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ABSTRACT

As learned image codecs (LICs) become more prevalent,
their low coding efficiency for out-of-distribution data be-
comes a bottleneck for some applications. To improve the
performance of LICs for screen content (SC) images without
breaking backwards compatibility, we propose to introduce
parameterized and invertible linear transformations into the
coding pipeline without changing the underlying baseline
codec’s operation flow. We design two neural networks to act
as prefilters and postfilters in our setup to increase the coding
efficiency and help with the recovery from coding artifacts.
Our end-to-end trained solution achieves up to 10% bitrate
savings on SC compression compared to the baseline LICs
while introducing only 1% extra parameters.

Index Terms— screen content coding, learned image
compression, prefilter, postfilter, deep learning

1. INTRODUCTION

As available compute power of consumer grade hardware in-
creases, artificial intelligence (AI) products start to replace
more classical solutions. Image compression is one of these
fields where the neural network-based learned image codecs
(LICs) [1, 2, 3, 4, 5, 6, 7] can produce similar level or more ef-
ficient encodings than their classical counterparts. This opens
up opportunities to develop more efficient AI-based coding
standards for image and video compression.

Screen content (SC) images have unique characteristics.
Unlike natural images where the pixels are produced by sen-
sors capturing natural phenomena such as light, the SC pix-
els are mostly artificially generated. This causes SC to have
drastically different color and texture patterns [8]. They usu-
ally consist of sharp edges with reduced colorspaces. Some
examples for SC images are graphical user interfaces, large
bodies of letters and text, computer simulation results and so
on. It is also possible to have natural images embedded in a
SC context, e.g. game streaming where the user’s video feed

is combined with artificially generated game images.
The SC compression is often overlooked in the domain of

LICs due to lack of representation in most datasets and lack
of effort in the exploitation of unique redundancies. It is also
very hard to update LICs after they are standardized since any
change in network weights may break the backwards compat-
ibility of the bitstreams and it’s not feasible to store multiple
copies of large networks for every iteration. For these reasons,
we research solutions in adapting LICs to out-of-distribution
data like SC without breaking the compatibility of already
generated encodings.

In that regard, we develop new modules around the codec
that can be disabled with a signal. This setup allows us to im-
prove coding efficiency of LICs without retraining the codec
itself. For this purpose, we develop two neural networks that
perform as the prefilter and postfilter around the codec’s input
and output. To enhance the performance on SC compression,
we also propose the use of linear forward and inverse trans-
formations.

The prefilter model focuses on creating better compress-
ible images through addition of spatial modulations to the
source image. On the other hand, the postfilter model aims
to remove the modulations and reduce the artifacts created by
the forward transformation and the prefilter model. We train
our models end-to-end so that they can learn to use informa-
tion transmitted through the codec more efficiently.

2. BACKGROUND

2.1. Classical screen content compression

Rise of digitalization has increased the demand for SC com-
pression. As a response, video codec standards such as HEVC
[9] and VVC [10] adopted specialized extensions. Among
these, most prominent ones are the Intra Block Matching
(IBM) and Palette Mode Coding (PMC) [11, 12].

In IBM, for each coding unit, the intra encoder searches
for similar or repeating patches in the already encoded parts
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Fig. 1: Architecture of the residual network based on MBConv layers. This implementation depicts L = 8, C = 32 setup.

of the image. This allows the encoder to skip encoding large
chunks of pixels and just transmit the position of the simi-
lar patch to the decoder. In turn, the decoder just copies the
referenced block from already decoded coding units. This
technique increases the coding efficiency especially when the
source image has large chunks of repeating blocks, such as
graphical user interfaces, pixel art or gaming.

On the other hand, PMC focuses on exploiting the color
space redundancy of SC images. The algorithm encodes the
set of unique colors in a given block and replaces the pix-
els with the indexes corresponding to their colors. Instead of
transmitting the color channels of the image, we encode the
palette and send the indexes alongside it. This way, we can
get lower bitrates for source images with narrow color spaces.

2.2. Learned image compression

After the invention of differentiable entropy bottleneck lay-
ers and end-to-end trainable autoencoder codecs [13], learned
image compression has seen growing interest from the re-
searchers. Later, hyper-encoders and hyper-decoders were
introduced to decrease the spatial redundancy on latent codes
[1]. This was further improved by allowing a context model to
process the reconstructed latents [2]. Designing context mod-
els with better priors were shown to reduce required bitrate
to transmit images [3]. Researchers began to test transformer
based context models to replace the autoregressive architec-
tures [4]. Since transformer context models required more
compute, there has been also some attempts to make them
more efficient via routing attention to selected channels [5].

