond efficiency, a well-performed VR system shall not

introduce additional simulator sickness, one of the most critical

problems among all-immersive platforms. We thus compare the

subjective SSQ gain (before/after task) between OURS and S2C

RDW. SSQ contains three dimensions, Nausea δnau , Oculomotor

δocu , and Disorientation δdiso , with their sum δ tot as an overall

measurement.

At last, motivated by Sun et al. [2016], we also subjectively mea-

sured loss of locomotion δ loc and visual fidelity δvis to evaluate

the overall experience. Here, the locomotion measures the walk-

ing fidelity in direction and distance. The visual fidelity measures

the feeling of immersion, the comfort with navigation, and the vi-

sual experience from the scene content, design, layout, and struc-

ture. After finishing tasks, participants evaluated the above factors

via rating. Discrete options (0 for “no loss of fidelity” to 3 for “se-

vere loss”) were used to guide the scoring process. The participants

were instructed to compare the locomotion fidelity with both the

training (pedestal) session and real world, and the visual fidelity

with the training session. The participants were then instructed to

sort OURS and S2C RDW, based on their interaction, locomotive,

and visual experience.

Results and discussion. Figure 14 shows the time consumption.

Repeated measures ANOVA showed that the differences between

the two methods was significant (F1,32 = 314.8,p < 0.001). In fact,

for each task, the differences between the two methods were all
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Fig. 15. Subjective fidelity rating. “Visual” for the visual fidelity, “Locomo-

tion” for the locomotion fidelity, “Training”/“Real” for comparing the cor-

responding walking experience against the reference training/real world.

Lower scores indicate better fidelity. (b) The numerical breakdown.

significant (all p < 0.001). This indicates that participants com-

pleted real-world tasks more efficiently with OURS.

We then investigate the sickness gains after each trial: Table 1

shows the statistics. Repeated measures ANOVA showed that the

differences between the two methods were significant with OURS

being lower (Nausea: F1,32 = 16.79,p < 0.001; oculomotor: F1,32 =

9.69,p < 0.005; Disorient: F1,32 = 11.86,p < 0.005; Total Sickness:

F1,32 = 16.44,p < 0.001). This indicates that OURS introduces

significantly lower sickness than RDW in all aspects.

Figure 15(a) shows the users’ visual/locomotive fidelity rating

(discrete 0–3, lower means less fidelity loss). As Figure 15(a) shows,

comparing to RDW, OURS was rated better in the locomotive fi-

delity with both real-world (1.03 vs. 1.15, t (32) = 1.28,p = 0.1)

and VR training sessions (0.45 vs. 0.84, t (32) = 3.21,p < 0.05)

as pedestal. This trend even holds in visual fidelity (0.54 vs. 0.69).

However, we did not observe statistical significance (t (32) =
1.09,p = 0.14). The analysis shows that our method offers signif-

icantly more faithful locomotive experience than RDW with the

original scene as reference. Meanwhile, it does not statistically sac-

rifice visual fidelity.

Regarding the subjects’ experience rating between RDW and

OURS. Around 76% (25 of 33)/82% (27 of 33) users preferred OURS

than RDW on walking/interaction experience. When it comes to

the visual experience, RDW was more preferable than OURS (11

of 33, 33%). This also agrees with the trend above.

5.2 Usability Test

One limitation of VR techniques today is the narrowly applicable

scenarios. To demonstrate the extendability of our method in broad

real-world applications, we designed an interactive game (we show

the inputs and retargeting results in the supplementary materials)

with multiple indoor/outdoor scenes, entertaining tasks, and long

experimental duration.

Table 2. The Statistical Results from Section 5.2

(a) SSQ statistics

Metrics δ nau
avg /δ nau

dev
δ ocu

avg /δ ocu
dev

δ diso
avg /δ diso

dev
δ tot

avg /δ tot
dev

SSQ 8.0/10.7 6.8/11.0 11.7/21.4 4.9/7.8

(b) Fidelity ratings

Fidelity loss no (0) slight (1) moderate (2) complete (3)

Locomotion 4 13 2 0

Visual 11 8 0 0

We report average and standard deviation of SSQ scores in (a) and the counts of
subjective fidelity rating in (b).

Fig. 16. Different weight sets of the energy function Er ( {si }). The virtual

scene in Figure 1(a) is retargeted into the same real space, and the ratio of

real space is 0.65. The weights for (Escale, Eobject, Escene, Espace, Evisibility)

are set to (0.001, 200, 50, 0.0003, 0.001) (a), (0.0002, 100, 25, 0.0002, 0.002)

(b), and (0.0015, 150, 75, 0.0005, 0.003) (c), respectively. The only subtle

variances with different parameter setting reveals the robustness of the

retargetting method.

Participants. Twenty participants were recruited to this experi-

ment. During the experiment, one participant experienced general

sickness and cannot complete it. We thus drop this case thus hav-

ing 19 participants (ages 21–27, 7 females) in the result analysis.