2.3. Hybrid approaches

Tao et al. [14] combined two neural network models around
a classical image codec and trained them together to improve
the coding efficiency of the underlying codec. To get around
the non-differentiable codec’s lack of backpropagation, they
used auxilary loss functions to train the networks separately.

Recently, Guleryuz et al. [15] solved the same problem by
switching the actual codec with a differentiable image proxy
during training time. This idea was also combined with ap-
plying transformations such as downscaling or quantization
to enhance codec capabilities [16].

3. METHODOLOGY

Training a LIC is computationally expensive. In this work,
we attempt to improve the SCC efficiency of an existing LIC
without retraining of the whole codec, but using pre- and post-
processing operations instead. The codec is treated as a black
box and its weights are frozen during training. This helps our
solution to be implemented easily on top of any differentiable
codec while keeping the produced bitstream compatible with
the underlying software.

3.1. Proposed solution

Our solution requires four extra modules on top of the codec.
In the encoder side, we have a linear forward transformation
T and Compact Representation (CR) module with a neural
network. Following a similar structure, the decoder consists
of a linear inverse transformation T−1 and the Reconstruction
Stage (RS) module. Fig. 2 depicts the operational flow of this
solution.

3.2. Linear transformations

In our setup, we can’t change the internal flow of the codec.
That means, we must work with the same kind of inputs and
outputs as the codec. This puts a requirement on the valid
transformations such that they must be compatible with 3-
channel RGB images. In cases where the exact inverse trans-
formation is not possible, we can approximate it with the
Moore - Penrose inverse [17] of the forward transformation.



Fig. 2: Operational diagram of the proposed pipeline.

In this work, we consider 3 candidate transformations.
Desaturation transformation takes an RGB image and linearly
interpolates between the grayscale version according to the
formula x̂ = x + (1 − α)Gray(x) where x is the RGB in-
put, Gray is the 3-channel grayscale color conversion and α
is the saturation level. Its inverse can easily be computed by
just changing α to its multiplicative inverse.

The PCA downscaling transformation first converts an
image to its PCA colorspace consisting of the principal chan-
nel (PC), side channel 1 (SC1) and side channel 2 (SC2)
according to the order of lowest standard deviation. Then,
it downscales the side channels by the parameters dSC1 and
dSC2 respectively where the downscaled images have image
dimensions divided by these values. While bicubic transfor-
mation is used during downscaling, we preferred to upscale
using the nearest neighbor approximation so the color chan-
nels become the same resolution as the original image. Once
the image is constructed back, we remap the colors to RGB
using the inverse PCA color transformation.

Similarly, we also evaluate PCA quantization transform
which uses the same color transformation as before. How-
ever, instead of downscaling, we quantize the side channel
amplitudes with QSC1 and QSC2 bits by replacing them with
cluster centers produced by the k-means [18] algorithm. Fi-
nally, the quantized image is remapped back to the RGB space
to be consumed by the LICs.

3.3. Network architecture

Our CR and RS modules use the exact same architecture with
same number of layers and channels. We use a ResNet archi-
tecture [19] where the main processing blocks are MBConv
layers [20]. The network consists of a convolution layer with
stride of 2 that maps RGB images to C channels, L number of
MBConv layers where the last layer doesn’t squeeze its chan-
nels, another convolution layer that maps the unsqueezed 4C
channels to 12 so that we can finish with pixel shuffling [21]
with a stride of 2 to get the original resolution again. To sta-
bilize the training and let network focus on only extracting
modulations, we have an end-to-end residual connection be-
tween the input and output of the module. This structure is
illustrated in Fig. 1.

3.4. Dataset

We used the SC dataset collected for the JPEGAI [22] stan-
dardization effort, denoted as JPEGAI-SC hereinafter. It has
approximately 3 thousand training images and 1 thousand val-
idation images. We use the validation set in our analysis sec-
tion since we don’t use it in any part of training. The dataset
consists of 5 categories of SC images: AI-generated, gaming,
screenshots, 3D renderings, illustrations.

3.5. Training scheme

Our models were trained for 50 epochs where the codecs’
weights were frozen. The batch size in our trainings was
set to 8 and we worked with center cropped 256x256 images
both for training and testing. We used Adam [23] optimizer
with γ = 10−4, β1 = 0.9, β2 = 0.999. The codec imple-
mentations are from the CompressAI [24]. We used the same
Rate - Distortion loss with the same λ parameters as the base-
line codecs [1, 2, 3]. We optimized the Mean Squared Error
(MSE) as the codec variants we use.

4. EXPERIMENTAL RESULTS

We performed a series of experiments to find optimal param-
eters and settings for various questions. In most cases, we
only trained for quality points between 2 and 5 due to limited
access to compute resources and 4 quality points are enough
to compute Bjontegaard-Delta (BD) rate with Akima interpo-
lation [25, 26].

4.1. Compressibility of transformations

Since we are interested in creating bitrate reductions through
reducing the information of the images with transformations,
we designed an experiment where the transformed images are
passed through a LIC and we measure their compressed sizes.
We used the Ballé encoder for quality points between 2 and 5
and measured averaged the bitrate differences ∆BPP of the
augmented images to their baselines.

In Fig. 3, we can see that while desaturation transforma-
tion gets smaller bitrates compared to the Ballé codec, the in-
formation loss created by other transformations are not well
received by the codec and does not create noticable savings
even though they introduce more noise to the system. This
indicates that only the desaturation transformation have any
potential for performance gains for SC compression, so we
focus on only desaturation transformation in the following ex-
periments.

4.2. Effect of desaturation magnitude

We introduced the inverse transformation on the decoder side
and measured end-to-end reconstruction performance of the
pipeline without the neural network modules. From Fig. 4,
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Ballé et al. [1]
dSC1 = 1,dSC2 = 2
dSC1 = 1,dSC2 = 4
dSC1 = 2,dSC2 = 2
dSC1 = 2,dSC2 = 4
dSC1 = 4,dSC2 = 4

PCA Quantization
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Fig. 3: Compressibility of desaturation, PCA downsampling and PCA quantization. Lower bitrate indicates a potential for
performance gain. While desaturation clearly allows us to compress images into smaller files, the PCA downsampling and PCA
quantization transformations have no visible effect on the bitrate difference.
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Fig. 4: Rate-Distortion plot of different desaturation levels on
top of Ballé baseline codec. The reconstructed image quality
drops higher for stronger transformations. However, weaker
transformations produce almost little to none bitrate gains, in-
dicating a sweet spot for the quality - bitrate tradeoff.

it can be seen that the transformations alone hurt the perfor-
mance more as the saturation level α gets smaller. Assuming
our networks can produce 0.5 - 1 dB PSNR gain on top of the
codecs, we opt to focus on a saturation level of α = 0.8 in the
following experiments.

4.3. Performance analysis

Finally, we activate the neural network modules and train the
whole pipeline in an end-to-end manner. We repeat this for
all available quality points in Ballé et al. [1], Minnen et al. [2]
and Cheng et al. [3] baseline codecs. For ease of comparison,
we used the same neural network models of L = 8 layers and
C = 32 channels in all cases. Fig. 5 shows that in all cases,
our modules improved over the baseline codecs.

4.4. Computational complexity

We performed an analysis to find out the relative costs and
benefits of using our pipeline compared to the baseline
codecs. According to Table 1, we see that it is possible
to adapt learned image codecs to out-of-distribution SC data
by using just %1 more parameters. We also measured the
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Fig. 5: Rate-Distortion plot for our solution with baselines as
Ballé, Minnen and Cheng codecs.

Multiply-Accumulate Operations per pixel (MAC/px) of the
end-to-end pipelines and our modules introduce few extra
computations to increase the coding efficieny of SC images.
We follow the technique proposed in JPEGAI [22] standard-
ization to find the MAC/px of the models. The reported values
are from the highest quality point baseline codec available in
the CompressAI [24] library.

4.5. Ablation study

Our ablation study has two steps. In the first step, we kept
every module active and tested the performance of changing
number of channels C and number of layer L for our neu-
ral network models. In the second step, we fixed the neural
network architecture and only measured the performance con-
tribution of modules separately and together. Table 2 summa-
rizes our findings from these experiments.

From the first stage ablation experiments, in general, in-
creasing the model complexity helps with the performance.
However, increasing the number of layers from 8 to 10 for 32
channels is an exception to this observation. We hypothesize
that relatively deeper models may require longer training or
better normalization between submodules to be effective. We
don’t see this effect for higher number of channels. Since the
best performing model was created with L = 5, C = 64, we
decided to use it for the second stage of the ablation study.