Stimuli and tasks. In this experiment, the user plays a detec-

tive searching for a treasure with only four clues. Similarly to

Section 5.1.3, participants who completed the game early were in-

structed to freely explore the scene until 8 minutes. These four

clues were “The key in the office,” “The villa opposite the zebra

crossing,” “The secret in the box,” and “The treasure pointed by

the arrow.”

We created four scenes corresponding to individual clues. The

game composes of an office, a street with a pedestrian crossing, a

basement, and a courtyard garden. Their original and retargeted

scales are listed in Appendix B. These physically unrelated scenes

were connected via teleportation. The game was deployed at a

small physical space (5.6 m × 5.6 m).

Similarly to Section 5.1.3, participants were instructed to com-

plete the SSQ before/after the game, and rate visual/locomotive

fidelities between 0 (no loss of fidelity comparing with real-world

experience) and 3 (severe loss).

Results and discussion. Table 2(a) shows the post-experiment

SSQ gain statistics. Comparing with the second row of Table 1,

a similar sickness raise level can be observed. Table 2(b) lists

the distribution of subjects’ fidelity ratings. The average rate for

motion/visual fidelity was 0.89(STD 0.57)/0.42(STD 0.51). This

shows that our system preserves similar fidelities after long-term

and complicated usage (in comparison with Section 5.1.3 and

Figure 15(b)). Comparing with recent literature on measuring im-

mersive simulator sickness [Padmanaban et al. 2018], our method
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Fig. 17. Various numbers of salient objects. From left to right, the number of salient objects in the virtual scene decreases monotonously.

Fig. 18. Different real spaces with the same area. The values above the

retargeted scene indicate the ratios between the width and height of the

real space and the input virtual scene.

does not raise additional sickness levels. Further sickness reduc-

tion as constraints to retargeting optimization [Hu et al. 2019] is a

valuable future research direction.

5.3 Intra-algorithm Evaluation

To quantify the retargetting quality, we report several objective

metrics, including the scaling ratios in length/width, and the ra-

tio between length and width (denoted as Scalel , Scalew , and

Scaler =max{Scalel /Scalew , Scalew /Scalel }, respectively). We also

show the absolute values of relative displacement of the center of

salient objects in the X axis and Y axis after retargeting, and their

�2 norm (denoted as Disx , Disy , and Dis =
√

Dis2
x + Dis2

y , respec-

tively). For each metric, we report its maximum, minimum, aver-

age, and standard deviation. The running time of the retargeting

optimization is also recorded. Statistics for these metrics and the

timings are reported in the supplementary materials.

Weights for energy terms. To test the influence of weights on the

results of our method, we use several different sets of weights in

retargeting optimization. We show an example with three differ-

ent sets of weights in Figure 16. The objective metrics of the retar-

geting results are shown in the supplementary materials. When

the weights are set within specific ranges, the retargeting re-

sults are almost the same. Through experiments, we found that

weights can be set between [0.0005, 50, 10, 0.00005, 0.0002] and

[0.005, 500, 100, 0.0005, 0.002].

Number of salient objects. To evaluate the influence of the num-

ber of salient objects on our results, we adjusted the number of

salient objects in the virtual scene in Figure 1(a) to generate three

new virtual scenes. Compared with the original scene, five salient

objects are added, five salient objects are reduced, and ten salient

objects are reduced, respectively. We retarget these four virtual

scenes into the same real space and the ratio of space is set to 0.65,

as shown in Figure 17. From the visual results in Figure 18 and the

objective metrics in the supplementary materials, the greater the

number of salient objects increases, the larger the visual distortion

is. The reason is that more objects in the scene will reduce the space

available for optimization, and we have to introduce more distor-

tions for these objects to satisfy hard constraints. Besides, as the

feasible space of the optimization problem becomes smaller, more

optimization time is needed to find a feasible solution.

Shape of real space. To evaluate the influence of the real space

shape on our results, we retarget the virtual scene in Figure 1(a)

into five different-shaped real spaces with the same area. The re-

sults are shown in Figure 18. Based on the visual results in Fig-

ure 18 and objective metrics in the supplementary materials, we

found that the visual distortion of salient objects in the scene in-

creases accordingly, as the shape difference between the real space

and the virtual scene becomes more severe.

Stress Test. To evaluate the performance of our method at

varied scales in real-life usage, we conducted a stress test. In this

experiment, the virtual scene in Section 5.1.3 (i.e., Figure 1(a))

was retargeted into different sizes. The ratio of space compression

ranges from 0.75 to 0.45 at 0.05 intervals, as shown in Figure 19. We

were always able to obtain a retargeted scene unless the compres-

sion ratio is too small to meet spatial constraints. Note that with

the compression ratio is getting smaller, the visual distortion of

salient objects in the scene increased accordingly. We recorded the

rescale ratio of objects after retargeting and the result is shown in
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Fig. 19. Retargeting results of different sizes from 0.75 to 0.45. The first one is shown as the origin scene. Corresponding HMD views at the same position

are also shown for each scene. As the retargeting size decreases, the visual distortion of the scene becomes more and more pronounced. The object-level

distortion along with the compression stress level is plotted in Figure 20. The objective metrics of the retargeting results are shown in then supplementary

materials.