BD-Rate
Model # Param. MAC/px (%) ↓
Ballé et al. [1] 11.82M 418K 0.0

+ CRRS 12.02M 460K -9.0

Minnen et al. [2] 25.51M 450K -20.6 (0.0)
+ CRRS 25.71M 492K -28.9 (-10.5)

Cheng et al. [3] 26.60M 927K -36.9 (0.0)
+ CRRS 26.80M 969K -39.6 (-4.5)

Table 1: Model complexity and performance analysis relative
to the Ballé baseline codec. For Minnen and Cheng pipelines,
relative BD-Rate gains are reported in parantheses. Lower
BD-Rate is better.

BD-Rate
Name α CR RS L C ∆MAC/px (%) ↓
Ballé [1] ✗ ✗ ✗ ✗ ✗ 0 0.0

I

✓ ✓ ✓ 5 64 102K -11.5
✓ ✓ ✓ 3 64 65K -9.4
✓ ✓ ✓ 10 32 51K -6.2
✓ ✓ ✓ 8 32 42K -8.0

II

✗ ✓ ✗ 5 64 51K -0.9
✗ ✗ ✓ 5 64 51K -4.4
✗ ✓ ✓ 5 64 102K -7.4
✓ ✗ ✗ 5 64 0 2.0
✓ ✗ ✓ 5 64 51K -2.9

Table 2: Ablation study with Ballé baseline codec on quality
points 2-5. We investigate the effect of different model size
in (I) and the effect of each proposed modules such as the
desaturation, CR and RS in (II). We set the desaturation level
to 0.8 for these experiments.

We disabled some modules of our pipeline with Ballé
codec with neural networks of size C = 64 channels and
L = 5 layers. We measured the performance on quality
points between 2 and 5. We found out that the CR model
alone doesn’t produce much gain while RS model alone is
reasonably performant. However, best results come when
two modules are combined. The desaturation transformation
hurts the performance alone but the introduction of RS model
on top of this results in bitrate savings. When the full pipeline
is activated, we see that every module contributes and we get
the best possible performance.

In our experiments, we also tested the effect of desatura-
tion coefficient α on the performance of our pipeline. From
Fig. 6, it can be seen that there is an inverse log-linear corre-
lation between the desaturation coefficient and the BD-Rate
when no neural networks are activated in the pipeline. We
investigated the sudden drop of the curve around α = 0.9
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Fig. 6: Effect of desaturation coefficient α on top of Ballé
baseline codec. Left image shows the BD-Rate without the
neural network modules and the right figure depicts the Rate-
Distortion plot of α = 0.8 and α = 0.9 with the neural net-
work modules.

by training our neural pipeline to see whether it can produce
better gain than its α = 0.8 counterpart. We observed that
the model with α = 0.9 reaches a slightly higher perfor-
mance gain of 1.1% compared to the model with α = 0.8.
This shows that the desaturation coefficient can be further op-
timized for a higher performance.

5. CONCLUSION

In this paper, we tried to solve the adaptation of LICs to SC
data without breaking the codec’s self consistency. To do
so, we proposed two neural networks, CR and RS models to
act as the prefilter and the postfilter. We also demonstrated
that introduction of some forward and inverse transformations
help with the codec efficiency. Specifically, the desaturation
transformation can reduce the bitrate required to compress an
image via destroying some information. However, the neural
networks are able to recover from this transformation for rea-
sonable magnitude. It can be clearly seen that with a little bit
of extra compute cost, it is possible to adapt LICs to unseen
domains without retraining the codecs themselves.

While the performance improvement shown here is
promising, LICs still require lots of compute power compared
to the classical codecs. This creates a barrier of adaptation
for standardized LICs and introducing new networks may not
be favorable in some use cases. Creating more efficient and
faster LICs is research direction with lots of real world appli-
cations. Another interesting approach could be in adapting
this approach to other special domains such as the medical,
microscopy, multispectral or space imaging where more effi-
cient codecs are still in need. These new domains may require
new specialized transformations and architectures. Finally, it
is also a promising research direction to find optimal trans-
formation coefficients per image to get even more specialized
gains.
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[1] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston, “Variational image com-
pression with a scale hyperprior,” arXiv preprint
arXiv:1802.01436, 2018.

[2] David Minnen, Johannes Ballé, and George D Toderici,
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