Fig. 20. Statistical plot of Section 5.3. The X axis indicates the ratio of

space compression. The Y axis shows the rescale ratio of salient objects

in the scene after retargeting. This visualizes the trend of salient objects’

distortion level changes along with the scene compression scales.

Figure 20. When the ratio of space compression is close to 0.5, the

shapes of some salient objects will be distorted obviously after re-

targeting, which may lead to unrealistic user experience. However,

our system can still generate visually natural results that appear

similar to the original with less extreme compression demands.

Various virtual scenes. In addition to five virtual scenes used in

the walking experiments, we also designed three different types of

virtual scenes to verify the versatility of our method. We show the

inputs and retargeting results in then supplementary materials.

6 CONCLUSION

In this article, we present a novel approach that restructures a

given virtual scene into limited physical spaces to enable a nat-

ural walking. Beyond geometries and topologies, we also empha-

size the VR-oriented spatial perception with temporal samples. We

tackled the traditionally open problems across applicability over

non-occluded scenes, abrupt teleportation experience, and limited

spatial saving ratio. This is achieved via spatially and perceptually

aware scene restructuring, and temporal first-person immersive

view sampling.

Large distortion. Benefiting from preventing interrupting tele-

portations, our system introduces less sickness than gain-based

RDW approaches as in Section 5.1.3. However, the noticeable struc-

tural distortion would be introduced when we compress a scene

into a much smaller size, as demonstrated in the stress test Sec-

tion 5.3. This trend becomes more visible when the virtual scene

is outdoor or widely open, as shown in Figure 21. It is due to the

more commonly larger salient objects and wider walkable areas

in outdoor spaces: in such scenes, the visual distortion becomes

more sensitive to the compression ratio thus more easily to be

perceived as the restructuring result becomes crowded. The other

challenging case is to retarget extremely cluttered environment. In

such condition, the original scenes lack sufficient space to have the
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Fig. 21. Failure case with large-scale open scenes. The main road becomes

extremely narrow and the whole scene seems to be crowded.

optimization achieve low loss. As a result, the objects may still

show strong distortion or artifacts.

Typical sickness. Moreover, after long-term scenario usage, the

typical sickness, especially fatigue is also raised to a higher level

(Section 5.2). To address this limitation, we plan to investigate a

proper modeling of sickness to our structuring solution.

Combined with other real walking techniques. Our method can

be automatically adapted to other real walking methods, which

can significantly expand the capability of these methods. Specifi-

cally, we can first reduce the size of the input virtual scenes using

our method, and then apply other real walking techniques on the

above-retargeted scenes. Therefore, adding new constraints and

optimization goals to our method so that the needs of other real

walking methods can be better satisfied is a promising research

direction in the future.

Axis-aligned bounding box simplification. Our simplification of

the axis-aligned bounding box adapts to most of the scenes without

introducing more complex descriptions and parameters. However,

the objects may not be well approximated in some cases, thereby

resulting in nonintuitive and unnatural scene layouts. To resolve

this issue, one straightforward and available approach is to use

a better simplification method. For example, we can use oriented

bounding boxes or K-discrete oriented polytope. However, our de-

scriptions and objective function are required to be modified into

more complex fashions, resulting in additional optimization diffi-

culty and complexity. We foresee it as interesting and challenging

future work.

Parameters. In the previous section, we have studied the weights

for energy terms. However, there are many other parameters in

our experiment. In general, they are manually specified, such as

the threshold of scaling factors and the road width. Automatic se-

lection of parameters is also worth exploring.

Currently, the salient objects share a constant importance value.

Adaptive importance based on each object’s appearance and shape

may effectively improve the restructuring quality and efficiency.

The current deep learning-based approaches may shed light on au-

tomatically assigning the values.

APPENDICES

A PARTICIPANT STATISTICS

Table 3. Demographical Statistics of Participants

Experiment #part Age Range aavg/adev Male, Female #used

Scale-XY 20 [21, 28] 24.65/1.57 14, 6 20

Scale-XYZ 20 [21, 28] 24.65/1.57 14, 6 20

[Huang et al. 2016] 20 [21, 28] 24.65/1.57 14, 6 20

Redirected walking 33 [21, 30] 24.70/2.13 21, 12 20

Treasure hunting 19 [21, 27] 24.47/1.31 12, 7 18

B USABILITY TEST SCENE DETAILS

Table 4. Scene Scale Details in the Usability Test (Section 5.2)

Original Optimized Walkable Area

Office 10 m × 7 m 6.5 m × 4.55 m 6.5 m × 4.55 m

Street 48 m × 48 m 33.6 m × 33.6 m 7.2 m × 1.8 m

Basement 12 m × 12 m 7.8 m × 7.8 m 6.6 m × 7 m

Garden 13 m × 15 m 8.45 m × 9.75 m 6 m × 7 m

C INDIVIDUAL VOTES

Fig. 22. Individual vote results from Section 5.1.1 and Section 5.1.2. The

X axis is the user ID while the Y axis is the number of votes to OURS.

The total number of trials was 40, thus the dashed line on 20 indicates a

random guess rate. Our method significantly outperforms rescaling and

Huang et al. [2016].
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